
A Fully Parallel Approximate CORDIC Design

Linbin Chen and Fabrizio Lombardi

Electrical and Computer Engineering

Department

Northeastern University

Boston, USA

lombardi@ece.neu.edu

Jie Han

Electrical and Computer Engineering

Department

University of Alberta

Edmonton, Canada

jhan8@ualberta.ca

Weiqiang Liu
College of Electronic Information and

Engineering

Nanjing University of Aeronautics and

Astronautics, Nanjing, Jiangsu, China

liuweiqiang@nuaa.edu.cn

Abstract— This paper proposes a new approximate scheme for a

coordinate rotation digital computer (CORDIC) design; this

scheme is based on modifying the existing Para-CORDIC

architecture with multiple approximations. These

approximations make possible a relaxation of the CORDIC

algorithm itself, such that a fully parallel approximate CORDIC

(FPAX-CORDIC) scheme is designed. This scheme avoids the

memory register of Para-CORDIC and makes fully parallel the

generation of the rotation direction. A comprehensive analysis

and the evaluation of the error introduced by the

approximations together with different circuit-related metrics

are pursued using HSPICE as simulation tool. The error

analysis of this paper combines existing figures of merit for

approximate computing (such as the Mean Error Distance

(MED)) with CORDIC-specific parameters; a good agreement

between expected and simulated error values is found. As an

application to image processing, the Discrete Cosine

Transformation (DCT) is investigated by utilizing the proposed

approximate FPAX-CORDIC architecture with different

accuracy requirements. The results confirm the viability of the

proposed scheme.

Index Terms— Inexact computing, CORDIC, Error distance,

Power dissipation

I. INTRODUCTION

Modern computers rely heavily on fast arithmetic
computation to solve complex problems with a high degree of
accuracy. However, accurate hardware implementations for
arithmetic processing often incur large overheads due to
increase of circuit complexity, delay and power consumption.
These overheads are more evident at the nanometric scales in
which computation encounters physical limitations due to the
reduced feature size. The paradigm of inexact computing
relies on relaxing fully precise and completely deterministic
computation to balance often contradicting figures of merit,
such as power consumption and performance [1]. The
tradeoffs that are available for inexact computing are very
complex once arithmetic processing is considered at a higher
level than just a single operation (such as addition or
multiplication). Many inexact or approximate adders,
multipliers and dividers have been proposed in the technical
literature [2-4]; however, these designs are considered and
compared often with respect to the implications of an
approximation to the operation itself and its ability to deliver
an output of acceptable accuracy (such as image processing or
filtering) [5, 6].

This paper addresses a different scenario in which
approximation is still implemented in hardware, but it is
considered as part of an algorithm, namely for a coordinate
rotation digital computer (CORDIC) implementation [7, 8].

CORDIC is an iterative algorithm for the calculation of the
rotation of a 2-dimensional vector in different coordinate
systems; the benefits of the CORDIC algorithm are that only
additions and shift operations are employed. A hardware
implementation of the CORDIC algorithm usually employs
both a finite number of iterations and a finite level of
precision. Therefore, the objective of this paper is to design,
evaluate and assess an approximate CORDIC design. Multiple
approximations are utilized, thus relaxing the CORDIC
algorithm itself for a fully parallel execution. Power
dissipation and accuracy can be reduced when properly
selecting the parameters (such as the so-called error control
parameter p) of the proposed scheme. A comprehensive
evaluation of p and different circuit metrics including
complexity and power dissipation are presented. An error
analysis that combines traditional figures of merit (such as the
Mean Error Distance (MED) [3]) with CORDIC specific
parameters is analytically pursued. For computing the Discrete
Cosine Transformation (DCT), the FPAX-CORDIC reduces
power consumption while still generating computational
results with very modest inaccuracy.

II. REVIEW

The basic iterative equations of the CORDIC algorithm for
radix-2 in circular coordinate systems are as follows:

 𝑥𝑖+1 = 𝑥𝑖 − 𝜎𝑖𝑦𝑖2
−𝑖,

 𝑦𝑖+1 = 𝑦𝑖 + 𝜎𝑖𝑥𝑖2
−𝑖,

 𝜃𝑖+1 = 𝜃𝑖 – 𝜎𝑖𝛼𝑖, (1)

 𝜎𝑖 ∈ {−1, 1}; 𝑖 = 1, 2, … , 𝑛.

 𝐾 =∏ √1+ 2−2𝑖
𝑛−1

𝑖=0
, (2)

in which the direction of the iterative rotation 𝜎𝑖 = 𝑠𝑖𝑔𝑛(𝜃𝑖)
and K is the scaling constant that represents the increases in

magnitude of the vector (𝑥𝑖 , 𝑦𝑖) in every iteration. The

CORDIC algorithm can be used to compute trigonometric

functions. For example, let 𝑥1 = 𝐾, 𝑦1 = 0, and 𝜃1 = 𝜃, the

final output is given by 𝑥𝑁+1 = cos(𝜃) , 𝑦𝑁+1 = sin(𝜃).
Eq. (1) shows that the performance bottleneck is the

sequential calculation of 𝜎𝑖. The operations in each stage can
be executed only after the corresponding stage has selected the
correct rotation direction. If the direction is found in all stages
and can be parallelized or pre-computed, the corresponding
CORDIC rotations in the microrotation stage can also be
concurrently executed. Different solutions have been proposed
in the technical literature [9-13] for the parallel execution of 𝜎𝑖
through the θ-path. In [14], the so-called Para-CORDIC
parallelizes the generation of the rotations direction i.e., 𝜎𝑖
from the binary value of the input angle 𝜃 by employing a
binary to bipolar representation (BBR) and a microrotation

mailto:lombardi@ece.neu.edu
mailto:jhan8@ualberta.ca
mailto:liuweiqiang@nuaa.edu.cn

angle recoding (MAR) technique. The two’s complement
N+1 bit binary representation

of the input angle θ is given by (−𝑏0) + Σ𝑗=1
N 𝑏𝑗2

−𝑗 , where

𝑏𝑗 ∈ {0,1} is assumed to be in the range |𝜃| ≤ 𝜋/4. The input

angle 𝜃 is divided into the higher part 𝜃𝐻 and
the lower part 𝜃𝐿:

𝜃 = 𝜃𝐿 + 𝜃𝐻
= (−𝑏0) + Σ𝑗=1

𝑙−1𝑏𝑗2
−𝑗 + Σ𝑗=𝑙

𝑁 𝑏𝑗2
−𝑗

(3)

In (3), 𝑙 is the smallest index value such that 2−𝑙 −
tan−1 2−𝑙 < 2−𝑁 . It has been shown in [15] that 𝑙 =
⌈(𝑁 − log2 3)/3⌉ . Next, a brief treatment of the BBR and
MAR methods to predict the 𝜎𝑖 for 𝜃𝐿 and 𝜃𝐻 respectively, is
provided.

1) Binary to Bipolar Representation (BBR)
 The BBR method converts the first l-1 bits of the input

angle (i.e., 𝜃𝐿) and obtains the corresponding rotation
directions (𝜎1 𝑡𝑜 𝜎𝑙). The binary value 𝑏𝑗 ∈ {0,1} is converted

to the corresponding bipolar representation 𝑟𝑘 ∈ {−1,1} as
follows:

𝜃𝐿 = (−𝑏0) + 𝛴𝑗=1
𝑙−1𝑏𝑗2

−𝑗

= (−𝑏0) + 𝛴𝑗=1
𝑙−1[2−𝑗−1 + (2𝑏𝑗 − 1)2

−𝑗−1]

= 𝛴𝑖=1
𝑙 𝑟𝑖2

−𝑖 − 2−𝑙 ,

(4)

where,

𝑟1 = 1 − 2𝑏0
𝑟i = 2𝑏𝑖−1 − 1 , 𝑖 = 2, 3, … , 𝑙

The first 𝑙 rotation direction (𝜎1 𝑡𝑜 𝜎𝑙) is directly derived

from (4) and the bipolar value of 𝑟1 to 𝑟𝑙. Then, 𝜃𝐿 is written

as follows:

𝜃𝐿 = 𝛴𝑖=1
𝑙 𝑟𝑖2

−𝑖 − 2−𝑙

= Σ(𝑖=1)
𝑙 𝜎𝑖 {Σ𝑗=1

𝑛(𝑖) tan−1 (2−𝑠𝑖
𝑗

) + 𝑒𝑖} − 2
−𝑙 ,

(5)

where, 𝜎𝑖 = 𝑟𝑖 ; 𝑖 = 1, 2, … , 𝑙. In (5), 2−𝑖 is expressed as the

sum of arctangent values and an error term, i.e.,

Σ𝑗=1
𝑛(𝑖) tan−1 (2−𝑠𝑖

𝑗

) + 𝑒𝑖 (as discussed next in the MAR

algorithm).

2) Microrotation Angle Recoding (MAR)
The decomposition of each positional binary weighting

2−𝑖, 𝑖 = 1, 2, … , 𝑙 − 1 into a combination of arctangent terms
and a nonnegative error term 𝑒𝑖 , yields the following
expression:

2−𝑖 = tan−1(2−𝑖) + Σ𝑗=2
𝑛(𝑖) tan−1 (2−𝑠𝑖

𝑗

)

= Σ𝑗=1
𝑛(𝑖) tan−1 (2−𝑠𝑖

𝑗

) + 𝑒𝑖,
(6)

where, 𝑠𝑖
1 = 𝑖, 𝑖 = 1, 2, … , 𝑙 − 1.

The above equation is generally known as MAR. 𝑛(𝑖) is
the number of microrotations required in the MAR recording

of 2−𝑖, and 𝑠𝑖
𝑗
 is the shift sequences for 𝑗 = 1, 2, … , 𝑛(𝑖) with

the first shift 𝑠𝑖
1 = 𝑠𝑖 = 𝑖, 𝑖 = 1, 2, … , 𝑙 − 1 . The detailed

algorithm of MAR recording can be found in [14]. By

combining (3) and (5-6), the corrected rotation angle �̂�𝐻 is
given by

 �̂�𝐻 = 𝜃𝐻 + Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖 − 2

−𝑙. (7)

Following the BBR for 𝜃𝐿and the MAR for each binary

positional weight 2−𝑖 , another BBR is applied to the binary

representation of the corrected �̂�𝐻 as follows:

�̂�𝐻 = (−�̂�𝑙−1)2
−𝑙+1 + Σ𝑘=𝑙

𝑁 �̂�𝑘2
−𝑘

= (−�̂�𝑙−1) + 𝛴𝑘=𝑙+1
𝑁+1 [(2�̂�𝑘−1 − 1)2

𝑘+2−𝑙+2−𝑁−1]

= Σ𝑖=𝑙
𝑁+1𝑟�̂�2

−𝑖 − 2−𝑁−1,

(8)

where,

𝑟�̂� = 1 − 2�̂�𝑖−1, 𝑖 = 𝑙
𝑟�̂� = (2�̂�𝑖−1 − 1), 𝑖 = 𝑙 + 1,… , 𝑁 + 1

From (8) the last N-l+2 rotation direction (�̂�𝑙 𝑡𝑜 �̂�𝑁+1) is
found directly from the bipolar value of �̂�𝑙 to �̂�𝑁+1.

Fig. 1 The Para-CORDIC Architecture [14].

3) Para-CORDIC architecture
The Para-CORDIC rotation architecture is shown in Fig. 1.

There are two BBRs in the para-CORDIC rotation. In
Fig. 1, BBRL and BBRH are used to represent the operations in
(4) and (8) i.e., determine the rotation direction 𝜎1 to 𝜎𝑙 and �̂�𝑙
to �̂�𝑁+1 , respectively. The operations in (7) are denoted as
𝐴𝑑𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (Fig. 1). The errors given by the 𝑒𝑖 terms, are

precomputed and stored in the memory register.

III. PROPOSED FULLY PARALLEL APPROXIMATE CORDIC

(FPAX-CORDIC)

A. FPAX-CORDIC algorithm and architecture
Although Para-CORDIC parallelizes the computation of 𝜎𝑖

in two phases (when calculating BBRL and BBRH), this
algorithm cannot still independently execute the relation
between Phase 1 and Phase 2. The generation of the rotation
direction 𝜎𝑖 is still not fully parallel, i.e., the relation between
Phase 1 and Phase 2 must be further analyzed to allow a fully
parallel generation of 𝜎𝑖. Therefore, an approximate design is
proposed for implementation to meet this requirement.

The relationship between Phase 1 and Phase 2 is
considered next with respect to the error compensation
mechanism in Para-CORDIC; the basic criterion consists of
assessing the error following BBR in Phase 1. If the generated
error can be tolerated, then this relationship can be completely
eliminated to allow a fully parallel execution of BBRL and
BBRH. Also in this latter case, there is no need of additional
memory to store the error compensation terms 𝑒𝑖; moreover,
this condition makes the operation of the circuit fully
combinational, hence also improving its performance.

Consider Fig. 1, the block 𝐴𝑑𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is eliminated

(denoted now as a dashed rectangle) as per the following
analysis. The main function of the 𝐴𝑑𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 block is to

compensate the error introduced by the first BBR operation in

(7). In MAR for 2−𝑖 , 𝑖 = 1, 2, … , 𝑙 − 1, the value of �̂�𝐻 must
satisfy the following constraint:

 |�̂�𝐻| < 2−(𝑙−1) (9)

If this condition is met, then each binary weighting of 2−𝑖
in the remaining angle can be approximated by tan−1(2−𝑖)
within the accuracy allowed by the N fractional bits. As

outlined in [14], if Σ𝑖=1
𝑙−1𝑒𝑖 < 2

−𝑙 , then the value of |�̂�𝐻| must

satisfy the inequality of (9). 2−𝑙 is the upper bound for Σ𝑖=1
𝑙−1𝑒𝑖;

the higher order terms tan−1(2𝑞), 𝑞 > 𝑖 in MAR of 2−𝑖 can be

found to allow Σ𝑖=1
𝑙−1𝑒𝑖 < 2−𝑙 . Thus, the number of

microrotations (with the shift sequences 𝑠𝑖
𝑗
, 𝑗 = 1, 2, … , 𝑛(𝑖))

is directly controlled by Σ𝑖=1
𝑙−1𝑒𝑖, i.e., the smaller Σ𝑖=1

𝑙−1𝑒𝑖 is, the
larger 𝑛(𝑖) is [14]. The complete elimination of the
𝐴𝑑𝑑𝑝𝑟𝑒𝑑𝑖𝑡𝑖𝑜𝑛 block in Fig. 1 (so making CORDIC fully

parallel) permits the inequality Σ𝑖=1
𝑙−1𝑒𝑖 < 2

−𝑁 to be satisfied.

As shown in (7), if Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖 = 0 , then �̂�𝐻 = 𝜃𝐻 − 2−𝑙 and

error compensation is not required, i.e., 𝐴𝑑𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is not

required.

In general Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖 = 0 is not applicable, because it is

only possible to make Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖 approximately equal to 0. Let

𝜃𝐸 = Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖 ; as each 𝑒𝑖 is not negative in MAR, then

|𝜃𝐸| = |Σ𝑖=1
𝑙−1𝜎𝑖𝑒𝑖| ≤ Σ𝑖=1

𝑙−1𝑒𝑖 . So, let Σ𝑖=1
𝑙−1𝑒𝑖 → 0, hence 𝜃𝐸 →

0. For an input angle 𝜃 with an N-bit precision, Σ𝑖=1
𝑙−1𝑒𝑖 < 2−𝑁;

therefore, the error 𝜃𝐸 can be ignored for a N-bit precision.
An algorithm to find the high-order terms tan−1(2𝑞), 𝑞 >

𝑖 and make Σ𝑖=1
𝑙−1𝑒𝑖 < 2

−𝑁 is rather intuitive, because it is
rather similar to MAR [14]. However to meet the condition

2−𝑁 ≪ 2−𝑙 , the execution of an error free fully parallel
CORDIC is significantly more restrictive than in Para-
CORDIC. Therefore, the number of microrotation 𝑛(𝑖) in this
case is more than in [14], i.e., the complexity of the X/Y path
is higher. When the 𝜃 error term |𝜃𝐸| < 2−𝑝is tolerated for a

specific application, then |𝜃𝐸| ≤ Σ𝑖=1
𝑙−1𝑒𝑖 < 2−𝑝 where 𝑝 ∈

[𝑙, … , 𝑁] is the so-called error-tolerant parameter. The
proposed FPAX-CORDIC algorithm is presented in pseudo-
code in Fig. 2.
For an N-bit input angle θ,
//Initial Values

Find 𝑙 = ⌈(𝑁 − 𝑙𝑜𝑔2 3)/3⌉
Perform Eq. (3) and 𝜃𝐻 − 2−𝑙

Use the proposed theorem to find 𝑠𝑖
𝑗 and 𝑒𝑖 (𝛴𝑖=1

𝑙−1𝑒𝑖 < 2
−𝑝).

// Full Parallel Execution
Perform BBR (for the full range of the N-bit input angle θ)
From stage 1 to stage 𝑙
Perform R(i) using 𝜎𝑖 = 𝑟𝑖 , 𝑖 = 1… 𝑙.
From stage (l+1) to stage (N+2)
Perform S(i) using 𝜎𝑖 = 𝑟𝑙 , 𝑖 = 𝑙 …𝑁 + 1

Fig. 2 FPAX-CORDIC Algorithm.

The architecture of the proposed FPAX-CORDIC is shown
in Fig. 3. The two paths, namely the θ-path and the X/Y path,
are discussed as follows.

θ-path: Consider Fig. 1 and Fig. 3; the operations of the
data path in the conventional CORDIC are replaced by the
BBR in the proposed FPAX-CORDIC. The delay and the
hardware overhead of the two BBRs are negligible, because
they perform a simple signal mapping and are parallel with

X/Y-path (i.e., 0 (1) is considered, as the subtraction (addition)
signal).

X/Y-path: In the proposed architecture (Fig. 3), the number

of total microrotations is denoted as 𝑅𝑜𝑡(𝑁) = Σ𝑖=1
𝑙−1𝑛(𝑖) +

𝑁 − 𝑙 + 3. 𝑛(𝑖) is directly related to Σ𝑖=1
𝑙−1𝑒𝑖, and therefore, it

is also related to the error-tolerant parameter 𝑝. So, the area

and delay are (4𝑁 × 𝑅𝑜𝑡(𝑁))𝐴𝐹𝐴 and (2 × 𝑅𝑜𝑡(𝑁))𝑇𝐹𝐴, i.e.

it is assumed that each microrotation stage is implemented
using a Binary Signed Digit Adder (BSDA) and the area and
delay with a word size of N bits are 4𝑁 × 𝐴𝐹𝐴 and 2𝑇𝐹𝐴. 𝐴𝐹𝐴
and 𝑇𝐹𝐴 are the area and delay of a full adder.

Fig. 3 (a) Architecture of proposed FPAX-CORDIC (b) Structure of R(i)

B. Error Analysis of FPAX-CORDIC
The approximation error of FPAX-CORDIC with respect

to the real trigonometric function is controlled by the error-
tolerant parameter p. As |𝜃𝐸| < 2−𝑝 is ignored in 𝜃, then
 sin 𝜃′ = sin(𝜃 − 𝜃𝐸) (10)

Thus,
𝐸𝑠𝑖𝑛
𝐴𝑋(𝜃, 𝜃𝐸) = sin 𝜃 − sin 𝜃′

= (1 − cos 𝜃𝐸) sin 𝜃 + sin 𝜃𝐸 cos 𝜃
𝐸𝑐𝑜𝑠
𝐴𝑋(𝜃, 𝜃𝐸) = cos 𝜃 − cos 𝜃′

= (1 − cos 𝜃𝐸) cos 𝜃 − sin 𝜃𝐸 sin 𝜃

 (11)

If the rounding error is not considered, then the MED [3]
can be derived by the integral of the approximation error for
𝜃 ∈ [0, 2𝜋) as,

MED = ∫ 𝐸𝑠𝑖𝑛
𝐴𝑋(𝜃, 𝜃𝐸)𝑑𝜃

2𝜋

0

= ∫ 𝐸𝑐𝑜𝑠
𝐴𝑋(𝜃, 𝜃𝐸)𝑑𝜃

2𝜋

0

= ∫ |(1 − cos 𝜃𝐸) sin 𝜃 + sin 𝜃𝐸 cos 𝜃|𝑑𝜃
2𝜋

0

=

{

sin 𝜃𝐸 − cos 𝜃𝐸 + 1

 𝜋
, 𝐸𝑠𝑖𝑛

𝐴𝑋(𝜃, 𝜃𝐸) ≥ 0

cos 𝜃𝐸 − sin 𝜃𝐸 − 1

𝜋
, 𝐸𝑠𝑖𝑛

𝐴𝑋(𝜃, 𝜃𝐸) < 0

(12)

IV. EVALUATION

A 16-bit FPAX-CORDIC is implemented and simulated
using HSPICE with the 45nm predictive technology model
(PTM); the input 𝜃 uses 17 bit 2’s complementary binary
values to represent the angle in radian. The angle information
is in the format U(1, 16), where bit 16 is the sign bit and the

bits [15:0] are the fractional parts. X/Y use a 17-bit 2’s
complementary binary number representation; its format is
given by U(1, 16) inclusive of the sign bit. The BBR block are
implemented using multiplexers and inverters. As 𝜎𝑖 is fixed
a-priori, the X/Y path can be realized using a Binary Signed
Digit Adder (BSDA), i.e. addition without propagation of a
carry. The intermediate rotation results are represented using a
Binary Signed-Digit (BSD) numbering system [16].
The simulated error 𝐸𝑠𝑖𝑛(𝜃, 𝜃

𝐸) versus p for the proposed 16-
bit FPAX-CORDIC is plotted in Fig. 4. The black solid line is
the mean error over the range of p ∈ [5, 15]; as p increases, the
output error variation decreases to reach nearly zero. Eq. (12)
has been plotted against the simulated results. Fig. 5 shows
that the error equation provides a good estimate of the MED
for the FPAX-CORDIX architecture, i.e. the simulated MED
of the 16-bit FPAX-CORDIC as function of p. The MED
drops rather fast at 𝑝 = 8 and is nearly constant at 𝑝 > 10;
however, the simulated MED value is different from the
estimated value. This is caused by the quantization of the
rounding error at a less significant bit.

Fig. 4 Error of 16-bit FPAX-CORDIC versus parameter p.

Fig. 5 MED of 16-bit FPAX-CORDIC versus parameter p.

The power and delay results are plotted in Fig. 6. When p<11,
the power consumption of the FPAX-CORDIC is smaller than
the Para-CORDIC. Because the value of p for FPAX-
CORDIC is always larger than l, there is a larger number of

microrotation stages in FPAX-CORDIC than in Para-
CORDIC; thus the delay is longer than that of Para-CORDIC.
The delay disadvantage can be addressed by ignoring (or
truncating) some of the final rotation stages S(i) (i=l, … N+1),
when a slightly larger error can be tolerated in FPAX-
CORDIC.
An approximate arithmetic design always has to deal with a
trade-off between accuracy and power. As shown in Fig. 7,
when p is changed, the power increases and the MED
decreases. An abrupt decrease in the MED occurs when p=8
(and the power increases to 1.43 mw). Thus, p=8 is the most
appropriate value for attaining low power and high accuracy
design for a 16-bit design.

(a) (b)

Fig. 6 (a) Power consumption (b) Delay of 16-bit FPAX-CORDIC vs.
parameter p.

Fig. 7 Power and MED for 16-bit FPAX-CORDIC.

V. APPLICATION: DISCRETE COSINE TRANSFORM (DCT)

A wide range of algorithms (such as image enhancement
in the spatial domain, frequency transform, image rotation,
edge detection) can be implemented using CORDIC [17]. A
discrete cosine transform (DCT) [18] expresses a finite
sequence of data points in terms of a sum of cosine functions
oscillating at different frequencies. Therefore, the focus of this
section is on the 2-D 8×8 DCT, as widely used in image
compression applications. As shown in Fig. 8, the source
image (Lena) is divided into smaller 8×8 blocks; the DCT
computation is applied to each 8×8 block. Throughout this
section, the FPAX-CORDIC architecture uses a 17-bit U(1, 16)
for the θ-path, 32-bit U(16, 16) for the X/Y-path (a real
number consisting of 16 bits each for integer and fractional
parts; each input image pixel is in the range [0, 255]).

Inexact 2-D 8×8 DCT based on FPAX-CORDIC: The DCT

computation is implemented using the proposed FPAX-

CORDIC; the 2-D DCT is decomposed into a 1-D DCT (row-

wise DCT) followed by another 1-D DCT (column-wise

DCT). The process with the separable 1-D DCTs is shown in

Fig. 9; the resulting DCT image is compared against the

results of Para-CORDIC.

Fig. 8 2D DCT-IDCT process for image compression application.

Fig. 9 Process for 2-D 8×8 DCT.

The 8×1 1-D DCT transform is given by [19]

 𝑋(𝑘) =
𝑐(𝑘)

2
∑ 𝑥(𝑖) cos

(2𝑖+1)𝑘𝜋

16

7
𝑖=0 (13)

where
𝑘 = 0, 1, 2,… , 7

𝑐(𝑘) = {

1

√2
, 𝑘 = 0

1, 𝑘 > 0

By (13) and using the DCT and the trigonometric
symmetric property, the 8×1 1-D DCT is as follows in matrix
form:

[
𝑋(4)
𝑋(0)

] =
1

2
[
𝑐4 −𝑠4
𝑠4 𝑐4

] [
𝑥(0) + 𝑥(7) + 𝑥(3) + 𝑥(4)

𝑥(1) + 𝑥(6) + 𝑥(2) + 𝑥(5)
]

[
𝑋(6)
𝑋(2)

] =
1

2
[
𝑐6 −𝑠6
𝑠6 𝑐6

] [
𝑥(0) + 𝑥(7) − 𝑥(3) − 𝑥(4)

𝑥(1) + 𝑥(6) − 𝑥(2) − 𝑥(5)
]

[
𝑋(1)

𝑋(7)
] =

1

2
[
𝑐7 𝑠7
−𝑠7𝑐7

] [
𝑥(3) − 𝑥(4)

𝑥(0) − 𝑥(7)
] +

1

2
[
𝑐3 𝑠3
−𝑠3𝑐3

] [
𝑥(1) − 𝑥(6)

𝑥(2) − 𝑥(5)
]

[
𝑋(3)

𝑋(5)
] =

1

2
[
𝑐3−𝑠3
𝑠3 𝑐3

] [
𝑥(0) − 𝑥(7)

𝑥(3) − 𝑥(4)
] −

1

2
[
𝑐1 𝑠1
−𝑠1𝑐1

] [
𝑥(2) − 𝑥(5)

𝑥(1) − 𝑥(6)
]

(14)

where 𝑐𝑘 = 𝑐𝑜𝑠 (
𝑘𝜋

16
) = 𝑠𝑚 = sin (

𝑚𝜋

16
) ,𝑚 = 8 − 𝑘.

The implementation of (14) for an 8×1 1D-CORDIC DCT is
shown in Fig. 10. Six fixed-angle FPAX-CORDICs are used
to complete the multiplication of the trigonometric terms in

(14), because for an input 𝜃 ∈ [
𝜋

4
, −

𝜋

4
] to the FPAX-CORDIC

design, all rotation angles are converted to this restricted range.
In the architecture of the 8×8 DCT, the parameter p controls
the accuracy of the FPAX-CORDIC modules. Thus, the
accuracy of the inexact 2-D 8×8 DCT is affected in two
respects: (1) for each 8×1 1D-CORDIC DCT (Fig. 10), six
parallel FPAX-CORDIC modules can be configured by
changing p; (2) the two 8×1 1D-CORDIC DCT are connected
in series (Fig. 9), but they can be configured using different
values of p. For simplicity, the value of p is kept constant for
all FPAX-CORDIC modules in the following analysis.

Configurations of 8×8 DCT based on FPAX-CORDIC: Two

features are considered for the six FPAX-CORDIC modules

to further reduce the complexity of the proposed architecture

for an 8×8 DCT and attain a better DCT accuracy.

Fig. 10 8×1 1D-CORDIC DCT.

Non-equal precision path: When considering the

reconstruction of the original input image 𝑥(𝑖) from the DCT

compressed image 𝑋(𝑘), the high frequency components of

𝑋(𝑘) (for example 𝑋(4)~𝑋(7)) have a small impact on the

reconstructed image x(i). So, the X/Y path of the six FPAX-

CORDIC modules in the 1D-CORDIC architecture can have

non-equal precision. For example, the X-path of the FPAX-

CORDIC modules (1) (3) and the Y-path of the FPAX-

CORDIC modules (2) (4) (5) (6) can either have a poor

precision (i.e., a smaller number of bits), or simply be ignored.

The high frequency or non-critical outputs are shown in Fig.

10 with dashed arrows.

p sets: On the basis of unequal precision paths to further

control the error for the low-frequency or critical outputs, the

value of p for each individual FPAX-CORDIC module can be

adjusted to meet the error specifications of an application. In

each FPAX-CORDIC module, the output usually consists of a

low-high frequency component pair. For example, for module

(1), the output pair is (𝑋(4), 𝑋(0)); as the accuracy of 𝑋(4) is

reduced, p affects solely 𝑋(0). Similar conditions may also

apply to the other five FPAX-CORDIC modules.
Image test: Fig. 11 shows an example of the simulated error
impact of different configurations of FPAX-CORDIC in an
inexact DCT application. The original image 𝑥(𝑖, 𝑗) is
transformed using an FPAX-CORDIC based 2-D DCT

architecture to generate an inexact DCT �̂�(𝑖, 𝑗) , then the
original �̂�(𝑖, 𝑗) is recovered using an exact IDCT
transformation. The peak signal-to-noise ratio (PSNR) of
�̂�(𝑖, 𝑗) against 𝑥(𝑖, 𝑗) is measured and the results are plotted in
Fig. 12(a). The PSNR shows that higher are the values of p
and the Y-path bits, the higher the PSNR is; the PSNR reaches
a constant value when the number of bits in the X/Y path
reaches 20. When p>8, the PSNR increases rapidly and
reaches the largest value.

8×8
2D-DCT
(Inexact)

8×8
2D-

IDCT
(exact)

𝑥(𝑖, 𝑗) �̂�(𝑖, 𝑗) 𝑥(𝑖, 𝑗)

Fig. 11 Evaluation of the error of FPAX-CORDIC based inexact DCT

Hardware implementation of DCT: For the DCT application

presented previously, FPAX-CORDIC at a specific p value

has been described in a previous section. For the non-equal

precision path introduced solely for the DCT application, the

bit-width of the data path is controlled by a Dynamic Bit-

width Control (DBC) circuit [20]. In this scheme, the

hardware overhead consists of the pull-up and pull-down

turn-off gate transistors for each X/Y-path bit in the

positional logic. The power dissipation of a single DCT is

measured and the results are plotted in Fig. 12(b). By

considering the PSNR (Fig. 12(a)), a better accuracy is

achieved at higher power consumption; a larger error has to

be tolerated for a lower power dissipation. To achieve both

low power and high accuracy in DCT, the scheme with p=8

and an X/Y-path width of 24 offers the best combined

performance.

(a) (b)
Fig. 12 (a) PSNR (b) Power for inexact DCT application

VI. CONCLUSION

This paper has proposed an approach for an approximate
CORDIC design. A fully parallel approximate CORDIC
(FPAX-CORDIC) scheme has been proposed by modifying
the Para-CORDIC architecture. The proposed approximate
CORDIC does not utilize the memory register of Para-
CORDIC and makes the generation of the rotation direction
fully parallel. Power dissipation can be reduced when properly
selecting the parameters in the proposed scheme. A
comprehensive evaluation of the error control parameter p and
different circuit metrics including complexity and power
dissipation has been presented. An error analysis that
combines traditional figures of merit (such as MED) with
CORDIC specific parameters has been analytically pursued.
Therefore, the following conclusive evidence is applicable: (a)
The error parameter p plays a critical role when assessing the
trade-off between power consumption and accuracy for the
proposed FPAX-CORDIC. As p increases (i.e., when the
number of bits to be processed increases) more accuracy is
obtained, i.e., the MED decreases to reach a nearly constant
value. (b) The power dissipation of FPAX-CORDIC increases
as a function of p, i.e., for a 16-bit design, the proposed
FPAX-CORDIC reaches the best trade-off between power
dissipation and accuracy at p=8. (c) For image compression
and decompression using DCT, additional power saving can
be gained by tolerating more errors for the high frequency
components as well as selecting p. Additional power saving
can be realized by using the DBC circuit on the Y-path of each
FPAX-CORDIC module.

REFERENCES

[1] J. Han and M. Orshansky, "Approximate computing: An

emerging paradigm for energy-efficient design," in Proc. 18th

IEEE European Test Symposium (ETS), 2013, pp. 1-6.
[2] H. Jiang, J. Han, and F. Lombardi, "A Comparative Review and

Evaluation of Approximate Adders," in Proc. 25th Great Lakes

Symposium on VLSI, Pittsburgh, Pennsylvania, USA, 2015, pp.
343-348.

[3] J. Liang, J. Han, and F. Lombardi, "New Metrics for the

Reliability of Approximate and Probabilistic Adders," IEEE
Trans. on Computers, vol. 62, pp. 1760-1771, 2013.

[4] M. J. Schulte and E. E. Swartzlander, "Truncated multiplication

with correction constant," VLSI Signal Processing VI, pp. 388-
396, 1993.

[5] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, "Low-
Power Digital Signal Processing Using Approximate Adders,"

IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems, vol. 32, pp. 124-137, 2013.
[6] A. Sampson, L. Ceze, and D. Grossman, "Good-enough

computing," IEEE Spectrum, vol. 50, pp. 54-59, 2013.

[7] J. E. Volder, "The CORDIC Trigonometric Computing
Technique," IRE Trans. on Electronic Computers, vol. EC-8, pp.

330-334, 1959.

[8] J. S. Walther, "A unified algorithm for elementary functions," in
Proc. Spring Joint Computer Conference, Atlantic City, New

Jersey, 1971, pp. 379-385.

[9] D. Timmermann, H. Hahn, and B. J. Hosticka, "Low latency time
CORDIC algorithms," IEEE Trans. on Computers, vol. 41, pp.

1010-1015, 1992.

[10] T. Srikanthan and B. Gisuthan, "A novel technique for
eliminating iterative based computation of polarity of micro-

rotations in CORDIC based sine–cosine generators,"

Microprocessors and Microsystems, vol. 26, pp. 243-252, 2002.
[11] B. Gisuthan and T. Srikanthan, "Pipelining flat CORDIC based

trigonometric function generators," Microelectronics Journal, vol.

33, pp. 77-89, 2002.
[12] H. S. Kebbati, J. P. Blonde, and F. Braun, "A new semi-flat

architecture for high speed and reduced area CORDIC chip,"

Microelectronics Journal, vol. 37, pp. 181-187, 2006.

[13] B. Lakshmi and A. S. Dhar, "CORDIC Architectures: A Survey,"

VLSI Design, 2010.

[14] T.-B. Juang, S.-F. Hsiao, and M.-Y. Tsai, "Para-CORDIC:
parallel CORDIC rotation algorithm," IEEE Trans. on Circuits

and Systems I: Regular Papers, vol. 51, pp. 1515-1524, 2004.

[15] S. Wang, V. Piuri, and E. E. Swartzlander, Jr., "Hybrid CORDIC
algorithms," IEEE Trans. on Computers, vol. 46, pp. 1202-1207,

1997.

[16] A. Avizienis, "Signed-Digit Number Representations for Fast
Parallel Arithmetic," IRE Transactions on Electronic Computers,

vol. EC-10, pp. 389-400, 1961.

[17] S. Sathyanarayana, R. K. Satzoda, and S. Thambipillai, "Unified
Cordic Based Processor for Image Processing," in Proc. 15th

International Conference on Digital Signal Processing, 2007, pp.

343-346.
[18] N. Ahmed, T. Natarajan, and K. R. Rao, "Discrete Cosine

Transform," IEEE Trans. on Computers, vol. C-23, pp. 90-93,

1974.
[19] M.-W. Lee, J.-H. Yoon, and J. Park, "Reconfigurable CORDIC-

Based Low-Power DCT Architecture Based on Data Priority,"

IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol.
22, pp. 1060-1068, 2014.

[20] J. Park, J. Choi, and K. Roy, "Dynamic Bit-Width Adaptation in

DCT: An Approach to Trade Off Image Quality and Computation
Energy," IEEE Trans. on Very Large Scale Integration (VLSI)

Systems, vol. 18, pp. 787-793, 2010.

