
Approximate Parallel Annealing Ising Machines
(APAIMs): Controller and Arithmetic Design

Qichao Tao
Department of Electrical
& Computer Engineering

University of Alberta
Edmonton, Canada

qichaotao@mail.tsinghua.edu.cn

Tingting Zhang
Department of Electrical
& Computer Engineering

University of Alberta
Edmonton, Canada
ttzhang@ualberta.ca

Jie Han
Department of Electrical
& Computer Engineering

University of Alberta
Edmonton, Canada
jhan8@ualberta.ca

Abstract—The demand for solving complex combinatorial opti-
mization problems (COPs) in commercial and industrial applica-
tions motivates the development of efficient solvers. Ising model-
based computers, or Ising machines, have emerged as high-
performance solvers. Recently, an approximate parallel annealing
Ising machine (APAIM) has been developed for solving con-
strained COPs such as the traveling salesman problem (TSP). To
provide additional detail about the APAIM, this paper presents
the designs of its controller and arithmetic units, especially that
of the approximate adders in the local field accumulator units
(LAUs) required for computing the Hamiltonian in the Ising
model. The controller is implemented as a finite state machine
and generates an instruction to determine the system operation.
To improve hardware efficiency, the so-called lower-part-OR and
truncated adder is used for the mantissa addition of floating-point
numbers in the LAUs. Although the solution quality is slightly
reduced, the use of approximate adders improves the hardware
efficiency of a 64-spin APAIM.

Index Terms—Simulated annealing, parallel annealing, Ising
model, approximate adders, Ising machines.

I. INTRODUCTION

Combinatorial optimization plays a key role in such appli-
cations as drug discovery, chip design, and machine learning
[1]. Many combinatorial optimization problems (COPs) are
computationally intensive to solve, which has motivated the
development of efficient solvers to obtain a suboptimal solu-
tion within a reasonable time. One of the promising solvers
is an Ising model-based computer, or an Ising machine. The
Ising model mathematically describes the ferromagnetism of
magnetic spins [2]. It solves COPs by finding the Hamiltonian
at the ground state [3].

Conventional simulated annealing (SA) models the physical
process of thermal annealing in metallurgy [2]. Various SA
algorithms have been developed for ultrafast energy con-
vergence or efficient hardware implementations of the Ising
model [4]. A parallel annealing algorithm realizes parallel spin

This work was supported by the Natural Sciences and Engineering Research
Council (NSERC) of Canada (Project Number: RES0051374) and the Uni-
versity of Alberta (Project Number: RES0049590). T. Zhang was supported
by the China Scholarship Council (CSC).

update by leveraging a two-layer spin structure [5], [6]. An
improved parallel annealing (IPA) uses an exponential tem-
perature function with a dynamic offset for efficiently solving
a constrained COP, such as the traveling salesman problem
(TSP) [7]. To implement the IPA, an approximate parallel
annealing Ising machine (APAIM) approximately computes
the momentum scaling factor using a linear function and
applies approximation in addition for hardware efficiency [8].

Complementary to [8], this paper presents the controller
design of the APAIM and explores the use of approximate
adders for accumulation. The controller is implemented as
a finite state machine with fifteen states. It generates a 12-
bit instruction signal to determine the system operation. To
save hardware, approximation is applied in the mantissa ad-
dition of 16-bit floating-point (FP) numbers. Specifically, the
computation of less significant bits (LSBs) in the addition is
approximated by using OR gates and truncation. The synthesis
result shows that using approximate adders in the 64-spin
APAIM reduces circuit area and delay, but maintains a high
solution quality for the TSP.

The remainder of this paper is organized as follows. Section
II introduces the IPA and the APAIM. The designs of the
controller and approximate adders in the APAIM are discussed
in Sections III and IV, respectively. Section V presents the
experiment results. Section VI concludes the paper.

II. THE APAIM

The Hamiltonian (H) of an Ising model is given by [1]

H = −
∑
i,j

Jijσiσj −
∑
i

hiσi, (1)

where σi (or σj) is the state of the ith (or jth) spin with the
value of +1 or −1, Jij describes the interaction between the
ith and jth spins, and hi is the external magnetic field for the
ith spin.

An n-city TSP is to find the shortest route that visits each of
the n cities exactly once and returns to the starting point. The
Hamiltonian of solving a TSP using an IPA with N(= n2)
spins in a lattice and their replicas in a two-layer Ising model
is given by [7]978-1-6654-5707-1/22/$31.00 ©2023 IEEE

HTSP = −
∑
i,k,j,l

Jikjlσ
L
ikσ

R
jl −

1

2

∑
i,k

hik(σ
L
ik + σR

ik)

+ωik

∑
i,k

(1− σL
ikσ

R
ik), (2)

where Jikjl is the interaction between the spin with the index
(i, k) on the left layer (σL

ik) and the spin with the index (j, l)
on the right layer (σR

jl), hik is the external magnetic field for
σL
ik and σR

ik. Jikjl and hik are determined by the distances
between cities. ωik is the self-interaction factor that indicates
the coupling strength between σL

ik and σR
ik. It increases with

annealing to guarantee σR
ik = σL

ik.
Algorithm 1 presents the IPA for solving the TSP based on

(2). The spin configuration, the temperature (T) for annealing
and the dynamic offset (∆T) for increasing the temperature
are first initialized (Line 1). Then, the spins on the left layer
are updated when the current iteration (s) is odd; otherwise,
the spins on the right layer are updated (Lines 3-5). In each
iteration, ωik is reset to “0” with the dropout rate p; otherwise,
it is decreased to c · ωik, where c is the momentum scaling
factor (Line 9). The local field (lfik) determined by Jikjl
and hik (Line 10) is used to compute the energy variation
(∆Eik) when σik is flipped (Line 11). When the spin-flip
probability (Pik) is larger than the random number (rand),
some randomness is introduced to help the system jump out of
the local minima by flipping σik (Lines 12-13). Subsequently,
∆T will increase by an increment value (Tinc) if no spin is
flipped or be reset to “0” otherwise (Lines 17-19). When s
reaches the predefined number of iterations for updating spin
states, smax, the spin configuration provides the solution found
by the IPA.

S
to
ra
g
e0 …

L
A
U
0

L
A
U
1

L
A
U
2

L
A
U
N
-2

L
A
U
N
-1

…

S
U
U
0

S
U
U
1

S
U
U
2

S
U
U
N
-2

S
U
U
N
-1

…

DDSS

Controller

ASU

RNGs

SIGU

SOUU

index

index

sigmas

solution

energies

p

step_add

2T

write

read

step_add

mode

se

S
to
ra
g
e1

S
to
ra
g
e2

S
to
ra
g
eN
-2

S
to
ra
g
eN
-1

in
st
ru
ct
iu
o
n

𝐽0𝑗~𝐽(𝑁−1)𝑗

𝑤0~𝑤𝑁−1

𝑐0~𝑐𝑁−1 𝑙𝑓0~𝑙𝑓𝑁−1 ∆𝑇

∆𝑠

𝜎𝑗
𝑜𝑙𝑑

𝜎𝑗
𝑜𝑙𝑑

∆𝑇

Fig. 1. The architecture of the APAIM [8]. The 2-D model in (2) is converted
to a 1-D Ising model by reformulating σik to σ(i−1)·n+k .

As shown in Fig. 1, an APAIM with N spins designed
for the IPA is constructed by N local field accumulator units
(LAUs), N self-interaction generating units (SIGUs), N spin
update units (SUUs), N/2 random number generators (RNGs),
an annealing schedule unit (ASU), a delta-driven simultaneous

Algorithm 1 Improved Parallel Annealing for TSPs [7]
1: Initialize spin configurations, T ⇐ a large value, ∆T ⇐ 0
2: for s = 1 to smax do
3: if s is odd then

A ⇐ L,B ⇐ R
4: else

A ⇐ R,B ⇐ L
5: end if
6: Update p and c, T ⇐ (T +∆T) · rs−1

7: for i = 1 to n do
8: for k = 1 to n do
9: ωik ⇐ 0 with p, or ωik ⇐ c · ωik with 1− p

10: lfik ⇐ (hik

2 +
∑

j,l Jikjlσ
B
jl)

11: ∆Eik ⇐ (2lfikσ
A
ik + 2ωikσ

A
ikσ

B
ik)

12: Pik ⇐ min{1, exp(−∆Eik/Ts)}
13: if Pik > rand then

σA
ik ⇐ −σA

ik

14: end if
15: end for
16: end for
17: if no spin is flipped then

∆T ⇐ ∆T + Tinc

18: else
∆T ⇐ 0

19: end if
20: end for

spin update unit (DDSS), a solution update unit (SOUU), a
controller, and a memory block. These units are introduced as
follows:

• LAU: It calculates lfi (Line 10 in Algorithm 1), p, c ·ωi

(Line 9), and ∆T (Line 17).
• SIGU: It updates ωi depending on p and c · ωi from the

LAU (Line 9).
• SUU: It updates the spin states (sigmas in Fig. 1) by

using rand from the RNGs (Line 13), lfi from the LAUs
(Line 10), and ωi from the SIGUs (Line 9). It also
generates ∆s (in Fig. 1) for the DDSS as the index to
indicate whether the spin sate is changed and computes
lfi · σi values (energies) for the SOUU.

• RNG: It generates a random number, rand (Line 13).
• ASU: It counts the iterations and computes T (Line 6).
• DDSS: It receives all the new spin states (sigmas) and
∆s from the SUUs, and then outputs the state of the
flipped spin σold

j to LAUs and the corresponding index
to the memory block.

• SOUU: It is a unit designed to improve the solution qual-
ity. It first computes the energy of the Ising model based
on energies and sigmas. Then, it selects a solution with
the lowest energy among the found results.

• Controller. It determines the system operation by using
an instruction signal.

• Storage: the memory block. It uses the index from the
DDSS to select one value from {J0j , J1j , ..., J(N−1)j}
and then sends it to the LAUs for computing new lfi.

Fig. 2. The state transition in the FSM for the control unit.

III. THE CONTROLLER DESIGN IN THE APAIM

A. The Design of the Finite State Machine

In the computing architecture of the APAIM, the control
unit is implemented as a finite state machine to ensure a proper
sequence in the operation. As shown in Fig. 2, it has fifteen
states. All the delay states, i.e., step adding delay, DDSS
enable 0 delay, LAU enable delay 1, LAU enable delay
2, DDSS enable 1 delay, and no flip delay are used for
making the instruction held for one clock cycle to ensure the
accuracy of the sampled signals. All the state transitions are
controlled by clock and status signals. If there is no label
on the arrow, it means the transition is only controlled by a
clock signal. The idle and memory write states are used
for system initialization. The circuit does not work at the
idle state, and data are written into the memory block at the
memory write state. The state returns to idle when ready is
1, which indicates that all data have been written.

The system starts annealing when the start signal is 1 and
stops annealing if finish becomes 1. The SUU enable, step
adding, DDSS enable 0, LAU enable, DDSS enable 1,
and no flip are used for coordinating the annealing process,
as follows. SUU enable is the start point (and also the end

point) of the annealing; SUUs are working at this state and will
generate new spin states. Then the system adds an annealing
step by one at step adding, if finish = 0. After adding the
step, the system goes through DDSS enable 0, LAU enable,
and DDSS enable 1. The DDSS outputs indexes and spin
states at DDSS enable 0 and DDSS enable 1 states. The
DDSS enable 0 and DDSS enable 1 are for distinguishing
whether no spin is flipped (empty = 0) after the spin update.
If empty = 0, the system moves to no flip and then back
to SUU enable for updating the spins again; the dynamic
offset increases at no flip state. Otherwise, the system moves
to LAU enable and performs the accumulation of lfi in the
LAUs. Meanwhile, if annealing enable = 0, the system stops
annealing to wait for the accumulation of total energy done.

B. The Instructions

The output of the control unit is a 12-bit instruction signal,
as shown in Fig. 3. The 11th bit is mode that controls the
computation mode of the LAU; the 10th bit is rstdynamic

that resets ∆T to zero when a spin is flipped; the 9th bit is
noflip; the 8th bit is Csupdate

to control updating c (Line 6
in Algorithm 1); the 7th and 6th bits are se1 and se0 used in
the LAU ; the 5th and 4th bits are write and read signals
for the memory block; the 3rd, 2nd, 1st, and 0th bits are
DDSS en, LAU en, SUU en and step add signals that
control the update of registers in DDSS, LAU, SUU and ASU,
respectively. Table I shows the instructions at different states.

TABLE I
INSTRUCTIONS AND THE CORRESPONDING STATES

States Instruction
idle 000000000000

memory write 000000100000
SUU enable 000000000010
step adding 000001000000

step adding delay 000001000000
DDSS enable 0 000010001000

DDSS enable 0 delay 000110001000
LAU enable 110000010000

LAU enable delay 1 110000010000
LAU enable delay 2 110000010100
DDSS enable 1 000000001000

DDSS enable 1 delay 000000001000
waiting accumulation 000000000000

no flip 000011000000
no flip delay 001011000000

IV. APPROXIMATE ADDERS IN THE APAIM

A. Using Truncated Adders or Lower-part-OR Adders

For arithmetic operation, a 16-bit FP number representation
is used for the coefficients to obtain a more extensive range
for solving complicated COPs. It contains a sign bit, 5 bits

11 10 9 8 7 6 5 4 3 2 1 0
mode rstdynamic noflip Csupdate

se1 se0 write read DDSS en LAU en SUU en step add

Fig. 3. The instruction generated by the control unit.

for the exponent, and 10 bits for the mantissa. Therefore, the
truncated adders (TruAs) [9] and lower-part-OR adders (LOAs)
[10] are considered, respectively, in the LAUs to improve the
hardware efficiency of mantissa addition.

The k LSBs in the mantissa adder are truncated in TruAs,
while the l LSBs in the mantissa adder are computed by using
OR gates in LOAs. The results in error metrics, including
mean relative error distance (MRED), error rate (ER), normal-
ized mean error (NME), and normalized mean error distance
(NMED) [11] of TruAs and LOAs are shown in Table II.

Let TruA-k denote a TruA with k-bit truncation and LOA-l
denote a LOA with l-bit approximation. Evaluated by four error
metrics, TruA is less accurate than LOA when k = l and even
when l is slightly larger than k. For example, the MRED, ER,
NME, and NMED of LOA-8 are lower than that of TruA-6 as
the addition result produced by a LOA can be overestimated or
underestimated, whereas the TruA always underestimates the
result. Therefore, LOA is a better approximation scheme for
accumulators than TruA considering accuracy albeit with an
increased circuit area.

TABLE II
THE ERROR CHARACTERISTICS OF TruAS, LOAS AND LOTAS

Approximate
Adders

MRED
(10−3)

ER
(%)

NME
(10−3)

NMED
(10−3)

TruA

k = 3 3.1 96.93 -2.9 2.9
k = 4 6.7 99.21 -6.2 6.2
k = 5 13.9 99.81 -12.9 12.9
k = 6 28.3 99.96 -26.3 26.3

LOA

l = 4 1.4 68.14 7.68 1.3
l = 5 2.7 76.35 7.14 2.5
l = 6 5.4 82.33 6.83 5.0
l = 7 10.7 86.50 8.92 10.0
l = 8 21.1 89.95 8.68 20.1

LOTA

l = 4, k = 3 2.8 93.40 -2.1 2.5
l = 5, k = 3 3.9 97.06 -2.1 3.6
l = 5, k = 4 5.7 97.16 -4.6 5.3
l = 6, k = 3 6.6 98.42 -2.1 6.1
l = 6, k = 4 8.1 98.88 -4.7 7.5

MRED = 1
N

∑ |R′−R|
R

, ER = Nerr
N

, NME =
∑

R′−R
Rmax×N

, and

NMED =
∑

|R′−R|
Rmax×N

, where R′ and R are the approximate and the accurate
result, respectively, Nerr and N are the numbers of the input cases that lead
to erroneous result and all the possible input combinations, respectively, and
Rmax is the absolute value of the maximum result.

B. Using Both Lower-part-OR and Truncated Adders

In order to gain further improvement in hardware efficiency,
we propose an approximate scheme that uses both TruA and
LOA, thus it is referred to as a lower-part-OR and truncated
adder (LOTA). It truncates k LSBs in an l-bit LOA. Thus,
OR gates process (l − k) bits, and k cannot be larger than
l. Let LOTA-l&k denote a LOTA with l-bit approximation
and k-bit truncation. Table II shows the error characteristics
of this adder. The NME of a LOTA is mainly determined
by its truncated bits. However, the ER of a LOTA is related
to the number of approximated bits. When the number of
approximated bits is only one more than the number of
truncated bits, the NMED and MRED of a LOTA are close

to that of TruAs with the same truncated bits, and larger than
that of the LOAs with the same approximated bits.

C. Accelerating the Simulation of Error Characteristics of
Approximate Adders

To accelerate the fault tolerance test, the error characteristics
of approximate adders are simulated by using an injected
noise. By observations from the experimental results, the
distribution of the relative error distance (RED = |R′−R|

R)
resembles a Gamma distribution. Its probability density is
given by f(y|α, β) = βα

Γ(α)y
α−1e−βy , where Γ() is the

Gamma function, α is the shape parameter, and β is the inverse
scale parameter.

We use Gamma distributions to approximate the distribution
of REDs. The random variable that follows the Gamma distri-
bution, denoted by r, is applied to the accumulation process
in the LAUs. In particular, when calculating the addition of
two input operands a and b, (a+ b) is multiplied by (1− r)
in a TruA (the error is always negative) and multiplied by
(1 ± r) in a LOA and a LOTA (the error can be positive or
negative with a similar probability). Although not shown, due
to space limitation, our experiments indicate the fitting Gamma
distributions produce similar trends as the RED distributions
but with higher values. Moreover, the Gamma distribution fits
best to simulate the REDs for TruAs, compared to the other
two approximate adders.

V. THE PERFORMANCE OF THE APAIM

A. Solution Quality of Solving TSPs

The solution quality is evaluated from the average (Ave),
maximum (Max), minimum (Min), and standard deviation
(Std) of the travel distances obtained by the APAIM. Moreover,
the violation rate (VR) is used to indicate the probability of
getting a result that does not conform to the constraint.

As our model only implements 64 spins, an 8-city TSP is
considered as the benchmark and the distances between cities
are scaled to [0, 1]. Table III shows the results when simulating
the error due to approximate adders by random variables. The
VR increases significantly when the number of truncated bits
or approximated bits is larger than 4 for TruAs and larger
than 6 for LOAs. As shown in Table II, the MRED results
for TruA-4 and LOA-6 are 0.0067 and 0.0054, respectively.
Therefore, the APAIM can tolerate errors with an MRED of
around 0.0067. Moreover, the VR becomes higher than 10%,
while both the Ave and Std increase when applying Gamma
distributed noise for LOTA-5&4, LOTA-6&3, and LOTA-6&4
to the APAIM. Thus, TruA-3, TruA-4, LOA-4, LOA-5, LOA-
6, LOTA-4&3, and LOTA-5&3 are considered to evaluate the
solution quality obtained from their actual implementations.
As shown in Table IV, both VR and Ave decrease in actual
implementations. Except LOA-6, all the approximate adders
lead to a similar solution quality with 0% VRs and small Aves.
A low Std indicates that the solution quality is stable.

TABLE III
THE TRAVEL DISTANCES OBTAINED FROM THE APAIM AFTER APPLYING

RANDOMLY GENERATED NUMBERS THAT FOLLOW GAMMA
DISTRIBUTIONS (FOR TruAS, LOAS AND LOTAS) AS NOISE

APAIMs with Noise Ave Max Min Std VRAdders l/k (α, β)

TruA
(l = k)

3 (2.96, 956.79) 2.87 3.54 2.39 0.25 0%
4 (3.28, 489.41) 3.07 4.63 2.39 0.30 7%
5 (3.63, 260.84) 4.42 6.67 2.39 0.97 72%
6 (3.86, 136.48) 6.92 11.05 3.37 1.64 98%

LOA
(k = 0)

4 (1.20, 627.40) 2.82 3.18 2.39 0.22 0%
5 (1.14, 294.41) 2.91 3.91 2.39 0.31 2%
6 (1.10, 168.61) 3.16 4.33 2.39 0.42 8%
7 (1.08, 78.85) 4.29 8.10 2.51 1.14 63%
8 (1.00, 53.82) 6.59 12.00 2.90 1.71 96%

LOTA

4/3 (2.17, 712.62) 2.83 3.50 2.39 0.23 0%
5/3 (2.63, 622.54) 2.90 3.99 2.39 0.29 2%
5/4 (2.18, 310.75) 3.11 4.60 2.39 0.44 11%
6/3 (2.15, 325.93) 3.18 5.47 2.39 0.59 15%
6/4 (2.62, 324.00) 3.21 4.51 2.39 0.50 17%

TABLE IV
THE TRAVEL DISTANCES OBTAINED FROM THE APAIM WITH THE USE OF

TruAS, LOAS, AND LOTAS

APAIMs Ave Max Min Std VR
AccA l, k = 0 2.67 3.08 2.39 0.17 0%
TruA

(l = k)
k = 3 2.69 3.14 2.39 0.18 0%
k = 4 2.74 3.58 2.39 0.24 0%

LOA
(k = 0)

l = 4 2.71 3.06 2.39 0.18 0%
l = 5 2.77 3.17 2.39 0.21 0%
l = 6 3.08 3.82 2.65 0.26 4%

LOTA l = 4, k = 3 2.71 3.17 2.39 0.20 0%
l = 5, k = 3 2.72 3.06 2.39 0.21 0%

AccA: accurate adder.

TABLE V
THE CIRCUIT MEASUREMENTS OF THE APAIM

Ising Machines SpinPrecisionArea (mm2)Power (mW)Delay (ns)

APAIM

l, k = 0 64 16-bit 6.300 41.289 3.97
l = k = 3 64 16-bit 6.275 41.035 3.90
l = k = 4 64 16-bit 6.266 40.931 3.89

l = 4, k = 0 64 16-bit 6.273 41.263 3.84
l = 5, k = 0 64 16-bit 6.266 41.223 3.82
l = 6, k = 0 64 16-bit 6.259 41.080 3.79
l = 4, k = 3 64 16-bit 6.269 41.130 3.84
l = 5, k = 3 64 16-bit 6.262 41.108 3.82

STATICA [5] 512 5-bit 12 629 -
-: not reported. Simulation results are obtained by using the Synopsys

Design Compiler. A CMOS 28 nm technology is applied with a supply voltage
of 1.0 V, a temperature of 25◦C, and a clock frequency of 200 MHz. Some
data in the table are reported in [8].

B. Hardware Performance

The hardware performance of the 64-spin APAIM with 16-
bit FP coefficients implemented with or without approximate
adders is measured and reported in Table V. The circuit
measurements for STATICA [5] are also presented. However, a
fair comparison between the APAIM and the STATICA cannot
be conducted because the STATICA was designed to solve
simple unconstrained COPs and synthesized using a 65-nm
technology.

Using approximate adders in the APAIM reduces the hard-
ware cost. The delays by using LOTA-4&3 and LOTA-5&3
are the same as those using LOA-4 and LOA-5, respectively,

because the delay is mostly reduced by the number of ap-
proximate bits. The circuit area by using the LOTA is lower
than using the LOA with the same approximate bits, whereas
the power for using LOTA is between those of using the
LOA and TruA with the same approximate bits (higher than
TruA but lower than LOA). Furthermore, the circuit area,
delay, and power dissipation by using LOTA-5&3 are slightly
lower than using LOTA-4&3, however they can find a similar
average travel distance. Compared with TruAs and LOAs, the
average travel distance by using LOTA-5&3 is similar to those
using TruA-4 and LOA-4 but the circuit area and delay are
smaller. Finally, although TruA-4 results in the lowest power
dissipation, the power by using LOTA-5&3 is close to that by
using TruA-4. Therefore, the APAIM with LOTA-5&3 achieves
a good trade-off between hardware efficiency and solution
quality for solving TSPs.

VI. CONCLUSION

This paper presents the controller design and explores
the use of approximate arithmetic in a recently developed
Ising machine, namely, the APAIM, for solving TSPs. The
controller implements a finite state machine with fifteen states
and produces a signal to instruct the system operation. To
reduce the hardware for the mantissa addition of 16-bit FP
numbers, the less significant bits are processed by using
different approximation schemes. The hardware performance
and the solution quality show the potential of the 64-spin
APAIM with the use of lower-part OR and truncated adders
for efficiently solving TSPs.

REFERENCES

[1] A. Lucas, “Ising formulations of many NP problems,” Front. Phys., p. 5,
2014.

[2] R. A. Rutenbar, “Simulated annealing algorithms: An overview,” IEEE
Circuits Syst. Mag., vol. 5, no. 1, pp. 19–26, 1989.

[3] N. Mohseni, P. L. McMahon, and T. Byrnes, “Ising machines as
hardware solvers of combinatorial optimization problems,” Nat. Rev.
Phys, vol. 4, no. 6, pp. 363–379, 2022.

[4] T. Zhang, Q. Tao, B. Liu, and J. Han, “A review of simulation algorithms
of classical Ising machines for combinatorial optimization,” in ISCAS.
IEEE, 2022, pp. 1877–1881.

[5] K. Yamamoto, K. Kawamura, K. Ando, N. Mertig, T. Takemoto et al.,
“STATICA: A 512-spin 0.25 m-weight annealing processor with an all-
spin-updates-at-once architecture for combinatorial optimization with
complete spin–spin interactions,” IEEE JSSC, vol. 56, no. 1, pp. 165–
178, 2020.

[6] T. Okuyama, T. Sonobe, K.-i. Kawarabayashi, and M. Yamaoka, “Binary
optimization by momentum annealing,” Phys. Rev. E, vol. 100, no. 1, p.
012111, 2019.

[7] Q. Tao and J. Han, “Solving traveling salesman problems via a parallel
fully connected Ising machine,” in DAC, 2022, pp. 1123–1128.

[8] Q. Tao, T. Zhang, and J. Han, “An approximate parallel annealing ising
machine for solving traveling salesman problems,” IEEE Embed. Syst.
Lett, 2023.

[9] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, “Design of
low-power high-speed truncation-error-tolerant adder and its application
in digital signal processing,” IEEE TVLSI, vol. 18, no. 8, pp. 1225–1229,
2009.

[10] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient VLSI implementation of
soft-computing applications,” IEEE TCAS1, vol. 57, no. 4, pp. 850–862,
2009.

[11] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approximate
arithmetic circuits: A survey, characterization, and recent applications,”
Proc. IEEE, vol. 108, no. 12, pp. 2108–2135, 2020.

