
1

Low-Power Unsigned Divider and Square Root
Circuit Designs using Adaptive Approximation

Honglan Jiang, Member, IEEE, Leibo Liu, Member, IEEE, Fabrizio Lombardi, Fellow, IEEE, and
Jie Han, Senior Member, IEEE

Abstract—In this paper, an adaptive approximation approach is proposed for the design of a divider and a square root (SQR) circuit. In
this design, the division/SQR is computed by using a reduced-width divider/SQR circuit and a shifter by adaptively pruning some
insignificant input bits. Specifically, for a 2n/n division, 2k and k (k < n) consecutive bits are selected starting from the most significant
‘1’ in the dividend and divisor, respectively. At the same time, redundant least significant bits (LSBs) are truncated or if the number of
remaining bits after pruning is smaller than the number of bits to be kept, ‘0’s are appended to the LSBs of the inputs. To avoid
overflow, a 2(k+1)/(k+1) divider is used to compute the 2k/k division. Finally, an error correction circuit is proposed to recover the
error caused by the shifter using OR gates. For a 2n-bit approximate SQR circuit, similar pruning schemes are used to obtain a 2k-bit
radicand. A 2k-bit SQR circuit and a shifter are then utilized to compute the SQR. This adaptive operation leads to very small maximum
error distances of the approximate divider and SQR circuits, as shown by a theoretical error analysis. The proposed 16/8 approximate
divider using an 8/4 exact array divider is 2.5× as fast but only consumes 34.42% of the power of the accurate design. Compared to the
accurate 16-bit array SQR circuit, the approximate design with a 6-bit radicand is 3.9× as fast and consumes 20.66% of the power. The
approximate SQR circuit using a 6-bit lookup table-based SQR circuit consumes 7.15% of the power of its corresponding accurate
design. The proposed designs outperform other approximate designs in image processing applications including change detection (for
the divider), envelope detection (for the SQR circuit) and image reconstruction (for both designs).

Index Terms—Adaptive approximation, divider, SQR circuit, overflow, low-power, image processing.

F

1 INTRODUCTION

C OMPARED with multiplication and addition, division and
square root (SQR) computation are less frequently used

arithmetic operations [1]; however, their long latencies determine
the speed of an application once they are utilized. Several schemes
have been proposed to improve the performance of division/SQR,
such as those using a high-radix design [2], [3], [4] or a car-
ry/borrow lookahead circuit in an array divider/SQR circuit [5].
Nevertheless, the improvement in performance is usually obtained
at the expense of a high power dissipation and a large area due to
the complexity of its intrinsic structure.

On the other hand, precise computing is not required for many
applications such as image processing, clustering and recognition
due to their inherent error tolerance. As a result, there has been
a wide interest in the investigation into the emerging paradigm
of approximate or inexact computing [6]. A large number of
approximate designs have been proposed for arithmetic circuits for
pursuing improvements in speed, power dissipation and/or circuit
complexity [7].

However, most designs are either hardware-efficient with a low
accuracy or very accurate with a limited hardware saving, mostly
due to the use of a static approximation. In this paper, an adaptive
approximation strategy is proposed for unsigned divider and SQR

• H. Jiang and L. Liu are with the Institute of Microelectronics, Tsinghua
University, Beijing, China.
E-mail: honglan@ualberta.ca, liulb@tsinghua.edu.cn

• F. Lombardi is with the Department of Electrical and Computer Engineer-
ing, Northeastern University, Boston, USA.
E-mail: lombardi@ece.neu.edu

• J. Han is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6G 1H9, Canada.
E-mail: jhan8@ualberta.ca

circuit designs. The adaptive approximation leads to low-power
and high-performance operations. In these designs, input pruning
and error correction work synergistically to ensure a high accuracy
with a very low maximum error distance (ED).

Specifically, by adaptively selecting some significant bits in
the input operands, a reduced-width divider and SQR circuit are
respectively utilized to approximately compute a division and
SQR. The alterable circuit size and accuracy of the approximate
designs are determined by the number of bits to be selected
(i.e., 2k bits for the dividend and radicand, and k bits for the
divisor). Compared with the exact 16/8 array divider, the adap-
tively approximate divider (denoted as AAXD) achieves a speedup
and power reduction by 27%-61% and 34%-66%, respectively,
when k varies from 5 to 3. For the 16-bit array SQR circuit, it
achieves improvements in power-delay product (PDP) and area-
delay product (ADP) by more than 90% when k = 3, while the
PDP is reduced by more than 45% when k = 6. A more significant
power reduction is achieved when the adaptive approximation
is applied to the lookup table (LUT)-based SQR circuit. It also
achieves a high accuracy in an envelope detection application.
When used in image reconstruction, the proposed approximate
32/16 divider and 32-bit SQR circuit are significantly faster and
more power-efficient than the other approximate designs to obtain
a similar quality to an accurate design.

Some preliminary results have been reported in [8]. This
paper presents the following novel contributions: Similar to the
approximate divider, an approximate SQR circuit is designed
using pruning and shift operation. The upper bounds of the ED for
the divider and SQR circuit are analytically found. These analyses
show that the proposed approximation strategy results in a very
small maximum ED. Moreover, the proposed design approach

2

is further applied for sequential divider and SQR circuits. The
quality of the approximate SQR circuit is assessed by using it in
envelope detection. Finally, to evaluate the accuracy and hardware
improvements, both the approximate divider and SQR circuit are
applied to an image reconstruction application.

The rest of the paper is organized as follows. Section 2
introduces the exact designs of then divider and SQR circuit,
and reviews current approximate divider designs. The approximate
unsigned divider and SQR circuit are proposed in Section 3.
The errors of the approximate designs are analyzed in Section
IV. Section 5 shows the error and circuit characteristics of the
approximate divider and SQR circuit. In Section 6, the approxi-
mate designs are applied to three image processing applications to
assess their accuracy. Finally, the paper is concluded in Section 7.

2 RELATED WORK

An unsigned integer division A/B can be formulated as A =
BQ + R, where Q is the quotient, and R is the remainder. In
the pencil-and-paper algorithm, the quotient of a 2n/n binary
division is calculated by finding the final remainder, i.e., iteratively
subtracting the product of a bit of the quotient and the n-bit divisor
(B) from the 2n-bit dividend (A). Starting with the most significant
bit (MSB), each iteration generates one bit of the quotient. Thus,
i bits of the quotient (referred to as the partial quotient) are
generated after i iterations, denoted as Qi = ∑

i
j=1 qn− j2n− j, where

n is the width of the quotient (due to the input range constraint [1])
and qi is the ith least significant bit (LSB) of Q, i = 1,2, · · · ,n. The
partial remainder of the ith iteration is then given by Ri = A−BQi.
In the (i+1)th iteration, the partial remainder Ri+1 = A−BQi+1,
where Qi+1 = ∑

i+1
j=1 qn− j2n− j = Qi + qn−i−12n−i−1. Therefore,

Ri+1 = A− BQi − Bqn−i−12n−i−1 = Ri − Bqn−i−12n−i−1. qn−i−1
is the bit of the quotient generated by the (i+ 1)th iteration. It
is 1 (and Ri+1 = Ri − B2n−i−1) if Ri − B2n−i−1 ≥ 0; otherwise
qn−i−1 =0 (and Ri+1 = Ri). In hardware, qn−i−1 is obtained by
inverting the borrow output of Ri−B2n−i−1 that is implemented
by a shift subtration.

Similarly, an integer SQR
√

A can be formulated as A =
Q2 + R, where Q is the SQR result, and R is the remainder.
In the pencil-and-paper algorithm for binary SQR, the 2n-bit
radicand (A) is first divided into n groups of two, and two
bits of the radicand are processed in each iteration to gener-
ate one bit in the SQR. The SQR is calculated starting with
the MSB. Assume that the partial SQR after i iterations is
Qi = ∑

i
j=1 qn− j2n− j, where n is the width of Q and qi is the ith

LSB of Q, i = 1,2, · · · ,n. The partial remainder of the ith iteration
is given by Ri = A−Q2

i , while it is Ri+1 = A−Q2
i+1 = A− (Qi +

qn−i−12n−i−1)2 = Ri− (2Qi + qn−i−12n−i−1)qn−i−12n−i−1 for the
(i + 1)th iteration. In the binary format, 2Qi + qn−i−12n−i−1 =
(∑i

j=1 qn− j2i− j+2 + qn−i−1)2n−i−1 is obtained by left shifting
(∑i

j=1 qn− j2i− j+2+qn−i−1)= (qn−1qn−2 · · ·qn−i0qn−i−1)2 for (n−
i− 1) bits. Thus, qn−i−1 is determined by the sign of Ri −
(∑i

j=1 qn− j2i− j+2 + 1)22(n−i−1). That is, qn−i−1 =1 (and Ri+1 =

Ri − (∑i
j=1 qn− j2i− j+2 + 1)22(n−i−1)) if Ri − (∑i

j=1 qn− j2i− j+2 +

1)22(n−i−1) ≥ 0; otherwise qn−i−1 =0 (and Ri+1 = Ri).
Following the pencil-and-paper algorithms, the division and

SQR can be implemented in sequential and combinational circuits.
Sequential division/SQR is usually implemented by using the
digit recurrent algorithm [9] or the functional iterative algorithm
[10]. Its latency is significantly longer than a combinational di-
vider/SQR circuit due to the recurrent/iterative nature of the oper-

ation. A combinational division/SQR is implemented by shift and
subtraction operations. An 8/4 unsigned restoring array divider
and an 8-bit restoring array SQR circuit are shown in Fig. 1. In
Fig. 1(a), an OR gate with an inverted input is used to generate one
bit of the quotient that is the inverted borrow output from the left-
most subtractor (when the currently most significant subtrahend
bit is 0). In general, n2 subtractor cells are required in a 2n/n
array divider and n2 + n subtractor cells are needed for a 2n-bit
SQR circuit. Due to the borrow ripples in each row, the critical
paths for the array divider and SQR circuit are in O(n2), while it
is in O(n) for an n×n array multiplier. Thus, an array divider/SQR
circuit incurs a higher hardware consumption and a lower speed
than an array multiplier.

q2 0

q1

r2 r1 r0

b3 b2 b1a7 a6 a5 a4

a1

a0

q3 0

q0

b0 a3

a2

0

a1

0

r3

(a) An 8/4 unsigned restoring array divider

q2
0

q1

s3 s2 s1

0 1a7 a6

a1

q3
0

q0

0

a2

0

s4

a5 a4

a3

0 1q3

0 1q20

0

a0
0 1q10 0

s0

0

0

s5s6s7

(b) An 8-bit restoring array square root circuit

Subtractor
(a-b)

1 0

binbout

s

ab

q

(c) Subtractor cell

Fig. 1. (a) An 8/4 unsigned restoring array divider and (b) 8-
bit restoring array square root circuit with (c) the constituent
subtractor cell [1].

Denoted as AXDr, the approximate dividers in [11] and [12]
use inexact subtractors to replace the accurate ones at the less
significant positions in an array divider. AXDr produces very
small errors because only its less significant part is approximated.
For the same reason, the critical path delay of this design is not
significantly reduced. Furthermore, the improvements in power
dissipation and area are relatively small. On the other hand, a
dynamic approximate divider (DAXD) [13] shows a substantial
improvement in speed, area and power consumption compared
with AXDr. However, the accuracy of DAXD is much lower due

3

to the overflow problem caused by truncation. In addition to array
dividers, a rounding-based approximate division is implemented
by a rounding block, a look-up table, a reduced-width multiplier,
adders and a shifter, referred to as SEERAD [14]. Without using
a traditional division structure, SEERAD is fast, but it incurs a
substantial power dissipation and a large area due to the use of the
look-up table.

Compared to the divider, design effort has been made on the re-
current addition/subtraction algorithm for an SQR operation [15].
However, the study of an approximate SQR circuit has not been
found in the literature.

3 PROPOSED APPROXIMATE DIVIDER/SQR CIR-
CUIT

3.1 Motivation
For approximations in an adder or a multiplier, truncation is an
efficient approach to reducing hardware and energy consumption
[7], [16]. Improvements in power dissipation and critical path
delay can also be obtained for an approximate divider/SQR circuit
design; however, the approximation using static truncation on the
LSBs of the input operands results in large relative errors, espe-
cially for small input operands. Thus, adaptive approximation is
investigated in this paper by selectively pruning some insignificant
bits of the input operands; then, a reduced-width divider/SQR
circuit is used to process the remaining bits.

3.2 Approximate Divider
Different from multiplication and addition, the inputs for division
have a strict range requirement. In a 2n/n divider, the n MSBs of
the dividend A must be smaller than the divisor B to guarantee that
no overflow occurs [1].

3.2.1 Design
The basic structure of the proposed approximate unsigned divider
is shown in Fig. 2. In this design, 2k (or k) MSBs of the dividend
(or divisor) are adaptively chosen from the 2n (or n)-bit input using
leading one position detectors (LOPDs) and pruning circuits (here,
k < n), according to the pruning schemes. An exact 2(k+1)/(k+
1) divider is then used to compute the division of the selected
bits. The (k+ 1)-bit quotient is shifted by a shifter for a number
of bits calculated by a subtractor, which results in an (n + 1)-
bit intermediate result. Finally, the n-bit approximate quotient is
obtained by correcting the (n+1)-bit intermediate result using an
error correction circuit. The detailed structure of each circuit in
Fig. 2 is discussed next.

3.2.2 Input Pruning
Fig. 3 shows a straightforward pruning scheme for a 2n-bit
unsigned dividend A = ∑

2n−1
i=0 ai2i = (a2n−1a2n−2 · · ·a1a0)2. To

obtain a 2k-bit dividend, ‘0’s at the bit positions higher than
the most significant ‘1’ are truncated; the redundant LSBs are
pruned if the number of remaining LSBs is larger than 2k.
Similarly, a k-bit number is determined from the n-bit divisor
B = ∑

n−1
i=0 bi2i = (bn−1bn−2 · · ·b1b0)2.

Let the bit positions of the most significant ‘1’, known as the
leading ‘1’ positions, for A and B be lA and lB, respectively. The
input operands of a division can be determined as in Fig. 3 when
lA and lB are larger than or equal to 2k−1 and k−1, respectively.
A different pruning scheme is required for the input operands

LOPD

A B

lA lB

Ap Bp

Qp

2n n

)2(log2 n)(log2 n

2k k

k+1

)1)2(log(2 n

 -bit
Subtractor

)1)2(log(2 n

2(k+1)/(k+1) Divider

LOPD

Pruning
circuit

Pruning
circuit

Q

n

...

Shifter

n+1Qs

Error correction

qsn qsn-1 qsn-2 qs0

Fig. 2. The proposed adaptively approximate divider (AAXD).
LOPD: leading one position detector.

2n-bit binary number

bit position 2n-1 0

0

lA
1

2k-bit

0...
lA-2k

klA
a 2

truncated bits

...
0a

Fig. 3. Pruning scheme for a 2n-bit unsigned number A when
lA ≥ 2k−1 [13].

when lA < 2k−1 or lB < k−1, as shown in Fig. 4. The details of
the pruning schemes are discussed in four scenarios for different
values of lA and lB [8], as summarized as follows.

When lA ≥ 2k − 1 and lB ≥ k − 1, the pruning scheme
in Fig. 3 is used. The pruned dividend is given by
Ap = (1alA−1 · · ·alA−2k+1)2 = 22k−1 + ∑

lA−1
i=lA−2k+1 ai2i−(lA−2k+1),

and the pruned divisor is Bp = (1blB−1 · · ·blB−k+1)2 = 2k−1 +

∑
lB−1
i=lB−k+1 bi2i−(lB−k+1). To avoid overflow for the largest possible

quotient of Ap/Bp, a 2(k+1)/(k+1) divider is used to compute
the division. The 2k-bit pruned dividend is expanded to (2k+2)-
bit by adding two ‘0’s at the most significant two bit positions; a
‘0’ is added to the (k+1)th bit position of the pruned divisor. No
overflow occurs because (001alA−1 · · ·alA−k+2)2 is always smaller
than (01blB−1 · · ·blB−k+1)2.

The inputs A and B are approximated as Ap2lA−2k+1 and
Bp2lB−k+1 after pruning, respectively. Thus, A/B is approximately
given by

A
B
≈

2lA−2k+1Ap

2lB−k+1Bp
= b

Ap

Bp
c2lA−lB−k. (1)

The result of (1) is the quotient obtained by the 2(k+ 1)/(k+ 1)
divider multiplied by 2lA−lB−k. The multiplication is implemented
by left shifting bAp

Bp
c for lA− lB− k bits.

4

n-bit binary number

bit position n-1 0

0 1

k-bit

0...
lB

1Bl
b ...

0b 0 ... 0

appended bits

Fig. 4. Pruning scheme for an n-bit unsigned number B when
lB < k−1.

When lA≥ 2k−1 and lB < k−1, Ap is obtained using the prun-
ing scheme in Fig. 3, and Bp is obtained using the scheme in Fig. 4,
i.e., Ap = (1alA−1 · · ·alA−2k+1)2, and Bp = (1bk−1 · · ·b00 · · ·0)2.
Then, a 2(k+ 1)/(k+ 1) divider is used to compute Ap/Bp. The
approximation of A/B is also given by (1).

Similarly, the pruning schemes in Figs. 4 and 3 are respectively
used to prune A and B when lA < 2k−1 and lB ≥ k−1. The same
approximate division is then given by (1). When the dividend A
is zero, lA is set to zero, which has the same leading one position
as number (00 · · ·01)2. Because AP = (a00 · · ·0)2 (i.e., a0 is kept)
when lA = 0, the quotient is always correct no matter a0 is ‘0’ or
‘1’. When lA < 2k−1 and lB < k−1, both the input operands are
pruned using the scheme in Fig. 4, and an accurate 2n/n division
is performed by using a 2(k+1)/(k+1) divider.

3.2.3 Circuit
As shown in Fig. 2, a leading one position detector (LOPD) is
used to detect the bit position of the most significant ‘1’ in each
input. It is implemented by a priority encoder.

The leading one positions (lA and lB) are then used to deter-
mine the 2k-bit Ap and the k-bit Bp from the 2n-bit dividend and
the n-bit divisor, respectively. The pruning circuits are used to
implement the pruning schemes in Figs. 3 and 4; they select Ap
and Bp starting from the most significant ‘1’. Ap and Bp are then
processed by using an exact 2(k+1)/(k+1) divider. Note that the
structure of the 2(k+1)/(k+1) divider can be different according
to specific application requirements, e.g., an array divider, a
sequential divider or a high-radix divider. Meanwhile, the shifting
direction and number of bits are computed by subtracting the
two leading one positions using a (dlog2(2n)e+1)-bit subtractor.
Subsequently, a shifter is used to shift the (k + 1)-bit output of
the reduced-width divider for |lA − lB − k| bits (left shifting if
lA− lB− k > 0, and right shifting if lA− lB− k < 0), which results
in (n+ 1)-bit intermediate result Qs. Finally, the error correction
circuit uses n OR gates to perform qi = qsi∨qsn, i= 0, 1, · · · , n−1,
where qi and qsi are the ith LSBs of Q and Qs, respectively. This
circuit corrects the erroneous results that are larger than 2n− 1
(when qsn = 1) to 2n− 1 (qsi = 1 for i = 0, 1, · · · , n− 1), which
ensures that an n-bit approximate quotient is obtained.

The most significant circuit of the proposed approximate
divider is the 2(k + 1)/(k + 1) divider, whereas other compo-
nents (LOPD, pruning circuit, subtractor and shifter) are rela-
tively small. Moreover, the subtractor works in parallel with the
2(k+1)/(k+1) divider. Thus, the circuit complexity and critical
path of the approximate divider are close to O((k+ 1)2) when a
2(k+1)/(k+1) array divider is used. This is significantly smaller
compared with that of the exact array divider (O(n2)), especially
for a small k.

3.3 Approximate SQR Circuit
As shown in Fig. 1, an SQR circuit is implemented by shifts and
subtractions. We propose an approximate SQR circuit (AXSR) by

A

lA

Ap

Rp

2n

)2(log2 n

2k

2k-bit
SQR Circuit

LOPD

Shifter

n

R

Pruning
circuit

Fig. 5. The proposed adaptively approximate SQR circuit (AASR).

replacing the exact subtractors in the lower k bit positions with the
approximate subtractor cells in [11]. The adaptive approximation
strategy is also applicable to the design of SQR circuit (AASR),
as shown in Fig. 5.

Using the same pruning schemes as in Figs. 3 and 4, the
radicand A of a 2n-bit SQR circuit can be approximated by a
scaled 2k-bit number Ap, i.e.,

A≈ Ap2lA−2k+1, (2)

where k < n, and lA indicates the leading one position of A. Thus,
the SQR of A is approximately generated by a 2k-bit SQR circuit
due to √

A≈ b
√

Apc2
lA−2k+1

2 . (3)

As lA−2k+1
2 is a fractional number when lA−2k+1 is odd, 2

lA−2k+1
2

cannot be computed by a shift operation. To use shifting, lA−2k+
1 must be an even number. Therefore, lA is limited to odd numbers
in this design. This is ensured by setting an even lA to lA + 1. In
the circuit design, it is implemented by setting the LSB of lA to
‘1’ (not shown in Fig. 5). Note that the 2k-bit SQR circuit can be
any existing combinational or sequential SQR circuit.

As shown in Fig. 5, no adder/subtractor is required in the
approximate SQR circuit. Hence, the hardware overhead of the
auxiliary circuits is lower than that in the approximate divider.
Moreover, (n2 + n− k2 − k) subtractor cells are saved in the
approximate SQR circuit, a larger saving by (n+k) cells compared
to the approximate divider with a saving of (n2− (k+ 1)2) cells.
Therefore, the proposed adaptive approximation strategy is more
efficient for an SQR circuit design.

4 ERROR ANALYSIS

4.1 Approximate Divider

The error of the approximate divider is measured by comparing
the approximate results with the accurate quotient in integer as the
divider is designed for unsigned integers. As the quotient of the
approximate unsigned divider is given by (1), the incurred error is

E = b
Ap

Bp
c2lA−lB−k−bA

B
c, (4)

5

where the dividend A = Ap2lA−2k+1 + AL, and the divisor B =

Bp2lB−k+1 +BL. AL = ∑
lA−2k
i=0 ai2i and BL = ∑

lB−k
i=0 bi2i denote the

truncated LSBs in A and B, respectively. AL = 0 when lA < 2k,
and BL = 0 when lB < k. The truncated LSBs represented by
AL and BL determine the error E to be positive or negative. To
evaluate the proposed design, the upper bound of the ED (i.e.,
the absolute value for the difference between the approximate and
accurate results) is analyzed for the worst case scenario. To this
end, the positive and negative errors are respectively discussed in
the following.

Expanding (4) and neglecting the floor operation, the error can
be simplified to

Enr =
ApBL2lA−lB−k−ALBp

(Bp2lB−k+1 +BL)Bp
. (5)

As Ap, Bp, AL and BL are positive, (5) indicates that one condition
for generating the largest positive error is AL = (00 · · ·0)2 = 0.
Then, (5) becomes

Enr =
Ap2lA−lB−k

(Bp/BL2lB−k+1 +1)Bp
. (6)

Thus, the largest positive error is produced when BL takes the
largest possible value (i.e., BL = (11 · · ·1)2 = 2lB−k+1− 1). The
largest positive error is then given by

Epmax = b
Ap

Bp
c2lA−lB−k−b

Ap2lA−2k+1

Bp2lB−k+1 +2lB−k+1−1
c

= b
Ap

Bp
c2lA−lB−k−b

Ap
Bp

2lA−lB−k

1+ 1−2k−lB−1

Bp

c
. (7)

As bAp
Bp
c ≤ Ap

Bp
, bAp

Bp
c = Ap

Bp
ensures the positive error to be the

largest. Let bAp
Bp
c = Ap

Bp
= Cq (Cq is a positive integer), substitute

Ap
Bp

and bAp
Bp
c by Cq, (7) becomes

Epmax =Cq2lA−lB−k−b
Cq2lA−lB−k

1+ 1−2k−lB−1

Bp

c

≤ dCq2lA−lB−k−
Cq2lA−lB−k

1+ 1−2k−lB−1

Bp

e

= d
Cq2lA−lB−k

1+ Bp

1−2k−lB−1

e.

(8)

As per (1), Cq2lA−lB−k is the output of the approximate divider;
thus, Cq2lA−lB−k ≤ 2n−1 that is restricted by the error correction
unit (discussed in Section 3.2). To reach the maximal positive
error, Cq2lA−lB−k and lB should be their largest possible values,
and Bp should be the smallest. Therefore, Cq2lA−lB−k = 2n − 1,
lB = n− 1 and Bp = (10 · · ·0)2 = 2k−1. The upper bound of the
positive error for the approximate divider is given by

Epmax ≤ d
(2n−1)(2n−k−1)

2n−1 +2n−k−1
e. (9)

Also, the smallest negative error is determined to show the
maximal negative deviation of the approximate result. As per (5),
the smallest negative error occurs when BL = (00 · · ·0)2 = 0 and
AL = (11 · · ·1)2 = 2lA−2k+1−1. Then, (4) becomes

Enmin = b
Ap

Bp
c2lA−lB−k−b

Ap2lA−2k+1 +2lA−2k+1−1
Bp2lB−k+1 c. (10)

The absolute value of Enmin is given by

|Enmin|= b
Ap

Bp
2lA−lB−k +

2lA−lB−k

Bp
− 2k−lB−1

Bp
c−b

Ap

Bp
c2lA−lB−k.

(11)
Assume bAp

Bp
c = Cq (Cq is a positive integer), then Ap must be in

the range of [BpCq,BpCq +Bp− 1]. Thus, the largest difference
between Ap

Bp
and bAp

Bp
c occurs when Ap = BpCq +Bp− 1. Then,

(11) becomes

|Enmin|= b2lA−lB−k− 2k−lB−1

Bp
c. (12)

To reach the maximal value for |Enmin|, lA− lB must be n (because
lA− lB ≤ n), and 2k−lB−1

Bp
must be the smallest (i.e., Bp = 2k−1 and

lB = n− 1 because Bp ≤ 2k− 1 and lB ≤ n− 1). Thus, 2k−lB−1

Bp
=

1
2n−2n−k < 1 (for n > k), and we obtain

|Enmin|= 2n−k−1. (13)

As the right hand side of (9) is always larger than 2n−k− 1,
the ED of the proposed approximate unsigned divider is s-
maller than or equal to d (2

n−1)(2n−k−1)
2n−1+2n−k−1 e. As d (2

n−1)(2n−k−1)
2n−1+2n−k−1 e =

d (2
n−k−1+2−n−2−k)

2−1+2−k−2−n e ≤ 2n−k+1−2, a looser upper bound of the ED
for the approximate divider is given by

EDLUB = 2n−k+1−2, (14)

where the larger n and k are, the closer (14) to (9).

4.2 Approximate SQR Circuit
As the approximate SQR of the radicand A is computed by (3), the
error of the approximate 2n-bit SQR circuit using a 2k-bit exact
SQR circuit is given by

E = b
√

Apc2
lA−2k+1

2 −b
√

Ac

= b
√

Apc2
lA−2k+1

2 −b
√

Ap2lA−2k+1 +ALc
, (15)

where Ap is the 2k-bit pruned radicand, and AL = ∑
lA−2k
i=0 ai2i

denotes the truncated LSBs. (15) shows that the error of the
SQR circuit is always smaller than or equal to zero because
AL≥ 0. The smallest negative error occurs when AL = (11 · · ·1)2 =
2lA−2k+1 − 1. Assuming a positive integer Rp = b

√
Apc, then

R2
p ≤ Ap ≤ (Rp + 1)2− 1. Thus, the 2k-bit SQR circuit generates

the largest ED when Ap = (Rp +1)2−1. Then, the largest ED of
the proposed SQR circuit is given by

EDUB = b
√
[(Rp +1)2−1]2lA−2k+1 +2lA−2k+1−1c

−Rp2
lA−2k+1

2

= b
√
(Rp +1)22lA−2k+1−1c−Rp2

lA−2k+1
2

= (Rp +1)2
lA−2k+1

2 −1−Rp2
lA−2k+1

2

= 2
lA−2k+1

2 −1

. (16)

As the largest possible value of lA is 2n−1, the EDUB is given
by

EDUB = 2n−k−1. (17)

This result implies that the maximum ED occurs when the n− k
LSBs in the accurate SQR are all ‘1’s but they are ignored due
to the use of a 2k-bit SQR circuit and resulting k-bit approximate
result.

6

0 2 4 6 8 10 12
Parameter

50

60

70

80

90

E
R

 (
%

)

AXDr1
AXDr2
AXDr3
SEERAD
DAXD
AAXD

(a) ER

0 2 4 6 8 10 12
Parameter

0.4

0.8

1.6

3.2

6.4

N
M

E
D

 (
%

)

AXDr1
AXDr2
AXDr3
SEERAD
DAXD
AAXD

(b) NMED

0 2 4 6 8 10 12
Parameter

1

4

8

16

M
R

E
D

 (
%

)

AXDr1
AXDr2
AXDr3
SEERAD
DAXD
AAXD

(c) MRED

0 2 4 6 8 10 12
Parameter

10

20

40

80

160

320

E
D

m
ax

AXDr1
AXDr2
AXDr3
SEERAD
DAXD
AAXD
AAXD (upper bound)
AAXD (looser upper bound)

(d) EDmax

Fig. 6. Error characteristics of approximate 16/8 dividers. Note:
The parameter value indicates the replacement depth and the
accuracy level for AXDrs and SEERAD, respectively. It is the
bit width of the pruned dividend in DAXD and AAXD.

5 SIMULATION RESULTS

To assess the error and circuit characteristics, the proposed ap-
proximate divider and SQR circuits are implemented in MATLAB
and VHDL. The other approximate dividers, AXDr, DAXD and
SEERAD, are also considered for comparison. Note that the error
and circuit characteristics of the considered dividers and SQR
circuits are measured for a commonly used width (2n = 16) in
the simulation. However, n can take a larger value as required by
the application.

5.1 Error Characteristics
The error rate (ER), normalized mean error distance (NMED),
mean relative error distance (MRED) and the maximum error
distance (EDmax) are considered to evaluate the accuracy of
16/8 approximate dividers and 16-bit approximate SQR circuits.
The NMED is defined as the mean value of the error distances
normalized by the maximum possible accurate output. The MRED
is the mean value of the relative error distance that is the ratio
between the ED and the accurate output.

5.1.1 Approximate Divider
All valid combinations in the range of [0,65535] and (0,255] are
considered as the input dividends and divisors. They are carefully
selected to meet the no overflow condition of an accurate 16/8
divider. The simulation results are shown in Fig. 6, in which
AXDr1, AXDr2, and AXDr3 are the approximate restoring array
dividers with triangle replacement using approximate subtractor 1,
2, and 3, respectively [12].

Fig. 6 shows that the proposed AAXD has a similar ER as
DAXD. The NMED and MRED of AAXD are in the medium
domain among the considered designs. AAXD has the smallest
EDmax that is very close to the upper bound analyzed in Section
4.1. The looser upper bound of ED for AAXD is closer to the

TABLE 1. Error characteristics of the approximate 16-bit SQR
circuits.

SQR Parameter ER
(%)

NMED
(%)

MRED
(%)

EDmax
(simulation)

EDUB
(analysis)

AXSR3 14 74.52 3.17 5.78 47 –
AXSR3 13 71.77 1.49 2.89 24 –
AXSR3 12 66.54 1.03 2.29 24 –
AXSR3 11 57.34 0.49 1.13 12 –
AASR 6 95.71 5.33 7.98 31 31
AASR 8 91.14 2.53 3.80 15 15
AASR 10 82.30 1.16 1.72 7 7
AASR 12 65.82 0.48 0.69 3 3

Note: The parameter value for AXSR3 indicates the replacement
depth. It is the bit-width of the pruned radicand in AASR.

EDmax for a larger parameter. For the SEERAD, only SEERAD-3
(for accuracy level 3) and SEERAD-4 (for accuracy level 4) have
an accuracy that is comparable with the proposed design. AXDr1
and AXDr3 show very small values of ER, NMED and MRED;
however, their circuit measurements are relatively high, as shown
next. The accuracy of DAXD is lower than other designs due to
the possible overflow.

5.1.2 Approximate SQR Circuit
Among the approximate dividers using approximate subtractors,
AXDr3 is the most accurate with the smallest ER, NMED and
MRED (Fig. 6). Also, the circuit of AXDr3 is the smallest
among AXDrs (shown later). This indicates that the approximate
subtractor cell 3 in [12] is very efficient in the divider design.
Thus, the approximate subtractor cell 3 is used in the approximate
SQR circuit design, which is denoted as AXSR3.

Similarly, all unsigned numbers in [0,65535] are considered as
inputs to measure the accuracy of the adaptively approximate 16-
bit SQR circuit and AXSR3. The simulation results in Table 1
show that AXSR3 has a smaller ER than AASR, whereas its
EDmax is much larger. The EDmax of AASR approximately de-
creases by half with a 2-bit increase in the bit width of the pruned
radicand, which is consistent with the error analysis result in (17).
For using a 12-bit SQR circuit, the small EDmax indicates that
the computed results are very close to the accurate ones. AXSR3-
11 has a similar NMED as AASR-12, but its MRED and EDmax
are much larger. Compared to the proposed approximate divider,
AASR has smaller values of EDmax but larger ERs and NMEDs,
for the same value of k.

5.2 Circuit Characteristics
5.2.1 Approximate Divider
To obtain the circuit measurements, the approximate 16/8 dividers
and the exact unsigned restoring array divider (EXDr) are imple-
mented in VHDL and synthesized in ST’s 28 nm CMOS process
using the Synopsys Design Compiler with the same voltage, tem-
perature and frequency. The supply voltage is 1 V , the simulation
temperature is 25◦C, and the frequency used for power estimation
is 200 MHz. The critical path delay and area are reported by the
Synopsys Design Compiler. The power dissipation is estimated
by using the PrimeTime-PX tool for 5 million random input
combinations. For ease of comparison, the same array structure
and subtractor cells are used in the accurate part of AXDrs, DAXD
and AAXD. To be consistent with the other designs, AXDr1,
AXDr2 and AXDr3 are implemented at the gate level rather than

7

0 2 4 6 8 10 12
Parameter

1.5

2

2.5

3

3.5

4

4.5

5

D
el

ay
 (

ns
)

EXDr
AXDr1
AXDr2
AXDr3
SEERAD
DAXD
AAXD

(a) Delay

0 2 4 6 8 10 12
Parameter

200

250

300

350

400

450

A
re

a
(

m
2
)

EXDr
AXDr1
AXDr2
AXDr3
SEERAD
DAXD
AAXD

(b) Area

0 2 4 6 8 10 12 14 16
Parameter

60

80

100

120

140

160

180

Po
w

er
 (

W
)

EXDr
AXDr1
AXDr2
AXDr3
SEERAD
DAXD
AAXD

(c) Power

0 5 10 15
Parameter

100

200

400

800

PD
P

(f
J)

200

400

600

800

1000

1200

1400

A
D

P
(n

s
m

2)

EXDr
AXDr1
AXDr2
AXDr3
SEERAD
DAXD
AAXD

(d) PDP (in blue) and ADP (in red)

Fig. 7. Circuit measurements of the 16/8 dividers. Note: EXDr
refers to the exact array divider, and the X-axis is not applicable
for it.

at the transistor level in [12]. As additional figures of merit, the
power-delay product (PDP) and area-delay product (ADP) are
calculated from the measured values. The results are shown in
Fig. 7.

With a 6-bit pruned dividend, the proposed 16/8 AAXD
achieves reductions in delay, area and power dissipation by
60.51%, 38.63% and 65.88% respectively, compared to EXDr.
For the AAXD using a 12/6 exact divider (with a 10-bit pruned
divided), it is 26.54% faster and consumes 34.13% less power than
EXDr, albeit with a slightly larger area. As a result, the PDP and
ADP of the proposed design are decreased by 51.61%-86.53%,
and 24.18%-75.76%, respectively.

Among the approximate designs, SEERAD is the fastest;
however, the power dissipation and area are relatively large for
SEERAD-3 and SEERAD-4. With the lowest accuracy, DAXD
have slightly higher values of all circuit measurements than
AAXD, using a same sized accurate divider. Compared with
AXDrs, AAXD outperforms AXDr1 and AXDr2 in delay, area
and power dissipation. Also, it shows a shorter delay and a similar
power dissipation and therefore, smaller values of PDP and ADP
(except for AAXD-10) compared with AXDr3.

5.2.2 Approximate SQR Circuit
Other than the array structure shown in Fig. 1(b), a small SQR
circuit can be efficiently implemented by LUTs. In a LUT-based
circuit, the SQR of an input is obtained by reading a LUT that
stores the precomputed SQR results. Thus, the critical path delay
is very small. For a 2n-bit integer SQR circuit, the size of the
required LUT is 22n, where each input corresponds to a LUT
cell. The size of the LUT will be very large for a large n; thus,
interpolation is usually used for a large SQR circuit to reduce the
size of the LUT. As the proposed approximation scheme uses a
reduced-width exact SQR circuit (2k-bit) for a 2n-bit SQR, the
hardware of the LUT-based design is significantly reduced. In
our simulation, both the array and LUT-based SQR circuits are

TABLE 2. Circuit measurements of the exact and approximate
16-bit SQR circuits.

SQR Parameter Delay
(ns)

Area
(µm2)

Power
(µW)

PDP
(f J)

ADP
(ns ·µm2)

ESRr_A – 4.32 222.4 93.82 405.30 961.0
AXSR3 14 4.04 168.3 53.31 215.37 679.8
AXSR3 13 4.07 175.4 58.57 238.38 714.0
AXSR3 12 4.09 182.8 62.58 255.95 747.6
AXSR3 11 4.13 189.5 67.34 278.11 782.5

AASR_A 6 1.10 76.5 19.38 21.32 84.2
AASR_A 8 1.70 114.7 31.72 53.92 195.0
AASR_A 10 2.43 154.4 46.55 113.12 375.2
AASR_A 12 3.34 200.4 64.97 217.00 669.4
ESRr_T – 0.58 613.6 189.0 109.62 355.9
AASR_T 6 0.67 60.38 13.52 9.06 40.46
AASR_T 8 0.81 87.31 20.79 16.84 70.72
AASR_T 10 1.01 123.2 32.01 32.33 124.4
AASR_T 12 1.31 217.4 69.59 91.16 284.8

considered for comparison. Using the same synthesis tool and
technology library as for the dividers, the 16-bit exact restoring
array and LUT-based SQR circuits (referred to as ESRr_A and
ESRr_T, respectively), AXSR3, AASR_A (for which the 2k-bit
SQR circuit is implemented by an array structure) and AASR_T
(for which the 2k-bit SQR circuit is based on LUT without using
interpolation) are synthesized at a frequency of 200 MHz.

Table 2 reports the circuit measurements of the considered
designs. Among the array-based designs, AASR_A has a higher
performance and consumes significantly smaller area and power
than the accurate design. Specifically, AASR_A with a 6-bit
pruned radicand is 74.54% faster and saves 65.60% in area and
79.34% in power compared with the accurate design. Accordingly,
its improvements in PDP and ADP are 94.74% and 91.24%,
respectively. For the design using a 12-bit exact array SQR circuit,
it achieves 46.46% reduction in PDP and 30.34% reduction in
ADP. Compared to the approximate divider, the approximate
SQR circuit achieves more significant improvements in power
dissipation and area because no additional subtractor is used.
AXSR3 is slightly faster than ESRr_A. AXSR3-14 saves up to
24% in area and 47% in power dissipation compared to ESRr_A.
AASR_A outperforms AXSR3 in all the circuit measurements
except for 2k = 12.

Compared with ESRr_A, ESRr_T is significantly faster, but
it consumes 2.8× area and 2× power. Although AASR_T has a
larger delay than ESRr_T due to the auxiliary circuits, AASR_T
achieves 63% to 92% reductions in area and power dissipation
when 2k varies from 12 to 6. Therefore, the savings in PDP and
ADP are 17%-92% and 20%-89%, respectively. For the same k,
AASR_T shows smaller values of critical path delay, area and
power dissipation than AASR_A when 2k is less than 12. As
a result, the AASR_T is more efficient than AASR_A at small
values of k.

5.3 Discussion

5.3.1 Combinational Designs
For a further comparison of approximate dividers and SQR cir-
cuits, the error and circuit measures are jointly considered. The
metrics MRED and PDP are selected as representatives to show
the error and circuit characteristics. As shown in Fig. 8(a), the
proposed AAXD has a much smaller value of MRED than the
other approximate designs when a similar PDP is considered.

8

50 100 200 400

PDP (fJ)

1

2

4

8

16
M

R
E

D
 (

%
)

AXDr1
AXDr2
AXDr3
SEERAD
DAXD
AAXD

(a)

10 20 40 80 160

PDP (fJ)

1

2

4

8

M
R

E
D

 (
%

)

AXSR3
AASR_A
AASR_T

(b)

Fig. 8. A comparison of (a) approximate dividers and (b) SQR
circuits in PDP and MRED. The replacement depths of AXDr1,
AXDr2 and AXDr3 are from 8 to 11 from right to left. The
accuracy levels of SEERAD are from 1 to 4 from left to right.
The pruned dividend width is from 8 to 12 for DAXD, and it is
from 6 to 10 for AAXD from left to right. The replacement depth
for AXSR3 is from 11 to 14 from right to left. The pruned radicand
widths for AASR_A and AASR_T are from 6 to 12 from left to
right.

AXDr3 also shows a good tradeoff in MRED and PDP with a
higher accuracy, however its delay is very long. Although some
configurations of AXDr1 and AXDr2 show small MREDs, their
PDPs are generally high. On the contrary, DAXD has a very low
PDP but a significantly large MRED. The MRED and PDP are
moderate for SEERAD, and they vary with the accuracy level.
Overall, the proposed AAXD shows the best tradeoff among the
considered approximate dividers.

As for the approximate SQR circuits (Fig. 8(b)), AASR_T is
the most efficient design in terms of MRED and PDP. It requires a
significantly lower PDP than AASR_A and AXSR3 for achieving
a similar MRED. For the array-based designs, AASR_A is more
efficient than AASR3.

5.3.2 Sequential Designs
As shown in Figs. 2 and 5, the main module of the proposed ap-
proximate divider/SQR circuit is the reduced-width divider/SQR
circuit that can be implemented by an existing structure. Thus, an
approximate design is built by adding the auxiliary circuits to a
traditional divider/SQR circuit. In this section, the sequential di-
vider and SQR circuits are further assessed; they are implemented

TABLE 3. Circuit measurements of 16/8 sequential dividers and
16-bit sequential SQR circuits.

Circuit Design 2k Delay
(ns)

Area
(µm2)

Power
(µW) N EPO

(pJ /op)

TPA
(ops

/(s ·µm2)

Divider

EXDr_S – 1.57 543.8 94.1 10 4.71 11,713
AAXD_S 6 1.57 521.4 95.66 6 2.87 33,932
AAXD_S 8 1.57 574.5 104.5 7 3.66 22,628
AAXD_S 10 1.57 625.9 114.2 8 4.57 15,901

SQR

ESRr_S – 1.57 577.4 101.7 10 5.09 11,031
AASR_S 6 1.57 424.5 63.79 5 1.59 60,021
AASR_S 8 1.57 476.9 72.66 6 2.18 37,102
AASR_S 10 1.57 529.6 80.55 7 2.82 24,545
AASR_S 12 1.57 579.5 87.85 8 3.51 17,173

by using a multibit subtractor, a shifter and a control unit based
on the pencil-and-paper algorithms introduced in Section 2. The
synthesis results are shown in Table 3, in which the same tools,
technology and clock frequency (200 MHz) are used as for the
dividers in Section 5.2.

For an exact 2n/n divider (or a 2n-bit SQR circuit), the
number of clock cycles required to complete one division (or SQR)
operation is given by N = n+2, i.e., one cycle for preparation, n
cycles for shifted subtraction, and one cycle for outputting the
result. As an exact 2(k + 1)/(k + 1) divider (or a 2k-bit SQR
circuit) is used in an approximate design, the values of N for the
approximate designs are reduced linearly with k. This indicates
that, in the sequential design, the main benefit for the approximate
designs is that fewer iterations are required to complete a division
(or SQR) than the exact designs.

Instead of PDP and ADP, the energy per operation (EPO)
and throughput per area (TPA) are considered to evaluate the
sequential designs. The EPO is defined as the energy consumed
to complete one operation, and the TPA is the number of oper-
ations that are completed per unit time per unit area. They are
respectively given by

EPO = N×T ×P, (18)

and
TPA = 1/(N×D×S), (19)

where T and N are the clock period and the required number
of clock cycles to complete one operation, P is the total power
dissipation including the dynamic and leakage powers, D is the
critical path delay, and S is the area of the circuit.

In Table 3, EXDr_S and ESRr_S denote the exact sequential
16/8 divider and 16-bit SQR circuit, respectively. AAXD_S and
AASR_S are the proposed approximate 16/8 divider and 16-
bit SQR circuit, in which the reduced-width divider and SQR
circuit are sequentially implemented. This table shows that the
approximation does not change the critical path delay of the
sequential 16/8 divider or 16-bit SQR circuit. This occurs be-
cause the approximation strategy only decreases the sizes of the
subtractor and shifter in the sequential divider and SQR circuit;
they are relatively small compared to the control unit and the
auxiliary circuits used for the approximation. For the same reason,
AAXD_S incurs a larger area and power dissipation than EXDr_S;
the improvements in area and power dissipation for AASR_S are
not as significant as the combinational designs. As the values of N
of AAXD_S and AASR_S are reduced linearly with k, AAXD_S-
6 achieves a reduction in EPO by 39.07% with 1.9× increase in

9

TABLE 4. PSNRs of change detection results (dB).

Image AXDr1
-10

AXDr2
-10

AXDr3
-9

SEERAD
-4

DAXD
-12

AAXD
-10

tools 32.14 18.39 39.27 36.61 23.56 40.16
canoe 31.66 24.07 36.23 39.20 23.42 45.03
fountain 33.32 26.95 39.49 41.60 24.59 45.79
pedestrians 35.59 25.73 40.12 43.50 24.76 47.07
office 31.19 23.13 33.29 39.29 19.60 45.54
average 32.78 23.65 37.68 40.00 23.18 44.71

TPA compared with EXDr_S. The improvements in EPO and TPA
for AASR_S-6 are 68.76% and 4.4× compared to ESRr_S.

6 IMAGE PROCESSING APPLICATION

As a common application of dividers, change detection is con-
sidered to further assess the accuracy of approximate dividers.
Likewise, an envelope detector is implemented by the proposed
approximate SQR circuits. Finally, image reconstruction using
both dividers and SQR circuits are used to evaluate the efficiency
of these approximate designs.

6.1 Change Detection
Change detection in image processing can be implemented by
computing the ratio of two pixel values using a divider. The
designs with similar values of PDP (about 300 f J) are selected
to implement change detection, including AXDr3-9, DAXD-12
and AAXD-10 (see Fig. 8). For the other designs, configurations
with PDPs close to 300 f J are selected, including AXDr1-10,
AXDr2-10 and SEERAD-4. Table 4 shows the peak signal-to-
noise ratios (PSNRs) of five output images and the average
PSNRs. It shows that AAXD-10 achieves the highest PSNRs,
followed by SEERAD-4 and AXDr3. The PSNRs for AXDr2-
10 and DAXD-12 are significantly lower. AXDr1 has a moderate
PSNR.

6.2 Envelope Detection in Ultrasound Imaging
As a medical tool, ultrasound imaging has widely been used
in diagnostics and therapeutics; it uses high-frequency waves to
produce visual images of the internal body tissue [17]. In an
ultrasound imaging system, a transducer consisting of an array
of small piezoelectric elements generates and transmits a pulse
along a scan line. The echoes that are generated by the reflection
or scattering of the pulses from tissues are received by the same
transducer. As each echo carries the information about the relative
position of a point at the tissue boundaries, a visual image of echo-
producing features is obtained for a field of view when a large
number of pulses are used. The B-mode (or brightness mode) is
the most well-known imaging method to generate visual images,
in which the amplitude of the echo envelope is mapped to the
brightness of the image pixel.

Fig. 9 shows a block diagram of a B-mode ultrasound imaging
system [18]. Specifically, the received echo signals are amplified,
digitized and combined by a beamformer, resulting in radiofre-
quency (RF) signals. As echoes from deeper targets attenuated
more than those from the similar targets close to the transducer,
time-gain compensation (TGC) is performed to compensate the
attenuation of farther echoes. This ensures that the brightness
of a B-mode image relates only to the reflection effect of each
target regardless of its depth. The envelopes of the compensated

(a) Artificial fetus map

-40 -20 0 20 40

Lateral distance [mm]

20

30

40

50

60

70

80

A
xi

al
 d

is
ta

nc
e

[m
m

]

(b) Accurate output

-40 -20 0 20 40

Lateral distance [mm]

20

30

40

50

60

70

80

A
xi

al
 d

is
ta

nc
e

[m
m

]

(c) AXSR3-16

-40 -20 0 20 40

Lateral distance [mm]

20

30

40

50

60

70

80

A
xi

al
 d

is
ta

nc
e

[m
m

]

(d) AXSR3-14

-40 -20 0 20 40

Lateral distance [mm]

20

30

40

50

60

70

80

A
xi

al
 d

is
ta

nc
e

[m
m

]

(e) AASR-2

-40 -20 0 20 40

Lateral distance [mm]

20

30

40

50

60

70

80

A
xi

al
 d

is
ta

nc
e

[m
m

]

(f) AASR-4

Fig. 10. Ultrasound imaging results by different SQR circuits.

TABLE 5. PSNRs of the ultrasound imaging results (dB).

Image AXSR3
-16

AXSR3
-14

AXSR3
-12

AASR
-2

AASR
-4

AASR
-6

fetus 34.27 34.26 34.26 27.91 37.36 39.60
kidney 32.69 32.69 32.71 28.04 35.49 37.88
liver 34.06 36.61 36.67 25.22 31.53 37.00
average 33.89 35.19 35.23 27.14 34.95 38.37

RF signals are then detected by the demodulation and SQR
operations. The amplitude obtained by the envelope detection
shows the strength of the reflection at each target. Finally, the scan
conversion is performed to map the compressed amplitude (by the
logarithmic compression) to its corresponding 2-D position, which
results in a gray-scale image.

In this work, the approximate SQR circuits are used to imple-
ment the SQR operation in the envelope detection of ultrasound
imaging, while the other arithmetic operations remain accurate.
In the simulation, the Field II simulation toolbox [19], [20] is
utilized to mimic an ultrasound imaging system (i.e., generating
the phantom data, RF signals and demodulated signals for fetus,
kidney and liver). The sum of squared values I2(t)+Q2(t) are then
quantized as 16-bit integers that are square rooted by approximate
SQR circuits to calculate the envelope of the demodulated signals.
8-bit gray-scale images are finally obtained after the logarithmic
compression and scan conversion. Fig. 10(b-f) show the imaging
results for the artificial fetus imaged in Fig. 10(a) using the
accurate and approximate 16-bit SQR circuits. The PSNRs of the
output images and the average PSNRs over the three outputs are
listed in Table 5. It shows that AASR-4 performs similarly as
AXSR-14 in envelope detection; however, the PDP of AXSR-14
is more than 10× higher than that of AASR-4 (estimated from
Table 2). The PSNRs for the images obtained by AASR-6 are
generally higher than those processed by other approximate SQR
circuits. Moreover, the PSNR increases more significantly for the
image processed by the AASR than that by the AXSR3 when
increasing the accuracy of the circuit.

6.3 QR Decomposition in Image Reconstruction
Matrix inversion is a useful operation in many applications, such
as the multi-input multi-output receiver [21], computer graphics
[22] and solving the linear least square problems [23]. To lower
the computational complexity and latency, the inverse of a matrix

10

Fig. 9. The block diagram of a B-mode ultrasound imaging system. ADC: analog-to-digital converter; TGC: time-gain compensation;
LPF: low-pass filter.

is usually obtained by using matrix decomposition, e.g., QR
decomposition (QRD) [24], LU decomposition [25] and Cholesky
decomposition [26]. Due to the ease of implementation and
parallelization, QRD is considered here as an application to assess
the accuracy of both the proposed approximate divider and SQR
circuits. In QRD, a matrix C is decomposed into matrices Q and
R (i.e., C = QR), where Q is an orthogonal matrix and R is
an upper triangular matrix. Then, the inverse of C is given by
C−1 = R−1QT , where R−1 can be easily obtained since it is an
upper triangular matrix.

A popular algorithm to obtain a stable and accurate QRD result
is the modified Gram-Schmidt algorithm [21]. Let the original
n×n matrix C, decomposed matrices Q and R be C = [c1, · · · ,cn],
Q = [q1, · · · ,qn] and R = [r1, · · · ,rn], where ci, qi and ri (i =
1, · · · ,n) are the column vectors in C, Q and R, respectively. Then,
Q and R are computed by using Algorithm 1 [21], where r ji is the
element in row j and column i in R, 〈qj,ei〉 is the inner product of
vectors qj and ei, and ‖ei‖2 =

√
∑

n
j=1 e2

ji is the norm of the vector

ei (e ji is the jth element in ei). As division and SQR are more
complex and time consuming than addition and multiplication,
they are the performance bottlenecks for the algorithm.

Algorithm 1 Modified Gram-Schmidt Algorithm [21]

Input: ci - the column vector in C.
Output: qi - the column vector in Q.

r ji - the element in row j and column i in R.
1: for i = 1 to n do
2: ei = ci
3: for j = 1 to i−1 do
4: r ji = 〈qj,ei〉
5: ei = ei− r jiqj
6: end for
7: qi =

ei
‖ei‖2

8: rii = ‖ei‖2
9: end for

Hence, approximate dividers and SQR circuits are applied in
the QRD to lower the hardware consumption for image reconstruc-
tion. Specifically, images are compressed in the frequency domain
using compressive sensing techniques; the Orthogonal Matching
Pursuit (OMP) algorithm is then used to reconstruct the images
[27]. To speed up the reconstruction, QRD is utilized for solving
the least square problem in OMP [28]. Due to the wide range of
the division input in Algorithm 1, 32/16 unsigned dividers and
32-bit SQR circuits are used for computing qi and rii. For signed
division, the absolute quotient is calculated by an unsigned divider,
and an XOR gate is used to obtain the sign.

To compare the accuracy, the approximate dividers and SQR
circuits with different configurations are tested. For the AXDrs,
the two more efficient designs, AXDr1 and AXDr3, are considered
(see Fig. 8). Three images (lena, foreman and boats), each with
256× 256 pixels, are simulated for the image compression and
reconstruction. The average PSNRs of the reconstructed images
are shown in Table 6 for the combined use of approximate divider
and SQR circuits.

The accuracy of approximate dividers and SQR circuits varies
with the parameter used in the approximation schemes. In AXDr1,
AXDr2, AXDr3 and ASR3, the parameter is the replacement
depth of the approximate subtractors. The parameter for DAXD
and AAXD is the width of the pruned dividend, whereas it is
the width of the pruned radicand in AASR. For SEERAD, the
parameter indicates the accuracy level. Therefore, a threshold
parameter kt is defined to indicate that the reconstructed images
using the divider or SQR circuit with kt have a similar quality as
the accurate results and that the quality of the reconstructed image
does not significantly change when the accuracy of the divider or
SQR circuit is improved by increasing (or decreasing for AXDr1,
AXDr3 and AXSR3) the parameter value. The simulation results
show that these threshold values are 10, 10, 22, 14 and 6 for
AXDr1, AXDr3, AAXD, AXSR3 and AASR, respectively. For
SEERAD and DAXD, such a threshold value is not found due to
their low accuracy.

Table 6 show that by using the approximate dividers and
SQR circuits with their respective threshold parameter values the
reconstructed images are as good as the accurate result, whereas
the quality of the images reconstructed by using SEERAD and
DAXD is very low. It is worth noting that the threshold parameter
value of the proposed SQR circuit AASR is much lower than that
of the proposed divider AAXD. It indicates that the SQR circuit in
this application can tolerate more errors than the divider. However,
the threshold parameter value of AXSR3 is not much higher than
those of AXDr1 and AXDr3. It occurs because the relative error
of AXSR3 is very large when the inputs are very small due to
its approximation structure (i.e., k LSBs are approximated for
AXSR3-k).

To compare the hardware overhead, the accurate and approxi-
mate 32/16 dividers and 32-bit SQR circuits with the identified
threshold parameters are implemented in VHDL. Their circuit
measurements are then obtained by using the same tools and
technique as those used for evaluating the 16/8 dividers. As
the critical path delay of the accurate array-based 32/16 divider
is close to 20 ns, the clock frequency for power estimation
is 50 MHz. The synthesis results for the combinational and
sequential implementations are shown in Tables 7 and 8, respec-
tively. Compared to the accurate implementations, the proposed

11

TABLE 6. Average PSNRs of three reconstructed images using
different approximate dividers and SQR circuits (dB).

Design Accurate AXSR3-16 AXSR3-14 AASR-4 AASR-6

Accurate 27.29 27.29 27.29 27.29 27.29
AXDr1-12 23.35 11.50 21.83 25.02 27.29
AXDr1-10 27.29 11.30 27.29 25.05 27.29
AXDr3-12 25.36 11.29 24.15 25.73 26.96
AXDr3-10 27.29 11.20 27.29 25.39 27.29
SEERAD-3 15.26 15.26 15.26 15.26 15.26
SEERAD-4 12.49 12.49 12.49 12.49 12.49
DAXD-26 10.27 10.21 10.21 10.24 10.25
DAXD-28 10.21 10.26 10.19 10.26 10.25
AAXD-18 25.92 9.47 25.16 25.61 24.73
AAXD-20 27.29 9.53 27.29 25.66 27.29

TABLE 7. Circuit measurements of the combinational 32/16
dividers and 32-bit SQR circuits.

Circuit Design Delay
(ns)

Area
(µm2)

Power
(µW)

PDP
(f J)

ADP
(ns ·µm2)

Divider

EXDr 18.49 1,218.0 136.80 2,529.43 22,520.1
AXDr1-10 18.03 1,212.1 132.80 2,394.38 21,853.9
AXDr3-10 17.88 1,142.9 118.30 2,115.20 20,434.9
AAXD-20 10.16 966.1 67.94 690.27 9,816.0

SQR

ESRr_A 16.96 968.9 99.00 1,679.04 16,432.9
AXSR3-14 16.75 907.6 84.59 1,416.88 15,201.5
AASR_A-6 1.30 137.7 6.17 8.02 179.1
AASR_T-6 0.89 122.2 4.99 4.44 108.8

approximate divider and SQR circuit achieve significantly larger
improvements in delay and power consumption than the other
approximate designs. Specifically, AAXD-20 achieves a 45.05%
speed up and 50.34% reduction in power consumption, as well
as 72.71% and 56.41% decrease in PDP and ADP, respectively.
AASR_A-6 is approximately 12× faster and consumes 7.29% of
the power of the accurate 32-bit SQR circuit. AASR_T-6 is more
efficient than AASR_A-6 in all measurements due to the small
k. The hardware savings for AXDr1, AXDr3 and AXSR3 are
relatively small because only a small number of subtractors are
approximated in these designs. Table 8 shows that the AAXD_S-
20 achieves 32.39% reduction in EPO and 2× TPA compared with
EXDr_S. AASR_S-6 consumes 88.79% less power than ESRr_S
with 88× TPA. Moreover, Tables 7 and 8 show that the proposed
approximation strategy is more efficient for larger sizes of divider
and SQR circuits, especially for sequential designs.

7 CONCLUSION

This paper proposes a design strategy using adaptive approxima-
tion for unsigned dividers and SQR circuits. A novel pruning
scheme and error correction circuits are utilized for the divider
to attain a high accuracy. The use of a reduced-width divider/SQR

TABLE 8. Circuit measurements of the sequential 32/16 dividers
and 32-bit SQR circuits.

Circuit Design Delay
(ns)

Area
(µm2)

Power
(µW) N EPO

(pJ/op)

TPA
(ops

/(s ·µm2)

Divider EXDr_S 2.36 844.1 38.06 18 13.71 1,549
AAXD_S-20 1.76 1,088.2 35.65 13 9.27 3,089

SQR ESRr_S 1.98 919.0 40.15 18 14.45 1,696
AASR_S-6 0.56 479.6 16.19 5 1.62 148,920

circuit and a shifter leads to a high-performance and low-power
operation. As per the synthesis results in ST’s 28 nm CMOS
process, the proposed approximate divider achieves improvements
by more than 60% in speed and power dissipation compared with
an accurate design. The proposed divider is more accurate than
the other approximate dividers when a similar PDP is considered.
The change detection results further illustrate the accuracy and
hardware efficiency of the proposed design.

Using a similar approximation strategy, the 16-bit approximate
array-based SQR circuit is from 22.69% to 74.54% faster, and
saves from 30.75% to 79.34% in power compared with the
accurate design, depending on the size of the exact SQR circuit
used. By using the LUT-based SQR circuit, the proposed approx-
imate design obtains 60%-90% improvements in area and power
consumption compared to its corresponding accurate design. In
the application of envelope detection, the proposed SQR circuit
generates results of a similar quality as the accurate design.

To assess the accuracy of the approximate divider and SQR
circuit in a single application, they are both used to implement the
QRD in an image reconstruction algorithm. The simulation results
show that the proposed approximate divider achieves 45.05%
and 50.34% reductions in delay and power, while reductions
of more than 90% are achieved for the proposed approximate
SQR circuit compared to the accurate array-based designs for
obtaining a similar image reconstruction accuracy. Finally, the
proposed design approach is applicable to sequential divider and
SQR circuits. Its efficacy is supported by the simulation results.

REFERENCES

[1] B. Parhami, Computer arithmetic: algorithms and hardware designs.
Oxford University Press, 2000.

[2] J. Fandrianto, “Algorithm for high speed shared radix 4 division and radix
4 square-root,” in IEEE Symposium on Computer Arithmetic, 1987, pp.
73–79.

[3] L. Chen, F. Lombardi, P. Montuschi, J. Han, and W. Liu, “Design of
approximate high-radix dividers by inexact binary signed-digit addition,”
in Great Lakes Symposium on VLSI, 2017, pp. 293–298.

[4] L. Chen, W. Liu, J. Han, P. A. Montuschi, and F. Lombardi, “Design,
evaluation and application of approximate high-radix dividers,” IEEE
Transactions on Multi-Scale Computing Systems, 2018.

[5] M. Cappa and V. C. Hamacher, “An augmented iterative array for high-
speed binary division,” IEEE Transactions on Computers, vol. 100, no. 2,
pp. 172–175, 1973.

[6] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in IEEE European Test Symposium
(ETS), 2013.

[7] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classifi-
cation, and comparative evaluation of approximate arithmetic circuits,”
ACM Journal on Emerging Technologies in Computing Systems, vol. 13,
no. 4, p. 60, 2017.

[8] H. Jiang, L. Liu, F. Lombardi, and J. Han, “Adaptive approximation in
arithmetic circuits: A low-power unsigned divider design,” in Design,
Automation & Test in Europe Conference, 2018.

[9] W. Liu and A. Nannarelli, “Power efficient division and square root unit,”
IEEE Transactions on Computers, vol. 61, no. 8, pp. 1059–1070, 2012.

[10] M. J. Flynn, “On division by functional iteration,” IEEE Transactions on
Computers, vol. 100, no. 8, pp. 702–706, 1970.

[11] L. Chen, J. Han, W. Liu, and F. Lombardi, “Design of approximate
unsigned integer non-restoring divider for inexact computing,” in Great
Lakes Symposium on VLSI, 2015, pp. 51–56.

[12] ——, “On the design of approximate restoring dividers for error-tolerant
applications,” IEEE Transactions on Computers, vol. 65, no. 8, pp. 2522–
2533, 2016.

[13] S. Hashemi, R. Bahar, and S. Reda, “A low-power dynamic divider for
approximate applications,” in Proceedings of the 53rd Annual Design
Automation Conference, 2016.

12

[14] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-Kusha, S. Safari, and
M. Pedram, “SEERAD: a high speed yet energy-efficient rounding-
based approximate divider,” in Design, Automation & Test in Europe
Conference & Exhibition, 2016, pp. 1481–1484.

[15] M. D. Ercegovac, T. Lang, J.-M. Muller, and A. Tisserand, “Recipro-
cation, square root, inverse square root, and some elementary functions
using small multipliers,” IEEE Transactions on computers, vol. 49, no. 7,
pp. 628–637, 2000.

[16] B. Barrois, O. Sentieys, and D. Menard, “The hidden cost of functional
approximation against careful data sizing–A case study,” in Conference
on Design, Automation & Test in Europe, 2017, pp. 181–186.

[17] P. R. Hoskins, K. Martin, and A. Thrush, Diagnostic ultrasound: physics
and equipment. Cambridge University Press, 2010.

[18] D. Dance, S. Christofides, A. Maidment, I. McLean, and K. Ng,
Diagnostic radiology physics: A handbook for teachers and students.
International Atomic Energy Agency, 2014.

[19] J. A. Jensen, “Field: A program for simulating ultrasound systems,” in
10th Nordic-Baltic Conference on Biomedical Imaging, Vol. 4, Supple-
ment 1, Part 1, 1996, pp. 351–353.

[20] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from
arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE
transactions on ultrasonics, ferroelectrics, and frequency control, vol. 39,
no. 2, pp. 262–267, 1992.

[21] C. K. Singh, S. H. Prasad, and P. T. Balsara, “VLSI architecture for matrix
inversion using modified Gram-Schmidt based QR decomposition.” in
VLSI Design, 2007, pp. 836–841.

[22] X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing large matrix
inversion computation to a public cloud,” IEEE Transactions on cloud
computing, vol. 1, no. 1, pp. 78–87, 2013.

[23] F. Ding, “Decomposition based fast least squares algorithm for output
error systems,” Signal Processing, vol. 93, no. 5, pp. 1235–1242, 2013.

[24] M. Karkooti, J. R. Cavallaro, and C. Dick, “FPGA implementation of
matrix inversion using QRD-RLS algorithm,” in Asilomar Conference on
Signals, Systems, and Computers, 2005.

[25] M. K. Jaiswal and N. Chandrachoodan, “FPGA-based high-performance
and scalable block LU decomposition architecture,” IEEE Transactions
on Computers, vol. 61, no. 1, pp. 60–72, 2012.

[26] A. Krishnamoorthy and D. Menon, “Matrix inversion using Cholesky
decomposition,” in Signal Processing: Algorithms, Architectures, Ar-
rangements, and Applications, 2013, pp. 70–72.

[27] X. Yuan and R. Haimi-Cohen, “Image compression based on com-
pressive sensing: End-to-end comparison with JPEG,” arXiv preprint
arXiv:1706.01000, 2017.

[28] J. L. Stanislaus and T. Mohsenin, “High performance compressive sens-
ing reconstruction hardware with QRD process,” in IEEE International
Symposium on Circuits and Systems, 2012, pp. 29–32.

Honglan Jiang (S’14-M’18) received the B.Sc.
and Master degrees in instrument science and
technology from Harbin Institute of Technology,
Harbin, Heilongjiang, China, in 2011 and 2013,
respectively. In 2018, she received the Ph.D. de-
gree in integrated circuits and systems from the
University of Alberta, Edmonton, AB, Canada.
She is currently a postdoctoral fellow in the In-
stitute of Microelectronics, Tsinghua University,
Beijing, China. Her research interests include
approximate computing, reconfigurable comput-

ing and stochastic computing.

Leibo Liu (M’10) received the B.S. degree in
electronic engineering and the Ph.D. degree with
the Institute of Microelectronics, both from Ts-
inghua University, Beijing, China, in 1999 and
2004, respectively. He is currently a Full Pro-
fessor with the Institute of Microelectronics, Ts-
inghua University. His current research interests
include reconfigurable computing, mobile com-
puting, and very large-scale integration digital
signal processing.

Fabrizio Lombardi (M’81-SM’02-F’09) graduat-
ed in 1977 from the University of Essex (UK)
with a B.Sc. (Hons.) in Electronic Engineering.
In 1977 he joined the Microwave Research Unit
at University College London, where he received
the Master in Microwaves and Modern Optics
(1978), the Diploma in Microwave Engineering
(1978) and the Ph.D. from the University of Lon-
don (1982). He is currently the holder of the
International Test Conference (ITC) Endowed
Chair Professorship at Northeastern University,

Boston, USA. Dr. Lombardi was the Editor-In-Chief of the IEEE Trans-
actions on Computers (2007-2010) and the inaugural Editor-in-Chief
of the IEEE Transactions on Emerging Topics in Computing (2013-
2017). Currently, he is the Editor-in-Chief of the IEEE Transactions on
Nanotechnology. His research interests are bio-inspired and nano man-
ufacturing/computing, VLSI design, testing, and fault/defect tolerance
of digital systems. He has extensively published in these areas and
coauthored/edited seven books. He is a Fellow of IEEE.

Jie Han (S’02-M’05-SM’16) received the B.Sc.
degree in electronic engineering from Tsinghua
University, Beijing, China, in 1999 and the Ph.D.
degree from Delft University of Technology, The
Netherlands, in 2004. He is currently an as-
sociate professor in the Department of Electri-
cal and Computer Engineering at the Universi-
ty of Alberta, Edmonton, AB, Canada. His re-
search interests include approximate comput-
ing, stochastic computation, reliability and fault
tolerance, nanoelectronic circuits and systems,

novel computational models for nanoscale and biological applications.
Dr. Han and coauthors received the Best Paper Award at the Interna-
tional Symposium on Nanoscale Architectures (NanoArch 2015) and
Best Paper Nominations at the 25th Great Lakes Symposium on VLSI
(GLSVLSI 2015), NanoArch 2016 and the 19th International Symposium
on Quality Electronic Design (ISQED 2018). He was nominated for the
2006 Christiaan Huygens Prize of Science by the Royal Dutch Academy
of Science. His work was recognized by Science, for developing a theory
of fault-tolerant nanocircuits (2005). He is currently an associate editor
for IEEE Transactions on Emerging Topics in Computing (TETC) and
IEEE Transactions on Nanotechnology. He served as a General Chair
for GLSVLSI 2017 and the IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT 2013),
and a Technical Program Committee Chair for GLSVLSI 2016 and DFT
2012.

