
1

Approximate Radix-8 Booth Multipliers for
Low-Power and High-Performance Operation

Honglan Jiang, Student Member, IEEE, Jie Han, Member, IEEE, Fei Qiao,
and Fabrizio Lombardi, Fellow, IEEE

Abstract—The Booth multiplier has been widely used for high performance signed multiplication by encoding and thereby reducing the
number of partial products. A multiplier using the radix-4 (or modified Booth) algorithm is very efficient due to the ease of partial
product generation, whereas the radix-8 Booth multiplier is slow due to the complexity of generating the odd multiples of the
multiplicand. In this paper, this issue is alleviated by the application of approximate designs. An approximate 2-bit adder is deliberately
designed for calculating the sum of 1× and 2× of a binary number. This adder requires a small area, a low power and a short critical
path delay. Subsequently, the 2-bit adder is employed to implement the less significant section of a recoding adder for generating the
triple multiplicand with no carry propagation. In the pursuit of a trade-off between accuracy and power consumption, two signed 16× 16

bit approximate radix-8 Booth multipliers are designed using the approximate recoding adder with and without the truncation of a
number of less significant bits in the partial products. The proposed approximate multipliers are faster and more power efficient than
the accurate Booth multiplier; moreover, the multiplier with 15-bit truncation achieves the best overall performance in terms of hardware
and accuracy when compared to other approximate Booth multiplier designs. Finally, the approximate multipliers are applied to the
design of a low-pass FIR filter and they show better performance than other approximate Booth multipliers.

Index Terms—multiplier, approximate computing, radix-8, Wallace tree, truncation.

F

1 INTRODUCTION

COMPUTER arithmetic is extensively used in many digi-
tal signal processing (DSP) applications. Multipliers are

more complex than adders and subtractors, so the speed
of a multiplier usually determines the operating speed of
a DSP system. High precision is often looked as a strict
requirement with other considerations such as delay, hard-
ware complexity and power dissipation of a design. Some
applications such as media processing, recognition and data
mining are error-tolerant, so an approximate arithmetic unit
can be employed [1].

The design of an approximate multiplier usually deals
with the accumulation of partial products, which is a bot-
tleneck in its operation. Truncation of the lower part of
the partial products is a simple approximation scheme to
reduce the delay and hardware overhead; such a scheme is
referred to as fixed-width multiplier design. Several error
compensation strategies have been recently proposed to
improve the accuracy of fixed-width multipliers [2], [3],
[4], [5], [6]. In the scheme of [2], the outputs of the Booth
encoder are used to compensate the error generated by the
truncated modified Booth multiplier; this method reduces
the error by nearly 50% compared with a truncated design
without error compensation. Another fixed-width modified

• H. Jiang and J. Han are with the Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.
Email: honglan@ualberta.ca, jhan8@ualberta.ca

• F. Qiao is with the Department of Electronic Engineering, Tsinghua
University, Beijing 100084, China.
Email: qiaofei@tsinghua.edu.cn

• F. Lombardi is with the Department of Electrical and Computer Engineer-
ing, Northeastern University, Boston, USA.
E-mail: lombardi@ece.neu.edu

Manuscript received October 8, 2015; revised October 11, 2015.

Booth multiplier is presented in [3] by utilizing a simplified
sorting network as a main part of the error compensation
circuit; a high accuracy has been achieved too. Moreover,
a probabilistic approach has been proposed to compensate
the quantization error in a fixed-width Booth multiplier [4],
[5], [6]. An adaptive conditional-probability estimator is also
presented in [6]. The estimator is derived from a proba-
bilistic analysis rather than a time-consuming exhaustive
simulation as in [2] and [3].

An approximate 2 × 2 bit multiplier has been proposed
in [7] by modifying one entry of the Karnaugh Map (K-
Map). Three bits (rather than four) are used for the output
of the 2 × 2 multiplier; the approximate 2 × 2 bit mul-
tiplier is then used as a basic block for designing multi-
pliers for larger operands. This design achieves 31.78% to
45.4% reductions in power dissipation with only 1.39% to
3.32% errors on average. A different method for designing
approximate multipliers consists of utilizing counters or
compressors, as used in Wallace or Dadda trees [8], [9]. In
[8], an inaccurate 4 : 2 counter is applied to an approximate
4× 4 bit Wallace multiplier. Multipliers of larger sizes have
been built by using the approximate 4 × 4 bit multiplier
for a shorter delay, lower power consumption and higher
accuracy. Two approximate 4− 2 compressors are designed
in [9] by changing several output values in the truth table;
four designs are then proposed by using the approximate
4 − 2 compressors in the Dadda tree of an 8 × 8 multiplier.
Significant reductions in power dissipation and delay have
been accomplished in [9]. A novel approximate multiplier
has been proposed in [10] by using an approximate adder
that omits carry propagation between partial products. A
20% reduction in delay and up to 69% reduction in power
have been achieved for an 8× 8 bit multiplier.

2

Most existing approximate multiplier designs consider
the partial product accumulation stage and nearly all of
them are for operations of unsigned numbers [7], [8], [9],
[10]. The Booth algorithm is commonly used for a signed
multiplication; therefore, Booth multipliers are discussed in
this paper. The radix-4 recoded Booth algorithm is mostly
utilized for high speed operations [2], [3], [4], [5], [6]. In
contrast, the radix-8 algorithm generates fewer partial prod-
ucts than radix-4 and hence fewer adders are required for
accumulating the partial products. However, the hardware-
efficient radix-8 recoding algorithm is seldom used due to
the extra time incurred for the operation of odd multiples of
the multiplicand. Specifically, the step for computing three
times the multiplicand requires a preliminary processing
by an additional adder (with possibly a long carry prop-
agation). This adder contributes to an increase of 10-20%
in delay compared to the radix-4 algorithm (that generates
multiples of the multiplicand simply by shifting) [11].

In this paper, approximate designs of a Booth multiplier
are proposed; they are based on an approximation scheme
that deals not only with the partial product accumulation,
but also with the generation of recoded multiplicands. A
2-bit approximate recoding adder is initially designed to
reduce the additional delay encountered in previous radix-8
schemes, thereby increasing the speed of the radix-8 Booth
algorithm. A Wallace tree is leveraged to compute the sum
of partial products and to further reduce the addition time.
A truncation technique is then applied to the least signifi-
cant partial products to reduce the power and delay. Two
signed 16 × 16 bit approximate radix-8 Booth multipliers
are then proposed; they are referred to as approximate
Booth multipliers 1 and 2 (or ABM1 and ABM2). Simulation
results show that ABM1 is 20% faster than the accurate
radix-8 Booth multiplier. ABM2 saves as much as 44% in
power dissipation compared to the accurate multiplier. This
approximate multiplier is also 31% faster and requires 43%
less circuit area. Finally, the ABMs are applied to a low-pass
FIR filter; this application shows that the proposed approxi-
mate multipliers outperform other approximate multipliers
found in the technical literature.

This paper is organized as follows. Section 2 presents
the design of the approximate recoding adder. The designs
of the approximate multiplier are described in Section 3.
Section 4 shows the simulation results in comparison with
the accurate and other approximate Booth multipliers. In
Section 5, the approximate multiplier designs are applied
to an FIR filter operation to show the applicability of the
proposed designs. Finally, the paper is concluded in Section
6.

2 PROPOSED APPROXIMATE RECODING ADDER

The partial products in the radix-2 and radix-4 algorithms
can be easily generated by shifting or 2’s complementing; 2’s
complementing is implemented by inverting each bit and
then adding a ‘1’ in the partial product accumulation stage.
However, in the radix-8 algorithm, an odd multiple of the
multiplicand Y (i.e., (3Y)) is required and must be calcu-
lated. A preliminary addition is required to calculate 3Y by
implementing Y + 2Y , which incurs additional delay and

power cost. Therefore, a high speed approximate recoding
adder is designed for performing Y + 2Y in this section.

2.1 Design of the Approximate Recoding Adder
Consider a 16-bit signed multiplier, the preliminary addition
is shown in Fig. 1 (sign bits are shown in bold) [12]. The least
significant bit of 3Y (S0) is the same as y0, and the sign bit of
3Y is given by y15, because the sign does not change when
the multiplicand is multiplied by 3. Therefore, only the 16
bits in the middle are processed. The carry propagation in a
16-bit adder takes a significant time compared with shifting.

To reduce the ripple carry propagation, two adjacent bits
are added (instead of adding just one bit each time as in a
conventional scheme) to take advantage of the duplication
of the same bit, as shown in the box in Fig. 1. Take any 2-
bit addition (yi+1yi + yiyi−1, where i is 1, 3, · · · , 15) as an
example; the addition result is given by

2i+2Cout + 2i+1Si+1 + 2iSi

= 2iCin + 2iyi−1 + 3× 2iyi + 2i+1yi+1

, (1)

where yi−1, yi and yi+1 are the 3 bits of the multiplicand, yi
is the duplicated bit, Cin is the carry-in from the previous
addition, Si and Si+1 are the first and second sum bits of the
2-bit addition, and Cout is the carry-out of the 2-bit adder.
The accurate truth table is shown in Table 1. Fig. 2 shows
the K-Maps of these three outputs. The following functions
can be obtained

Cout = ((yi−1 ∨ yi+1 ∨ Cin) ∧ yi)

∨(Cin ∧ yi+1 ∧ yi−1)
, (2)

Si+1 = (((yi ∨ yi−1) ∨ (Cin ∧ yi−1)) ∧ yi+1)∨
(((Cin ∧ yi ∧ yi−1) ∨ (Cin ∧ yi ∧ yi−1)) ∧ yi+1)

, (3)

Si = Cin ⊕ yi ⊕ yi−1, (4)

where “∨” and “∧” are OR and AND operations, respec-
tively.

The circuit implementations of (2) and (3) are rather
complex, so some approximations are made on Si+1 and
Cout. As shown in Fig. 2, Cout becomes the same as yi if
2 out of its 16 outputs are changed (shown in bold in Fig.
3). Hence, the computation and propagation of the carry are
ignored. Similarly, Si+1 can also be simplified to yi+1 when
4 output values are changed (Fig. 3). Thus, the accurate truth
table is changed to Table 2 for the approximation scheme.
The output functions of the approximate 2-bit adder are
simplified to

Cout = yi, (5)

Si+1 = yi+1, (6)

Si = Cin ⊕ yi ⊕ yi−1. (7)

The approximate 2-bit adder can be implemented by just
one 3-input XOR gate as shown in Fig. 4. The probability of
generating an error in this approximate 2-bit adder is given
by

P (error) = P (Cinyi+1yiyi−1 = 0010)

+P (Cinyi+1yiyi−1 = 0110)

+P (Cinyi+1yiyi−1 = 1101)

+P (Cinyi+1yiyi−1 = 1001)

. (8)

3

Fig. 1. 16-bit preliminary addition.

Fig. 2. K-Maps of the 2-bit addition.

Assume that any input of an adder is equally likely to
occur, i.e., the occurrence probability of ‘1’ or ‘0’ at the
input is 1/2; then, the probability of obtaining any value
of Cinyi+1yiyi−1 is 1/16. Therefore, the error rate of the
approximate 2-bit adder is 1/4.

Due to the approximation, a +2 error (i.e., the difference
between the approximate output and the accurate output)
occurs when the input of the 2-bit adder is either “0010” or
“0110”; the error is -2 when the input is either “1101” or
“1001”. These four errors are detected by the circuit in Fig.
5(a) (ei is ‘1’ when errors are detected). As revealed in Table
1 and Table 2, an error can be partially compensated by +1
or -1 when the least significant output bit Si is flipped on
the condition that ei is ‘1’. This is accomplished by using an
XOR gate as shown in Fig. 5(b), i.e., Si is inverted when ei
is ‘1’, otherwise Si does not change. To fully correct these
errors, Cout must be the same with yi+1, and Si+1 must be
inverted when error is detected. The error recovery circuit
is shown in Fig. 5(c).

The approximate 2-bit adder cannot be used to add the
entire 16 bits in the operands, because a large error would
occur when the partial product 3Y is required in the mul-

Fig. 3. K-Maps of the approximate 2-bit addition.

TABLE 1. TRUTH TABLE OF THE 2-BIT ADDER

CoutSi+1Si
yiyi−1

00 01 11 10

Cinyi+1

00 000 001 100 011

01 010 011 110 101

11 011 100 111 110

10 001 010 101 100

TABLE 2. TRUTH TABLE OF THE APPROXIMATE 2-BIT
ADDER

CoutSi+1Si
yiyi−1

00 01 11 10

Cinyi+1

00 000 001 100 101

01 010 011 110 111

11 011 010 111 110

10 001 000 101 100

Fig. 4. Circuit of the proposed approximate 2-bit adder.

tiplier’s most significant part. However, the approximate
adder can be used to implement the less significant part
of the recoding adder and the most significant part can be
implemented by a precise adder. Fig. 6 shows the circuit
of the approximate recoding adder with 8 approximated
bits; 4 approximate 2-bit adders and a 7-bit precise adder
are utilized in the lower and higher parts, respectively. For
the 16th bit (S16), S16 = y15 ⊕ y15 ⊕ Co = Co, where Co

is the carry-out of the 7-bit precise adder. In total, four
XOR gates and a 7-bit adder are used in the approximate
design; this is simpler than the circuit of a ripple-carry
adder; moreover, the critical path delay is given only by the

(a)

(b)

(c)

Fig. 5. (a) Error detection, (b) Partial error compensation
and (c) Full error recovery circuits for the approximate 2-
bit adder.

4

Fig. 6. Approximate recoding adder with 8 approximated
bits.

delay of the 7-bit adder. The pass rate of the approximate
adder (defined as the probability of obtaining a correct result
[8]) is (1− 1/4)4 = 31.64%.

2.2 Simulation Results for the Approximate Recoding
Adder

Six types of approximate recoding adders are implemented
in VHDL and synthesized by the Synopsys Design Compiler
in STM 28nm CMOS process. Simulations are performed at
a temperature of 25◦C and a supply voltage of 1V. Critical
path delay and area are then reported by the Synopsys
Design Compiler. The power dissipation is estimated by
the PrimeTime-PX tool using the value change dump file.
The inputs for each design are 10 million random 16-bit
binary numbers, and the clock period is 2 ns. Additionally,
the values of power-delay product (PDP) and area-delay
product (ADP) are calculated as comprehensive metrics.

To quantify the quality of the approximate designs,
different metrics have been proposed, such as the error and
pass rate, the error distance (ED), the mean error distance
(MED) and the normalized mean error distance (NMED)
[13]. ED is the arithmetic distance between an erroneous
result and the corresponding correct result. MED is the
mean value of the EDs for all possible inputs. The accuracy
characteristics are obtained in MATLAB by simulating the
functions of the approximate designs.

For assessing the best 3Y calculation, the following
approximate recoding adders are considered: the approx-
imate recoding adder with 8 approximated bits (ARA8),
ARA8 with error compensation (using Fig. 5(b)) for the
most significant approximate 2-bit adder (ARA8-2C), ARA8
with error recovery (using Fig. 5(c)) for the most significant
approximate 2-bit adder (ARA8-2R), and the approximate
recoding adder with 6 approximated bits (ARA6). Accord-
ing to [14], the lower part OR adder (LOA) [15] and the
error tolerant adder type II (ETAII) [16] outperform the
other approximate adders when an acceptable accuracy
loss is considered. Moreover, the input pre-processing ap-
proximate adder (IPPA) in [10] shows good performance
in accumulating partial products. Therefore, the following
approximate adders are simulated for comparison: LOA
whose lower bits are implemented by OR gates , ETAII,
the modified ETAII [16] (ETAIIM), IPPA and the truncated
ripple-carry adder (TRCA). Fig. 7 shows a cell of IPPA,
where Ai and Bi are the ith least bits of the adder’s
operands, Si is the sum, and Ei is the error signal required
for error compensation. No carry propagation is needed for

TABLE 3. ACRONYMS OF APPROXIMATE ADDERS

Acronym Meaning

ARA8 Proposed approximate recoding adder
ARA8-2C ARA8 with error compensation
ARA8-2R ARA8 with error recovery
IPPA [10] Input pre-processing adder
LOA [15] Lower part OR adder

TRCA Truncated ripple-carry adder
ETAII [16] Error tolerant adder type II

ETAIIM [16] Modified ETAII

TABLE 4. COMPARISON RESULTS OF APPROXIMATE
ADDERS OPERATING AS A RECODING ADDER

Adder
Type

Delay
(ns)

Area
(um2)

Power
(µW)

PDP
(fJ)

ADP
(um2.ns)

Pass Rate
(%) MED

ARA8 0.73 32 18.37 13.41 23.36 31.61 73.41
ARA8-2C 0.73 35 20.96 15.30 25.55 31.56 41.79
ARA8-2R 0.90 37 20.42 18.38 33.30 42.19 18.37

ARA6 0.94 37 22.63 21.27 34.78 42.19 18.37
IPPA8 0.94 59 34.35 32.29 55.46 34.36 31.52
IPPA7 0.83 55 31.18 25.88 45.65 27.89 63.53
IPPA6 0.72 51 27.96 20.13 36.72 22.64 127.44
LOA8 0.80 31 18.40 14.72 24.8 17.37 79.78
LOA7 0.90 33 20.50 18.45 29.70 21.41 39.81
LOA6 1.01 36 22.61 22.84 36.36 26.55 19.75

TRCA7 0.77 26 16.83 12.96 20.02 0.39 254.01
TRCA6 0.88 29 19.29 16.98 25.52 0.78 126.06
TRCA5 0.98 33 21.71 21.28 32.34 1.56 62.01
TRCA4 1.09 36 24.16 24.40 39.24 3.15 30.01
ETAII4 0.54 57 35.77 19.32 30.78 94.13 256.22
ETAII5 0.70 58 38.51 26.96 40.60 97.71 62.81
ETAII6 0.80 58 38.01 30.41 46.40 99.28 14.71
ETAIIM 0.70 60 38.69 27.08 42.00 97.08 14.98

IPPA unless an error compensation is considered. ETAII is
shown in Fig. 8, where a conventional adder is divided
into several segments. Hence, the carry propagation chain
is significantly reduced by operating different segments in
parallel.

The acronyms of these approximate adders used here-
after are shown in Table 3. As the recoding adder is only
utilized for calculating the value of 3× multiplicand (i.e.,
2Y +Y), all other approximate adders are simulated for the
same function. The circuit and accuracy characteristics of the
approximate adders are shown in Table 4. The overheads of
the error detection, compensation and recovery circuits for
all designs are included in the reported results. The numbers
following the labels of the adders identify the parameters in
the schemes as follows.

• It is the number of the most significant bits used for
error correction for IPPA.

• It is the number of the lower approximated bits
implemented by OR gates for LOA.

• In TRCA, it is the number of truncated lower bits.
• The parameter is the segment length in ETAII.
• In the ETAIIM, 4 bits are used for generating the

carries of the less significant segments and 8 bits for
the most significant segment.

Among all approximate adders, ETAII4 is the fastest,
and IPPA6, ARA8 and ARA8-2C are also very fast schemes,
while LOA6 and TRCA4 are rather slow. ETAII and ETAIIM
incur the largest power dissipation and circuit area due to

5

Fig. 7. The circuit of the input pre-processing adder cell [10].

Fig. 8. The diagram of the error tolerant type II adder [14].

the segmented structure, while TRCA is the most power and
area efficient design due to truncation. For the same reasons,
ETAII and ETAIIM show a high pass rate (more than 90%),
while TRCA has the lowest pass rate (less than 2%). The
high pass rates of ETAII4 and ETAII5 cannot guarantee a
high MED, because the EDs are rather significant, though er-
rors seldom occur. Although IPPA performs well in [10] for
partial product accumulation, it is not suitable for operating
as a recoding adder. This occurs because IPPA is designed
for an iterative addition in the accumulation of partial
products for a multiplier. In this operation, error signals
can be accumulated efficiently (e.g., by using OR gates),
and then the error is compensated at the final stage using
an accurate adder. For a recoding adder, however, the error
must be compensated immediately, which makes IPPA less
efficient. The power dissipation and area of the proposed
approximate adders and LOA are very close. However, the
proposed approximate adders have higher pass rates and
lower MEDs than LOA.

As the values of ADP show the same trend as the
PDP for all approximate adders, PDP is selected as the
metric for hardware comparison. The MEDs and PDPs of
all approximate adders are shown in a 2D plot (Fig. 9); the
adders with MEDs larger than 80 are not included since
they are not sufficiently accurate for a recoding adder. At a
similar values of MED, the proposed approximate recoding
adder always has a smaller PDP than the other approximate
adders, e.g., the values of MED for ARA8, LOA8, TRCA5,
IPPA7 and ETAII5 are nearly 70, ARA8 has the lowest PDP
(13.41 fJ). Likewise, ARA8-2R and LOA7 have close values
of PDP (about 20 fJ), ARA8-2R shows smaller MED (18.37).
Due to the error recovery circuit, ARA8-2R has the same
accuracy characteristics as ARA6 (both of them utilize 6
approximated bits). Nevertheless, ARA8-2R is faster and
more power efficient than ARA6. Therefore, ARA8, ARA8-
2C and ARA8-2R show the best tradeoff in hardware and
accuracy in the implementation of the recoding adders for
an approximate radix-8 Booth multiplier.

MED
10 20 30 40 50 60 70 80

PD
P

(f
J)

10

15

20

25

30

35

 ARA8

 ARA8-2C

 ARA8-2R

 ARA6

 LOA8

 LOA7

 LOA6

TRCA5

TRCA4
ETAII5

ETAII6

ETAIIM

IPPA8

IPPA7

Fig. 9. The MEDs and PDPs of the approximate adders as
recoding adders.

Fig. 10. Partial product generator.

3 APPROXIMATE MULTIPLIER DESIGNS

In this section, two approximate 16-bit signed multipliers
based on the radix-8 Booth algorithm are proposed. A Booth
multiplier consists of stages of multiplier encoding, partial
product generation, partial product accumulation and the
final addition. In the radix-8 Booth algorithm, nine types of
partial products (−4Y,−3Y,−2Y,−Y, 0, Y, 2Y, 3Y, 4Y) are
generated by the multiplier encoder and the partial product
generator. Moreover, a Wallace tree is used to implement the
sum of the partial products to reduce the total multiplication
time. The selection of the partial products as inputs to the
Wallace tree is controlled by the partial product generator
and is ultimately determined by the multiplier encoder. Fig.
10 shows the 1-bit partial product generator. The input sig-
nals of onej , twoj , threej , fourj and negj are the multiplier
recoding results according to the radix-8 algorithm [11]. yi
is one bit of the multiplicand, and 3yi is the corresponding
bit of 3Y calculated by the recoding adder. The AND gates
are used to select the partial products and perform shift
operation, while the XOR gate completes the inversion of
the positive multiple of the multiplicand for a negative
recoding factor.

For the 16-bit multiplier, the radix-8 recoding algorithm
generates six signed digits. Hence, six partial products are
generated. The dot-notation of the partial products for the
16-bit multiplier is shown in Fig. 11, in which sign extension
elimination technique is used [3]. In Fig. 11, a dot represents
a bit of a partial product, a square is the sign of a recoding
factor (negj in Fig. 10). The sign bit of each partial product
is in gray, the bars on the top of them mean the inverting
operation. The partial products are accumulated by Wallace
tree in this paper.

6

Fig. 11. Partial product tree of a 16-bit radix-8 Booth multi-
plier. : a partial product; : the sign bit; : the inverted sign
bit; : the sign of the recoding factor.

Besides the approximation of the recoding adder of the
16-bit Booth multiplier, two approximate designs are further
proposed in the accumulation stage.

• In the first approximate Booth multiplier (ABM1),
the accumulation of the partial products is accurate.
Therefore, the most accurate approximate recoding
adder is utilized, i.e. ARA8-2R.

• As some of the partial products are imprecise due to
the approximate recoding adder, it may not be nec-
essary to accumulate them accurately. Consequently,
a few lower bits of the partial products are truncated
in the second approximate Booth multiplier (AB-
M2) to save additional power and reduce the delay.
Nine and fifteen bit truncations are used in ABM2.
For the nine bit truncation, ARA8-2C (in ABM2-C9)
and ARA8-2R (in ABM2-R9) are used as the recod-
ing adders. Three configurations of the approximate
recording adder are used in the fifteen bit truncation
scheme: ARA8 (in ABM2-15), ARA8-2C (in ABM2-
C15) and ARA8-2R (in ABM2-R15). An additional ‘1’
(average error) is finally added to the 17th bit of the
15-bit truncation multiplier to compensate the error
generated by the truncated lower part. Moreover, the
15-bit truncation multiplier can also be used as a
fixed-width multiplier.

4 SIMULATION RESULTS OF MULTIPLIER

In this section, the hardware overheads and accuracy of
the proposed approximate 16-bit multiplier designs are
assessed. Meanwhile, the performance of the accurate and
several other approximate Booth multipliers are compared
with the proposed designs.

4.1 Hardware Measures

The proposed approximate multipliers, the accurate radix-
8 (AcBM) and the other approximate Booth multipliers in
[2] (BM04), [3] (BM11) and [6] (PEBM) are implemented
and simulated by Synopsys Design Compiler in STM 28nm
CMOS process with a supply voltage of 1V at 25◦C. The
critical path delay and area are reported by Synopsys Design
Compiler, and the power is measured by the PrimeTime-
PX tool. 10 million random input combinations are used
for the power analysis and the clock cycle is 4 ns. More-
over, the fixed-width radix-8 Booth multiplier using the
probability estimation theory in [6] (denoted as PEBM8)
is also compared. The critical path delay, area and power
consumption are reported in Table 6. The acronyms used
for the multipliers are shown in Table 5. The structure of

TABLE 5. ACRONYMS OF APPROXIMATE MULTIPLIERS

Acronym Booth Algorithm Truncation
(bits)

Recoding
Adder

AcBM radix-8 0 accurate
ABM1 radix-8 0 RAR8

ABM2-C9 radix-8 9 RAR8-2C
ABM2-R9 radix-8 9 RAR8-2R
ABM2-15 radix-8 15 RAR8

ABM2-C15 radix-8 15 RAR8-2C
ABM2-R15 radix-8 15 RAR8-2R
BM04 [2] radix-4 15 no
BM11 [3] radix-4 15 no
PEBM [6] radix-4 15 no
PEBM8 radix-8 15 accurate

AcBM is the same as ABM1, except for the recoding adder.
Table 6 shows that the approximate recoding adder causes
ABM1 to have a speed improvement of nearly 20%, thus,
the recoding adder in the radix-8 algorithm results in a
significant difference in the Booth multiplier. The critical
path delay of ABM2-15 and ABM2-C15 improve by 31%
compared with the accurate radix-8 design; moreover, the
circuit areas of ABM2 with 9-bit truncation (T9) and 15-bit
truncation (T15) are roughly 18% and 43% smaller than the
accurate design. The power consumption of ABM2 (T9) and
ABM2 (T15) are 18% and 44% less than AcBM, therefore
their PDPs and ADPs are also smaller.

PEBM8 is much slower than the proposed approximate
multipliers due to the accurate recoding adder. BM04 and
BM11 have longer delays and smaller area than PEBM
although they are all based on the radix-4 Booth algorithm.
This is mainly because that the partial product accumulation
of BM04 and BM11 are performed by an array structure
while it is performed by a carry-save adder tree for PEBM.
As for area, ABM1 requires the largest area (724 um2), BM04,
ABM2-15, ABM2-C15 and ABM2-R15 require approximately
an area of 420 um2, and the area for ABM2-C9 and ABM2-
R9 is nearly 600 um2. For power dissipation, ABM2-15
shows the best performance, ABM2-C15 and ABM2-R15 are
better than the other approximate multipliers. The area and
power dissipation of ABM1, ABM2-C9 and ABM2-R9 are
larger than the fixed-width multipliers, hence truncation
is an effective scheme to reduce hardware overheads. The
proposed fixed-width multipliers have smaller values of
area and power consumption than the other fixed-width
multipliers (except that BM04 has the smallest area) due to
the hardware-efficient radix-8 algorithm, thereby their PDPs
and ADPs are also very small.

4.2 Accuracy Measures

MED cannot be used for a fair comparison of two approx-
imate designs with different number of bits; the definition
of NMED is proposed in [13] to overcome this limitation.
The NMED is defined as the normalization of MED by the
maximum output of the accurate design. The maximum
absolute error (MAE) of the approximate multipliers is mea-
sured to evaluate their error magnitude. Additionally, the
relative error distance (RED, defined as the error distance
over the absolute accurate result) is used to assess the error
distribution of approximate multipliers.

7

TABLE 6. HARDWARE COMPARISON RESULTS OF THE
APPROXIMATE BOOTH MULTIPLIERS

Multiplier
Type

Delay
(ns)

Area
(um2)

Power
(uW)

PDP
(fJ)

ADP
(um2.ns)

AcBM 2.99 737 371.9 1111.98 2203.63
ABM1 2.38 724 363.3 865.84 1723.12

ABM2-C9 2.23 604 305.2 680.60 1346.92
ABM2-R9 2.41 606 305.5 736.26 1460.46
ABM2-15 2.07 419 206.8 428.08 867.33

ABM2-C15 2.07 422 208.1 430.77 873.54
ABM2-R15 2.25 424 208.0 468.00 954.00

BM04 1.93 407 226.5 437.15 785.51
BM11 1.96 475 258.1 505.88 931.00
PEBM 1.83 528 264.3 483.67 966.24
PEBM8 2.86 452 221.6 633.78 1292.72

The functions of the proposed and previous approximate
multipliers are simulated in MATLAB, their values of pass
rate, NMED, MAE and PRED (the probability of getting
a RED smaller than 2%) are reported in Table 7. ABM1
gives the highest pass rate (55.937%), while the pass rates
of the other approximate multipliers are nearly 0 due to
truncation. In terms of NMED, ABM1 has the smallest value,
while ABM2-15 has the largest value. ABM1 and ABM2-
R9 have similar NMEDs; i.e., the error due to the recoding
adder is more significant than the one due to the truncation.
The NMEDs of all proposed approximate multipliers using
ARA8-2R as recoding adders (ABM1, ABM2-R9 and ABM2-
R15) are smaller than PEBM8 and BM04. The proposed
approximate designs have relatively high MAEs because 3Y
is required in the most significant partial product and hence,
the error due to the approximate recoding adder incurs
in a rather large magnitude for the final multiplication
result. However, as per their small values of NMED and
high values of PRED , the probability of occurrence of a
large MAE is extremely small in these schemes. In terms
of PRED , ABM1 incurs the largest value, and ABM2-C9 and
ABM2-R9 also have higher values of PRED than fixed-width
multipliers. The accuracy of PEBM is higher than that of
PEBM8 in terms of NMED and PRED ; this indicates that
the probability estimator based error compensation is more
suited for the radix-4 Booth algorithm than for the radix-8.
In summary, ABM1 shows the best performance in terms of
pass rate, NMED and PRED , while ABM2-15 has the highest
NMED and MAE.

Fig. 12 shows a comprehensive comparison of all approx-
imate Booth multipliers by considering both NMED and
PDP. Among the fixed-width multipliers, ABM2-R15 is the
most efficient design with moderate values of NMED and
PDP. BM11 and PEBM show better NMED but larger PDP,
while BM04 is opposite. ABM1 and ABM2-R9 have nearly
the same small value of NMED, but ABM2-R9 has a better
PDP. Therefore, ABM2-R9 should be selected if the accuracy
is required within the reported range. ABM2-15 and ABM2-
C15 have similar small values of PDP, but ABM2-C15 has a
smaller NMED. Thus, ABM2-C15 should be considered at a
PDP value of 430 fJ .

5 FIR FILTER APPLICATION

In this section, the proposed multipliers are applied to a
30-tap low-pass equiripple Finite Impulse Response (FIR)

TABLE 7. ACCURACY COMPARISON RESULTS OF THE
APPROXIMATE BOOTH MULTIPLIERS

Multiplier
Type

Pass Rate
(%)

NMED
(10−5)

MAE
(105)

PRED

(%)

ABM1 55.937 1.92 3.18 99.77
ABM2-C9 0.257 4.43 6.75 99.43
ABM2-R9 0.274 1.97 3.19 99.74
ABM2-15 0.006 9.07 13.23 98.40

ABM2-C15 0.003 5.73 7.25 98.79
ABM2-R15 0.011 3.41 3.67 99.08

BM04 0.006 5.31 2.29 97.72
BM11 0.014 2.18 1.25 99.17
PEBM 0.011 2.26 1.38 99.10
PEBM8 0.009 3.50 1.29 98.98

NMED (10-5)

2 4 6 8 10 12 14 16
PD

P
(f

J)

400

450

500

550

600

650

700

750

800

850

900

 PEBM8

 BM04

 BM11

 ABM1

ABM2-C9

ABM2-R9

ABM2-15ABM2-C15

ABM2-R15
 PEBM

Fig. 12. NMEDs and PDPs of the approximate Booth multi-
pliers.

filter to assess the viability of these designs. The FIR filter is
designed by the Filter Design & Analysis Tool (FDATOOL)
in MATLAB. The pass-band and stop-band frequencies of
the filter are 8 kHz and 15 kHz, respectively. The input of
the FIR filter is the sum of three sinusoidal variables x1(n),
x2(n) and x3(n) with 1 kHz, 15 kHz, and 20 kHz frequen-
cies, respectively, and a White Gaussian Noise η(n) with
−30dBW power, i.e., x(n) = x1(n)+ x2(n)+ x3(n)+ η(n).
The White Gaussian Noise is used to simulate the random
effects found in nature.

The approximate 16 × 16 bit multipliers are applied to
compute the output of the filter, while the adders used here
are accurate. To assess the performance of the approximate
multipliers for the FIR filter operation, the input signal-
to-noise ratio (SNRin) and output signal-to-noise ratio
(SNRout) are used. The same input signal with an SNRin

of 3.89 dB (due to a randomly generated White Gaussian
Noise) is utilized for all operations.

The simulation results of the FIR filter operation are
shown in Fig. 13, in which the output signal-to-noise ratios
(SNRout) are sorted in descending order. ABM1, ABM2-
C9 and ABM2-R9 obtain nearly the same SNRout (about
27 dB), and this value is higher than those of the fixed-
width multipliers. The minor loss in SNR occurs mainly
due to the small relative error distance of these multipliers
is acceptable for FIR operation. BM11 achieves the highest
SNRout among all fixed-width multipliers. The values of
SNRout for ABM2-C15 and ABM2-R15 are slightly lower,
around 25 dB. The output signal-to-noise ratios of PEBM8

8

30.83
27.59 27.16 27.15

25.18 24.91
22.07

14.66
11.40 10.12

0

5

10

15

20

25

30

35

SN
R

ou
t (

dB
)

Fig. 13. Sorted SNRout for the accurate and approximate
multipliers.

and BM04 are much lower than the proposed multipliers.
Overall, the multipliers with no truncation (ABM1) and
with 9-bit truncation (ABM2-C9 and ABM2-R9) perform
better than those with 15-bit truncation for this application.
Higher bit truncation results in a larger error distance and
hence, the effect is more pronounced in the final filter
result. Specifically, the performance of ABM2-C9 in the filter
application is better than ABM1 and ABM2-R9 although its
NMED is more than two times larger. These results indicate
that the NMED, while useful in evaluating the quality of an
approximate design in general, is not always accurate when
assessing the design for a specific application. In this case,
the filter operation is inherently error resilient, because some
noise could be filtered out. For the same reason, the error
caused by an approximate multiplier could be mitigated
in some cases. Finally, the NMED and MAE of ABM2-15
are larger than those of PEBM8 and BM04. However, its
filter application result is better, which is consistent with
the RED results in Table 7 (given as PRED). This indicates
that the RED is reliable in predicting the performance of
an approximate design in the filter application, because it
considers the specific input in an evaluation. Overall, the
proposed approximate multipliers are the best schemes for
the FIR filter application.

6 CONCLUSION

In this paper, different signed 16×16 bit approximate radix-
8 Booth multiplier designs have been proposed. Initially, an
approximate 2-bit adder consisting of a 3-input XOR gate
has been proposed to calculate the triple of binary numbers.
The error detection, compensation and recovery circuits of
the approximate 2-bit adder have also been presented. The
2-bit adder is then employed to implement the lower part
of an approximate recoding adder for generating a triple
multiplicand without carry propagation; it overcomes the
issue commonly found in a radix-8 scheme. In the proposed
signed approximate radix-8 Booth multipliers, referred to
as ABM1 and ABM2, a truncation technique has been
employed to further save power and time. The parallel
processing by a Wallace tree is then employed to speed up
the addition of partial products.

The simulation results have shown that the proposed
approximate recoding adders (ARA8, ARA8-2C and ARA8-
2R) are more suitable (in terms of hardware efficiency and
accuracy) for a radix-8 Booth multiplier than other approx-
imate adders. The recoding adder is very important for the
critical path delay of the multiplier. However, the error due
to the recoding adder is more significant than the one caused
by truncation (provided the truncation number of the partial
products is less than or equal to 9 for a 16×16 bit multiplier).
The simulation results in an FIR filter application have
shown that the proposed ABM1, ABM2-C9 and ABM2-R9
perform well with only a 3 dB drop in output signal-to-
noise ratio. With similar values of PDP, the proposed designs
outperform the other approximate multipliers in the FIR
filter operation, thus these designs may be useful for low-
power and imprecise operations in error-resilient systems.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in ETS, 2013, pp. 1–6.

[2] K.-J. Cho, K.-C. Lee, J.-G. Chung, and K. K. Parhi, “Design of low-
error fixed-width modified booth multiplier,” IEEE Transactions on
VLSI Systems, vol. 12, no. 5, pp. 522–531, 2004.

[3] J.-P. Wang, S.-R. Kuang, and S.-C. Liang, “High-accuracy fixed-
width modified booth multipliers for lossy applications,” IEEE
Transactions on VLSI Systems, vol. 19, no. 1, pp. 52–60, 2011.

[4] C.-Y. Li, Y.-H. Chen, T.-Y. Chang, and J.-N. Chen, “A probabilistic
estimation bias circuit for fixed-width booth multiplier and its dct
applications,” IEEE Transactions on Circuits and Systems II, vol. 58,
no. 4, pp. 215–219, 2011.

[5] Y.-H. Chen, C.-Y. Li, and T.-Y. Chang, “Area-effective and power-
efficient fixed-width booth multipliers using generalized prob-
abilistic estimation bias,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 1, no. 3, pp. 277–288, 2011.

[6] Y.-H. Chen and T.-Y. Chang, “A high-accuracy adaptive
conditional-probability estimator for fixed-width booth multipli-
ers,” IEEE Transactions on Circuits and Systems I, vol. 59, no. 3, pp.
594–603, 2012.

[7] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for
power with an underdesigned multiplier architecture,” in 2011
24th International Conference on VLSI Design, 2011, pp. 346–351.

[8] C.-H. Lin and C. Lin, “High accuracy approximate multiplier with
error correction,” in ICCD,. IEEE, 2013, pp. 33–38.

[9] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and
analysis of approximate compressors for multiplication,” IEEE
Transactions on Computers, vol. 64, no. 4, pp. 984–994, 2015.

[10] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,”
in DATE, 2014, p. 95.

[11] B. Millar, P. E. Madrid, and E. Swartzlander, “A fast hybrid
multiplier combining booth and wallace/dadda algorithms,” in
Proceedings of the 35th Midwest Symposium on Circuits and Systems,
1992, pp. 158–165.

[12] J. Hidalgo, V. Moreno-Vergara, O. Oballe, A. Daza, M. Martı́n-
Vázquez, and A. Gago, “A radix-8 multiplier unit design for spe-
cific purpose,” in XIII Conference of Design of Circuits and Integrated
Systems, vol. 10, 1998, pp. 1535–1546.

[13] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability
of approximate and probabilistic adders,” IEEE Transactions on
Computers, vol. 62, no. 9, pp. 1760–1771, 2013.

[14] H. Jiang, J. Han, and F. Lombardi, “A comparative review and
evaluation of approximate adders,” in Proceedings of the 25th edition
on Great Lakes Symposium on VLSI. ACM, 2015, pp. 343–348.

[15] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-
inspired imprecise computational blocks for efficient vlsi imple-
mentation of soft-computing applications,” IEEE Transactions on
Circuits and Systems, vol. 57, no. 4, pp. 850–862, 2010.

[16] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-
speed adder for error-tolerant application,” in ISIC. IEEE, 2009,
pp. 69–72.

