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ABSTRACT 

This paper proposes several approximate divider designs; two 

different levels of approximation (cell and array levels) are 

investigated for non-restoring division. Three approximate 

subtractor cells are proposed and designed for the basic 

subtraction; these cells mitigate accuracy in subtraction with other 

metrics, such as circuit complexity and power dissipation. At 

array level, by considering the exact cells, both replacement and 

truncation schemes are introduced for approximate array divider 

design. A comprehensive evaluation of approximation at both cell 

and divider level is pursued. Different circuit metrics including 

complexity and power dissipation are evaluated by HSPICE 

simulation. Mean error distance (MED), normalized error distance 

(NED) and MED-power product (MPP) are provided to 

substantiate the accuracy and power trade-off of inexact 

computing. Different applications in image processing are 

investigated by utilizing the proposed approximate arithmetic 

circuits. 

Categories and Subject Descriptors 

B.7.1 [INTEGRATED CIRCUITS]: Types and Design Styles – 

Algorithms implemented in hardware.  

General Terms 

Design, Performance. 

Keywords 

Inexact computing, Division, Error Distance, Power Dissipation 

1. INTRODUCTION 
Most computer arithmetic applications are implemented using 

digital logic circuits, thus operating with a high degree of 

reliability and accuracy. However, many applications such as 

multimedia and image processing can tolerate errors and 

imprecision in computation and still produce meaningful and 

useful results. The paradigm of inexact computation relies on 

relaxing fully precise and completely deterministic building 

modules when for example, designing energy efficient systems. 

This allows imprecise computation to redirect the existing design 

process of digital circuits and systems by taking advantage of a 

decrease in complexity and cost with possibly a potential increase 

in performance and power efficiency. 

Inexact computing is well suited for arithmetic circuits such as 

adders and multipliers. Recently, five approximate mirror adders 

(AMAs) have been investigated by logic reduction at transistor 

level [1]. The three approximate XOR-based adders (AXAs) of 

[2] show attractive operational profiles for performance, hardware 

efficiency and power-delay product (PDP), while retaining a good 

accuracy. Approximate multipliers based on approximate adders 

have also been proposed, since a multiplier is usually 

implemented by cascading multiple adders. Some of the less 

significant bits in the partial products can be truncated [3] while 

providing error compensation mechanisms; this type of scheme 

removes some of the adders for a faster execution of this 

operation. In [4], a simplified 2⨉2 bit multiplier is used as 

modular block of a multiplier with larger operand size. An 

efficient multiplier design using input pre-processing and 

additional error compensation is proposed for reducing the critical 

path delay in [5]. To the authors' best knowledge, there have not 

been any technical literature on an approximate divider (AXD) 

design. In this paper, the approximate subtractor (AXS) is initially 

considered as a first level of approximation for a non-restoring 

AXD (AXDnr). New AXDnr cells (AXDCnr) are proposed and 

the approximate operation is carried further at divider level by 

considering different schemes by which exact cells can be 

replaced by approximate cells or truncated (removed). A 

comprehensive evaluation of approximation at both cell- and 

divider-levels is pursued using HSPICE simulation at PTM 32nm 

technology; various circuit metrics (such as complexity, and 

power dissipation) are evaluated. MED, NED and MED Power 

Product are provided to substantiate the accuracy and power 

trade-off of inexact computing. Different applications in image 

processing are investigated by utilizing the proposed approximate 

arithmetic circuits. As for image processing, approximate division 

often results in a very marginal decrease in quality (as measured 

by metrics such as PSNR). 

2. REVIEW 

2.1 Exact Subtractor (EXS) 
The functions of an exact subtractor cell (EXSC) and exact full 

adder cell (EXAC) are quite similar (Table 1). D denotes the 

difference between X and Y, Bin is the borrow bit to the lower 

position and Bout is the borrow bit from the higher position. So, 

the discussion of EXSC is also applicable to EXAC. An unsigned 

N-bit ripple EXS can be implemented using N cascading EXSCs. 

There are three basic Boolean operations in EXSC and EXAC: 

XOR/XNOR, AND and OR. Two XOR/XNOR cascaded gates 

generate the outputs S or D; two AND and one OR gates generate 

 Cout  or  Bout . At circuit-level the XOR can be implemented 

using 3 to 4 transistors (Figure 1(b) or (c)). The XNOR can be 

implemented using 4 transistors (Figure 1(a)). XOR and XNOR 

can be used interchangeably to implement the sum output S and 
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the subtraction output D. The AND and OR functions can be 

implemented using a 2-transistor MUX (Figure 2). 

Table 1 EXAC and EXSC Functions 

 𝑆 or 𝐷 𝐶𝑜𝑢𝑡 or 𝐵𝑜𝑢𝑡 

EXAC 𝑆 = 𝑋 ⊕ 𝑌 ⊕ 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡 = 𝑋 ⊕ 𝑌 ∙ 𝐶𝑖𝑛 + 𝑋𝑌 

EXSC 𝐷 = 𝑋 ⊕ 𝑌 ⊕ 𝐵𝑖𝑛 𝐵𝑜𝑢𝑡 = 𝑋 ⊕ 𝑌̅̅ ̅̅ ̅̅ ̅̅  ∙ 𝐵𝑖𝑛 + �̅�𝑌 

 
(a) (b) (c) 

Figure 1 Three implementations of XOR and XNOR gates and 

related symbols. (a) 4T XNOR from [6] (b) 4T XOR from [7] 

and (c) 3T XOR from [8] 

  
(a) (b) 

Figure 2 Implementations of an EXSC (a) based on a 4T 

XNOR and (b) based on a 3T XOR 

Similar to the EXACs in [2], the implementations of the EXSC 

are shown in Figure 2; when simulating by HSPICE, the signal 

integrity may be degraded due to the pass transistor logic; thus, a 

buffer is inserted to preserve an acceptable signal integrity. 

2.2 Exact Non-Restoring Divider (EXDnr) 
For integer division, the operands are the dividend X and the non-

zero divisor Y, and the results of the operation are the quotient Q 

and the remainder R, i.e. 

X = YQ + R 

where the sign of the remainder R is the same as the dividend X 

and |R| < |Y|. A common division algorithm is non-restoring 

division [9]. 

 

R = X⨁(Y⨁Q)⨁Bin 

Bout = X ⊕ Y⨁Q̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ∙ Bin + X̅(Y⨁Q) 

Figure 3 EXDCnr and its logic functions using EXSC  

Exact Non-Restoring Divider Cell (EXDCnr): An EXDCnr is 

made of an EXSC and a XOR gate (Figure 3). Q is a control 

signal such that when Q = 0, EXDCnr is configured as an exact 

full subtractor (X-Y); when Q = 1, EXDCnr is configured as an 

exact full adder (X+Y). This configurable divider cell is the basic 

building block for an EXDnr. 

Exact Non-restoring Divider (EXDnr): A 8-by-4 bits unsigned 

EXDnr is shown in Figure 4; it computes the unsigned integer 

division for X[7:0], Y[3:0], Q[3:0] and R[3:0]. 

 

Figure 4 8-to-4 unsigned EXDnr 

3. APPROXIMATE SUBTRACTOR (AXS) 

3.1 Approximate Subtractor Cell (AXSC) 

 

D = X ⊕ Y + Bin 

Bout = X ⊕ Y̅̅ ̅̅ ̅̅ ̅̅  ∙ Bin + X̅Y 

(a) 

 D =  X ⊕ Y ⊕ Bin 

Bout = D or Bout = Bin 

 
(b) 

 D = Bout 

Bout = X ⊕ Y̅̅ ̅̅ ̅̅ ̅̅  ∙ Bin + X̅Y 

 
(c) 

Figure 5 (a) AXSC1 (b) AXSC2 and (c) AXSC3 

Three types of AXSC (AXSC1-AXSC3) are introduced next; their 

diagrams and functions are shown as Figure 5; two versions (the 

XOR and XNOR based designs) are proposed for some cells 

(AXSC2, AXSC3). There are two XOR/XNORs in an EXSC; 

each of them consists of 4 or 3 transistors. Therefore, the 

elimination of one of them in an AXS design is an obvious choice 

for reducing the number of transistors (AXSC1 and AXSC3 abide 

by this consideration). In the operation of a subtractor, the 

accuracy of Bout is in general more important than D; so, in an 

AXSC design, Bout is unchanged (as in AXSC1 and AXSC3). To 



reduce the delay, the output signal D and Bout can be combined (as 

occurring in AXSC2 and AXSC3).The truth table for each input 

combination of these approximate cells is shown in Table 2. The 

number of transistors and the error distance are shown in Table 3. 

Table 2  Truth Table of 3 Proposed AXS Cells 

X Y 𝐁𝐢𝐧 
EXSC AXSC1 AXSC2 AXSC3 

Bout D Bout D Bout D Bout D 

0 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 1 1 1 1 1 1 1 

0 1 0 1 1 1 1 1 1 1 1 

0 1 1 1 0 1 1 0 0 1 1 

1 0 0 0 1 0 1 1 1 0 0 

1 0 1 0 0 0 1 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 

Table 3 Transistor Count and Error Distance of AXSCs 

Subtractor Cell Transistor Count Error Distance 

EXSC 10 0 

AXSC1 8 or 7 2 

AXSC2 8, 7 or 6 4 

AXSC3 6 or 5 2 

3.2 Approximate Subtractor (AXS) 
In this section, an N-bit AXS is evaluated. The three types of 

AXSC are used to replace some of the LSBs of an EXS. The 

replacement depth d is used to represent the number of the EXSCs 

replaced by the AXSCs.  

3.2.1 MED and NED 
In addition to the error distance (ED), the mean error distance 

(MED) and the normalized error distance (NED) have been 

proposed [10] by considering the averaging effect of multiple 

inputs and the normalization of multiple-bit adders. The MED is 

defined as the mean value of the EDs of all possible outputs for 

each input. The NED is defined as the MED normalized by the 

maximum ED that a design incurs. The MED is effective in 

evaluating multiple-bit approximate arithmetic circuit, while the 

NED is nearly invariant with the size of an implementation and 

therefore, is useful in the assessment of a specific type of design.  

  
(a) (b) 

Figure 6 (a) MED of 8-bits AXS with depth d, and (b) NED of 

N-bit AXS with depth d=N 

The MEDs for 8-bit AXS with replacement depth d are shown in 

Figure 6(a) on a logarithmic scale; AXS1 and AXS3 have the 

smallest MED, because they nearly preserves the exact 

computation for subtraction. The NEDs of the proposed AXS with 

different AXSCs and replacement depth d=N are plotted in Figure 

6(b); the value of the NED for different AXS reduces to a constant 

as the width of the subtractor increases; AXS1 and AXS3 have 

relative smaller NEDs compared to AXS2. 

3.2.2 MED Power Product (MPP) 
MPP is used to assess the trade-off between computational 

accuracy and power consumption for approximate computing 

circuits. Figure 7(a) shows the dynamic power by exhaustive 

simulation using AXSCs in AXS. As the replacement depth d 

increases, the power consumption decreases. The switching 

activity of AXS2 is higher (different from AXS1 and AXS3), 

hence the power of AXS2 is not as good as the other two schemes. 

MPP is shown in Figure 7 (b). AXS1 has the best MPP when d is 

low, but it deteriorates at higher values of d. When d increases, 

AXS3 is the best scheme. On average, the MPP shows that AXS3 

is the best choice for an AXS. 

  
(a) (b) 

Figure 7 (a) Power and (b) MPP of 8-bit AXS 

4. APPROXIMATE NON-RESTORING 

DIVIDER (AXDnr) 

4.1 AXDCnr 
The design of an AXDCnr takes advantage of the corresponding 

AXSC, because subtraction is the basic operation of division. The 

corresponding AXDCnr1-3 can be derived by substituting the 

EXSC in Figure 3 with AXSC1-3 presented in previous section. 

4.2 AXDnr 

4.2.1 Replacement Scheme 
A simple divider-level approximation is to use cell replacement, 

i.e. to replace some EXDCnrs in the EXDnr with the AXDCnrs 

developed in Section 4.1. The approximate cells have a smaller 

circuit complexity, so making the entire divider less complex and 

consuming less power. These advantageous features are 

accomplished at the expenses of introducing errors at the outputs 

for the quotient Q and/or the remainder R. The errors in Q and R 

are correlated. So an approximate divider can be designed to have 

either a more accurate Q with a less accurate R (division), or a 

more accurate R with a less accurate Q (modulo). Approximation 

is therefore the process by which exact cell is replaced by an 

approximate cell; the extent by which this replacement process is 

performed in a divider is quantified by the depth d, i.e. the number 

of rows (and/or columns) in the divider array with approximate 

cells. Four types of approximation are used (Figure 8) for the 

division operation for the accuracies of Q and R. 

Vertical Replacement (VR): The least significant (LSB) EXDCnrs 

in each row of the divider are replaced by AXDCnrs. The depth of 

the vertical replacement can be increased to further decrease the 

power while tolerating more errors in the output. Hence, 4×d 

EXDCnr cells are replaced with AXDCnr cells in a divider with a 

vertical approximation of depth d. One example of depth d=2 is 

shown in Figure 8(a). 

Horizontal Replacement (HR): The value of the quotient is mostly 

related to the borrow signal of each cell in a single row. For 

example, consider the last row corresponding to the LSB of Q; if 

the value of R is not of significant concern, then all EXDCnrs in 

the last row can be replaced with AXDCnrs without losing the 

accuracy of Q. If some error can be tolerated at Q, then an 

increase in the depth of the horizontal replacement up to the dth
 

LSB of Q is possible. An example of a horizontal replacement 

divider of depth d=2 is shown in Figure 8(b). 



Square Replacement (SR): By combining the vertical and 

horizontal replacement; a new configuration is referred to as the 

square replacement. Hence, in a dth AXDnr, d2 EXDCnrs are 

replaced with AXDCnrs. An example of a square replacement 

AXDnr of depth d=2 is shown as Figure 8(c). 

Triangle Replacement (TR): Consider the integer pair (i,j) as 

coordinates of each cell in a divider (Figure 9). An EXDCnr (i,j) 

(i<d or j<d) is replaced by a AXDCnr. So, in a triangle 

approximation divider with depth d (d≥1), d(d+1)/2 EXDCnrs are 

replaced with AXDCs. An example of a triangle approximation 

divider with d=2 is shown in Figure 8(d). 

    
(a) (b) (c) (d) 

Figure 8 Four replacement types of 8-to-4 bit AXDnr: (a) VR, 

(b) HR, (c) SR, and (d) TR. The replaced cells are shaded. 

4.2.2 Truncation Scheme 
Truncation consists of fully removing at least a cell (so no 

replacement with AXDCnr(s)); this process is shown by the 

shaded cells in Figure 8. The input X of the removed cell is left 

unchanged and moved downwards along the remainder output 

direction, while the input Y of the removed cell is discarded. 

Similar to replacement scheme, a truncation scheme has also four 

configurations: Vertical Truncation (VT), Horizontal Truncation 

(HT), Square Truncation (ST) and Triangle Truncation (TT). 

4.3 Evaluation of AXDnrs 

4.3.1 Error Estimation of AXDnrs 
Error generation and propagation can be qualitatively analyzed by 

the location of the replaced or truncated cells in the divider. A so-

called error impact coefficient (denoted by S) is proposed to 

simplify the analysis for finding the impact of the inexact or 

truncated cells in the array divider. An approximate scheme 

consists of replacing or truncating only a portion of the divider; 

this leads to different approximate configurations with different 

accuracy for the output values (Q and R). In a divider, the 

dividend X and the divisor Y are provided as inputs at the north 

side, while the quotient Q and the reminder R are generated at the 

west and the south sides respectively (Figure 9). So, each cell 

(located at a unique position in the divider) plays a different role 

in generating an error; intuitively, cell replacement or truncation 

must not preferably occur at the MSBs of Q and R. Therefore, the 

coefficients SQ,(ij) and SR,(i,j) are given by 

{
SQ,ij =

1

√(i−N)2+(j−2N+1)2

SR,ij =
1

√(i+1)2+(j−N)2

      (i ∈ [1, N), j ∈ [1,2N − 1)) 

in which i, j are the coordinates of the cell in the divider ((0,0) is 

the origin, as shown in (Figure 9).  SQ,(ij)  is effectively the 

distance from the MSB cell of Q to a cell position in the divider; 

SR,(i,j) is the distance from the MSB cell of R to a cell position in 

the array. Larger SQ,(i,j) or SR,(i,j) is, a greater error is contributed by 

the (i,j) cell to the final outputs Qerror and Rerror. So, the impacts of 

errors at the outputs Q and R are given by 

SQ = ∑ SQ,ji     SR = ∑ SR,ij 

where, SQ,ij  and SR,ij  are due to cell (i,j) when using an 

approximate implementation. Figure 10 illustrates the coefficients 

SQ  and SR  of the replacement or truncation configurations at 

different depths. The trends for SQ and SR are consistent with the 

NEDs plotted in Figure 11; so, SQ  and SR  are good qualitative 

metrics for analyzing different replacement or truncation schemes. 

 
Figure 9 Error impact coefficients 𝐒𝐐 and 𝐒𝐑 

  
(a) (b) 

Figure 10 Error impact coefficients of different replacement 

or truncation configurations vs depth: (a) 𝐒𝐐 and (b) 𝐒𝐑 

4.3.2 Normalized Error Distance (NED) 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 11 NED of AXDnrs for Quotient Q and R (a)(b) 

AXDnr1, (b)(c) AXDnr2, (d)(e) AXDnr3, (g)(h) Truncation 

For a more accurate evaluation of the different approximate 

designs, the NED has been simulated at different depths (Figure 

11). Among the replacement schemes, the error of AXDnr2 is the 

largest in all cases for Q, but not for R; this is due to the worst 

(best) accuracy for Bout (D) in AXSC2. AXDnr1 and AXDnr3 



have on average the smallest NED for both Q and R. Among 

truncation schemes, the NED of Q is larger than any of its 

corresponding replacement schemes, because more error is 

introduced by simply removing a cell compared with replacing it 

with the proposed AXDC. For both replacement and truncation 

schemes, the NED of Q for the vertical and horizontal 

approximations increases rapidly with depth, more than for the 

square and triangle approximations; the triangle  approximation 

shows the smallest NED for Q compared to the other replacement 

schemes. The NED of R also increases with replacement depth; 

moreover, it is larger than the NED of Q. This occurs because the 

error in R is strongly dependent on the error in Q; however when 

using a horizontal replacement, the NED of R is less dependent on 

the replacement depth. 

4.3.3 Power consumption 
Figure 12 shows the power consumption of AXDnrs versus 

replacement depth. All AXDnrs consume less power as the 

replacement depth increases; this is significantly lower than the 

power consumed by EXDnrs. The power dissipation of the 

truncation schemes may be slightly larger than the replacement 

schemes when the depth is small, however the power of a 

truncation scheme decreases at the highest rate. 

  
(a) (b) 

  
(c) (d) 

Figure 12 Power consumption of AXDnrs for Quotient Q (a) 

AXDnr1 (b) AXDnr2 (c) AXDnr3 and (d) Truncation 

  
(a) (b) 

  
(c) (d) 

Figure 13 MED Power Product of AXDnrs for Quotient Q (a) 

AXDnr1 (b) AXDnr2 (c) AXDnr3 and (d) Truncation 

4.3.4 MED Power Product (MPP) 
To evaluate the tradeoff between computation accuracy and power 

consumption of the AXDnrs, the MPP of the AXDnrs is 

calculated and plotted in Figure 13. Although the power saving of 

a truncation scheme is larger than for a replacement scheme, this 

is at the expense of the error; hence, the triangle replacement 

scheme with AXDnr3 has the smallest MPP. AXDnr3 is very 

promising for an approximate divider design requiring both high 

accuracy and low power consumption. AXDnr2 is again shown to 

be the worst design regardless of the type of replacement. 

Compared to a replacement scheme, a truncation scheme is not 

suitable for both high accuracy and low power AXDnr designs. 

5. APPLICATIONS 

5.1 Pixel Subtraction 
Pixel subtraction takes two images as input and produces as 

output a third image whose values are the subtraction of the 

second image from the first image on a pixel basis. 8-bit ripple 

borrow EXS and AXS with replacement depth d=4 are used.  

Background Removal: In this case, background variations in 

illumination are subtracted from a scene, such that the foreground 

objects can be better viewed. For example, the image X in Figure 

14 shows some text that has been badly illuminated during capture 

(i.e. there is a strong illumination gradient across the image). If a 

blank page Y is subtracted from the poorly illuminated image X, 

the output has a relatively constant illumination. Figure 14 shows 

the simulation results. The results of AXS1 and AXS3 are better. 

   
X Y D (EXS) 

   
D (AXS1) D (AXS2) D (AXS3) 

Figure 14 Output images for background removal 

   
X Y D (EXS) 

   
D (AXS1) D (AXS2) D (AXS3) 

Figure 15 Output images for change detection 

Change Detection: The image difference is also used for change 

detection. If the difference between two frames of a sequence of 

images is calculated and there is no movement in the scene, then 

the output image mostly consists of zero value pixels. If there is 

movement, then the pixels in those regions of the image in which 

the intensity spatially changes, exhibit significant differences 

between the two frames. Figure 15 shows the change detection 

results of a sequence of frames X and Y. AXS1 and AXS3 are 

capable of detecting the moving part of the image. 



The peak signal to noise ratio (PSNR) is commonly used to 

measure the quality of lossy compression codecs of images. In 

this case, it is used to assess the quality of the images processed 

by an inexact arithmetic circuit compared to the ones by an exact 

arithmetic circuit. For the two image subtraction applications 

considered in this manuscript, the PSNR results are shown in 

Figure 16. AXS1 and AXS3 based subtractors have the larger 

PSNR, so generating the best approximation and the least image 

errors when replacing EXSCs with AXSCs.  

 

Figure 16 PSNR of AXSs for pixel subtraction 

5.2 Pixel Division 
The change detection and background removal application can be 

also realized by division operation. In image analysis, if only 

integer division is performed, then the results are typically 

rounded at the output to the next lowest integer. 16-to-8 EXDnr 

and AXDnr are used to compute the same 8-bit grayscale images 

as in the previous section; the approximations used in these 

applications are with depth 3 for VR and HR, depth 2 for VT and 

HT, depth 5 for SR, depth 4 for ST, depth 7 for TR and depth 5 

for TT. These configurations are selected to ensure that the power 

consumptions are nearly equal. 

  
(a) (b) 

Figure 17 Simulated PSNR of pixel division (a) change 

detection (b) background removal 

It can be seen from both change detection and background 

removal results of Figure 17 that the triangle replacement with 

AXDnr3 has the best PSNRs while the vertical replacement has 

overall the worst PSNR. 

6. CONCLUSION 
This paper has presented a detailed analysis, design and 

evaluation of dividers that utilize approximate criteria in their 

operation. As basic operation for division, subtraction has been 

initially considered. Subsequently, AXDnr have been proposed by 

introducing approximate computing at cell as well as at divider 

levels. Division presents unique challenges for approximate 

computing; it generates two output values (the remainder R and 

the quotient Q), so changes in cells as well as the dividers may 

affect one of the outputs more than the other. Hence, different 

arrangements in the approximate cells have been investigated; 

these arrangement replaces exact with cells or truncates 

(eliminates) them according to the direction of computation flow. 

The following conclusions can be drawn. (1) The error in Q for 

different approximation configurations increases with the 

replacement or truncation depth; the triangle approximation 

increases at a smaller rate.  (2) AXDnr1 and AXDnr3 have on 

average the smallest NED for Q. However, the error introduced by 

a truncation scheme is significantly more than a replacement 

scheme. (3) The error in R due to replacement is significantly 

larger than the error in Q because R is dependent on Q of previous 

stage. (4) Power consumption is reduced considerably when the 

approximation depth increases. Higher the depth, more 

pronounced is the power reduction. (5) For all depths, AXDnr1 

and AXDnr2 consume more power than AXDnr3; the truncation 

schemes require considerably less power than the replacement 

schemes. (6) The trade-off between accuracy and power 

consumption makes an approximate divider design an application 

specific process. For an application requiring both high accuracy 

and low power, the MED power product metric shows that 

AXDnr3 is a good approximate scheme. For Q-oriented 

applications (image processing), AXDnr3 with a triangle 

replacement shows the best results. 
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