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New Metrics for the Reliability of Approximate and 
Probabilistic Adders 

Jinghang Liang, Student Member, Jie Han, Member, Fabrizio Lombardi, Fellow IEEE 

Abstract—Addition is a fundamental function in arithmetic operation; several adder designs have been proposed for 
implementations in inexact computing. These adders show different operational profiles; some of them are approximate in 
nature while others rely on probabilistic features of nanoscale circuits. However, there has been a lack of appropriate metrics to 
evaluate the efficacy of various inexact designs. In this paper, new metrics are proposed for evaluating the reliability as well as 
the power efficiency of approximate and probabilistic adders. Reliability is analyzed using the so-called sequential probability 
transition matrices (SPTMs). Error distance (ED) is initially defined as the arithmetic distance between an erroneous output and 
the correct output for a given input. The mean error distance (MED) and normalized error distance (NED) are then proposed as 
unified figures that consider the averaging effect of multiple inputs and the normalization of multiple-bit adders. It is shown that 
the MED is an effective metric for measuring the implementation accuracy of a multiple-bit adder and that the NED is a nearly 
invariant metric independent of the size of an adder. The MED is, therefore, useful in assessing the effectiveness of an 
approximate or probabilistic adder implementation, while the NED is useful in characterizing the reliability of a specific design. 
Since inexact adders are often used for saving power, the product of power and NED is further utilized for evaluating the 
tradeoffs between power consumption and precision. Although illustrated using adders, the proposed metrics are potentially 
useful in assessing other arithmetic circuit designs for applications of inexact computing. 

Index Terms— Adders, Inexact computing, Reliability, Error masking, Approximate logic, Imprecise arithmetic, Mean error 
distance, Normalized error distance, Power, Energy efficiency. 

——————————      —————————— 

1 INTRODUCTION
ethodologies for inexact (or soft) computing rely on 
the feature that many applications can tolerate 
some loss of precision and therefore, the solution 

can tolerate some degree of uncertainty [1-3]. Determinis-
tic, explicit, and precise models and algorithms are not 
always suitable to solve these types of problems. Howev-
er, inexact computing applications are mostly implement-
ed using digital binary logic circuits, thus operating with 
a high degree of predictability and precision. A frame-
work based on a precise and specific implementation can 
still be used with a methodology that intrinsically has a 
lower degree of precision and an increasing uncertainty 
in operation. While this may be viewed as a potential con-
flict, such an approach tailors the significant advantage of 
inexact computing (and its inherent tolerance to some 
imprecision and uncertainty) to a technology platform 
implemented by conventional digital logic and systems. 
The paradigm of inexact computation relies on relaxing 
fully precise and completely deterministic building blocks 
(such as a full adder) when for example, implementing 
bio-inspired systems. This allows nature inspired compu-
tation to redirect the existing design process of digital 
circuits and systems by taking advantage of a decrease in 
complexity and cost with possibly a potential increase in 
performance and power efficiency. In imprecise computa-

tion, however, traditional measures for performance, 
power and reliability are often conflicting, so new figures 
of merit for assessing the tradeoffs involved in such de-
sign process are needed to better understand the opera-
tion of approximate/probabilistic circuits. 

One of the fundamental arithmetic operations in many 
applications of inexact computing is addition [4, 5]. Soft 
additions are generally based on the operation of deter-
ministic approximate logic or probabilistic imprecise 
arithmetic (categorized in [6] as design-time and run-time 
techniques). Several recently proposed adder architec-
tures are representatives of these types. The bio-inspired 
lower-part OR adder (LOA) [7] is based on approximate 
logic, whose truth table is slightly different from the orig-
inal truth table of a full adder. The approximate mirror 
adders (AMAs) proposed in [8] save power by reducing 
the number of transistors in a mirror adder design. The 
use of these architectures results in approximations to the 
addition, making it deterministically different from the 
precise operational outcome. Another design is known as 
the probabilistic full adder (PFA) [9, 10]; its implementa-
tion is based on probabilistic CMOS, a technology plat-
form for modeling the behavior of nanometric designs as 
well as reducing power consumption. 

In light of these advances, design metrics are urgently 
needed to evaluate the effectiveness of the architectures; 
as shown in latter sections, the traditional metric of relia-
bility (defined as the probability of system survival) is not 
appropriate for use in evaluating approximate designs. 
Moreover, it is useful to have a design metric with no 
dependency on the number of operands in an addition. 
The objective of this paper is to propose new metrics for 
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assessing adder designs with respect to reliability and 
power efficiency for inexact computing.  A new figure of 
merit referred to as error distance (ED) is initially pro-
posed to characterize the reliability of an output of an 
adder. ED is then used to obtain two new metrics: the 
mean error distance (MED) and the normalized error dis-
tance (NED). The MED and NED can be obtained using 
sequential probability transition matrices (SPTMs) and 
are able to evaluate the reliability of both probabilistic 
and deterministic adders. It is shown that the MED is an 
effective metric in evaluating the implementation of a 
multiple-bit adder. The NED is a stable metric that is al-
most independent of the size of an implementation; this 
feature brings a new perspective for the evaluation and 
comparison of different adder designs. The power and 
NED product is further used to evaluate the power and 
precision tradeoff. An adder implementation with re-
duced precision, referred to as the lower-bit ignored ad-
der (LIA), is investigated as a baseline design for as-
sessing the LOA, AMAs and PFAs. A detailed analysis 
and simulation results are presented to assess the reliable 
performance of these adders using the proposed new 
metrics. 

Some preliminary results of this work have been pre-
viously presented in [11]; [11] introduced the concepts of 
ED and MED and presented a comparative study of relia-
bility and static power for the LOA, PFAs and LIA. This 
paper is a significant extension of [11] and includes the 
following novel contributions: 
• The recently proposed approximate mirror adders 

(AMAs) as transistor-level designs are considered 
and included in the analysis of the proposed metrics. 

• The notion of sequential probability transition ma-
trices (SPTMs), as well as their formulation, is pre-
sented in detail as a framework for evaluating the 
reliability of sequential circuits. 

• A normalized error distance (NED) is proposed; as a 
nearly invariant metric, the NED is almost inde-
pendent of the size of an adder implementation, so it 
is an important metric for characterizing the reliabil-
ity of an approximate or probabilistic design. 

• The product of power and NED is proposed to 
quantitatively evaluate the tradeoff of power and 
precision. Moreover, the power saving and NED ra-
tio is used in the analysis of the efficiency of a de-
sign when trading off precision for power. 

The rest of the paper is organized as follows. Section 2 
contains a review and Section 3 presents sequential prob-
ability transition matrices (SPTMs). Section 4 presents the 
notion of error distance (ED) and the evaluations of mean 
error distance (MED) and normalized error distance 
(NED). Section 5 discusses the power and precision 
tradeoff. Section 6 concludes the paper. 

2 REVIEW 
In most digital systems, sequential circuits are utilized, 

so this paper primarily deals with sequential adders. A 
sequential adder, as the one shown in Fig. 1, consists of a 
k-bit full adder concatenated with a k-bit register. In this 

section, different implementations of a full adder are re-
viewed; particular emphasis is devoted to features rele-
vant to soft and inexact computing. 

 
Fig. 1. A k-bit sequential adder. 

2.1 Conventional Full Adder (CFA) 
     Fig. 2 shows a one-bit (precise) conventional full adder 
(CFA); the CFA is commonly connected in a ripple-carry 
implementation, i.e., by cascading the circuit of Fig. 2 in a 
linear array. 
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                Fig. 2. A one-bit conventional full adder (CFA). 

2.2 Lower-Part-OR Adder (LOA) 
      

 
Fig. 3. Hardware structure of the lower-part-OR adder (LOA) [7]. 

Differently from conventional designs that strictly 
operate according to the exact function (as defined by its 
truth table), an approximate logic implementation alters 
some entries in the truth table. This feature allows balanc-
ing precision with other performance metrics. The recent-
ly proposed LOA is based on such a design [7]. A LOA 
divides a k-bit addition into two smaller parts, i.e., two 
modules of m-bits and n–bits. As shown in Fig. 3, the m-
bit module of a LOA uses a smaller but precise adder (re-
ferred to as the sub-adder) to compute the exact values of 
the m most significant bits of the result (also referred to as 
the upper part). Additional OR gates are used to approxi-
mately compute the n least significant bits (also referred 
to as the lower part) of the sum by applying a bitwise OR 
operation on the respective input bits. An additional 
AND gate is used to generate the carry-in for the precise 
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sub-adder when the most significant bits of both the low-
er-part inputs are “1.” As this implementation ignores the 
“trivial” carries in the lower part of the LOA adder, it 
may result in a loss of precision. Albeit using different 
structures, the approximate adder designs in [12] and [13] 
belong to the same category. 

2.3 Approximate Mirror Adder (AMA) 
     A Mirror Adder (MA) is not based on the complemen-
tary structure of CMOS logic. It is based on a special ar-
rangement of the transistors and is yet another common 
design for implementing conventional adders. When ap-
proximate logic is applied to the MA cells, approaches 
such as IMPACT [8] have been reported to tradeoff preci-
sion for power and area. Three implementations of an 
approximate mirror adder (AMA) are proposed in [8] by 
removing different numbers of transistors. The truth table 
of these three approximate implementations is shown in 
Table 1. Similarly, AMAs can be used in the least signifi-
cant n-bit (or the lower part) of an approximate sequential 
adder. 

TABLE 1. TRUTH TABLE OF CONVENTIONAL MIRROR ADDER AND 
ITS APPROXIMATE IMPLEMENTATIONS [8]; ENCLOSED ENTRIES 

INDICATE INCORRECT OUTPUTS. 

Inputs Accurate AMA1 AMA2 AMA3 
Cout Sum Cout Sum Cout Sum Cout Sum 

0 0 0 0 0 0 1 0 0 0 0 
0 0 1 0 1 0 1 0 1 0 0 
0 1 0 0 1 1 0 0 0 0 1 
0 1 1 1 0 1 0 0 1 0 1 
1 0 0 0 1 0 1 1 0 0 0 
1 0 1 1 0 1 0 1 0 1 0 
1 1 0 1 0 1 0 1 0 1 1 
1 1 1 1 1 1 0 1 1 1 1 

2.4 Probabilistic Full Adder (PFA) 
     Probabilistic CMOS (PCMOS) is a technique for 
achieving savings in power consumption, while balancing 
performance at nanometric ranges. In a k-bit PFA, the 
most significant m-bit adders are implemented using per-
fectly reliable (and thus deterministic) gates, while the 
least significant n bits are implemented in PCMOS. Alt-
hough new adder architectures have been proposed to 
optimize the use of PCMOS technology [14], probabilistic 
implementations of a conventional full adder are consid-
ered in this work. The structure of this type of adder is 
shown in Fig. 4.  

 
Fig. 4. Hardware structure of the probabilistic full adder (PFA). 

3 SEQUENTIAL PROBABILITY TRANSITION 
MATRICES 

3.1 Definitions 
     Prior to presenting the analysis, several definitions are 
first introduced. In a probabilistic design, the signal prob-
ability is defined as the probability of a signal being logi-
cal “1.” An error may occur to the function of a gate and 
the probability of this occurrence is given by a gate error 
rate (or probability). Unless otherwise noted, the von 
Neumann type of error (i.e., flipping the correct signal) is 
considered in this paper. In a combinational circuit, the 
output probability for a specific input vector i is defined 
as the joint probability that all of the outputs are “1” 
when the input vector is i. Any output that deviates from 
the correct value due to the effect of errors, is considered 
as a faulty output. The output reliability for input i is de-
fined as the joint probability that all outputs are correct 
for i. This definition of reliability considers the correlation 
among signals and is therefore used in this paper. Circuit 
reliability is defined as the average output reliability over 
all applicable input vectors.  

In an approximate design, the operation is determin-
istic and a faulty output is due to a functional approxima-
tion. This deterministic as well as the aforementioned 
probabilistic behavior can analytically be assessed for 
circuit reliability using the so-called sequential probabil-
ity transition matrices (SPTMs), as presented next.  

3.2 Probabilistic Transfer Matrices (PTMs) 
The PTM approach represents a computational frame-

work for the evaluation of circuit reliability in the pres-
ence of both deterministic and probabilistic errors [15]. A 
PTM is a matrix, in which the (𝑖, 𝑗)th entry represents the 
conditional probability of the output vector of value j, 
determined by the circuit structure for the input vector i. 
Since a fault-free circuit has correct outputs with proba-
bility 1, it has an ideal transfer matrix (ITM), in which an 
entry is either 0 or 1. A two-input NAND gate’s ITM and 
PTM are shown in Fig. 5.  

 

           
(a)                             (b)                                (c) 

Fig. 5. An ITM and PTM for a two-input NAND gate: (a) a two-
input NAND gate, (b) ITM of the NAND gate, (c) PTM of the NAND 
gate  (the gate has a probability of 1-p to produce an error). 

 
A circuit PTM can be obtained by combining the gate 

PTMs using simple rules of matrix operations and the 
connectivity of the gates. Matrix multiplications are used 
for gates connected in series, while tensor products are 
used for gates connected in parallel. Special PTMs and 
ITMs are constructed for fanouts, interconnects and 



4 IEEE TRANSACTIONS ON COMPUTERS, TC-2011-12-0946 

 

swapping of wires by taking into account their topologies. 
Since signal representation and propagation are incorpo-
rated into the formulation of PTMs, a circuit PTM con-
tains accurate and comprehensive information about the 
probabilistic behavior of a circuit. A PTM can also be ex-
tended to account for more complex circuit structures. In 
[16], PTMs are used to investigate the effects of soft errors 
in sequential circuits. In this paper, sequential PTMs 
(SPTMs) are defined and a detailed formulation is pre-
sented by considering the topology and structure of se-
quential circuits for reliability evaluation.  

3.3 Formulation of Sequential PTMs (SPTMs) 

Combinational
Logic

{ }
M 

Primary 
Inputs

K
Primary 
Outputs

}
N

Next 
States{

N 
Present
States

Flip-Flops

 
Fig. 6. Mealy model of a sequential circuit. 

 
Consider a general Mealy model of a sequential circuit 

(Fig. 6). In this circuit, there are M+N inputs: M of them 
are Primary Inputs and the remaining N inputs are Pre-
sent States (i.e., the feedback signals from the flip-flops). 
There are also K+N outputs: K of them are Primary Out-
puts, while the remaining N outputs are Next States, 
which will be stored in the flip-flops and then fed back 
into the inputs during the next clock cycle. 

For this circuit, SPTMs define several matrices map-
ping from the M+N inputs to the N next states (denoted 
by 𝜱𝒏𝒔) and to the K primary outputs (denoted by 𝜱𝒑𝒐), 
also from the N next states to the N present states. In the 
SPTM  𝜱𝒏𝒔, the entries denote the transition probabilities 
from the  2M+N input combinations to the  2N next states. 
 𝜱𝒏𝒔 is therefore a  2M+N × 2N matrix, given by 
𝜱𝒏𝒔

=

⎣
⎢
⎢
⎢
⎢
⎡         p(0|0)                p(1|0)        …

p(0|1) p(1|1) …
… … …

p(j|0)          …          p(2N − 1|0)
p(j|1)          …          p(2N − 1|1)

…         … …
p(0|i) p(1|i) …

… … …
p(0| 2M+N − 1) p(1| 2M+N − 1) …

p(j|i)    … p(2N − 1|i)
… … …

p(𝑗| 2M+N − 1) … p(2N − 1|2M+N − 1)⎦
⎥
⎥
⎥
⎥
⎤

 

                                                                                               (1) 
where p(j|i) represents the conditional transition proba-
bility that the next state has the 𝑗th  value, given that the 
inputs have the 𝑖th value. Similarly, the entries in 𝜱𝒑𝒐 are 
given by the transition probabilities from the  2M+N  input 
combinations to the  2K primary output combinations.  

Furthermore, the circuit SPTM  𝜱𝒄  is defined for the 
mappings between the M+N inputs and the K+N outputs. 
In the likely circuit scenario, the primary outputs and the 
next states are correlated due to the fanouts of signals to 

both the primary inputs and the next states (an example is 
evident in the half adder circuit of Fig. 7). So,  𝜱𝒄, like any 
other SPTM, can be obtained in a similar way as the com-
binational PTMs, i.e. by combining the gate PTMs follow-
ing the matrix operation rules and the connectivity of the 
gates in a circuit.  

If the flip-flops are also subject to errors, the SPTM  𝜱𝒇𝒇 
must be defined. For a single flip-flop with an error rate 
of 𝜺, its SPTM  𝜱𝟏−𝒇𝒇 is given by  

 𝜱𝟏−𝒇𝒇 = �1 − 𝜀 𝜀
𝜀 1 − 𝜀�.                        (2) 

For N independent flip-flops, the SPTM  𝜱𝒇𝒇 is obtained 
as 

 𝜱𝒇𝒇 = 𝜱𝟏−𝒇𝒇
⨂𝑵,                                 (3) 

i.e.,  𝜱𝒇𝒇 is the Nth tensor product of 𝜱𝟏−𝒇𝒇. Its entries are 
the transition probabilities from the  2N  input combina-
tions and the  2N output combinations of the flip-flops. 

At time t, the primary-input vector is given by 
𝐏𝐩𝐢(t) = (Ppi(0, t), Ppi(1, t), … … , Ppi�(2M − 1), t�,       (4) 

where Ppi(i, t) is the probability that the primary inputs 
have the 𝑖th value at time t. The present-state vector is 
given by 

𝐏𝐩𝐬(t) = (Pps(0, t), Pps(1, t), … … , Pps�(2M − 1), t�,      (5) 
where Pps(i, t)  is the probability that the present states 
have the 𝑖th value at time t. 

Therefore inputs can be represented by a vector of 
length 2M+N given by 

𝐏𝐢𝐧(t) = 𝐏𝐩𝐢(t)⨂𝐏𝐩𝐬(t),                              (6) 
where ⨂ indicates the tensor product. 

For the N next states, their joint distribution is de-
scribed by a vector 𝐏𝐧𝐬(t) of length 2N, and 

𝐏𝐧𝐬(t) = 𝐏𝐢𝐧(t) ∗  𝜱𝒏𝒔.                               (7) 
     The present-state vector at time t+1, 𝐏𝐩𝐬(t + 1), can be 
calculated as follows: 

𝐏𝐩𝐬(t + 1) = 𝐏𝐧𝐬(t) ∗ 𝜱𝒇𝒇.                        (8) 
     Similarly, the primary-output vector 𝐏𝐩𝐨(t) is given by  

𝐏𝐩𝐨(t) = 𝐏𝐢𝐧(t) ∗  𝜱𝒑𝒐.                              (9) 

3.4 Reliability evaluation using SPTMs 
In a sequential circuit, the cumulative effect of errors 

is modeled by matrix operations (as according to the 
Markov process); specifically, error propagation is de-
scribed by matrix multiplications, while the combination 
of signals is described by tensor products. By considering 
the SPTMs defined previously for the sequential circuit of 
Fig. 6, the input vector at time t+1,  𝐏𝐢𝐧(t + 1) , can be 
computed by  
𝐏𝐢𝐧(t + 1) = 𝐏𝐩𝐢(t + 1)⨂𝐏𝐩𝐬(t + 1) 
                        = 𝐏𝐩𝐢(t + 1)⨂�𝐏𝐢𝐧(t) ∗  𝜱𝒏𝒔 ∗  𝜱𝒇𝒇�.              (10) 
     It can be shown that  

𝐏𝐢𝐧(t + 1) = 𝐏𝐢𝐧(t) ∗ �𝐏𝐩𝐢(t + 1)⨂(𝜱𝐧𝐬 ∗  𝜱𝒇𝒇)�,          (11) 
as per the Theorem in the Appendix. 
     Let  

𝜱𝒊𝒏(𝑡) = 𝐏𝐩𝐢(t + 1)⨂(𝜱𝐧𝐬 ∗  𝜱𝒇𝒇),                 (12) 
(11) can be written as 

 𝐏𝐢𝐧(t + 1) = 𝐏𝐢𝐧(t) ∗ 𝜱𝒊𝒏(𝑡).                       (13) 
     𝜱𝒊𝒏(𝑡) is a time-dependent SPTM, whose entries are 
the transition probabilities from the  2M+N input combina-
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tions at time t to the  2M+N input combinations at time t+1. 
Therefore, (13) describes the (error) characteristics of the 
sequential circuit (under its current primary inputs) and 
captures the temporal correlation between the inputs at 
different time steps.  
     At time t+1, the primary output vector can now be 
computed as  

𝐏𝐩𝐨(t + 1) = 𝐏𝐢𝐧(t + 1) ∗  𝜱𝒑𝒐 = 𝐏𝐢𝐧(t) ∗ 𝚽𝐢𝐧(t) ∗  𝜱𝒑𝒐 
      = 𝐏𝐢𝐧(t − 1) ∗ 𝜱𝒊𝒏(𝑡 − 1) ∗ 𝜱𝒊𝒏(𝑡) ∗  𝜱𝒑𝒐             
      = ⋯               
      =  𝐏𝐢𝐧(t − k) ∗ 𝜱𝒊𝒏(𝑡 − 𝑘) ∗ 𝜱𝒊𝒏(𝑡 − 𝑘 + 1) ∗ … ∗
                      𝜱𝒊𝒏(𝑡 − 1) ∗  𝜱𝒑𝒐                
      = ⋯ 
      = 𝐏𝐢𝐧(0) ∗ 𝜱𝒊𝒏(0) ∗ 𝜱𝒊𝒏(1) ∗ … ∗ 𝜱𝒊𝒏(𝑡 − 1) ∗  𝜱𝒑𝒐                                                  
      = 𝐏𝐢𝐧(0) ∗ (∏ 𝜱𝒊𝒏(𝑘)𝒕

𝒌=𝟎 ) ∗  𝜱𝒑𝒐.                                     (14) 
     Furthermore, assume that in the error-free case, the 
ideal output vector is given by 𝐈𝐩𝐨(t + 1); so if the primary 
inputs at every time step and the initial state are known, 
the output reliability of a sequential circuit at time t+1 can 
be computed by: 

𝐑𝐩𝐨(t + 1) = 𝐏𝐩𝐨(t + 1) ∙ 𝐈𝐩𝐨(t + 1),       (15) 
i.e., by the dot product of the two vectors. 

Example: Consider the sequential half adder circuit 
shown in Fig. 7. Given the gate PTMs, the circuit PTM can 
be found by first dividing the combinational part of the 
circuit into several levels and then evaluating the PTMs at 
each level. Alternatively,  𝜱𝒏𝒔 and 𝜱𝒑𝒐 can be obtained for 
the next state and output logic. 

 
Fig. 7. SPTM evaluation of a sequential half adder with one primary 
input, one flip-flop and one primary output. 
 
     Assume a gate error rate of 0.01, we obtain 

𝜱𝒑𝒐 = �
0.99 0.01
0.99 0.01
0.99 0.01
0.01 0.99

�,                              (16) 

and 

𝜱𝒏𝒔 = �
0.99 0.01
0.01 0.99
0.01 0.99
0.99 0.01

�.                              (17) 

     Also assume that the flip-flop has an error rate of 0.02, 
i.e., 𝜺 = 0.02, then  

𝜱𝒇𝒇 =  𝜱𝟏−𝒇𝒇 = �0.98 0.02
0.02 0.98�.                              (18) 

     Given the primary input at each time step, the reliabil-
ity of the primary output can be calculated as follows. Let 
the initial state of the flip-flop be 𝐏𝐩𝐬(0) = (0.99, 0.01). If 
the primary-input vector is given by  𝐏𝐩𝐢(0) = (0.05, 0.95), 
then at t=0, the input vector can be calculated as 

 𝐏𝐢𝐧(0) = 𝐏𝐩𝐢(0)⨂𝐏𝐩𝐬(0) 
 = (0.0495, 0.0005, 0.9405, 0.0095).                    (19) 

     At t=1, the present-state vector is given by   
𝐏𝐩𝐬(1) = 𝐏𝐧𝐬(0) ∗ 𝜱𝒇𝒇 = 𝐏𝐢𝐧(0) ∗ 𝜱𝒏𝒔 ∗ 𝜱𝒇𝒇 

= (0.0851, 0.9149).          (20) 
     If the primary input vector at t=1 is given by 𝐏𝐩𝐢(1) =
(0.98, 0.02), then the input vector 𝐏𝐢𝐧(1) is given by 
     𝐏𝐢𝐧(1) = 𝐏𝐩𝐢(1)⨂𝐏𝐩𝐬(1) 

= (0.0834, 0.8966, 0.0017, 0.0183).                    (21) 
     The primary output vector is then obtained as 

𝐏𝐩𝐨(1) = 𝐏𝐢𝐧(1) ∗  𝜱𝒑𝒐 = (0.9721    0.0279).     (22) 
(22) gives the output distribution after one clock cycle for 
the probabilistic sequential adder. The above process can 
also be computed directly from (14) for t=0. 
     Since the ideal error-free output vector is 𝐈𝐩𝐨(1) =
(1, 0), it can be obtained that 

𝐑𝐩𝐨(1) = 𝐏𝐩𝐨(1) ∙ 𝐈𝐩𝐨(1) = 0.9721,               (23) 
i.e., the output reliability at this time is 0.9721. 

Table 2 shows the simulation results of some sequential 
circuits obtained using the SPTM approach. Albeit with 
an exponential complexity, the SPTM approach produces 
accurate evaluation results. Alternatively, the reliability 
can be evaluated using probabilistic gate models [17] or 
stochastic computational models [18]. As can be seen in 
Table 2, the reliability values are very different at differ-
ent clock cycles (denoted by “T”) for the probabilistic and 
approximate designs. For example, for the LOA and 
AMAs, the reliability is mostly 0, which indicates that 
these designs are totally unreliable. However, they can be 
useful in many applications, where a partial loss of preci-
sion can be tolerated. Therefore, these new paradigms 
need to be better assessed as efficient design alternatives. 
Toward this end, new metrics are proposed subsequently 
to characterize the extent of loss of precision and its gain 
in reducing power consumption. 

4 MEAN AND NORMALIZED ERROR DISTANCES  
4.1 Error Distance 

In this section, a new metric is proposed for evaluating 
the reliability of an adder and SPTMs are used in the 
computation of this metric. Consider as an example the 
case in which the exact output Sum of an adder is 
“100101” and other values can result as inexact outputs. 
For example, both “100100” and “110101” represent inex-
act values. However, these two output values have differ-
ent implications when compared to the correct value: 
“100100” means the output is different by 1 (or at a dis-
tance of 1) from the correct value, while “110101” is dif-
ferent by 16 (or at a distance of 16) from the correct value. 
So, an output can take erroneous values that are substan-
tially different from the correct one. This is determined by 
the error effects on the addition; for example, a lower bit 
error has less impact on the output of an adder. 
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TABLE 2. THE RELIABILITY OF SOME SEQUENTIAL CIRCUITS OBTAINED USING SPTMS. THE INPUT VECTOR IS RANDOMLY GENERATED 
AT EACH CLOCK CYCLE, DENOTED BY “T.”

Circuits 
Characteristics Reliability (ε=0.005) 

Gates Inputs Outputs DFFs T=1 T=2 T=3 T=4 T=5 

2-bit counter 2 0 2 2 0.990 0.980 0.971 0.961 0.952 

Simplified semaphore 6 0 2 2 0.983 0.965 0.948 0.932 0.916 

s27 10 4 1 3 0.975 0.990 0.985 0.960 0.948 

2-bit probabilistic sequential adder 10 4 1 2 0.976 0.962 0.948 0.935 0.922 

2-bit  Lower-part OR sequential adder 3 4 1 2 1 0 0 0 0 

2-bit  AMA1 based sequential adder 22 (transistors) 4 1 2 0 1 1 0 0 

2-bit  AMA2 based sequential adder 22 (transistors) 4 1 2 1 0 0 0 0 

2-bit  AMA3 based sequential adder N/A 4 1 2 0 0 0 0 0 

Under these circumstances, the metric of circuit reliabil-
ity has limited usefulness in assessing an adder, because 
it considers only the presence of an error, but not the er-
ror’s implication on the performed addition. A new met-
ric referred to as error distance (ED) is therefore proposed 
to better characterize the reliability of an adder.  

In general, the ED between two binary numbers, a (er-
roneous) and b (correct, i.e., golden), is defined as the 
arithmetic distance between these two numbers, i.e.,  

𝐸𝐷(a, b) = |a − b| = �∑ a[𝑖]𝑖 ∗ 2i − ∑ b[j]𝑗 ∗ 2j�,       (24) 
where i and j are the indices for the bits in a and b, respec-
tively. In the previous example, the two erroneous values 
“100100” and “110101” have an ED of 1 and 16 to the 
golden “100101,” respectively. 
   For a non-deterministic implementation, the output is 
probabilistic and usually follows a distribution for a given 
input 𝑎𝑖. In this case, the ED of the output (denoted by 𝑑𝑖) 
is defined as the weighted average of EDs of all possible 
outputs to the nominal output. Assume that for a given 
input, the output has a nominal value b, but it can take 
any value given in a set of vectors 𝑏𝑗 (1 ≤ 𝑗 ≤ 𝑟); the ED of 
the output is then given by:  

𝑑𝑖 = ∑ ED(bj, b)𝑗 ∗ pj,             (25)  

where 𝑝𝑗 is the output probability of 𝑏𝑗 (1 ≤ 𝑗 ≤ 𝑟).  

4.2 Mean Error Distance (MED) 
   When the primary inputs to a circuit are non-
deterministic and thus each input occurs at certain proba-
bility, the mean error distance (MED) of a circuit (denoted 
by 𝑑𝑚) is defined as the mean value of the EDs of all pos-
sible outputs for each input. Assume that the input is giv-
en by a set of vectors 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝑠) and that each vector 
occurs with a probability 𝑞𝑖 (1 ≤ 𝑖 ≤ 𝑠). Then, the MED of 
the circuit is given by: 

𝑑𝑚 = ∑ di𝑖 ∗ qi,                                (26) 
where 𝑑𝑖 is the ED of the outputs for input 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝑠), 
which can be computed by (25).  

For simplicity, uniformly-distributed random inputs 
are considered hereafter, i.e., each input occurs with the 
same probability. Consider as an example a 3-bit adder. 
In Figs. 3 and 4, let k = 3, m = 1 and n = 2. A 3-bit CFA is 
used to calculate the correct output value. A gate error 
rate of 0.028 is used for PFA; this value is selected such 
that the MED is close to that of the LOA (as shown in 
subsequent sections). Table 3 shows the results of three 
experiments, each of which consists of four consecutive 

clock cycles. As expected, the CFA has a MED of 0 
throughout the four clock cycles in all experiments. How-
ever, the MED for the PFA is significantly greater than 
that of its LOA counterpart in most cases. Also shown is 
that the MEDs of the LOA and AMAs can be reduced to 0 
at an intermediate time step. For example, the MED of the 
LOA has a value of 0 at both Clk1 and Clk4 in Experiment 
3; this is due to the effect of error masking, as discussed 
next. 

TABLE 3. MEAN ERROR DISTANCE FOR FOUR CLOCK CYCLES 
WITH RANDOM INPUTS. 

Experiment Architecture Clk1 Clk2 Clk3 Clk4 

No. 1 

CFA 0 0 0 0 
PFA 0.7400 1.1920 1.4620 2.1900 
LOA 0 2 1 1 

AMA1 1 1 2 3 
AMA2 1 0 1 2 
AMA3 0 0 1 2 

No. 2 

CFA 0 0 0 0 
PFA 0.7220 1.0260 1.5940 1.9640 
LOA 0 1 1 1 

AMA1 0 1 1 2 
AMA2 0 1 1 1 
AMA3 1 2 2 3 

No. 3 

CFA 0 0 0 0 
PFA 0.7820 1.2100 1.5180 2.2340 
LOA 0 2 1 0 

AMA1 0 2 3 3 
AMA2 1 0 2 3 
AMA3 2 1 2 3 

 
For uniformly distributed inputs, the 16 input values 

occur with the same probability of 1/16 for this 3-bit ad-
der. Based on the SPTM model, the transition matrix 𝜱𝒏𝒔 
for the lower two bits is given in Fig. 8 for each imple-
mentation (as the higher bits are accurate and are there-
fore the same). Given these transition matrices, the ED of 
an output can be computed for an input against the corre-
sponding output of the CFA (taken as the golden value). 
Given 𝜱𝑳𝑶𝑨 in Fig. 8(b), for example, the MED of the LOA 
is: 
𝑑𝑚,LOA = 1

16
∗ (0 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 0 +

2 + 2 + 0 + 1 + 2 + 1) = 0.625.                                    (27) 
   The MED of the PFA is calculated using 𝜱𝑷𝑭𝑨 in Fig. 
8(f) as:  

dm,PFA = 1
16
∗ ∑ di𝑖 =  0.6167.              (28) 

dict://key.0895DFE8DB67F9409DB285590D870EDD/weighted%20average


LIANG ET AL.:  NEW METRICS FOR THE RELIABILITY OF APPROXIMATE AND PROBABILISTIC ADDERS 7 

 

          (a) 
 

             (b) 

          (c) 

(d) 

(e) 
 

(f) 



8 IEEE TRANSACTIONS ON COMPUTERS, TC-2011-12-0946 

 

Fig. 8. The SPTM  𝚽𝐧𝐬 for the two lower bits of the 3-bit adder: (a) 
CFA (b) LOA (c) AMA1 (d) AMA2 (e) AMA3 and (f) PFA. Each row 
corresponds to an input consisting of two bits from the primary inputs 
and two bits from the feedbacks; each column corresponds to a 3-bit 
output of the 2-bit addition. An entry in a matrix indicates a transition 
(probability) from an input to an output. 

  
Similarly, the MEDs of the AMAs are obtained as fol-

lows: 
𝑑𝑚,AMA1 = 1

16
∗ (3 + 1 + 3 + 1 + 2 + 0 + 2 + 0 + 1 +

1 + 1 + 1 + 0 + 0 + 0 + 2) = 1.125,                             (29) 
𝑑𝑚,AMA2 = 1

16
∗ (0 + 1 + 2 + 3 + 1 + 0 + 1 + 2 + 2 +

1 + 0 + 1 + 1 + 0 + 1 + 0) = 1,                                    (30) 
𝑑𝑚,AMA3 = 1

16
∗ (0 + 0 + 0 + 0 + 1 + 1 + 1 + 1 + 2 +

2 + 2 + 2 + 1 + 1 + 1 + 1) = 1.                                    (31) 
This shows that the AMA1 has the largest MED, while 

the MED of the PFA (0.6167) is only slightly different 
from that of the LOA for an error rate of 0.028. However, 
the cumulated error distances are quite different in the 
sequential adders, as shown in Table 2. This is mainly due 
to a result of partial error masking [19]. For the LOA and 
AMA2, several so-called restoring inputs are found, as 
indicated by the neighboring 1’s in the columns of 𝜱𝑳𝑶𝑨 
and 𝜱𝑨𝑴𝑨𝟐. By these inputs, errors are logically masked, 
which leads to the same next state from different present 
states. This can also be explained as follows. For certain 
primary inputs, the approximate logic masks the cumula-
tive errors in the LOA and AMA2. However, this is not 
the case for the PFA (or CFA), because it is always affect-
ed by errors; therefore, errors accumulate rather than be-
ing masked.  

4.3 Mean Error Distance (MED) Evaluation 
In this section, the MEDs of the various designs are 

evaluated against a baseline design of a reduced precision 
adder, i.e., the lower-bit ignored adder (LIA). In this im-
plementation, rather than using n-bit unreliable adders 
for computation, the lower significant bits are ignored.  

Consider the general case of a 32-bit adder (k=32). Fig. 
9(a) shows the reliability of each adder design, while the 
MEDs are plotted in Fig. 9(b) by varying the number of 
lower bits, n. A comparison of the adder implementations 
shows that the interpretation of these metrics (i.e., relia-
bility and MED) leads to a different assessment result; for 
example under the MED metric, the performance of LOA 
is similar to a PFA with a gate error rate of 0.028. Howev-
er, under the reliability metric the reliability of LOA is 
significantly lower than the reliability of PFA for the same 
gate error rate.  

As shown in Fig. 9(b), an n-bit ignored LIA performs 
slightly better in terms of the MED than an n-bit PFA at a 
gate error rate of 0.2 for the 32-bit adder. However, a PFA 
with an error rate significantly lower than 0.2 is expected 
to have a smaller MED. The AMAs have a similar per-
formance as a PFA with an error rate of approximately 
0.05. Moreover, as shown in Fig. 9(b), the expected MEDs 
of both the LOA and the PFA increase exponentially with 
the number of lower bits. For the LOA, error masking 
occurs when the carry bit is ignored - there is no carry for 

the lower bits. Therefore, errors in a lower bit are opera-
tionally isolated. In this way, error masking occurs in the 
combinational circuit. Therefore, errors in the lower bits 
cannot be propagated to the higher bits, thus preventing 
their cumulative effect. 

The simulation results of Fig. 9 show the effectiveness 
of the proposed evaluation technique. It reveals that, alt-
hough there is no cumulative error for the LOA, an error 
due to the approximate logic makes its MED not as opti-
mistic as expected, especially for an increased number of 
lower bits. This is due to the fact that an error can occur in 
the most significant lower bit. The PFA shows a different 
scenario. Errors in the lower bits are likely to be propa-
gated to the higher bits. So, its MED is rather large even 
for a small error rate, due to the cumulative errors from 
the lower bits (even though the error that results from the 
most significant bit is not that large). 

 

                                                              (a) 

(b) 
Fig. 9. (a) Reliability vs. the number of lower bits in a 32-bit adder, 
and (b) MED vs. the number of lower bits in the 32-bit adder. 

4.4 Normalized Error Distance (NED) and its 
Evaluation 

It is shown that in Fig. 9(b), the MED increases expo-
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nentially with the number of lower bits in an adder. 
Therefore, MED is an unfair metric when a comparison is 
made between two adders with different lower bits, as 
the maximum value of error that can be effectively 
reached, has also changed. To overcome this limitation, a 
normalized MED, referred to as a normalized error distance 
(NED), is defined as follows: 

𝑑𝑛 = 𝑑𝑚
𝐷

,                         (32) 
where 𝑑𝑚 is the MED and D is the maximum value of 
error that an unreliable adder can have. This maximum 
value is usually 2n for n lower bits, so we obtain 

𝑑𝑛 = 𝑑𝑚
2n

.                         (33) 

Fig. 10. Normalized Error Distance (NED) vs. the number of lower bits. 

 
Fig. 10 shows the NEDs of the various adder imple-

mentations. The NEDs of the LIA are constant at 0.5 and 
thus serving as a baseline. For other implementations, as 
revealed in the figure, the NED shows little change and 
only fluctuates in a small interval when different lower 
bits are compared. This is consistent with the results in 
Fig. 9(b), i.e., the MED increases exponentially with the 
number of lower bits. Therefore, NED is a stable metric 
that is almost independent of the size of an implementa-
tion and is useful in assessing the reliability of a specific 
design. This feature also brings a new perspective for the 
evaluation and comparison of different adder designs for 
inexact computing. 

However, it should be noted that the MED is very 
useful in evaluating adder implementations of different 
size. For example, a different number of lower bits can be 
implemented in approximate or probabilistic adders, as 
discussed previously. So, the MED is best suited for eval-
uating the effectiveness of an implementation of multiple-
bit adders. 

5 POWER AND PRECISION TRADE-OFF 
       As discussed previously, inexact computing is con-
fronted with many similarities and often contradictory 
features that can also be found in bio-inspired systems, 
i.e., systems made of a large number of unreliable mod-
ules. These systems utilize extensive networks to circum-
vent the unreliable nature of the computational modules 

while still retaining low power/energy consumption. The 
adder configurations presented previously draw signifi-
cant resemblance to this type of system. The LOA and 
AMAs resort to approximate logic to target reliable mod-
ules and PFA resorts to characterizing probabilistic be-
havior of nanoscale modules. However, one of the issues 
that must be addressed for inexact computing is that 
probabilistic implementations may likely tradeoff too 
much accuracy for little saving in area and power. In this 
section, this tradeoff is evaluated using the product of 
power and NED of a design. 
     Consider first the power consumption of the adders. 
As suggested in [3], the energy (E) consumed by a proba-
bilistic inverter increases exponentially with the probabil-
ity of its correct functioning, p, if the noise magnitude 
remains constant. For simplicity, here we assume that the 
energy consumption of any binary gate increases expo-
nentially with p. It is further assumed that the power con-
sumption of any adder is normalized to that of a 1-bit 
CFA (given by a unit power), i.e., 

𝐸1−CFA = 1.                                (34) 
     Hence, the power consumption of a 1-bit PFA is then: 

E1−PFA = E1−CFA ∗
ep

e1
= ep−1.         (35) 

     For a k-bit CFA, its power is then:  
ECFA = k ∗ E1−CFA = k.                   (36) 

     For a k-bit PFA with m higher bits and n lower bits, its 
power consumption is given by:  

EPFA = m ∗ E1−CFA +  n ∗ E1−PFA = m +  n ∗ ep−1.  (37) 
   Since adders perform a similar function (i.e., an addi-
tion), we assume that the switching activities of the gates 
in an adder are similar. Therefore, the power consump-
tion is considered to be proportional to the number of 
logic gates for an approximate implementation. In a sin-
gle-bit LOA, there is only one OR gate instead of five 
gates as in a conventional adder; so as a first-order esti-
mation, the power consumption of the lower bits in a 
LOA is 1/5 of that in a CFA, i.e., 

ELOA = m ∗ E1−CFA +  n ∗ EOR = m +  0.2 ∗ n.         (38) 
For the three AMAs, a reduction in the number of tran-

sistors allows for a lower operating voltage, which subse-
quently reduces power consumption. An application of 
the Inverse Discrete Cosine Transform (IDCT) is consid-
ered for evaluating the power consumption in [8]. Com-
pared to an operating voltage of 1.13 V for the accurate 
IDCT operation (equivalent to an operation using the 
CFA), an AMA-based IDCT operation requires a voltage 
of 1.04 V, 1.1 V and 1.01 V, respectively for the three ap-
proximate implementations [8]. Therefore, the power can 
be estimated as 
EAMA−1 = m ∗ E1−CFA +  n ∗ E1−AMA−1 = m +  n ∗ 1.042

1.132
.    (39) 

EAMA−2 = m ∗ E1−CFA +  n ∗ E1−AMA−2 = m +  n ∗ 1.12

1.132
.    (40) 

EAMA−3 = m ∗ E1−CFA +  n ∗ E1−AMA−3 = m +  n ∗ 1.012

1.132
.    (41) 

     For the LIA, its power consumption is simply: 
ELIA = m.            (42) 

     The power consumption and saving of each lower bit 
compared to the CFA are reported in Table 4 for the vari-
ous implementations. Given a fixed power budget, it has 
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been shown that the MED of the PFA drastically increases 
with the number of lower unreliable bits, while the LIA 
has a significantly lower MED and the LOA performs the 
best with the smallest MED [11]. For a fixed MED, simi-
larly, the power consumption of a 32-bit sequential adder 
can be considered. 

TABLE 4. POWER AND SAVING PER LOWER BIT OF THE ADDER 
IMPLEMENTATIONS (COMPARED TO AND NORMALIZED TO THE 
POWER CONSUMPTION OF A 1-BIT CFA). 

Implementation Power per bit Power saving per bit 

PFA 

p=0.05 : 0.9512 0.0488 
p=0.028: 0.9724 0.0276 
p=0.02: 0.9802 0.0198 
p=0.01: 0.9900 0.0100 

p=0.005: 0.9950 0.0050 
LOA 0.2 0.8 
LIA 0 1 

AMA1 0.8471 0.1529 
AMA2 0.9476 0.0524 
AMA3 0.7989 0.2011 

  
Table 5 shows the power consumption of the various 

implementations at MED=16. There is no substantial dif-
ference in the power consumption; however, the LOA has 
the best performance with the LIA as a close second. The 
PFAs consume more power than the LIA. For more unre-
liable bits, a lower error rate is required, so a higher pow-
er consumption results. So far, the comparison is con-
strained by either a fixed power budget or MED. Next, a 
different metric is used to evaluate the tradeoff between 
power consumption and precision (as represented by 
NED). 

TABLE 5. POWER CONSUMPTION OF VARIOUS IMPLEMENTA-
TIONS OF A 32-BIT ADDER WITH A LARGEST MED OF 16 (IN 
UNITS OF POWER CONSUMPTION OF A 1-BIT CFA). 

Implementation Features Power consumption 

PFA 
m=27, n=5 : p=0.05 31.7561 

m=26, n= 6 : p=0.031  31.8169 
m=25, n= 7 : p=0.014  31.9027 

LOA m=26, n=6 27 
LIA m=28, n=4 28 

AMA1 m=26, n=6 31.0823 
AMA2 m=26, n=6 31.6856 
AMA3 m=26, n=6 30.7933 

This metric is given by the product of the normalized 
power per lower bit and NED, i.e., the power-NED prod-
uct. As shown in Fig. 11, the power-NED product of a 
design has a rather constant value, which is nearly inde-
pendent of the number of lower bits. For an implementa-
tion such as the PFA with a gate error rate of 0.005, its 
power consumption is considered high, while its NED is 
low. For a larger gate error rate, the power consumption 
decreases, while the NED increases. However, this syner-
getic effect of power and NED is captured by the power-
NED product; the smaller the product, the better the de-
sign, in terms of a tradeoff between power consumption 

and precision. As shown in Fig. 11, the AMA2 has a simi-
lar power precision tradeoff as the PFA with a gate error 
rate of 0.05, while the AMA3 has a better power efficien-
cy. Also shown is that the PFA with a gate error rate of 
0.005 has a comparable power-NED product to that of the 
LOA, so a PFA with a lower gate error rate is preferred. 
     This tradeoff can further be explained by the ratio of 
the normalized power saving and NED, i.e., the power 
saving per lower bit (compared to the CFA) divided by 
the NED. This power saving-NED ratio provides a quan-
titative measure to assess the implications of the efficien-
cy as related to the power saving per unit of the resulting 
error distance. Since it is normalized to one lower bit, as 
shown in Fig. 12, the power saving-NED ratio is also 
nearly independent of the number of lower bits. Moreo-
ver from Fig. 12, the LOA has the highest ratio; so when 
trading off precision for power saving, the LOA has a 
better efficiency than other designs considered in this 
paper. Note that in the analysis of the power-NED prod-
uct and power saving-NED ratio, the CFA and LOA are 
not included, because the CFA has an NED of 0 and the 
LOA has a power of 0 (per lower bit). This shows a limita-
tion of these measures, i.e., their inability to capture the 
effect of an individual metric of power or precision. 

Fig. 11. The power-NED product vs. the number of lower bits for 
different adder implementations and gate error rates. 

 
 
Fig. 12. The power saving-NED ratio vs. the number of lower bits for 
different adder implementations and gate error rates.  
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     The relationship between power and precision, how-
ever, is further revealed in Fig. 13, in which the analysis 
of CFA and LIA is included. Power and precision are rep-
resented by the power consumption per bit and the NED 
of a design. While the LIA and CFA are the two extreme 
corner designs (with a power of 0 and an NED of 0, re-
spectively), the other designs generally save power by 
allowing for some loss of precision. The LOA shows a 
better tradeoff between power saving and precision loss. 
Clearly, a design with a better power saving efficiency in 
terms of precision loss is desired (as indicated by the di-
rection of the arrow in Fig. 13). As the product of normal-
ized power and NED is used to investigate the preci-
sion/power relationship, this imposes an equal weight on 
the impact of power consumption and precision. In prac-
tice, a different measure that emphasizes the importance 
of a particular metric (such as the power or precision) can 
be used for a better assessment of a design according to 
the specific requirement of an application. 
 

 
Fig. 13. Relationship between power and precision, given by the power 
consumption per bit and the NED of a design. Each dashed curve indicates 
a value of the product of power per bit and the NED. The arrow points to 
the direction for a better design with a more efficient power and precision 
tradeoff.   

6 CONCLUSION 
This paper has proposed several new metrics for eval-

uating approximate and probabilistic adders with respect 
to their reliability and power efficiency, as unified figures 
of merit for design assessment in inexact computing ap-
plications. The Error distance (ED) is defined as the 
arithmetic distance between an erroneous output and the 
correct one. The Mean error distance (MED) and normal-
ized error distance (NED) have been proposed by consid-
ering the averaging effect of multiple inputs and the nor-
malization of multiple-bit adders. While the MED is effec-
tive in evaluating the adder implementation of multiple 
bits, the NED is nearly invariant with the size of an im-
plementation and is therefore useful in the reliability as-
sessment of a specific design. To evaluate the tradeoff 
between power consumption and precision, the product 
of power and NED has been considered and the power 
efficiency against the precision loss is computed for gain-
ing insights into the effectiveness of a design. The so-

called sequential probability transition matrices (SPTMs) 
have been formulated for use in the computation of the 
proposed metrics. 

Using the proposed metrics, several adder implementa-
tions, namely the LOA, AMAs and PFA, are compared 
against a baseline implementation, the LIA. Simulation 
results have indicated that, compared to probabilistic ad-
ders such as the PFA, approximate adders such as the 
LOA and AMAs are advantageous in terms of power sav-
ing, but with a relatively low precision (comparable to 
that of the PFA with a high gate error rate). Probabilistic 
adders such as the PFA, on the other hand, are able to 
provide a high precision, especially for a low gate error 
rate, but at the cost of a relatively high power consump-
tion. This tradeoff in precision and power are quantita-
tively evaluated using the proposed metric of power-
NED product. The evaluation results are further support-
ed by the analysis of the power saving and NED ratio that 
indicates the efficiency of a design in trading off precision 
for power. Although not discussed and beyond the scope 
of this paper, the proposed metrics may also be useful in 
assessing other arithmetic circuits [20] for inexact compu-
ting and/or fault-tolerant designs [21] in nanocomputing 
applications.  
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