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Abstract—Approximate adders have been considered as a po-
tential alternative for error-tolerant applications to trade off some
accuracy for gains in other circuit-based metrics, such as power,
area and delay. Existing approximate adder designs have shown
substantial advantages in improving many of these operational
features. However, the error characteristics of the approximate
adders still remain an issue that is not very well understood. A
simulation-based method requires both programming efforts and
a time-consuming execution for evaluating the effect of errors.
This method becomes particularly expensive when dealing with
various sizes and types of approximate adders. In this paper, a
framework based on analytical models is proposed for evaluating
the error characteristics of approximate adders. Error features
such as the error rate and the mean error distance are obtained
using this framework without developing functional models of
the approximate adders for time-consuming simulation. As an
example, the estimate of peak signal-to-noise ratios (PSNRs) in
image processing is considered to show the potential application
of the proposed analysis. This analytical framework provides
an efficient method to evaluate various designs of approximate
adders for meeting different figures of merit in error-tolerant
applications.

Keywords—Approximate computing, approximate adder, PSNR
estimate, mean error distance, image processing.

I. INTRODUCTION

Approximate computing has become a promising technique
to reduce the power, area and delay constraints in VLSI design,
albeit at the expense of a loss in computational accuracy
[1]. This technique is applicable to error-tolerant applications
such as multimedia, mining and recognition [2]. Generally,
there are two methodologies for reducing accuracy by ap-
proximation. The first methodology uses a voltage-over-scaling
(VOS) technique for CMOS circuits to save power, while
also introducing errors into the circuit [3]–[5]. The second
methodology is based on redesigning a logic circuit into an
approximate version. While the VOS technique is applicable
to most circuits for error-tolerant applications, an approximate
redesign requires to consider the different functionalities of
logic circuits. As one of the simplest, but key components of
arithmetic circuits, adders have attracted an extensive inter-
est for redesigning and implementing approximate schemes.
Approximate adders have been proposed by using a reduced
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number of transistors [6], [7] and by truncating the carry
propagation chain for a speculation-based operation [8]–[12].

The approximate speculative designs achieve a better per-
formance in terms of area, power and delay compared to
conventional (exact) adders. New metrics and simulation-
based approaches have been proposed to model and evalu-
ate approximate adders according to specific computational
features [2], [13]–[15]. Monte Carlo or exhaustive simulation
approaches have been employed to acquire data for analysis.
This class of approaches are however time-consuming and
require building functional models of the approximate designs.
To improve efficiency, a mathematical characterization of the
arithmetic accuracy of approximate adders is then required for
a better understanding of the design prior to a simulation-based
evaluation.

In addition to generic metrics (such as the error rate),
application specific measures (ASMs) such as the peak signal-
to-noise ratio (PSNR) for image processing are well suited
in practice. Without an approach to modeling the relationship
between the generic metrics and the ASMs, extensive program-
ming and simulation efforts are required to obtain the ASMs
for assessing the impact and the potential of approximate
computing in different applications. Therefore, an effective
approach to obtain or estimate the ASMs from generic error
metrics is needed; however, there are no formal methodologies
or analytical approaches for these purposes in the technical
literature.

In this paper, an analytical framework is proposed to assess
the arithmetic accuracy, i.e. the error rate (ER) and mean
error distance (MED), of approximate adders. Three types
of approximate adders are considered and their error fea-
tures are compared using the proposed analysis. The revealed
error characteristics provide insights into the quality of an
appropriate adder for achieving a desired operational accuracy.
As an example of ASMs, the PSNR in image processing is
considered. A model is presented for estimating the PSNR
from the MED obtained from the proposed framework; exper-
imental results show that the estimated PSNRs are very close
to the PSNRs obtained by simulation. The utilization of the
proposed framework to PSNR estimate provides an analytical
approach for assessing and designing a feasible approximate
image processing system based on approximate adders.

The major contributions of this paper are as follows.
• An analytical framework is developed for modeling and

evaluating the error characteristics of three types of
approximate adders found in the technical literature.

• A comparative study is performed for various approxi-
mate adders using different carry speculation schemes to
gain an insight into the qualitative features of a design
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with respect to several error metrics.
• An analytical approach is developed to model the re-

lationship between the PSNR and the MED obtained
from the proposed framework in approximate adder-
based image processing. This approach can effectively
estimate the PSNR from the approximate adders used in
an image precessing application.

The organization of this paper is as follows. Section II
reviews the approximate designs applicable to the framework
proposed in this paper. Section III describes the analysis for
modeling the error characteristics of the approximate adders.
Discussion follows in Section IV. Section V presents the
comparison of approximate adder designs using the proposed
framework; as an application, the PSNR estimate in image
processing is investigated. Conclusion is given in section VI.

II. REVIEW OF EXISTING APPROXIMATE ADDERS

A. The Speculative and Almost Correct Adder (ACA)
The so-called almost correct adder (ACA) [9] is based on the

speculative adder design in [8]. The ACA utilizes insufficient
information, i.e. k LSBs for predicting the sum of each bit in an
n-bit adder (n > k). The same illustration (Fig. 1) as in [15] is
used for the ACA (and the ESA in the following subsection). In
Fig. 1, four bits (i.e. k = 4) are used to calculate each bit in the
sum of an n-bit adder. The identical vertical rectangular blocks
on the top denote the inputs, while the horizontal rectangles
under them show the carry propagation paths for each sum
bit. This design is based on the observation that the carry
propagation chain is usually shorter than n, i.e. in practice,
the truncation of the chain up to some length has a very low
probability to be erroneous.

Fig. 1. The almost correct adder. n: the adder size; k: the maximum carry
chain length.

B. The Equal Segmentation Adder (ESA)
A dynamic segmentation and error compensation (DSEC)

scheme is presented in [5] for an approximate adder design.
This approximate adder consists of several sub-adders of
different sizes divided from an n-bit adder; each of the sub-
adders operates in parallel and has a truncated carry input. For

Fig. 2. The equal segmentation adder. n: the adder size; k: the maximum
carry chain length; l: size of the first sub-adder (l ≤ k).

Fig. 3. Block Diagram of error-tolerant adder type II. n: the adder size; k:
half of the maximum carry chain length

convenience, but with no loss in correctness, sub-adders of e-
qual size are considered in this manuscript. Moreover the error
compensation part [5] is neglected because the focus of this
manuscript is on analyzing the approximate operation. Thus,
a simplified DSEC adder referred to as an equal segmentation
adder (ESA) is analyzed in this paper (Fig. 2).

C. The Error-Tolerant Adder Type II (ETAII), the Speculative
Carry Select Adder (SCSA) and the Accuracy-Configurable
Approximate Adder

The ETAII is also based on the truncation of the carry
propagation chain and the segmentation of a full-sized adder
[12]. Compared to the ESA, the predicted carry input for each
segmented k-bit sub-adder (or the sum generator in Fig. 3) is
generated by k LSBs. The ETAII has an improved accuracy
compared to the ESA, because it uses more information to
predict the carry when the same k is used. In the so-called
speculative carry select addition (SCSA) [10], an n-bit adder
is first divided into

⌈
n
k

⌉
sub-adders (also known as ”window

adders”); each sub-adder consists of two k-bit adders: adder0
and adder1(Fig. 4). The only difference between the two k-bit
adders is the carry input; the carry of adder0 is “0” while it
is “1” for adder1. The output of the ith sub-adder is selected
from adder0 and adder1 based on the carry out signal generated
by the (i − 1)th sub-adder. The carry out of each sub-adder
is generated based on the k-bit in the sub-adder rather than
all previous bits. Therefore, the carry selection process is
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Fig. 4. The speculative carry selection adder. n: the adder size; k: the
maximum carry chain length.

still approximate and faster than a traditional carry selection
scheme. Even though the SCSA and the ETAII have different
circuit implementations, they share a similar functionality if
their sub-adders have the same length. The SCSA and the
ETAII generate the same carry signal for each sub-adder (or
the Sum Generator in the ETAII) even though by different
circuit implementations. The accuracy-configurable approxi-
mate adder proposed in [11] can adjust the accuracy during
runtime. For a given accuracy, the approximate configuration
of the adder performs a similar function as the ETAII.

For establishing the error characteristics, adders with the
same functionality are considered to be the same type. For
example, an ETAII and a SCSA with the same k and n values
generate the same output for the same inputs. Thus, they
have the same error characteristics. However, characteristics
related to a circuit implementation such as delay and power
are not necessarily the same. Some of the approximate adders
also have an error correction circuit that permits an additional
accurate operation mode; only the approximate operation of
each adder is considered in this paper.

III. ERROR ANALYSIS

A. Preliminaries

1) Metrics: The error distance (ED) and the mean error
distance (MED) are proposed in [13] to evaluate the arith-
metic performance of approximate circuits. For an approximate
adder, ED is defined as the absolute value of the difference
between the accurate and approximate sums, i.e.,

ED = |S
′
− S|, (1)

where S
′

is the sum of the approximate adder and S is the
sum of an accurate adder. MED is defined as the average ED
for a given set of input vectors, i.e.,

MED = E[ED] =
∑
i

EDiP (EDi), (2)

where P (EDi) is the probability of EDi. The error rate (ER)
is defined as the percentage of erroneous outputs among all
outputs [16], i.e.,

ER =
∑
i

P (EDi), for any EDi ̸= 0. (3)

Fig. 5. Sub error set Πi in the ACA

The above metrics (ER and MED) are of interest for evaluating
the arithmetic performance of approximate adders. In the fol-
lowing section, an analytical method is presented to calculate
these metrics for different types of adders.

2) Notation: The notation used in the error analysis through-
out this paper is introduced next. We consider an n-bit ap-
proximate adder with inputs A,B and C0, and an output S.
Ai, Bi, Si are the corresponding input and output bits at the
ith position. Ci is the carry to be added to the ith bit. Let
pi = P (Ci = 1) = P (Ai−1Bi−1 = 1) + P (Ai−1 ⊕ Bi−1 =
1, Ci−1 = 1), for uniformly-distributed inputs, pi = 1

4+
1
2pi−1,

which leads to
pi =

1

2
+

1

2i
(p0 −

1

2
), (4)

where p0 is the probability that the initial carry bit is 1. Assume
p0 = 0, then

pi =
1

2
(1− 1

2i
). (5)

Let X̄i and X̃i denote the events that the ith approximate
sum bit is the same as or different from the ith exact sum
bit, respectively, i.e., X̄i = {Si = S

′

i}, X̃i = {Si ̸= S
′

i}. An
X vector consisting of X̄i’s or X̃i’s is used to denote a set
of outputs of the approximate adder compared to the accurate
one. For example, for a 4-bit approximate adder, {X̄3X̄2X̃1}
denotes a set of outputs in which S1 is incorrect, both S2 and
S3 are correct and S0 could be either correct or incorrect.

B. ACA Error Characteristics

A universal error set is said to be formed by all possible
error patterns of the ACA. To calculate the MED of an n-bit
ACA, this error set is divided into n disjoint subsets and then
the MED is calculated for each subset. The universal error
set, denoted by Π , is divided into the subsets of Πi(i =
0, 1, ..., n− 1), i.e.,

Π = ∪Πi, (6)

where Πi = {X̄n−1, X̄n−2, ..., X̃i}. The error patterns in Πi

are those whose ith bit is erroneous, while the more significant
bits are correct and the less significant bits are “don’t cares”,
i.e., they can be either correct or erroneous, as shown in Fig.
5. Based on the error set division, the mean error distance of
the approximate adder is calculated as:

MED =
∑
i

E[|ei|], (7)

where E[|ei|] is the mean error distance of the subset Πi.
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(a)

(b)

Fig. 6. (a) P̄l, (b) P̃l.

In the subset Πi, the errors in the ith bit (i.e. ±2i) are
dominant. Moreover, some of the errors in the lower bits
can cancel each other. Therefore, the errors in Πi have on
average a magnitude of approximately 2i; so the MED of Πi

is calculated as
E[|ei|] ≈ 2iqi, (8)

where qi is the probability that the error patterns fall in Πi.
The total mean error distance is then given by

MED =
∑
i

2iqi. (9)

The error rate of the ACA is given by

ER =
∑
i

qi. (10)

Next the calculation of qi is presented. Let P̄l be the
probability that l consecutive bits in the approximate sum
are correct (Fig. 6(a)) and P̃l be the probability that l − 1
consecutive bits in the approximate sum are correct, but the
next lower bit is erroneous (Fig. 6(b)), i.e.,

P̄l = P (X̄N , X̄N−1, ..., X̄N−l+2, X̄N−l+1), (11)

P̃l = P (X̄N , X̄N−1, ..., X̄N−l+2, X̃N−l+1), (12)

Furthermore, let Q̄l denote the conditional probability that one
approximate sum bit is correct given that l−1 consecutive low-
er bits in the approximate sum are correct, and Q̃l denote the
conditional probability that one approximate sum bit is correct
given that l−2 consecutive lower bits in the approximate sum
are correct but the next lower bit is erroneous, i.e.,

Q̄l = P (X̄N |X̄N−1, ..., X̄N−l+2, X̄N−l+1), (13)

Q̃l = P (X̄N |X̄N−1, ..., X̄N−l+2, X̃N−l+1), (14)

Note that in these probabilities, only the length of the pattern
is important, i.e., the exact index of each pattern, N , is less
important.

Let the truncated carry propagation length be k; P̃l(l ≤ k)
is calculated first. Further denote the accurate sum as S and
the inaccurate sum as S

′
. As S

′

N−l+1 is the most significant
erroneous bit, i.e., all higher bits in the sum are correct, the
input carry, C

′

N−l+1−k, to calculate S
′

N−l+1, must propagate
all the way to S

′

N−l+1, i.e., Pi = Ai ⊕ Bi = 1, for
i = N − l−k+2, N − l−k+3, ..., N − l. Also, PN−l+1 = 0,
because, otherwise, the wrongly estimated carry would prop-
agate to S

′

N−l+2. As PN−l+1 = 0, it is sufficient to show
that S

′

N−l+2, S
′

N−l+3, ..., S
′

N are correct, because PN−l+1 = 0
prevents the error from propagating to the higher k − 1 bits.
Therefore ,

P̃l = P (PN−l−k+2, ..., PN−l = 1, PN−l+1 = 0,

C
′

N−l−k+2 ̸= CN−l−k+2) =
1

2k+1 , l ≥ 2.
(15)

Let P̃1 = P (X̃N ), then

P̃1 = P (PN−k+1, ..., PN−2 = 1, PN−1 = 0,

C
′

N−k+1 ̸= CN−k+1) =
1
2k
.

(16)

Thus,

P̃l =

{
= 1

2k+1 , l ≥ 2.
1
2k
, l = 1.

(17)

Since P̄1 = P̃2 + P̄2 = P̃2 + P̃3 + P̄3 = ... = P̃2 + P̃3 + ...+
P̃l + P̄l, then

P̄l = P̄1 −
l∑

i=2

P̃i, (18)

where P̄1 = 1− P̃1. For l ≤ k,

Q̃l =
P̃l

P̃l−1

, l ≤ k. (19)

For l > k, since only k bits are used to calculate the current
sum, the bits that are less significant than these k bits, have
no influence on Q̃l. Thus,

Q̃l = Q̄k =
P̄k

P̄k−1
, l > k. (20)

From all of the above, we obtain

Q̃l =


P̃l

P̃l−1
= 1, k ≥ l > 2,

P̃2

P̃1
= 1

2 , l = 2,
P̄k

P̄k−1
= 2k+1−k−1

2k+1−k
, l > k.

(21)

This leads to

qi ≈ P (X̄N , X̄N−1, ..., X̄i+1, X̃i)

= P (X̄N |X̄N−1, ..., X̄i+1, X̃i)P (X̄N−1, ..., X̄i+1, X̃i)

= P (X̄N |X̄N−1, ..., X̄i+1, X̃i)P (X̄N−1|X̄N−2, ..., X̄i+1, X̃i)

P (X̄N−2, ..., X̄i+1, X̃i)

= P (X̄N |X̄N−1, ..., X̄i+1, X̃i)P (X̄N−1|X̄N−2, ..., X̄i+1, X̃i)

...P (X̄i+1|X̃i)P (X̃i)
= Q̃N−i+1Q̃N−i...Q̃2P̃1.

(22)
Hence, (17), (21) and (22) can be used to calculate qi in the
ACA error analysis.



IEEE TRANSACTIONS ON COMPUTERS, SUBMITTED 2013 5

Fig. 7. An example of the error in ESA dominated by the (m+ 2)th sub-
adder.

C. ESA Error Characteristics
Consider an n-bit ESA divided into r (r =

⌈
n
k

⌉
− 1) sub-

adders of equal size k and 1 sub-adder of size l = n−kr. Thus
there are (r+1) sub-adders in total. Since the lowest sub-adder
(i.e. the first sub-adder) is always error-free, only the higher
r sub-adders that can be erroneous are considered. Initially
the error in the (m + 2)th sub-adder (m = 0, 1, ..., r − 1) is
considered; this is always 2mk+l, as introduced by the wrong
estimate of the input carry to this sub-adder.

When the speculative carry into each sub-adder is truncated
to 0, the error rate of the (m+ 2)th sub-adder is given by

P (error = −2mk+l) = P (C
′

mk+l < Cmk+l)
= pmk+l ≈ 1

2 .
(23)

The error rate of each sub-adder (except for the first one)
is approximately 1

2 . All sub-adders are independent, because
there is no connection between them; so, the error rate of the
entire adder is

ER = 1− (1− 1

2
)r = 1− (

1

2
)r. (24)

An approximate method is then introduced to calculate
the mean error distance of the ESA. Since the errors in
a lower sub-adder are significantly smaller than those in a
higher sub-adder, the error magnitude of the approximate
adder is dominated by the highest erroneous sub-adder. For
example, for 8-bit sub-adders, the error in the third sub-
adder is 256 times greater than the error in the second sub-
adder. Therefore, if a sub-adder is erroneous, the errors in the
lower sub-adders become insignificant and thus, they can be
ignored. Hence, for an ESA with (r+1) sub-adders, the error
magnitudes can be approximately divided into r levels, i.e.
{2l, 2k+l, ..., 2(r−1)k+l}. Fig. 7 shows a case when the error is
dominated by the (m+2)th sub-adder, and the error probability
is given by

P (error = −2mk+l) ≈ ( 12 )
r−m−1 × 1

2 . (25)

The mean error distance is therefore given by

MED =
r−1∑
m=0

2mk+l( 12 )
r−m−1 × 1

2

= 2kr+r−1
2k+1−1

× 2l−r ≈ 2n−k−1.

(26)

D. ETAII Error Characteristics
Similar to the analysis of the ESA, the ETAII uses the same

partition scheme and its error analysis starts with the evaluation

of the error rate in the (m+2)th sub-adder. The (m+1)th sub-
adder generates the approximate carry, C

′

mk+l, to the (m+2)th
sub-adder based on the assumption that the input carry to itself,
C

′

(m−1)k+l, is 0. Thus, when the exact carry C(m−1)k+l is 1
and propagates through the (m + 1)th sub-adder, the carry
generated by the (m+ 1)th sub-adder is erroneous; thus, this
results in an error in the (m+2)th sub-adder. Hence, the error
rate of the (m+ 2)th sub-adder is given by

P (error = −2mk+l) = P (C
′

mk+l < Cmk+l)
= ( 12 )

kpmk+l = ( 12 )
k+1(1− 1

2mk+l ) ≈ 1
2k+1 .

(27)

In the ETAII, the first and second sub-adders are always
error-free, so there are totally (r − 1) sub-adders that can be
erroneous. Hence, the ER of the ETAII is given by

ER ≈ 1− (1− 1

2k+1
)r−1. (28)

Similarly as for the ESA, the error in the ETAII is approx-
imately divided among the (r − 1) levels. Hence

P (error = −2mk+l) = (1− 1

2k+1
)r−m−1 × 1

2k+1
, (29)

and

MED =
r−1∑
m=1

2mk+l(1− 1
2k+1 )

r−m−1 × 1
2k+1

=
2kr−k+l−2l(1− 1

2k+1 )r−1

2k+1−2+2−k

. (30)

(30) can be simplified by ignoring −2+2−k in the denominator
and 2l(1− 1

2k+1 )
r−1 in the numerator, hence

MED ≈ 2n−2k−1. (31)

E. Error Characteristics Under Different Carry Estimation
Methods

All approximate adders considered so far use a fixed carry
(with a value of 0) estimate such that the carry propagation
chain is truncated. For example, for k = 10 in the ACA,
an assumed input carry C

′

1 = 0 is used to calculate S
′

10.
This assumption may lead to under-estimated results and the
average error is non-zero. A straightforward solution to avoid
the non-zero average error encountered in a method using a
fixed carry is to use a random carry. If the input operands are
uniformly distributed, one of the less significant input bits can
be used as the random carry signal [14]. For example, C

′

1 = A0

or C
′

1 = B0 can be used to estimate C1 in the previous ACA
example. Hereafter, these two methods are referred to as the
fixed carry estimate and 1-LSB carry estimate, respectively.

In the previous section, the error characteristics of approxi-
mate adders with a fixed carry estimate have been discussed.
Next, the error characteristics under the 1-LSB carry estimate
case are considered.
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1) ACA: A detailed solution under the 1-LSB carry estimate
case is not provided, because it can be obtained in a manner
similar to the fixed carry case. When 1-LSB is used to
estimate the carry, (17) and (21) are replaced by (32) and (33),
respectively, while (22) remains the same.

P̃l = P (qN−l−k+2, ..., qN−l = 1, qN−l+1 = 0,

C
′

N−l−k+2 ̸= CN−l−k+2) =
1
3

1
2k
(1 + 1

22l−1 ), l ≤ k
(32)

Q̃l =


P̃l

P̃l−1
= 22l−1+1

4(22l−3+1)
, k ≥ l ≥ 2

P̄k

P̄k−1
= 1

4
9×23k−1−(6k+4)22k−2−1
9×23k−3−(6k−2)22k−4−1

, l > k
(33)

After qi is calculated by (22), (9) and (10) can still be used to
obtain the MED and ER in the 1-LSB carry estimate case.

2) ESA: The error rate of each sub-adder in the 1-LSB carry
estimate case is half of the error rate in the fixed carry case (as
discussed later in this manuscript). Thus, the procedure in the
previous section can be utilized by changing the error rate of
each sub-adder at the beginning. If 1-LSB is used to estimate
the truncated carry, (23) is changed to:

P (error = 2mk+l) = P (C
′

mk+l > Cmk+l)
= P (Amk+l−1 = 1, Bmk+l−1 = Cmk+l−1 = 0)
= 1

4 (1− pmk+l) ≈ 1
8 ,

(34)

and

P (error = −2mk+l) = P (C
′

mk+l < Cmk+l) ≈
1

8
. (35)

The mean error distance is then given by

MED =
r−1∑
m=0

2mk+l( 34 )
r−m−1 × 1

4

=
2kr−( 3

4 )
r

2k+2−3
× 2l ≈ 2n−k−2.

(36)

The ER is:

ER = 1− (1− 1

4
)r = 1− (

3

4
)r. (37)

3) ETAII: If 1-LSB is used to estimate the truncated carry,
the analysis of the ETAII is very similar to the ESA, so the
ER and MED for the ETAII are given as follows:

ER ≈ 1− (1− 1

2k+2
)r−1, (38)

and

MED =
r−1∑
m=1

2mk+l(1− 1
2k+2 )

r−m−1 × 1
2k+2

≈ 2n−2k−2.
(39)

F. Monte Carlo Simulation
1) Error Analysis for Monte Carlo Simulation: Assume the

accurate MED is µ and µ̂T is an estimate for MED obtained by
averaging EDs from T iterations of Monte Carlo simulation.
This can be modeled as a Monte Carlo integration approach
[17]. The variance of µ̂T is

var(µ̂T ) =
v

T
, (40)

where v is the variance of EDs given by

v =
∑
i

(EDi)
2P (EDi)− µ2. (41)

For large T , by the Law of Large Numbers,

µ̂T ∼ N(µ,
v

T
). (42)

For a given confidence level, a parameter zc can be deter-
mined to show the corresponding confidence interval. There-
fore the error of µ̂T becomes

e =
zc
µ

√
v

T
. (43)

For a confidence level of 95%, zc = 1.96. Therefore, for
T = 1, 000, 000, the error is

e =
0.00196

√
v

µ
= 0.00196CV, (44)

where CV =
√
v/µ, the coefficient of variation.

(44) will be used in the following to analyze the error for
Monte Carlo simulations of three approximate designs with a
confidence level of 95%.

Considering (25), (26) and (41), the variance of the EDs of
ESA for a fixed carry estimate is given by

v =
r−1∑
m=0

(2mk+l)2( 12 )
r−m−1 × 1

2 − (2n−k−1)2

≈ 22n−2k−2.
(45)

By taking into consideration (26) and (45), the percentage
error is 0.196% by (44), i.e., we are 95% confident that a
simulated MED is within 0.196% of the true MED. Similarly,
the variance of EDs of ESA for the 1-LSB carry estimate is

v ≈ 3× 4n−k−2. (46)

The corresponding error is 0.34%.
For ETAII in the fixed carry estimate case, based on (29),

(31) and (41), the variance of EDs is

v =
r−1∑
m=1

(2mk+l)2(1− 1
2k+1 )

r−m−1 × 1
2k+1 − (2n−2k−1)2

≈ 22n−3k−1.
(47)

The corresponding error for a confidence level of 95% and
1,000,000 iterations of simulation is

e = 0.00196
√
2k+1. (48)

In the simulation, the smallest and largest k for ETAII is 4 and
10, thus the error is in the range of 1.11%-8.87%. For ETAII
in the 1-LSB carry estimate case, the variance can be obtained
in a similar way as in the fixed carry estimate case:

v ≈ 22n−3k−2. (49)

The corresponding error is

e = 0.00196
√
2k+2. (50)
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TABLE I. CV (I.E.
√
v/µ) VALUES FOR ACA

fixed carry estimate 1-LSB carry estimate
k=6 6.8 7.7
k=7 9.7 11.0
k=8 13.6 15.5
k=9 19.6 21.9
k=10 27.0 31.4
k=11 39.0 43.7
k=12 53.7 63.7

TABLE II. ERRORS OF MONTE CARLO SIMULATION FOR ACA

fixed carry estimate 1-LSB carry estimate
k=6 1.3% 1.5%
k=7 1.9% 2.2%
k=8 2.7% 3.0%
k=9 3.8% 4.3%
k=10 5.3% 6.1%
k=11 7.7% 8.6%
k=12 10.5% 12.5%

The error is in the range of 1.57%-12.54% for k between 4
and 10.

Since it is difficult to get the theoretical variance for ACA,
simulated variances are used. The CVs (i.e.

√
v/µ) for different

k and different carry estimate methods are presented in Table
I. According to Table I and (44), the errors of ACA are in
the ranges of 1.3%-10.5% and 1.5%-12.5% for the fixed and
1-LSB carry estimates, as shown in Table II.

2) Simulation Results: Fig. 8 and Fig. 9 shows the simula-
tion results and the analytical results for the ACA, ESA and
ETAII. The functional models of both accurate and approx-
imate adders are implemented in Matlab. 1,000,000 random
input combinations are used to find the MED and ER values.

The simulation and the analytical MEDs are well matched
especially for ESA for which the theoretical and simulated
curves overlap; there are mainly two sources of discrepancy.
The first source is due to the simulation method, i.e. Monte
Carlo simulation is not exhaustive. The second source is caused
by the approximation used in the analytical framework. As
shown in the figures, the MED drops exponentially as k is
increased: the MED drops approximately to half of its previous
value when k is increased by 1 for all three approximate
adders. The difference between MED values with different k
values for the same adder is very large; therefore, the small
discrepancy between the analytical and simulated results is
rather negligible, i.e., the discrepancy will not result in an
incorrect assessment of k.

The simulation results for the error rate (ER) are shown in
Fig. 9. For the ACA, ER decreases to half of its previous value
when the value of k is increased by 1. For any k larger than
9, the ER drops below 2% for both 1-LSB and fixed carry
estimates. Due to the design, the ER of the ESA is nearly
constant for a value of k in a range between 11 and 15; it
starts to decrease significantly when k is 16. In general, the
ESA has a very high error rate, even though it has a very small
MED. The ETAII can significantly reduce ER. When k = 6,
for example, the ER of the ETAII with 1-LSB carry estimate
is below 2%.
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Fig. 8. Simulated and theoretical MED for a 32-bit (a) ACA, (b) ESA, and
(c) ETAII.
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Fig. 9. Simulated and theoretical ER for a 32-bit (a) ACA, (b) ESA, and (c)
ETAII.

IV. DISCUSSION

In this section, different features as related to carry estimate
are analyzed for the various approximate adders.

A. Generalizing Carry Estimation Methods

The 1-LSB carry estimate generates rather symmetrical
and centralized errors, while a fixed carry tends to generate
more biased errors. Another significant advantage of 1-LSB
carry estimate is that it reduces the MED. As shown in the
simulation results (Fig. 8), the MED of 1-LSB carry estimate
is approximately half of the MED of a fixed carry for all
three types of approximate adder. Consider the carry estimate
accuracy (EA), i.e. the probability that the estimated carry
is equal to the exact carry. If the carry is fixed to 0, then
EA = P (Ci = 0) = 1−pi ≈ 1

2 . For the 1-LSB carry estimate,
EA = P (Ci = Ai−1) = P (Ci = 1|Ai−1 = 1)P (Ai−1 =
1) + P (Ci = 0|Ai−1 = 0)P (Ai−1 = 0) = 3

4 . It is also
intuitively true that the 1-LSB carry estimate method has a
higher accuracy than a fixed carry estimate, because it uses
more information (when Ai−1 = 1, Ci is more likely to be 1).
It is then evident that the use of the 1-LSB to estimate carry
reduces the ER as well as the MED.

The approximation in the estimate of the carry signals is a
significant issue for an approximate adder design. Intuitively,
the utilization of more less significant bits (LSBs) results in a
better performance to predict the carry signal. Hereinafter, “k-
LSB carry estimate” refers to using the k bits in both A and
B that are less significant than the current index to estimate
the current carry. The fixed carry approach fails to use the
LSBs in the estimate process, while the 1-LSB carry estimate
method uses only 1 LSB. For the ETAII and SCSA, if the
Sum Generator is considered as a sub-adder, then the Carry
Generator (Fig. 3) is the circuitry for the k-LSB carry estimate.
Thus, the ETAII uses more LSBs for the carry estimate than
the ESA and this increases the accuracy. Nevertheless, the use
of more LSBs incurs a larger area overhead and longer delay;
a trade-off must be made between the number of LSBs for
carry prediction and circuit performance.

Table III shows the truth table of Ci+1 given 1-LSB,
i.e., Ai and Bi, where “U” means “unknown”. More LSBs
must be used to determine the unknown values. Without the
information provided by the additional LSBs, the unknown
values have approximately a probability of 0.5 to be either
’1’ or ’0’. Therefore, the best EA using 1-LSB information is
2+2/2

4 = 3
4 . The 1-LSB estimated carry, i.e., C

′

i+1 = Ai, uses
a logic function based on 1-LSB information for achieving
an EA of 3

4 . Consider the case in which k LSBs are used to
estimate the carry C

′

m. If the propagates in these k positions
are all 1’s, i.e., Pi = Ai⊕Bi = 1, i = m−1,m−2, ...,m−k,
C

′

m−k is required to determine C
′

m. Therefore, without the
information of C

′

m−k, there are 2k unknown entries in the
truth table of Cm

′ based on previous k LSBs. In the k-LSB
carry estimate method, these entries are arbitrarily assigned
with certain values (1 or 0), which on average can successfully
estimate half (i.e. 2k−1) of the unknown entries. There are
totally 22k input combinations, with 2k unknown entries and
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TABLE III. TRUTH TABLE OF Ci+1 GIVEN AiBi

AiBi Ci+1

00 0
01 U
10 U
11 1

22k − 2k known entries in the truth table. Thus, the highest
EA based on k LSBs is 22k−2k−1

22k
= 1 − 2−k−1. However,

the utilization of more LSBs for carry prediction increases
both the delay and the circuit complexity (i.e. the number of
transistors). To reduce complexity, additional “approximate”
carry estimates based on k LSBs can be derived by slightly
changing some entries in the truth table. Two examples are
provided by using 2 LSBs, as given in (51) and (52), with EA
being 0.8125 and 0.875, respectively. Note that (52) achieves
the highest EA of the 2-LSB carry estimate while (51) has a
lower EA with a simpler logic implementation compared to
(52).

Ci+1 = AiBi +AiAi−1. (51)

Ci+1 = AiBi +Ai−1(Ai ⊕Bi). (52)

B. Comparison Among Different Approximate Adders

The ACA has an area complexity of O(n log log n) ≈ O(n),
and a delay complexity of O(log k) [9], where n is the size
of the adder and k is the maximum carry chain length. The
ESA has the same complexity as the ACA if a parallel adder
structure such as carry look-ahead (CLA) is used to implement
each sub-adder in the ESA. However for the same k, the ACA
has a more complicated structure than the ESA and thus, it
has a larger area overhead and probably a longer delay. As an
example consider k = 10 and the 1-LSB carry estimate case.
The simulated MEDs of the ACA and the ESA are 1.54×106

and 1.05×106 respectively. In terms of MED, the ESA is better
than the ACA. If area and delay are taken into consideration,
the ESA is certainly a better scheme, because it has a smaller
MED as well as smaller area and delay. However, the ACA
has a smaller ER: the ER of the ACA is 0.0074 while the ER
of the ESA is 0.5775, which is 78 times of the ER of the ACA.

In the ESA,
⌈
n
k

⌉
sub-adders have to be implemented.

The area and delay complexities are
⌈
n
k

⌉
A(k) and τ(k),

respectively, where A(k) and τ(k) are the area and delay
complexities of a k-bit adder. In the ETAII, the area complexity
is (2

⌈
n
k

⌉
− 2)A(k) because every sub-adder is duplicated

except for the first and last sub-adders. The delay complexity
of the ETAII is 2τ(k) because the critical path contains two
k-bit sub-adders in series. The SCSA has the same error
characteristics as the ETAII, but it has a different circuit
implementation. The delay of the SCSA is τ(k) with the delay
of a multiplexer. Compared to ETAII, the last k-bit sub-adder
still needs duplication and (

⌈
n
k

⌉
− 1) k-bit multiplexers are

needed (they are not used in the ETAII). Therefore, the SCSA
is approximately two times faster than the ETAII at the cost
of an increased area overhead.

TABLE IV. COMPARISON BETWEEN THE ADDERS

ACA ESA ETAII SCSA
k 10 10 5 10

Delay O(logk) O(logk) O(log2k) O(logk)
Area O(nlog(log(n))) O(n) O(n) O(n)

MED (×103) 1540 1050 1074 1.074
ER (%) 0.74 57.8 3.81 0.05

For comparison purposes, choose k = 10 for the ESA and
k = 5 for the ETAII with a 1-LSB carry estimate, because
these two implementations have relatively the same delay (even
though the ETAII requires more area). The MED of the ESA
is 1.05 × 106, while the MED of the ETAII is 1.07 × 106;
the ERs are 0.5775 and 0.0381 for the ESA and the ETAII,
respectively. Therefore for the compared schemes, the ESA
and the ETAII have relatively similar MED, but the ETAII has
a significantly smaller ER. Hence, the ETAII tends to generate
large error magnitudes, because it has a similar MED as the
ESA, but a very small ER.

Consider k = 10 for the ACA, the ESA and the SCSA,
and k = 5 for the ETAII as further examples. These three
adders have similar critical path delays. The ESA has the
least area overhead, but the largest ER. The ACA has the
smallest ER, but it has the largest MED. According to [11], the
ACA occupies 36% more area but it incurs in a 30% smaller
delay compared to ETAIIM (a modified version of the ETAII),
with both adders having the same carry propagation length.
The ETAII has a significantly reduced MED compared to the
ACA and an acceptable ER of 3.81%. The SCSA is faster
than the ETAII at the cost of an increase in area (due to the
additional multiplexers). If the design objective is an extremely
fast approximate adder, then the SCSA is the best choice
among these four approximate adders, because it achieves a
similar MED to other approximate adders with a smaller k
(i.e. a shorter critical path delay). The SCSA (k = 10) has
approximately the same delay as the ETAII (k = 5). However,
the SCSA with k = 10 has an extremely small MED and ER:
the ER is only 0.05%, while the MED is 10−3 of the ETAII
(k = 5), as shown in Table IV.

V. APPLICATION: IMAGE QUALITY EVALUATION USING
PSNRS

A. Peak Signal-to-noise Ratio (PSNR)
PSNR is widely used in many DSP applications (such as

image processing) as an important figure of merit. In image
processing, if I is the noise-free image and K is the noisy
image, the PSNR is defined as [18]:

PSNR = 20 log(MAXI/
√
MSEK), (53)

where MAXI is the maximum possible pixel value of image
I and MSE is the mean squared error defined as

MSEK =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]
2 (54)

When approximate circuits are used for image processing, I
can be the resulting image using an exact computation while
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K is the image obtained by approximate computing. For a
good agreement with a precisely processed image, the PSNR
of a noisy image should be very large - usually larger than a
threshold P , i.e.

PSNR > P,

or √
MSEK < C, (55)

where C = 10log(MAXI)− P
20 .

For (54), define an error matrix as E = K − I; then the
MSE and MED of image K are

MSEK = E(E ◦E), (56)

MEDK = E(|E|). (57)

In (56) and (57), E(X) denotes the average value of all the
elements in matrix X, the “◦” operation obtains the element-
wise product of two matrices, which is also known as the
Hadamard product [19], and |X| obtains the absolute value of
each element in X.

Let d and µ denote the ED and MED of the approxi-
mate adder and σ2 represent the mean squared error distance
(MSED):

σ2 = MSED = E[d2]. (58)

The MED and MSED of the approximate adders are obtained
by the assumption that the inputs are uniformly distributed. In
the analysis in this manuscript, the pixel values of an image
are assumed to be sufficiently random, i.e. if an image is
processed by an approximate addition for each pixel, the mean
and mean squared value of the error matrix are considered to
be the same as the MED and the MSED of the approximate
adder. Hereinafter, µ and σ2 denote the MED and MSED of
the approximate adder, as well as the mean and mean squared
values of the error matrix if a resulting image is obtained
by one approximate addition of each pixel. If the image K
is processed by a approximate addition operations, the mean
squared error, MSEK , is given by

MSEK = E[(
a∑

i=1

Ei) ◦ (
a∑

i=1

Ei)], (59)

where Ei is the error matrix of the ith addition. Assume each
Ei is independent, then (59) becomes:

MSEK = E[
a∑

i=1

Ei ◦Ei + 2
∑

16i<j6a

Ei ◦Ej]

6 aσ2 + 2
∑

16i<j6a

E(|Ei|)E(|Ej|)

≈ aσ2 + a(a− 1)µ2.

(60)

For the ESA and the ETAII, assume the relationship between√
MSE (i.e. σ) and MED (i.e. µ) is given by σ = f(µ) (the

function f(·) will be derived next), (60) can be converted to√
MSEK ≈

√
af(µ)2 + a(a− 1)µ2 6 C (61)

Based on (53) and (61), the PSNR can be estimated by

PSNR ≈ 20log(MAXI/
√
af(µ)2 + a(a− 1)µ2) (62)

The solution of (61) gives the maximum value of MED for
deriving the parameter k in the ESA or the ETAII using the
corresponding equations (i.e. (26) and (30)) given in section
III. Hence, this analytical framework can be used to select the
proper approximate adder type and parameter (i.e. carry prop-
agation length k) for image processing applications, instead
of building functional models of the approximate adder and
running time-consuming simulations with different parameters.

B. Relationship between µ and σ

1) ESA: The relationship between µ and σ is analyzed for
the fixed carry case. Similar to the MED calculation in (26),
the MSE of the ESA is calculated as:

σ2 =
r−1∑
m=0

(2mk+l)2( 12 )
r−m−1 × 1

2 ≈ 22n−2k−1. (63)

Based on (26) and (63), the relationship between µ and σ
for the ESA is given by:

σ =
√
2µ. (64)

2) ETAII: Similar to the analysis for the ESA, the MED
and MSE for the ETAII are found as µ ≈ 2n−2k−1, σ2 ≈
22n−3k−1. The relationship between µ and σ is:

σ = (2n+1µ3)
1
4 . (65)

The simulated relationship between µ and σ and the ana-
lytical functions in (64) and (65) are plotted as in Fig. 10 for
n = 16. For the ESA, the simulated curve and the analytical
results match very closely, as shown by the nearly perfect
overlapping curves. For the ETAII, there is a slight discrepancy
in the simulated and analytical plots. This discrepancy is due to
the approximation when calculating MED and MSE as outlined
previously.

C. Estimate of the PSNR for Image Processing

Three image processing algorithms are evaluated next: im-
age sharpening, point detection and arithmetic mean filter.

If I is the original image and S is the processed image, the
sharpening algorithm [20] is performed as

S(x, y) = 2I(x, y)−
1

273

2∑
i=−2

2∑
j=−2

G(j + 3, j + 3)I(x− i)(y − j), (66)

where G is a matrix given by:

G =


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 . (67)



IEEE TRANSACTIONS ON COMPUTERS, SUBMITTED 2013 11

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

12000

µ

σ

 

 

Simulated
Analytical

(a)

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

µ

σ

 

 

Simulated
Analytical

(b)

Fig. 10. Simulated and analytical σ − µ relationships for (a) ESA, and (b) ETAII.

(a) (b) (c) (d) (e) (f)

Fig. 11. Image sharpening: (a) original image, (b) using exact adders, (c) using the ESA with k=6 and PSNR=18.1dB, (d) using the ESA with k=10 and
PSNR=41.4dB, (e) using the ETAII with k=4 and PSNR=27.4dB and (f) using the ETAII with k=7 and PSNR=56.8dB.

(a) (b) (c) (d) (e) (f)

Fig. 12. Point detection: (a) original image, (b) using exact adders, (c) using the ESA with k=7 and PSNR=4.4dB, (d) using the ESA with k=10 and
PSNR=24.6dB, (e) using the ETAII with k=4 and PSNR=10.5dB and (f) using the ETAII with k=5 and PSNR=19.9dB.

(a) (b) (c) (d) (e) (f)

Fig. 13. Arithmetic mean filter: (a) original image with noise, (b) using exact adders, (c) using the ESA with k=5 and PSNR=10.5dB, (d) using the ESA with
k=8 and PSNR=27.2dB, (e) using the ETAII with k=3 and PSNR=16.9dB and (f) using the ETAII with k=5 and PSNR=36.3dB.
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Fig. 14. Simulated and estimated PSNR (dB).

The point detector operation [21] is given by

S(x, y) = 8I(x, y)− I(x− 1, y − 1)− I(x− 1, y)
−I(x− 1, y + 1)− I(x, y − 1)− I(x, y + 1)
−I(x+ 1, y − 1)− I(x+ 1, y)− I(x+ 1, y + 1).

(68)

A 3× 3 arithmetic mean filter [21] is also implemented as

S(x, y) =
1

9

1∑
i=−1

1∑
j=−1

I(x+ i, y + j). (69)

For all three algorithms, the exact additions are replaced by
approximate additions using the ESA and ETAII. All other
operations (i.e. multiplication, division and subtraction) are
performed accurately. The mean squared error is estimated
using (61), in which the number of approximate additions,
a, is 25, 8 and 9, respectively for image sharpening, point
detection and arithmetic mean filter applications. The PSNR
is then given by (53).

In the sharpening algorithm, 16-bit approximate adders are
used, because the maximum possible sum is 255 × 273, i.e.
approximately 216 − 1. 12-bit approximate adders are used
for the point detection and arithmetic filer computations. The
analytical σ−µ plots shown in Fig. 10 are used for the PSNR.

Six images are selected for the three algorithms and the
corresponding PSNR values are obtained; three of them are
shown in Figs. 11, 12 and 13. The images are selected such
that they are quite “typical” images to be processed, i.e., they
show features commonly found in multimedia applications. For
the same algorithm and approximate adder, the six images
have PSNR values that are very close; this indicates that
the PSNR is not strongly correlated to an image, hence the

TABLE V. RELATIVE DISCREPANCY.

estimated PSNR can be readily applied to them. For further
analyzing this feature, define the relative discrepancy (RD) as
the maximum difference between the PSNR values of the six
images divided by their mean PSNR value. The RD values are
shown in Table V; the largest RD is 13.2%, however in most
cases the RD is below 5%, i.e., at an acceptable level for this
type of applications.

The simulated and estimated PSNR values are shown in
Fig. 14. The best match between simulated and estimated
PSNR values is achieved by the ESA-based point detection
application, while the worst occurs for the ETAII-based point
detection. In the worst case, the maximum PSNR is about 20d-
B, that is generally considered to be low. For most cases, the
estimate tends to be less accurate when the PSNR values are
too small (< 20dB). The interesting cases are the ones whose
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PSNR values are larger than 20dB, otherwise the approximate
results are not acceptable. For these cases, the estimate is
shown to be accurate in this PSNR range. Moreover, the
difference between estimated and simulated results is within
a 3dB margin; so for a given image processing application
and approximate adder, the error in the estimate appears to be
almost constant. Hence, the simulation results show that with
the proposed methodology, the MED is a good indicator for
the PSNR. The estimate procedure proposed in this paper can
be used to evaluate the performance of approximate adders in
image processing applications.

VI. CONCLUSION

In this paper, an analytical framework has been proposed
for characterizing approximate adder designs. This framework
consists of models for the evaluation of three different types
of approximate adders targeting several error metrics. Time-
consuming simulation can then be avoided by using the pro-
posed analytical models. Design criteria with respect to error
characteristics in the operations of these approximate adders
have been provided based on the analysis. As an example of
the application of the framework, the PSNR in image process-
ing has been evaluated using the proposed framework. The
estimated PSNR can then be utilized for selecting the proper
scheme of an approximate adder. Extensive simulation results
show that there is a good agreement between the analytical
outcomes of the proposed framework and the simulation results
for three different computational algorithms commonly used
in image processing. The PSNR estimate method proposed in
this paper shows that there is a close relationship between
MED and PSNR, while ER is less important. This may provide
insights in the design of approximate arithmetic circuits for
error-tolerant applications.
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