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Abstract— This paper proposes a new approximate scheme for a 

coordinate rotation digital computer (CORDIC) design; this 

scheme is based on modifying the existing Para-CORDIC 

architecture with multiple approximations. These 

approximations make possible a relaxation of the CORDIC 

algorithm itself, such that a fully parallel approximate CORDIC 

(FPAX-CORDIC) scheme is designed. This scheme avoids the 

memory register of Para-CORDIC and makes fully parallel the 

generation of the rotation direction. A comprehensive analysis 

and the evaluation of the error introduced by the 

approximations together with different circuit-related metrics 

are pursued using HSPICE as simulation tool. The error 

analysis of this paper combines existing figures of merit for 

approximate computing (such as the Mean Error Distance 

(MED)) with CORDIC-specific parameters; a good agreement 

between expected and simulated error values is found. As an 

application to image processing, the Discrete Cosine 

Transformation (DCT) is investigated by utilizing the proposed 

approximate FPAX-CORDIC architecture with different 

accuracy requirements. The results confirm the viability of the 

proposed scheme. 

Index Terms— Inexact computing, CORDIC, Error distance, 

Power dissipation 

I. INTRODUCTION 

Modern computers rely heavily on fast arithmetic 
computation to solve complex problems with a high degree of 
accuracy. However, accurate hardware implementations for 
arithmetic processing often incur large overheads due to 
increase of circuit complexity, delay and power consumption. 
These overheads are more evident at the nanometric scales in 
which computation encounters physical limitations due to the 
reduced feature size. The paradigm of inexact computing 
relies on relaxing fully precise and completely deterministic 
computation to balance often contradicting figures of merit, 
such as power consumption and performance [1]. The 
tradeoffs that are available for inexact computing are very 
complex once arithmetic processing is considered at a higher 
level than just a single operation (such as addition or 
multiplication). Many inexact or approximate adders, 
multipliers and dividers have been proposed in the technical 
literature [2-4]; however, these designs are considered and 
compared often with respect to the implications of an 
approximation to the operation itself and its ability to deliver 
an output of acceptable accuracy (such as image processing or 
filtering) [5, 6].  

This paper addresses a different scenario in which 
approximation is still implemented in hardware, but it is 
considered as part of an algorithm, namely for a coordinate 
rotation digital computer (CORDIC)  implementation [7, 8].  

CORDIC is an iterative algorithm for the calculation of the 
rotation of a 2-dimensional vector in different coordinate 
systems; the benefits of the CORDIC algorithm are that only 
additions and shift operations are employed. A hardware 
implementation of the CORDIC algorithm usually employs 
both a finite number of iterations and a finite level of 
precision. Therefore, the objective of this paper is to design, 
evaluate and assess an approximate CORDIC design. Multiple 
approximations are utilized, thus relaxing the CORDIC 
algorithm itself for a fully parallel execution. Power 
dissipation and accuracy can be reduced when properly 
selecting the parameters (such as the so-called error control 
parameter p) of the proposed scheme. A comprehensive 
evaluation of p and different circuit metrics including 
complexity and power dissipation are presented. An error 
analysis that combines traditional figures of merit (such as the 
Mean Error Distance (MED) [3]) with CORDIC specific 
parameters is analytically pursued. For computing the Discrete 
Cosine Transformation (DCT), the FPAX-CORDIC reduces 
power consumption while still generating computational 
results with very modest inaccuracy. 

II. REVIEW 

The basic iterative equations of the CORDIC algorithm for 
radix-2 in circular coordinate systems are as follows: 

 𝑥𝑖+1 = 𝑥𝑖 − 𝜎𝑖𝑦𝑖2
−𝑖, 

 𝑦𝑖+1 = 𝑦𝑖 + 𝜎𝑖𝑥𝑖2
−𝑖, 

 𝜃𝑖+1 = 𝜃𝑖  – 𝜎𝑖𝛼𝑖,  (1) 

 𝜎𝑖 ∈ {−1, 1}; 𝑖 = 1, 2, … , 𝑛. 

 𝐾 =∏ √1+ 2−2𝑖 
𝑛−1

𝑖=0
, (2) 

in which the direction of the iterative rotation 𝜎𝑖 = 𝑠𝑖𝑔𝑛(𝜃𝑖) 
and K is the scaling constant that represents the increases in 

magnitude of the vector ( 𝑥𝑖 , 𝑦𝑖)  in every iteration. The 

CORDIC algorithm can be used to compute trigonometric 

functions. For example, let 𝑥1 = 𝐾, 𝑦1 = 0, and 𝜃1 = 𝜃, the 

final output is given by 𝑥𝑁+1 = cos(𝜃) , 𝑦𝑁+1 = sin(𝜃). 
Eq. (1) shows that the performance bottleneck is the 

sequential calculation of 𝜎𝑖. The operations in each stage can 
be executed only after the corresponding stage has selected the 
correct rotation direction. If the direction is found in all stages 
and can be parallelized or pre-computed, the corresponding 
CORDIC rotations in the microrotation stage can also be 
concurrently executed. Different solutions have been proposed 
in the technical literature [9-13] for the parallel execution of 𝜎𝑖 
through the θ-path. In [14], the so-called Para-CORDIC 
parallelizes the generation of the rotations direction i.e., 𝜎𝑖 
from the binary value of the input angle 𝜃  by employing a 
binary to bipolar representation (BBR) and a microrotation 
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angle recoding (MAR) technique.  The two’s complement 
N+1 bit binary representation 

of the input angle θ is given by (−𝑏0) + Σ𝑗=1
N 𝑏𝑗2

−𝑗 ,  where 

𝑏𝑗 ∈ {0,1} is assumed to be in the range |𝜃| ≤ 𝜋/4. The input 

angle 𝜃  is divided into the higher part 𝜃𝐻  and 
the lower part 𝜃𝐿: 

𝜃 = 𝜃𝐿 + 𝜃𝐻 
= (−𝑏0) + Σ𝑗=1

𝑙−1𝑏𝑗2
−𝑗 + Σ𝑗=𝑙

𝑁 𝑏𝑗2
−𝑗 

(3) 

In (3), 𝑙  is the smallest index value such that 2−𝑙 −
tan−1 2−𝑙 < 2−𝑁 . It has been shown in [15] that 𝑙 =
⌈(𝑁 − log2 3)/3⌉ . Next, a brief treatment of the BBR and 
MAR methods to predict the 𝜎𝑖 for 𝜃𝐿 and 𝜃𝐻 respectively, is 
provided. 

1) Binary to Bipolar Representation (BBR) 
 The BBR method converts the first l-1 bits of the input 

angle (i.e., 𝜃𝐿 ) and obtains the corresponding rotation 
directions (𝜎1 𝑡𝑜 𝜎𝑙). The binary value 𝑏𝑗 ∈ {0,1} is converted 

to the corresponding bipolar representation 𝑟𝑘 ∈ {−1,1}  as 
follows: 

𝜃𝐿 = (−𝑏0) + 𝛴𝑗=1
𝑙−1𝑏𝑗2

−𝑗  

= (−𝑏0) + 𝛴𝑗=1
𝑙−1[2−𝑗−1 + (2𝑏𝑗 − 1)2

−𝑗−1] 

= 𝛴𝑖=1
𝑙 𝑟𝑖2

−𝑖 − 2−𝑙 , 

(4) 

where, 

𝑟1 = 1 − 2𝑏0 
𝑟i = 2𝑏𝑖−1 − 1 , 𝑖 = 2, 3, … , 𝑙 

The first 𝑙  rotation direction (𝜎1 𝑡𝑜 𝜎𝑙)  is directly derived 

from (4) and the bipolar value of 𝑟1 to 𝑟𝑙. Then, 𝜃𝐿 is written 

as follows: 

𝜃𝐿 = 𝛴𝑖=1
𝑙 𝑟𝑖2

−𝑖 − 2−𝑙 

= Σ(𝑖=1)
𝑙 𝜎𝑖 {Σ𝑗=1

𝑛(𝑖) tan−1 (2−𝑠𝑖
𝑗

) + 𝑒𝑖} − 2
−𝑙 , 

(5) 

where, 𝜎𝑖 = 𝑟𝑖 ; 𝑖 = 1, 2, … , 𝑙. In (5), 2−𝑖  is expressed as the 

sum of arctangent values and an error term, i.e., 

Σ𝑗=1
𝑛(𝑖) tan−1 (2−𝑠𝑖

𝑗

) + 𝑒𝑖  (as discussed next in the MAR 

algorithm). 

2) Microrotation Angle Recoding (MAR) 
The decomposition of each positional binary weighting 

2−𝑖, 𝑖 = 1, 2, … , 𝑙 − 1 into a combination of arctangent terms 
and a nonnegative error term 𝑒𝑖 , yields the following 
expression: 

2−𝑖 = tan−1(2−𝑖) + Σ𝑗=2
𝑛(𝑖) tan−1 (2−𝑠𝑖

𝑗

) 

= Σ𝑗=1
𝑛(𝑖) tan−1 (2−𝑠𝑖

𝑗

) + 𝑒𝑖,   
(6) 

where, 𝑠𝑖
1 = 𝑖, 𝑖 = 1, 2, … , 𝑙 − 1. 

The above equation is generally known as MAR. 𝑛(𝑖) is 
the number of microrotations required in the MAR recording 

of 2−𝑖, and 𝑠𝑖
𝑗
 is the shift sequences for 𝑗 = 1, 2, … , 𝑛(𝑖) with 

the first shift 𝑠𝑖
1 = 𝑠𝑖 = 𝑖, 𝑖 = 1, 2, … , 𝑙 − 1 . The detailed 

algorithm of MAR recording can be found in [14]. By 

combining (3) and (5-6), the corrected rotation angle �̂�𝐻  is 
given by 

 �̂�𝐻 = 𝜃𝐻 + Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖 − 2

−𝑙. (7) 

Following the BBR for 𝜃𝐿and the MAR for each binary 

positional weight 2−𝑖 , another BBR is applied to the binary 

representation of the corrected �̂�𝐻 as follows: 

�̂�𝐻 = (−�̂�𝑙−1)2
−𝑙+1 + Σ𝑘=𝑙

𝑁 �̂�𝑘2
−𝑘 

= (−�̂�𝑙−1) + 𝛴𝑘=𝑙+1
𝑁+1 [(2�̂�𝑘−1 − 1)2

𝑘+2−𝑙+2−𝑁−1] 

= Σ𝑖=𝑙
𝑁+1𝑟�̂�2

−𝑖 − 2−𝑁−1, 

(8) 

where, 

𝑟�̂� = 1 − 2�̂�𝑖−1,             𝑖 = 𝑙 
𝑟�̂� = (2�̂�𝑖−1 − 1),         𝑖 = 𝑙 + 1,… , 𝑁 + 1 

From (8) the last N-l+2 rotation direction (�̂�𝑙  𝑡𝑜 �̂�𝑁+1) is 
found directly from the bipolar value of �̂�𝑙 to �̂�𝑁+1. 

 
Fig. 1 The Para-CORDIC Architecture [14]. 

 

3) Para-CORDIC architecture 
The Para-CORDIC rotation architecture is shown in Fig. 1. 

There are two BBRs in the para-CORDIC rotation. In 
Fig. 1, BBRL and BBRH are used to represent the operations in 
(4) and (8) i.e., determine the rotation direction 𝜎1 to 𝜎𝑙 and �̂�𝑙 
to �̂�𝑁+1 , respectively. The operations in (7) are denoted as 
𝐴𝑑𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (Fig. 1). The errors given by the  𝑒𝑖 terms, are 

precomputed and stored in the memory register. 

III. PROPOSED FULLY PARALLEL APPROXIMATE CORDIC 

(FPAX-CORDIC) 

A. FPAX-CORDIC algorithm and architecture 
Although Para-CORDIC parallelizes the computation of 𝜎𝑖 

in two phases (when calculating BBRL and BBRH), this 
algorithm cannot still independently execute the relation 
between Phase 1 and Phase 2. The generation of the rotation 
direction 𝜎𝑖 is still not fully parallel, i.e., the relation between 
Phase 1 and Phase 2 must be further analyzed to allow a fully 
parallel generation of 𝜎𝑖. Therefore, an approximate design is 
proposed for implementation to meet this requirement.  

The relationship between Phase 1 and Phase 2 is 
considered next with respect to the error compensation 
mechanism in Para-CORDIC; the basic criterion consists of 
assessing the error following BBR in Phase 1. If the generated 
error can be tolerated, then this relationship can be completely 
eliminated to allow a fully parallel execution of BBRL and 
BBRH. Also in this latter case, there is no need of additional 
memory to store the error compensation terms 𝑒𝑖; moreover, 
this condition makes the operation of the circuit fully 
combinational, hence also improving its performance.   

Consider Fig. 1, the block 𝐴𝑑𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  is eliminated 

(denoted now as a dashed rectangle) as per the following 
analysis. The main function of the 𝐴𝑑𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  block is to 

compensate the error introduced by the first BBR operation in 



(7). In MAR for 2−𝑖 , 𝑖 = 1, 2, … , 𝑙 − 1, the value of �̂�𝐻 must 
satisfy the following constraint: 

 |�̂�𝐻| < 2−(𝑙−1) (9) 

If this condition is met, then each binary weighting of 2−𝑖 
in the remaining angle can be approximated by tan−1(2−𝑖) 
within the accuracy allowed by the N fractional bits. As 

outlined in [14], if Σ𝑖=1
𝑙−1𝑒𝑖 < 2

−𝑙 , then the value of |�̂�𝐻| must 

satisfy the inequality of (9). 2−𝑙 is the upper bound for Σ𝑖=1
𝑙−1𝑒𝑖; 

the higher order terms tan−1(2𝑞), 𝑞 > 𝑖 in MAR of 2−𝑖 can be 

found to allow Σ𝑖=1
𝑙−1𝑒𝑖 < 2−𝑙 . Thus, the number of 

microrotations (with the shift sequences 𝑠𝑖
𝑗
, 𝑗 = 1, 2, … , 𝑛(𝑖)) 

is directly controlled by Σ𝑖=1
𝑙−1𝑒𝑖, i.e., the smaller Σ𝑖=1

𝑙−1𝑒𝑖 is, the 
larger  𝑛(𝑖)  is [14]. The complete elimination of the 
𝐴𝑑𝑑𝑝𝑟𝑒𝑑𝑖𝑡𝑖𝑜𝑛  block in Fig. 1 (so making CORDIC fully 

parallel) permits the inequality Σ𝑖=1
𝑙−1𝑒𝑖 < 2

−𝑁  to be satisfied. 

As shown in (7), if Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖 = 0 , then �̂�𝐻 = 𝜃𝐻 − 2−𝑙  and 

error compensation is not required, i.e., 𝐴𝑑𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  is not 

required. 

In general Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖 = 0  is not applicable, because it is 

only possible to make Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖 approximately equal to 0. Let 

𝜃𝐸 = Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖 ; as each 𝑒𝑖  is not negative in MAR, then 

|𝜃𝐸| = |Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖| ≤ Σ𝑖=1

𝑙−1𝑒𝑖 . So, let Σ𝑖=1
𝑙−1𝑒𝑖 → 0, hence  𝜃𝐸 →

0. For an input angle 𝜃 with an N-bit precision,  Σ𝑖=1
𝑙−1𝑒𝑖 < 2−𝑁; 

therefore, the error 𝜃𝐸  can be ignored for a N-bit precision.  
An algorithm to find the high-order terms tan−1(2𝑞), 𝑞 >

𝑖  and make Σ𝑖=1
𝑙−1𝑒𝑖 < 2

−𝑁  is rather intuitive, because it is 
rather similar to MAR [14]. However to meet the condition 

2−𝑁 ≪ 2−𝑙 , the execution of an error free fully parallel 
CORDIC is significantly more restrictive than in Para-
CORDIC. Therefore, the number of microrotation 𝑛(𝑖) in this 
case is more than in [14], i.e., the complexity of the X/Y path 
is higher. When the 𝜃 error term |𝜃𝐸| < 2−𝑝is tolerated for a 

specific application, then   |𝜃𝐸| ≤ Σ𝑖=1
𝑙−1𝑒𝑖 < 2−𝑝 where 𝑝 ∈

[𝑙, … , 𝑁]  is the so-called error-tolerant parameter. The 
proposed FPAX-CORDIC algorithm is presented in pseudo-
code in Fig. 2. 
For an N-bit input angle θ, 
//Initial Values 

Find 𝑙 = ⌈(𝑁 − 𝑙𝑜𝑔2 3)/3⌉ 
Perform Eq. (3) and 𝜃𝐻 − 2−𝑙 

Use the proposed theorem to find 𝑠𝑖
𝑗 and 𝑒𝑖  (𝛴𝑖=1

𝑙−1𝑒𝑖 < 2
−𝑝). 

// Full Parallel Execution 
Perform BBR (for the full range of the N-bit input angle θ) 
From stage 1 to stage 𝑙 
Perform R(i) using 𝜎𝑖 = 𝑟𝑖 , 𝑖 = 1… 𝑙. 
From stage (l+1) to stage (N+2) 
Perform S(i) using 𝜎𝑖 = 𝑟𝑙 , 𝑖 = 𝑙 …𝑁 + 1 

Fig. 2  FPAX-CORDIC Algorithm. 

 

The architecture of the proposed FPAX-CORDIC is shown 
in Fig. 3. The two paths, namely the θ-path and the X/Y path, 
are discussed as follows.  

θ-path: Consider Fig. 1 and Fig. 3; the operations of the 
data path in the conventional CORDIC are replaced by the 
BBR in the proposed FPAX-CORDIC. The delay and the 
hardware overhead of the two BBRs are negligible, because 
they perform a simple signal mapping and are parallel with 

X/Y-path (i.e., 0 (1) is considered, as the subtraction (addition) 
signal). 

X/Y-path: In the proposed architecture (Fig. 3), the number 

of total microrotations is denoted as 𝑅𝑜𝑡(𝑁) = Σ𝑖=1
𝑙−1𝑛(𝑖) +

𝑁 − 𝑙 + 3. 𝑛(𝑖) is directly related to Σ𝑖=1
𝑙−1𝑒𝑖, and therefore, it 

is also related to the error-tolerant parameter 𝑝. So, the area 

and delay are (4𝑁 × 𝑅𝑜𝑡(𝑁))𝐴𝐹𝐴 and (2 × 𝑅𝑜𝑡(𝑁))𝑇𝐹𝐴, i.e. 

it is assumed that each microrotation stage is implemented 
using a Binary Signed Digit Adder (BSDA) and the area and 
delay with a word size of N bits are 4𝑁 × 𝐴𝐹𝐴 and 2𝑇𝐹𝐴. 𝐴𝐹𝐴 
and 𝑇𝐹𝐴 are the area and delay of a full adder.  

 

 
Fig. 3 (a) Architecture of proposed FPAX-CORDIC (b) Structure of R(i) 

B. Error Analysis of FPAX-CORDIC 
The approximation error of FPAX-CORDIC with respect 

to the real trigonometric function is controlled by the error-
tolerant parameter p. As |𝜃𝐸| < 2−𝑝 is ignored in 𝜃, then  
 sin 𝜃′ = sin(𝜃 − 𝜃𝐸) (10) 

Thus, 
𝐸𝑠𝑖𝑛
𝐴𝑋(𝜃, 𝜃𝐸) = sin 𝜃 − sin 𝜃′ 

= (1 − cos 𝜃𝐸) sin 𝜃 + sin 𝜃𝐸 cos 𝜃 
𝐸𝑐𝑜𝑠
𝐴𝑋(𝜃, 𝜃𝐸) = cos 𝜃 − cos 𝜃′ 

= (1 − cos 𝜃𝐸) cos 𝜃 − sin 𝜃𝐸 sin 𝜃 

  (11) 

If the rounding error is not considered, then the MED [3] 
can be derived by the integral of the approximation error for 
𝜃 ∈ [0, 2𝜋) as, 

MED = ∫ 𝐸𝑠𝑖𝑛
𝐴𝑋(𝜃, 𝜃𝐸)𝑑𝜃

2𝜋

0

= ∫ 𝐸𝑐𝑜𝑠
𝐴𝑋(𝜃, 𝜃𝐸)𝑑𝜃

2𝜋

0

 

= ∫ |(1 − cos 𝜃𝐸) sin 𝜃 + sin 𝜃𝐸 cos 𝜃|𝑑𝜃
2𝜋

0

 

=

{
 

 
sin 𝜃𝐸 − cos 𝜃𝐸 + 1

 𝜋
, 𝐸𝑠𝑖𝑛

𝐴𝑋(𝜃, 𝜃𝐸) ≥ 0

cos 𝜃𝐸 − sin 𝜃𝐸 − 1

𝜋
, 𝐸𝑠𝑖𝑛

𝐴𝑋(𝜃, 𝜃𝐸) < 0

 

(12) 

IV. EVALUATION 

A 16-bit FPAX-CORDIC is implemented and simulated 
using HSPICE with the 45nm predictive technology model 
(PTM); the input 𝜃  uses 17 bit 2’s complementary binary 
values to represent the angle in radian.  The angle information 
is in the format U(1, 16), where bit 16 is the sign bit and the 



bits [15:0] are the fractional parts. X/Y use a 17-bit 2’s 
complementary binary number representation; its format is 
given by U(1, 16) inclusive of the sign bit. The BBR block are 
implemented using multiplexers and inverters. As 𝜎𝑖 is fixed 
a-priori, the X/Y path can be realized using a Binary Signed 
Digit Adder (BSDA), i.e. addition without propagation of a 
carry. The intermediate rotation results are represented using a 
Binary Signed-Digit (BSD) numbering system [16]. 
The simulated error 𝐸𝑠𝑖𝑛(𝜃, 𝜃

𝐸) versus p for the proposed 16-
bit FPAX-CORDIC is plotted in Fig. 4. The black solid line is 
the mean error over the range of p ∈ [5, 15]; as p increases, the 
output error variation decreases to reach nearly zero. Eq. (12) 
has been plotted against the simulated results. Fig. 5  shows 
that the error equation provides a good estimate of the MED 
for the FPAX-CORDIX architecture, i.e. the simulated MED 
of the 16-bit FPAX-CORDIC as function of p. The MED 
drops rather fast at 𝑝 = 8 and is nearly constant at 𝑝 > 10; 
however, the simulated MED value  is different from the 
estimated value. This is caused by the quantization of the 
rounding error at a less significant bit. 

 
Fig. 4 Error of 16-bit FPAX-CORDIC versus parameter p. 

 
Fig. 5 MED of 16-bit FPAX-CORDIC versus parameter p. 

 
The power and delay results are plotted in Fig. 6. When p<11, 
the power consumption of the FPAX-CORDIC is smaller than 
the Para-CORDIC. Because the value of p for FPAX-
CORDIC is always larger than l, there is a larger number of 

microrotation stages in FPAX-CORDIC than in Para-
CORDIC; thus the delay is longer than that of Para-CORDIC. 
The delay disadvantage can be addressed by ignoring (or 
truncating) some of the final rotation stages S(i) (i=l, … N+1), 
when a slightly larger error can be tolerated in FPAX-
CORDIC. 
An approximate arithmetic design always has to deal with a 
trade-off between accuracy and power. As shown in Fig. 7, 
when p is changed, the power increases and the MED 
decreases. An abrupt decrease in the MED occurs when p=8 
(and the power increases to 1.43 mw). Thus, p=8 is the most 
appropriate value for attaining low power and high accuracy 
design for a 16-bit design. 

  
(a) (b) 

Fig. 6 (a) Power consumption (b) Delay of 16-bit FPAX-CORDIC vs. 
parameter p. 

 
Fig. 7 Power and MED for 16-bit FPAX-CORDIC. 

V. APPLICATION: DISCRETE COSINE TRANSFORM (DCT)  

A wide range of algorithms (such as image enhancement 
in the spatial domain, frequency transform, image rotation, 
edge detection) can be implemented using CORDIC [17]. A 
discrete cosine transform (DCT) [18] expresses a finite 
sequence of data points in terms of a sum of cosine functions 
oscillating at different frequencies. Therefore, the focus of this 
section is on the 2-D 8×8 DCT, as widely used in image 
compression applications. As shown in Fig. 8, the source 
image (Lena) is divided into smaller 8×8 blocks; the DCT 
computation is applied to each 8×8 block. Throughout this 
section, the FPAX-CORDIC architecture uses a 17-bit U(1, 16) 
for the θ-path, 32-bit U(16, 16) for the X/Y-path (a real 
number consisting of 16 bits each for integer and fractional 
parts; each input image pixel is in the range [0, 255]). 

Inexact 2-D 8×8 DCT based on FPAX-CORDIC: The DCT 

computation is implemented using the proposed FPAX-



CORDIC; the 2-D DCT is decomposed into a 1-D DCT (row-

wise DCT) followed by another 1-D DCT (column-wise 

DCT). The process with the separable 1-D DCTs is shown in 

Fig. 9; the resulting DCT image is compared against the 

results of Para-CORDIC. 

 
Fig. 8 2D DCT-IDCT process for image compression application. 

 
Fig. 9 Process for 2-D 8×8 DCT. 

 
The 8×1 1-D DCT transform is given by [19] 

  𝑋(𝑘) =
𝑐(𝑘)

2
∑ 𝑥(𝑖) cos

(2𝑖+1)𝑘𝜋

16

7
𝑖=0  (13) 

where 
𝑘 = 0, 1, 2,… , 7 

𝑐(𝑘) = {

1

√2
, 𝑘 = 0

1, 𝑘 > 0

 

By (13) and using the DCT and the trigonometric 
symmetric property, the 8×1 1-D DCT is as follows in matrix 
form: 

[
𝑋(4)
𝑋(0)

] =
1

2
[
𝑐4 −𝑠4
𝑠4 𝑐4

] [
𝑥(0) + 𝑥(7) + 𝑥(3) + 𝑥(4)

𝑥(1) + 𝑥(6) + 𝑥(2) + 𝑥(5)
] 

[
𝑋(6)
𝑋(2)

] =
1

2
[
𝑐6 −𝑠6
𝑠6 𝑐6

] [
𝑥(0) + 𝑥(7) − 𝑥(3) − 𝑥(4)

𝑥(1) + 𝑥(6) − 𝑥(2) − 𝑥(5)
] 

[
𝑋(1)

𝑋(7)
] =

1

2
[
𝑐7 𝑠7
−𝑠7𝑐7

] [
𝑥(3) − 𝑥(4)

𝑥(0) − 𝑥(7)
] +

1

2
[
𝑐3 𝑠3
−𝑠3𝑐3

] [
𝑥(1) − 𝑥(6)

𝑥(2) − 𝑥(5)
] 

[
𝑋(3)

𝑋(5)
] =

1

2
[
𝑐3−𝑠3
𝑠3 𝑐3

] [
𝑥(0) − 𝑥(7)

𝑥(3) − 𝑥(4)
] −

1

2
[
𝑐1 𝑠1
−𝑠1𝑐1

] [
𝑥(2) − 𝑥(5)

𝑥(1) − 𝑥(6)
] 

(14) 

where 𝑐𝑘 =  𝑐𝑜𝑠 (
𝑘𝜋

16
) = 𝑠𝑚 = sin (

𝑚𝜋

16
) ,𝑚 = 8 − 𝑘.  

The implementation of (14) for an 8×1 1D-CORDIC DCT is 
shown in Fig. 10. Six fixed-angle FPAX-CORDICs are used 
to complete the multiplication of the trigonometric terms in 

(14), because for an input 𝜃 ∈ [
𝜋

4
, −

𝜋

4
] to the FPAX-CORDIC 

design, all rotation angles are converted to this restricted range. 
In the architecture of the 8×8 DCT, the parameter p controls 
the accuracy of the FPAX-CORDIC modules. Thus, the 
accuracy of the inexact 2-D 8×8 DCT is affected in two 
respects: (1) for each 8×1 1D-CORDIC DCT (Fig. 10), six 
parallel FPAX-CORDIC modules can be configured by 
changing  p; (2) the two 8×1 1D-CORDIC DCT are connected 
in series (Fig. 9), but they can be configured using different 
values of p. For simplicity, the value of p is kept constant for 
all FPAX-CORDIC modules in the following analysis. 

Configurations of 8×8 DCT based on FPAX-CORDIC: Two 

features are considered for the six FPAX-CORDIC modules 

to further reduce the complexity of the proposed architecture 

for an 8×8 DCT and attain a better DCT accuracy. 
 

 

 
Fig. 10 8×1 1D-CORDIC DCT. 

 
Non-equal precision path: When considering the 

reconstruction of the original input image 𝑥(𝑖) from the DCT 

compressed image 𝑋(𝑘), the high frequency components of 

𝑋(𝑘) (for example 𝑋(4)~𝑋(7)) have a small impact on the 

reconstructed image x(i). So, the X/Y path of the six FPAX-

CORDIC modules in the 1D-CORDIC architecture can have 

non-equal precision. For example, the X-path of the FPAX-

CORDIC modules (1) (3) and the Y-path of the FPAX-

CORDIC modules (2) (4) (5) (6) can either have a poor 

precision (i.e., a smaller number of bits), or simply be ignored. 

The high frequency or non-critical outputs are shown in Fig. 

10 with dashed arrows. 

p sets: On the basis of unequal precision paths to further 

control the error for the low-frequency or critical outputs, the 

value of p for each individual FPAX-CORDIC module can be 

adjusted to meet the error specifications of an application. In 

each FPAX-CORDIC module, the output usually consists of a 

low-high frequency component pair. For example, for module 

(1), the output pair is (𝑋(4), 𝑋(0)); as the accuracy of 𝑋(4) is 

reduced, p affects solely  𝑋(0). Similar conditions may also 

apply to the other five FPAX-CORDIC modules. 
Image test: Fig. 11 shows an example of the simulated error 
impact of different configurations of FPAX-CORDIC in an 
inexact DCT application. The original image 𝑥(𝑖, 𝑗)  is 
transformed using an FPAX-CORDIC based 2-D DCT 

architecture to generate an inexact DCT �̂�(𝑖, 𝑗) , then the 
original �̂�(𝑖, 𝑗)  is recovered using an exact IDCT 
transformation. The peak signal-to-noise ratio (PSNR) of 
�̂�(𝑖, 𝑗) against 𝑥(𝑖, 𝑗) is measured and the results are plotted in 
Fig. 12(a). The PSNR shows that higher are the values of p 
and the Y-path bits, the higher the PSNR is; the PSNR reaches 
a constant value when the number of bits in the X/Y path 
reaches 20. When p>8, the PSNR increases rapidly and 
reaches the largest value. 

 

 

8×8 
2D-DCT 
(Inexact) 

 

8×8 
2D-

IDCT 
(exact) 

 
𝑥(𝑖, 𝑗)  �̂�(𝑖, 𝑗)  𝑥(𝑖, 𝑗) 

Fig. 11 Evaluation of the error of FPAX-CORDIC based inexact DCT 



Hardware implementation of DCT: For the DCT application 

presented previously, FPAX-CORDIC at a specific p value 

has been described in a previous section. For the non-equal 

precision path introduced solely for the DCT application, the 

bit-width of the data path is controlled by a Dynamic Bit-

width Control (DBC) circuit [20]. In this scheme, the 

hardware overhead consists of the pull-up and pull-down 

turn-off gate transistors for each X/Y-path bit in the 

positional logic. The power dissipation of a single DCT is 

measured and the results are plotted in Fig. 12(b). By 

considering the PSNR (Fig. 12(a)), a better accuracy is 

achieved at higher power consumption; a larger error has to 

be tolerated for a lower power dissipation. To achieve both 

low power and high accuracy in DCT, the scheme with p=8 

and an X/Y-path width of 24 offers the best combined 

performance. 

  

(a) (b) 
Fig. 12 (a) PSNR (b) Power for inexact DCT application 

VI. CONCLUSION 

This paper has proposed an approach for an approximate 
CORDIC design. A fully parallel approximate CORDIC 
(FPAX-CORDIC) scheme has been proposed by modifying 
the Para-CORDIC architecture. The proposed approximate 
CORDIC does not utilize the memory register of Para-
CORDIC and makes the generation of the rotation direction 
fully parallel. Power dissipation can be reduced when properly 
selecting the parameters in the proposed scheme. A 
comprehensive evaluation of the error control parameter p and 
different circuit metrics including complexity and power 
dissipation has been presented. An error analysis that 
combines traditional figures of merit (such as MED) with 
CORDIC specific parameters has been analytically pursued. 
Therefore, the following conclusive evidence is applicable: (a) 
The error parameter p plays a critical role when assessing the 
trade-off between power consumption and accuracy for the 
proposed FPAX-CORDIC. As p increases (i.e., when the 
number of bits to be processed increases) more accuracy is 
obtained, i.e., the MED decreases to reach a nearly constant 
value. (b) The power dissipation of FPAX-CORDIC increases 
as a function of p, i.e., for a 16-bit design, the proposed 
FPAX-CORDIC reaches the best trade-off between power 
dissipation and accuracy at p=8. (c) For image compression 
and decompression using DCT, additional power saving can 
be gained by tolerating more errors for the high frequency 
components as well as selecting p. Additional power saving 
can be realized by using the DBC circuit on the Y-path of each 
FPAX-CORDIC module. 
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