

Design of Approximate Unsigned Integer Non-restoring
Divider for Inexact Computing

Linbin Chen
ECE Department

Northeastern University
Boston, MA USA

chen.lin@husky.neu.edu

Jie Han
ECE Department

University of Alberta
Edmonton, AB, Canada

jhan8@ualberta.ca

Weiqiang Liu
College of EIE

Nanjing University of Aero.
& Astro., China

liuweiqiang@nuaa.edu.cn

Fabrizio Lombardi
ECE Department.

Northeastern University
Boston, MA USA

lombardi@ece.neu.edu

ABSTRACT

This paper proposes several approximate divider designs; two

different levels of approximation (cell and array levels) are

investigated for non-restoring division. Three approximate

subtractor cells are proposed and designed for the basic

subtraction; these cells mitigate accuracy in subtraction with other

metrics, such as circuit complexity and power dissipation. At

array level, by considering the exact cells, both replacement and

truncation schemes are introduced for approximate array divider

design. A comprehensive evaluation of approximation at both cell

and divider level is pursued. Different circuit metrics including

complexity and power dissipation are evaluated by HSPICE

simulation. Mean error distance (MED), normalized error distance

(NED) and MED-power product (MPP) are provided to

substantiate the accuracy and power trade-off of inexact

computing. Different applications in image processing are

investigated by utilizing the proposed approximate arithmetic

circuits.

Categories and Subject Descriptors

B.7.1 [INTEGRATED CIRCUITS]: Types and Design Styles –

Algorithms implemented in hardware.

General Terms

Design, Performance.

Keywords

Inexact computing, Division, Error Distance, Power Dissipation

1. INTRODUCTION
Most computer arithmetic applications are implemented using

digital logic circuits, thus operating with a high degree of

reliability and accuracy. However, many applications such as

multimedia and image processing can tolerate errors and

imprecision in computation and still produce meaningful and

useful results. The paradigm of inexact computation relies on

relaxing fully precise and completely deterministic building

modules when for example, designing energy efficient systems.

This allows imprecise computation to redirect the existing design

process of digital circuits and systems by taking advantage of a

decrease in complexity and cost with possibly a potential increase

in performance and power efficiency.

Inexact computing is well suited for arithmetic circuits such as

adders and multipliers. Recently, five approximate mirror adders

(AMAs) have been investigated by logic reduction at transistor

level [1]. The three approximate XOR-based adders (AXAs) of

[2] show attractive operational profiles for performance, hardware

efficiency and power-delay product (PDP), while retaining a good

accuracy. Approximate multipliers based on approximate adders

have also been proposed, since a multiplier is usually

implemented by cascading multiple adders. Some of the less

significant bits in the partial products can be truncated [3] while

providing error compensation mechanisms; this type of scheme

removes some of the adders for a faster execution of this

operation. In [4], a simplified 2⨉2 bit multiplier is used as

modular block of a multiplier with larger operand size. An

efficient multiplier design using input pre-processing and

additional error compensation is proposed for reducing the critical

path delay in [5]. To the authors' best knowledge, there have not

been any technical literature on an approximate divider (AXD)

design. In this paper, the approximate subtractor (AXS) is initially

considered as a first level of approximation for a non-restoring

AXD (AXDnr). New AXDnr cells (AXDCnr) are proposed and

the approximate operation is carried further at divider level by

considering different schemes by which exact cells can be

replaced by approximate cells or truncated (removed). A

comprehensive evaluation of approximation at both cell- and

divider-levels is pursued using HSPICE simulation at PTM 32nm

technology; various circuit metrics (such as complexity, and

power dissipation) are evaluated. MED, NED and MED Power

Product are provided to substantiate the accuracy and power

trade-off of inexact computing. Different applications in image

processing are investigated by utilizing the proposed approximate

arithmetic circuits. As for image processing, approximate division

often results in a very marginal decrease in quality (as measured

by metrics such as PSNR).

2. REVIEW

2.1 Exact Subtractor (EXS)
The functions of an exact subtractor cell (EXSC) and exact full

adder cell (EXAC) are quite similar (Table 1). D denotes the

difference between X and Y, Bin is the borrow bit to the lower

position and Bout is the borrow bit from the higher position. So,

the discussion of EXSC is also applicable to EXAC. An unsigned

N-bit ripple EXS can be implemented using N cascading EXSCs.

There are three basic Boolean operations in EXSC and EXAC:

XOR/XNOR, AND and OR. Two XOR/XNOR cascaded gates

generate the outputs S or D; two AND and one OR gates generate

 Cout or Bout . At circuit-level the XOR can be implemented

using 3 to 4 transistors (Figure 1(b) or (c)). The XNOR can be

implemented using 4 transistors (Figure 1(a)). XOR and XNOR

can be used interchangeably to implement the sum output S and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.
GLSVLSI’15, May 20–22, 2015, Pittsburgh, PA, USA.

Copyright © 2015 ACM 978-1-4503-3474-7/15/05…$15.00.

http://dx.doi.org/10.1145/2742060.2742063

http://dx.doi.org/10.1145/2742060.2742063

the subtraction output D. The AND and OR functions can be

implemented using a 2-transistor MUX (Figure 2).

Table 1 EXAC and EXSC Functions

 𝑆 or 𝐷 𝐶𝑜𝑢𝑡 or 𝐵𝑜𝑢𝑡

EXAC 𝑆 = 𝑋 ⊕ 𝑌 ⊕ 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡 = 𝑋 ⊕ 𝑌 ∙ 𝐶𝑖𝑛 + 𝑋𝑌

EXSC 𝐷 = 𝑋 ⊕ 𝑌 ⊕ 𝐵𝑖𝑛 𝐵𝑜𝑢𝑡 = 𝑋 ⊕ 𝑌̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝐵𝑖𝑛 + �̅�𝑌

(a) (b) (c)

Figure 1 Three implementations of XOR and XNOR gates and

related symbols. (a) 4T XNOR from [6] (b) 4T XOR from [7]

and (c) 3T XOR from [8]

(a) (b)

Figure 2 Implementations of an EXSC (a) based on a 4T

XNOR and (b) based on a 3T XOR

Similar to the EXACs in [2], the implementations of the EXSC

are shown in Figure 2; when simulating by HSPICE, the signal

integrity may be degraded due to the pass transistor logic; thus, a

buffer is inserted to preserve an acceptable signal integrity.

2.2 Exact Non-Restoring Divider (EXDnr)
For integer division, the operands are the dividend X and the non-

zero divisor Y, and the results of the operation are the quotient Q

and the remainder R, i.e.

X = YQ + R

where the sign of the remainder R is the same as the dividend X

and |R| < |Y|. A common division algorithm is non-restoring

division [9].

R = X⨁(Y⨁Q)⨁Bin

Bout = X ⊕ Y⨁Q̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∙ Bin + X̅(Y⨁Q)

Figure 3 EXDCnr and its logic functions using EXSC

Exact Non-Restoring Divider Cell (EXDCnr): An EXDCnr is

made of an EXSC and a XOR gate (Figure 3). Q is a control

signal such that when Q = 0, EXDCnr is configured as an exact

full subtractor (X-Y); when Q = 1, EXDCnr is configured as an

exact full adder (X+Y). This configurable divider cell is the basic

building block for an EXDnr.

Exact Non-restoring Divider (EXDnr): A 8-by-4 bits unsigned

EXDnr is shown in Figure 4; it computes the unsigned integer

division for X[7:0], Y[3:0], Q[3:0] and R[3:0].

Figure 4 8-to-4 unsigned EXDnr

3. APPROXIMATE SUBTRACTOR (AXS)

3.1 Approximate Subtractor Cell (AXSC)

D = X ⊕ Y + Bin

Bout = X ⊕ Y̅̅ ̅̅ ̅̅ ̅̅ ∙ Bin + X̅Y

(a)

 D = X ⊕ Y ⊕ Bin

Bout = D or Bout = Bin

(b)

 D = Bout

Bout = X ⊕ Y̅̅ ̅̅ ̅̅ ̅̅ ∙ Bin + X̅Y

(c)

Figure 5 (a) AXSC1 (b) AXSC2 and (c) AXSC3

Three types of AXSC (AXSC1-AXSC3) are introduced next; their

diagrams and functions are shown as Figure 5; two versions (the

XOR and XNOR based designs) are proposed for some cells

(AXSC2, AXSC3). There are two XOR/XNORs in an EXSC;

each of them consists of 4 or 3 transistors. Therefore, the

elimination of one of them in an AXS design is an obvious choice

for reducing the number of transistors (AXSC1 and AXSC3 abide

by this consideration). In the operation of a subtractor, the

accuracy of Bout is in general more important than D; so, in an

AXSC design, Bout is unchanged (as in AXSC1 and AXSC3). To

reduce the delay, the output signal D and Bout can be combined (as

occurring in AXSC2 and AXSC3).The truth table for each input

combination of these approximate cells is shown in Table 2. The

number of transistors and the error distance are shown in Table 3.

Table 2 Truth Table of 3 Proposed AXS Cells

X Y 𝐁𝐢𝐧
EXSC AXSC1 AXSC2 AXSC3

Bout D Bout D Bout D Bout D

0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 1 1 1 1 1

0 1 1 1 0 1 1 0 0 1 1

1 0 0 0 1 0 1 1 1 0 0

1 0 1 0 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

Table 3 Transistor Count and Error Distance of AXSCs

Subtractor Cell Transistor Count Error Distance

EXSC 10 0

AXSC1 8 or 7 2

AXSC2 8, 7 or 6 4

AXSC3 6 or 5 2

3.2 Approximate Subtractor (AXS)
In this section, an N-bit AXS is evaluated. The three types of

AXSC are used to replace some of the LSBs of an EXS. The

replacement depth d is used to represent the number of the EXSCs

replaced by the AXSCs.

3.2.1 MED and NED
In addition to the error distance (ED), the mean error distance

(MED) and the normalized error distance (NED) have been

proposed [10] by considering the averaging effect of multiple

inputs and the normalization of multiple-bit adders. The MED is

defined as the mean value of the EDs of all possible outputs for

each input. The NED is defined as the MED normalized by the

maximum ED that a design incurs. The MED is effective in

evaluating multiple-bit approximate arithmetic circuit, while the

NED is nearly invariant with the size of an implementation and

therefore, is useful in the assessment of a specific type of design.

(a) (b)

Figure 6 (a) MED of 8-bits AXS with depth d, and (b) NED of

N-bit AXS with depth d=N

The MEDs for 8-bit AXS with replacement depth d are shown in

Figure 6(a) on a logarithmic scale; AXS1 and AXS3 have the

smallest MED, because they nearly preserves the exact

computation for subtraction. The NEDs of the proposed AXS with

different AXSCs and replacement depth d=N are plotted in Figure

6(b); the value of the NED for different AXS reduces to a constant

as the width of the subtractor increases; AXS1 and AXS3 have

relative smaller NEDs compared to AXS2.

3.2.2 MED Power Product (MPP)
MPP is used to assess the trade-off between computational

accuracy and power consumption for approximate computing

circuits. Figure 7(a) shows the dynamic power by exhaustive

simulation using AXSCs in AXS. As the replacement depth d

increases, the power consumption decreases. The switching

activity of AXS2 is higher (different from AXS1 and AXS3),

hence the power of AXS2 is not as good as the other two schemes.

MPP is shown in Figure 7 (b). AXS1 has the best MPP when d is

low, but it deteriorates at higher values of d. When d increases,

AXS3 is the best scheme. On average, the MPP shows that AXS3

is the best choice for an AXS.

(a) (b)

Figure 7 (a) Power and (b) MPP of 8-bit AXS

4. APPROXIMATE NON-RESTORING

DIVIDER (AXDnr)

4.1 AXDCnr
The design of an AXDCnr takes advantage of the corresponding

AXSC, because subtraction is the basic operation of division. The

corresponding AXDCnr1-3 can be derived by substituting the

EXSC in Figure 3 with AXSC1-3 presented in previous section.

4.2 AXDnr

4.2.1 Replacement Scheme
A simple divider-level approximation is to use cell replacement,

i.e. to replace some EXDCnrs in the EXDnr with the AXDCnrs

developed in Section 4.1. The approximate cells have a smaller

circuit complexity, so making the entire divider less complex and

consuming less power. These advantageous features are

accomplished at the expenses of introducing errors at the outputs

for the quotient Q and/or the remainder R. The errors in Q and R

are correlated. So an approximate divider can be designed to have

either a more accurate Q with a less accurate R (division), or a

more accurate R with a less accurate Q (modulo). Approximation

is therefore the process by which exact cell is replaced by an

approximate cell; the extent by which this replacement process is

performed in a divider is quantified by the depth d, i.e. the number

of rows (and/or columns) in the divider array with approximate

cells. Four types of approximation are used (Figure 8) for the

division operation for the accuracies of Q and R.

Vertical Replacement (VR): The least significant (LSB) EXDCnrs

in each row of the divider are replaced by AXDCnrs. The depth of

the vertical replacement can be increased to further decrease the

power while tolerating more errors in the output. Hence, 4×d

EXDCnr cells are replaced with AXDCnr cells in a divider with a

vertical approximation of depth d. One example of depth d=2 is

shown in Figure 8(a).

Horizontal Replacement (HR): The value of the quotient is mostly

related to the borrow signal of each cell in a single row. For

example, consider the last row corresponding to the LSB of Q; if

the value of R is not of significant concern, then all EXDCnrs in

the last row can be replaced with AXDCnrs without losing the

accuracy of Q. If some error can be tolerated at Q, then an

increase in the depth of the horizontal replacement up to the dth

LSB of Q is possible. An example of a horizontal replacement

divider of depth d=2 is shown in Figure 8(b).

Square Replacement (SR): By combining the vertical and

horizontal replacement; a new configuration is referred to as the

square replacement. Hence, in a dth AXDnr, d2 EXDCnrs are

replaced with AXDCnrs. An example of a square replacement

AXDnr of depth d=2 is shown as Figure 8(c).

Triangle Replacement (TR): Consider the integer pair (i,j) as

coordinates of each cell in a divider (Figure 9). An EXDCnr (i,j)

(i<d or j<d) is replaced by a AXDCnr. So, in a triangle

approximation divider with depth d (d≥1), d(d+1)/2 EXDCnrs are

replaced with AXDCs. An example of a triangle approximation

divider with d=2 is shown in Figure 8(d).

(a) (b) (c) (d)

Figure 8 Four replacement types of 8-to-4 bit AXDnr: (a) VR,

(b) HR, (c) SR, and (d) TR. The replaced cells are shaded.

4.2.2 Truncation Scheme
Truncation consists of fully removing at least a cell (so no

replacement with AXDCnr(s)); this process is shown by the

shaded cells in Figure 8. The input X of the removed cell is left

unchanged and moved downwards along the remainder output

direction, while the input Y of the removed cell is discarded.

Similar to replacement scheme, a truncation scheme has also four

configurations: Vertical Truncation (VT), Horizontal Truncation

(HT), Square Truncation (ST) and Triangle Truncation (TT).

4.3 Evaluation of AXDnrs

4.3.1 Error Estimation of AXDnrs
Error generation and propagation can be qualitatively analyzed by

the location of the replaced or truncated cells in the divider. A so-

called error impact coefficient (denoted by S) is proposed to

simplify the analysis for finding the impact of the inexact or

truncated cells in the array divider. An approximate scheme

consists of replacing or truncating only a portion of the divider;

this leads to different approximate configurations with different

accuracy for the output values (Q and R). In a divider, the

dividend X and the divisor Y are provided as inputs at the north

side, while the quotient Q and the reminder R are generated at the

west and the south sides respectively (Figure 9). So, each cell

(located at a unique position in the divider) plays a different role

in generating an error; intuitively, cell replacement or truncation

must not preferably occur at the MSBs of Q and R. Therefore, the

coefficients SQ,(ij) and SR,(i,j) are given by

{
SQ,ij =

1

√(i−N)2+(j−2N+1)2

SR,ij =
1

√(i+1)2+(j−N)2

 (i ∈ [1, N), j ∈ [1,2N − 1))

in which i, j are the coordinates of the cell in the divider ((0,0) is

the origin, as shown in (Figure 9). SQ,(ij) is effectively the

distance from the MSB cell of Q to a cell position in the divider;

SR,(i,j) is the distance from the MSB cell of R to a cell position in

the array. Larger SQ,(i,j) or SR,(i,j) is, a greater error is contributed by

the (i,j) cell to the final outputs Qerror and Rerror. So, the impacts of

errors at the outputs Q and R are given by

SQ = ∑ SQ,ji SR = ∑ SR,ij

where, SQ,ij and SR,ij are due to cell (i,j) when using an

approximate implementation. Figure 10 illustrates the coefficients

SQ and SR of the replacement or truncation configurations at

different depths. The trends for SQ and SR are consistent with the

NEDs plotted in Figure 11; so, SQ and SR are good qualitative

metrics for analyzing different replacement or truncation schemes.

Figure 9 Error impact coefficients 𝐒𝐐 and 𝐒𝐑

(a) (b)

Figure 10 Error impact coefficients of different replacement

or truncation configurations vs depth: (a) 𝐒𝐐 and (b) 𝐒𝐑

4.3.2 Normalized Error Distance (NED)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11 NED of AXDnrs for Quotient Q and R (a)(b)

AXDnr1, (b)(c) AXDnr2, (d)(e) AXDnr3, (g)(h) Truncation

For a more accurate evaluation of the different approximate

designs, the NED has been simulated at different depths (Figure

11). Among the replacement schemes, the error of AXDnr2 is the

largest in all cases for Q, but not for R; this is due to the worst

(best) accuracy for Bout (D) in AXSC2. AXDnr1 and AXDnr3

have on average the smallest NED for both Q and R. Among

truncation schemes, the NED of Q is larger than any of its

corresponding replacement schemes, because more error is

introduced by simply removing a cell compared with replacing it

with the proposed AXDC. For both replacement and truncation

schemes, the NED of Q for the vertical and horizontal

approximations increases rapidly with depth, more than for the

square and triangle approximations; the triangle approximation

shows the smallest NED for Q compared to the other replacement

schemes. The NED of R also increases with replacement depth;

moreover, it is larger than the NED of Q. This occurs because the

error in R is strongly dependent on the error in Q; however when

using a horizontal replacement, the NED of R is less dependent on

the replacement depth.

4.3.3 Power consumption
Figure 12 shows the power consumption of AXDnrs versus

replacement depth. All AXDnrs consume less power as the

replacement depth increases; this is significantly lower than the

power consumed by EXDnrs. The power dissipation of the

truncation schemes may be slightly larger than the replacement

schemes when the depth is small, however the power of a

truncation scheme decreases at the highest rate.

(a) (b)

(c) (d)

Figure 12 Power consumption of AXDnrs for Quotient Q (a)

AXDnr1 (b) AXDnr2 (c) AXDnr3 and (d) Truncation

(a) (b)

(c) (d)

Figure 13 MED Power Product of AXDnrs for Quotient Q (a)

AXDnr1 (b) AXDnr2 (c) AXDnr3 and (d) Truncation

4.3.4 MED Power Product (MPP)
To evaluate the tradeoff between computation accuracy and power

consumption of the AXDnrs, the MPP of the AXDnrs is

calculated and plotted in Figure 13. Although the power saving of

a truncation scheme is larger than for a replacement scheme, this

is at the expense of the error; hence, the triangle replacement

scheme with AXDnr3 has the smallest MPP. AXDnr3 is very

promising for an approximate divider design requiring both high

accuracy and low power consumption. AXDnr2 is again shown to

be the worst design regardless of the type of replacement.

Compared to a replacement scheme, a truncation scheme is not

suitable for both high accuracy and low power AXDnr designs.

5. APPLICATIONS

5.1 Pixel Subtraction
Pixel subtraction takes two images as input and produces as

output a third image whose values are the subtraction of the

second image from the first image on a pixel basis. 8-bit ripple

borrow EXS and AXS with replacement depth d=4 are used.

Background Removal: In this case, background variations in

illumination are subtracted from a scene, such that the foreground

objects can be better viewed. For example, the image X in Figure

14 shows some text that has been badly illuminated during capture

(i.e. there is a strong illumination gradient across the image). If a

blank page Y is subtracted from the poorly illuminated image X,

the output has a relatively constant illumination. Figure 14 shows

the simulation results. The results of AXS1 and AXS3 are better.

X Y D (EXS)

D (AXS1) D (AXS2) D (AXS3)

Figure 14 Output images for background removal

X Y D (EXS)

D (AXS1) D (AXS2) D (AXS3)

Figure 15 Output images for change detection

Change Detection: The image difference is also used for change

detection. If the difference between two frames of a sequence of

images is calculated and there is no movement in the scene, then

the output image mostly consists of zero value pixels. If there is

movement, then the pixels in those regions of the image in which

the intensity spatially changes, exhibit significant differences

between the two frames. Figure 15 shows the change detection

results of a sequence of frames X and Y. AXS1 and AXS3 are

capable of detecting the moving part of the image.

The peak signal to noise ratio (PSNR) is commonly used to

measure the quality of lossy compression codecs of images. In

this case, it is used to assess the quality of the images processed

by an inexact arithmetic circuit compared to the ones by an exact

arithmetic circuit. For the two image subtraction applications

considered in this manuscript, the PSNR results are shown in

Figure 16. AXS1 and AXS3 based subtractors have the larger

PSNR, so generating the best approximation and the least image

errors when replacing EXSCs with AXSCs.

Figure 16 PSNR of AXSs for pixel subtraction

5.2 Pixel Division
The change detection and background removal application can be

also realized by division operation. In image analysis, if only

integer division is performed, then the results are typically

rounded at the output to the next lowest integer. 16-to-8 EXDnr

and AXDnr are used to compute the same 8-bit grayscale images

as in the previous section; the approximations used in these

applications are with depth 3 for VR and HR, depth 2 for VT and

HT, depth 5 for SR, depth 4 for ST, depth 7 for TR and depth 5

for TT. These configurations are selected to ensure that the power

consumptions are nearly equal.

(a) (b)

Figure 17 Simulated PSNR of pixel division (a) change

detection (b) background removal

It can be seen from both change detection and background

removal results of Figure 17 that the triangle replacement with

AXDnr3 has the best PSNRs while the vertical replacement has

overall the worst PSNR.

6. CONCLUSION
This paper has presented a detailed analysis, design and

evaluation of dividers that utilize approximate criteria in their

operation. As basic operation for division, subtraction has been

initially considered. Subsequently, AXDnr have been proposed by

introducing approximate computing at cell as well as at divider

levels. Division presents unique challenges for approximate

computing; it generates two output values (the remainder R and

the quotient Q), so changes in cells as well as the dividers may

affect one of the outputs more than the other. Hence, different

arrangements in the approximate cells have been investigated;

these arrangement replaces exact with cells or truncates

(eliminates) them according to the direction of computation flow.

The following conclusions can be drawn. (1) The error in Q for

different approximation configurations increases with the

replacement or truncation depth; the triangle approximation

increases at a smaller rate. (2) AXDnr1 and AXDnr3 have on

average the smallest NED for Q. However, the error introduced by

a truncation scheme is significantly more than a replacement

scheme. (3) The error in R due to replacement is significantly

larger than the error in Q because R is dependent on Q of previous

stage. (4) Power consumption is reduced considerably when the

approximation depth increases. Higher the depth, more

pronounced is the power reduction. (5) For all depths, AXDnr1

and AXDnr2 consume more power than AXDnr3; the truncation

schemes require considerably less power than the replacement

schemes. (6) The trade-off between accuracy and power

consumption makes an approximate divider design an application

specific process. For an application requiring both high accuracy

and low power, the MED power product metric shows that

AXDnr3 is a good approximate scheme. For Q-oriented

applications (image processing), AXDnr3 with a triangle

replacement shows the best results.

7. ACKNOWLEDGMENT
This research is supported in part by an NSERC Discovery Grant

and by a grant from NSFC (No. 61401197).

8. REFERENCES
[1] Gupta, V., Mohapatra, D., Park, S.P., Raghunathan, A. and

Roy, K. 2011. IMPACT: IMPrecise Adders for Low-Power

Approximate Computing. In Proceedings of the International

Symposium on Low Power Electronics and Design (1-3 Aug.

2011), 409-414.

[2] Yang, Z., Jain, A., Liang, J., Han, J. and Lombardi, F. 2013.

Approximate XOR/XNOR-based Adders for Inexact

Computing. In Proceedings of the 13th IEEE Conference on

Nanotechnology (5-8 Aug. 2013), 690-693.

[3] Kyaw, K.Y., Goh, W.-L. and Yeo, K.-S. 2010. Low-Power

High-Speed Multiplier for Error-Tolerant Application. In

Proceedings of the International Conference of Electron

Devices and Solid-State Circuits (15-17 Dec. 2010), 1-4.

[4] Kulkarni, P., Gupta, P. and Ercegovac, M. 2011. Trading

Accuracy for Power with an Underdesigned Multiplier

Architecture. In Proceedings of the 24th International

Conference on VLSI Design (2-7 Jan. 2011), 346-351.

[5] Momeni, A., Han, J., Montuschi, P. and Lombardi, F. 2014.

Design and Analysis of Approximate Compressors for

Multiplication. IEEE Trans. Comput. (Accepted to appear).

[6] Lin, J., Hwang, Y.-T., Sheu, M.-H. and Ho, C.-C. 2007. A

Novel High-Speed and Energy Efficient 10-Transistor Full

Adder Design. IEEE Trans. Circuits Syst. I, Reg. Papers 54,

5, 1050-1059.

[7] Mahmoud, H.A. and Bayoumi, M.A. 1999. A 10-Transistor

Low-Power High-Speed Full Adder Cell. In Proceedings of

the IEEE International Symposium on Circuits and Systems

(Jul 1999), 43-46.

[8] Chowdhury, S.R., Banerjee, A., Roy, A. and Saha, H. 2008.

A High Speed 8 Transistor Full Adder Design Using Novel 3

Transistor XOR Gates. International Journal of Electronics,

Circuits and Systems 2, 4, 217-223.

[9] Parhami, B. 2000. Computer Arithmetic: Algorithms and

Hardware Designs. Oxford University Press.

[10] Liang, J., Han, J. and Lombardi, F. 2013. New Metrics for

the Reliability of Approximate and Probabilistic Adders.

IEEE Trans. Comput. 62, 9, 1760-1771.

