SUBMITTED FOR REVIEW

A High-Performance and Energy-Efficient FIR
Adaptive Filter using Approximate Distributed
Arithmetic Circuits

Honglan Jiang, Leibo Liu, Pieter Jonker, Duncan Elliott, Fabrizio Lombardi, Fellow, IEEE and Jie Han, Senior
Member, IEEE,

Abstract—In this paper, a fixed-point finite impulse response
(FIR) adaptive filter is proposed using approximate distributed
arithmetic (DA) circuits. In this design, the radix-8 Booth algo-
rithm is used to reduce the number of partial products in the DA
architecture, although no multiplication is explicitly performed.
Additionally, the partial products are approximately generated by
truncating the input data with an error compensation. To further
reduce hardware, an approximate Wallace tree is considered for
the accumulation of partial products. As a result, the delay, area
and power consumption of the proposed design are significantly
reduced. The application of system identification of a 48-tap
bandpass filter and a 103-tap high-pass filter shows that the
approximate design achieves a similar accuracy as its accurate
counterpart. Compared with a state-of-the-art adaptive filter
using bit-level pruning in the adder tree (referred to as the
delayed least mean square (DLMS) design), it has a lower steady-
state mean squared error (MSE) and a smaller normalized mis-
alignment. Synthesis results show that the proposed design attains
on average a 55% reduction in energy per operation (EPO)
and a 3.2x throughput per area compared with the accurate
design. Moreover, the proposed design achieves 45%-64% lower
EPO compared with the DLMS design. A saccadic system using
the proposed approximate adaptive filter based cerebellar model
achieves a similar retinal slip as using an accurate filter. These
results are promising for large-scale integration of approximate
circuits into high-performance and energy-efficient systems for
error-resilient applications.

Index Terms—adaptive filter, approximate arithmetic, distributed
arithmetic, radix-8 Booth algorithm, truncation, Wallace tree.

I. INTRODUCTION

The human beings’ superior ability to accurately control
complex movements, due to the cerebellum, has engaged
considerable attention. Many computational models have been
proposed to explain and to mimic the cerebellar function for
signal processing and motor control applications, including
the perceptron-based model [1], [2], the continuous spatio-
temporal model [3], the higher-order lead-lag compensator

H. Jiang, D. Elliott and J. Han are with the Department of Electrical and
Computer Engineering, University of Alberta, Edmonton, AB, Canada T6G
1H9. (e-mail: {honglan, elliott, jhan8} @ualberta.ca)

L. Liu is with the Institute of Microelectronics, Tsinghua University, China,
Beijing. (e-mail: liulb@tsinghua.edu.cn)

P. Jonker is with the Delft University of Technology, The Netherlands. (e-
mail: jonker@tudelft.nl)

F. Lombardi is with the Department of Electrical and Computer Engineering,
Northeastern University, Boston, USA. (e-mail: lombardi @ece.neu.edu)

model [4] and the adaptive filter-based model [5]. Among
them, the most widely used cerebellar model is based on the
adaptive filter [5] due to its low complexity and high structural
resemblance to the cerebellum. However, little has been done
on implementing the cerebellar model in hardware due to its
high complexity.

Adaptive filters are widely used in applications such as
image processing, signal prediction/identification and echo
suppression [6]. The finite impulse response (FIR) adaptive
filter is one of the most pervasively employed adaptive filters;
it is composed of an FIR filter with variable coefficients
(or weights) and a weight update module. The coefficients
are adjusted by an adaptive algorithm. Due to the closed-
loop adaptive process and related algorithm, the hardware
implementation of a direct form FIR adaptive filter is very
complex. Moreover, the high power consumption, large area
and long critical path of the weighted sum operation in the
linear filter significantly limit the throughput of such a digital
signal processing (DSP) system.

In this paper, distributed arithmetic (DA) is combined with
the radix-8 Booth algorithm and approximate computing for
a high-performance and energy-efficient FIR adaptive filter
design. To the best knowledge of the authors, this is the
first integrated FIR adaptive filter design using the radix-8
Booth algorithm in a DA architecture. In this design, the
computation of weighted sums using multipliers and adders is
transformed to a DA architecture with no lookup table (LUT).
Thus, no multiplier is used; the partial product generation and
accumulation circuits are still required. By using the radix-8
Booth algorithm, the number of partial products is reduced by
2/3 compared to a conventional DA architecture. Therefore, a
significant reduction is achieved in the accumulation circuits.
Moreover, an input truncation scheme is proposed to ap-
proximately generate the partial products and an approximate
recoding adder is used to reduce the critical path, area and
power consumption. To further reduce the latency, approximate
Wallace trees are used for the accumulation of partial products.

The applications in the system identification and saccadic
system show that the proposed approximate FIR adaptive filters
incur a very small loss in accuracy compared with the accurate
implementation. Synthesis results indicate that the proposed
design achieves nearly 55% reduction in energy per operation
(EPO) and a 3.2 x throughput per area (TPA). Compared with
the delayed least mean square (DLMS)-based design of [7], the
proposed design requires up to 60% lower EPO with a higher

SUBMITTED FOR REVIEW

accuracy (i.e., lower mean squared error and misalignment).

This paper is organized as follows. Section II introduces
the cerebellar model, the basic principles of DA, the review
of FIR adaptive filters, and FIR adaptive filtering. Section
IIT proposes the architecture of the FIR adaptive filter using
approximate DA, including error computation and weight
update modules. The proposed truncated multiplication and
approximate Wallace tree are presented in Section IV. Section
V shows the simulation and synthesis results of the adaptive
filter design. Additionally, the proposed design is compared
with the most efficient existing design in terms of accuracy
and hardware overhead. Section VI evaluates the accuracy of
the adaptive filter designs in a saccadic system. Section VII
concludes the paper.

II. BACKGROUND

A. Cerebellar Model

Fig. 1 shows a connection network of cerebellar cells
[8], where the Purkinje cell (PC), granule cell (GC), Golgi
cell (Go), mossy fibre (MF) and climbing fibre (CF) are
key elements for the cerebellum. In the adaptive filter based
cerebellar model, the GC and Go are combined and simplified
to a tap-delay line [9]. The output of the PC is given by

M—1
2(t) =Y wilt) - xi(t), (1)
i=0

where w;(¢) is the synaptic weight between the i parallel
fibre (PF) and the PC, x;(t) = u(t — Ti) is the delayed input of
u(t), T is the constant delay of the Go-GC system, and M is
the number of synapses. The synaptic weights are updated by
the error signal carried on the CF according to the least mean
square (LMS) algorithm. The LMS algorithm is formulated as

WZ(I+T) :Wi(t)+u'g(t)'xi(t)ai:()?la"' 7M_13 (2)

where (1 is the step size, and e(r) = d(t) — z(¢) is the error
between the desired signal d(¢) and the PC output.

B. FIR Adaptive Filter Architecture

Fig. 2 shows the basic structure of an FIR adaptive filter.
It consists of an FIR filter with variable weights and a weight
update module. The weights of the FIR filter are adjusted by

Parallel fibre

Basket cell . Stellate cell

Perkinje cell

Climbing fibre

fibre Deep

Mossy fibre cerebellar

nuclei

Fig. 1. A connection network of cerebellar cells.

d(n)
+
x(n) FIR Filter | y(n) e(n)
w(n) - x(n) -
w(n)
Weight update
module

Fig. 2. An FIR adaptive filter [13]. n is the iteration number,
x(n) is the input vector, y(n) is the output signal, d(n) is the
interfered desired signal with the undesired noise, e(n) is the
error output, and w(n) is the weight vector.

x(n) x(n-M+1)

Fig. 3. Error computation module.

the adaptive algorithm through a negative feedback loop. An
M-tap FIR filter is implemented by

M—1
) =W)X = L) s O)

where w(n) = [wo(n),wi(n), -+ ,wy_1(n)] is the weight vec-
tor, x(n) = [x(n),x(n—1),--- ,x(n—M+1)]T is the input vector
at the n'" iteration, and M is the length of w(n) and the tap
of the FIR filter. The weights of the FIR filter are variables
with the iteration number n as determined by the adaptive
algorithm. They are updated until a set of optimized values
are obtained. There are many adaptive algorithms, e.g. the
LMS, the normalized LMS, the recursive LMS algorithms
[10] and the affine projection algorithm [11]. The selection
of an adaptive algorithm is based on a tradeoff between
computational complexity and convergence speed. As the LMS
algorithm is very simple with a satisfactory convergence [12],
it is widely used for hardware implementation and thus it is
considered in this paper. The LMS algorithm is formulated as

wiln+1)=wi(n)+un-e(n) -x(n—i),i=0,1,--- . M—1, 4)

where p is the step size, and e(n) = d(n) — y(n) is the
error signal between the desired signal d(n) (interfered by an
undesired noise) and the filter output y(n).

As per Fig. 2, the implementation of an FIR adaptive
filter can be divided into the error computation and the weight
update modules; they are implemented by delay registers,
multipliers and adders (shown in Figs. 3 and 4, respectively).
In Fig. 4, the step size U is set to 279 (where ¢ is a positive
integer); thus the multiplication by u is realized by a right
shift operation.

Still, 2M multipliers (with M multipliers for the error com-
putation and M multipliers for the weight update) are required

SUBMITTED FOR REVIEW

x(n) -x(n-l !.x(n-Z!

ue(n)

Awg(n) |Awi(n) Awy(n)
woln) oo wilm) 2y waln),

wo(nt1l) |wi(ntl) |wa(n+l)

Fig. 4. Weight update module.

for an M-tap FIR adaptive filter. This process consumes a
significant amount of power and it also incurs a large area
for the required hardware implementation.

C. Distributed Arithmetic

Distributed arithmetic presents an efficient computation
structure for DSP. It is widely used in the computation of
sum of products or inner products [14]. For example, consider
computing the inner product of a M-dimensional vector pair
x = [x0,X1,--, Xy 1] and y = [yo,y1,--- ,ym—1], Where M is the
number of numbers in each vector pair

M—1
7= Z XiYi-)
i=0

Assume that y; = —y,-vm,12m_1 —1—272_02 i, j2j is a binary number
in 2’s complement, where m is the bit width of y;. Then, (5)
becomes
M—1 m—2 _
=Y, xi(=Yim12" '+ Y vij2/)
i=0 Jj=0
m—2 M—1 (6)

M—1
==2""1 Y i+) (Y X)2
i=0 Jj=0 i=0

As y; ; is either ‘0" or ‘1, Zﬁglx,’y,’,j has 2™ possible values.
Take M =3 as an example,):?zox,-y,-_”,- can be 0, xg, x1, X1 +xp,
X2, X2 + X9, Xo +x1 or xp +x1 + x9. These 23 values can be
precomputed and stored in an 8-word LUT, and [yo,y1,,¥2,]
is used to address the LUT. Finally, a shifted accumulator is
required to obtain the final result z for the inner product.

As the length of the vector pair increases, the size of the
required LUT grows exponentially if a full LUT based DA
is used to compute the inner product, i.e., 2Y-word. Thus,
directly using full LUT based DA to compute the inner product
is not efficient when M is large. Usually, decomposition
techniques are used to decompose the M-dimensional vector
pair into K-dimensional vector pairs (K < M) [15]. The inner
product of a K-dimensional vector pair is implemented based
on a full LUT (2X-word) based DA. Then, the inner product
of the M-dimensional vector pair is obtained by accumulating
the inner products of the K-dimensional vector pairs. Another
way to solve this problem is to compute Z?ig x;yij on line
by accumulating the partial products x;y; ; for a large M [16].
The partial products can be accumulated in a bit-serial or bit-
parallel mode [17]. An adder tree and a scaling accumulator
are sufficient for a bit-serial DA. For an m-bit input, however,
m processing cycles are required. A parallel DA is significantly
faster, but it requires m adder trees and a shifted adder tree to

accumulate the partial products, incurring a larger area and
higher power dissipation.

D. Review of FIR Adaptive Filter Designs

Several FIR adaptive filter designs based on DA have been
proposed to reduce the critical path for high throughput. In the
two DA-based FIR adaptive filters presented in [18], weights
are used as addresses to access the LUTs storing the sums of
the weighted delayed inputs. Two schemes have been proposed
for updating the LUTs. Although the memory requirement is
reduced by half compared with previous schemes, the size of
the LUT increases exponentially with the order of the adaptive
filter. Therefore, these designs are not suitable for adaptive
filters with high orders. An efficient DA formulation has been
presented for the block least mean square (BLMS) algorithm
in an FIR adaptive filter [19]. In this design, the LUT is
shared between the computations of the filter output and the
weight increment; only one column of LUTs is updated in each
iteration by shifting the weight-vectors. Thus, figures of merits
such as circuit area, power and timing are improved for the
LUT updating process. However, the size of the LUT is still
L times (where L is the block size of the BLMS algorithm)
the size of the LUT in [18] and hence, the area and power
dissipations of this design are rather large. Therefore, DA-
based FIR adaptive filter designs using LUTs perform well
for a low order; however, they are not efficient for adaptive
filters of a high order due to the overheads for updating and
accessing the LUTs. For high-order designs, DA architecture
using decomposition techniques or without using LUTs is more
efficient [16].

A novel shared-LUT design has been proposed to implement
DA for a reconfigurable FIR filter [20]. In this design, an M-
dimensional vector pair is decomposed into L P-dimensional
small vector pairs (i.e., M = LP). A 2P-word LUT is shared
by the bit slices (consisting of P bits) of different weightage.
Totally, L partial product generators, L 2P-word LUTs, m
(as the bit width of inputs) adder trees and a shift-add tree
are required to compute the inner product. The contents in
the LUTs are updated in parallel. This FIR filter achieves
a significant reduction in energy compared with the systolic
decomposition of a DA-based design.

A different methodology to improve the throughput of an
adaptive filter is to use a pipelined structure. However, the
least mean square (LMS) algorithm does not directly support
pipelining due to its recursive operation. Therefore, the LMS
algorithm is modified into the so-called DLMS [21]. DLMS
significantly reduces the critical path delay of an adaptive
filter by pipelining, whereas the performance of convergence
is degraded significantly due to the adaptation delay [22].
A DLMS FIR adaptive filter with a low adaptation delay
has been proposed in [7] by using a novel partial product
generator and an optimized balanced pipeline; a bit-level
pruning of the adder tree is further employed to reduce the area
and power consumption of the implementation. Synthesis and
simulation have shown that this scheme consumes less power
and requires less area than other DLMS adaptive filter designs.
However, a large number of additional latches are used for the

SUBMITTED FOR REVIEW

pipelined implementation of a DLMS adaptive filter and hence,
overheads in area and power dissipation are incurred compared
to an adaptive filter using the LMS algorithm.

Many other techniques have been combined with DA to
increase its efficiency. Factor sharing has been employed in
a DA architecture to reduce the number of adders [23]. It
reduces 44.5% of the adders in a multistandard transform core
design. A result-biased circuit for DA has been used in the filter
architectures for computing the discrete wavelet transform; it
leads to a 20% to 25% reduction in hardware [24].

III. PROPOSED ADAPTIVE FILTER ARCHITECTURE

For an M-tap direct-form FIR adaptive filter (i.e., an m-
bit fixed-point implementation), the critical path delay is the
sum of delays in the error computation (¢ + [loga(M +1)] x
t4) and weight update processes (fys +14), where t); and t4
are the critical path delays of an m x m multiplier and an m-
bit adder, respectively. Therefore, the sample rate of the input
signal is limited due to this long latency. An important feature
of the proposed adaptive filter using DA is the reduction of
the latency to achieve a high throughput with significantly low
area and power consumption.

In the adaptive learning process for the weight update,
errors in the adaptive filter circuit can be inherently com-
pensated or corrected. Therefore, power and area efficient
approximate arithmetic circuits are considered for a fixed-
point implementation. Truncation is an efficient method to
save power and area for approximate arithmetic circuits at a
limited loss of accuracy [25], so it has been extensively used
in the design of fixed-width multipliers [26]. Most existing
designs are based on the truncation of the partial products to
save circuitry for partial product accumulation [27]. All bits
of the input operands are required for these multipliers and
therefore, memory is not reduced for storage requirements.
However, memory consumes a significant amount of power
and accounts for a large area in an application involving a large
data set. Moreover, efficient data transfers are very important
for achieving a high throughput [28].

As per the results in [25], compared to the partial product
truncation, truncating the input operands achieves more signif-
icant reduction in hardware overhead for adder and multiplier
designs. Thus, truncation on the input operands is applied to
achieve savings in the partial product generation.

A. Error Computation Module

A weight w;(n) can be represented in 2’s complement as
wi(n) = —wi 1 (n)2m-! +Z7’:_02 w!(n)2/, where w!(n) is the
j™" least significant bit (LSB) of w;(n) and m is the width
of the binary representation. For the ease of analysis, w;(n)
is represented as an integer; it can be easily transformed to
a fixed-point format by shifting. By using the radix-8 Booth
encoding, as shown in Table I, four bits of w;(n) are grouped

4
TABLE I. The radix-8 Booth encoding algorithm
w?j”(n) W?‘H] (n) W?j(n) w?jil (n) W,](n)

0 0 0 0 0
0 0 0 1 +1
0 0 1 0 +1
0 0 1 1 +2
0 1 0 0 +2
0 1 0 1 +3
0 1 1 0 +3
0 1 1 1 +4
1 0 0 0 4
1 0 0 1 3
1 0 1 0 3
1 0 1 1 2
1 1 0 0 2
1 1 0 1 -1
1 1 1 0 -1
1 1 1 1 0

with one overlapping bit. Then, w;(n) is given by

[m/3]-1 30 3 iy
wi(n) = Z (722w;]+ (n) Jr2wl-]+ (n) +w;’(n)
j=0
3 [m/3]-1 7
- 3j — 3j
+w;' " (n))2Y = Z w!(n)2°/,
j=0

where w1 =0, W/ (n) = —22wl-3’+2(n) —|—2wi3]+1 (n) —|—wl-31 (n)+
w1 (n), and W (n) € {—4,-3,-2,—1,0,1,2,3,4}. Sign ex-
tension is used when the width of the encoded input is shorter
than 3 x [m/3].

The filter output y(n) in (3) is then obtained as

y(n) =w(n) -x(n) =68 w(n)-x(n), ®)
where
wo(n) w)(n) W1 (1)
B wi(n) win) Wiy (n
w(n) = . NG

0= [20723a o ’23[m/3]73]’ and X(l’l) = [x(n),x(n— l)a e ,x(n—
M+1)]T. By computing pp(n) = W(n) -x(n) first through the
accumulation of partial products and then y(n) = & - pp(n) by
a shift accumulation, a DA architecture is obtained. Let pp(n)
be [ppo(n),ppi(n),---, ppim/31-1(n)]", then ppj(n) is given

by
M—1

M-1
ppj(n) =Y wl(n)x(n—i)= Y PPy, (10)
i=0 i=0

where PP; =W (n)x(n—1i) is the j row in the partial product
array of w;(n)x(n —i) using the radix-8 Booth algorithm.
Compared with a conventional DA architecture, the number
of partial products in pp(n) is reduced by roughly m— [m/3] ~
27’” due to the use of the radix-8 Booth algorithm. Thus, the
required number of accumulations to obtain y(n) is reduced
by about 2/3.
Fig. 5 shows the proposed error computation module
using DA. In this design, no LUT is used due to the large
size incurred in a high-order filter. Thus, the partial product

SUBMITTED FOR REVIEW

x(n) J b x(n-1) N s D x(n-M+1)
Radix-8 Y Radix-8 Y Radix-8
RCON —>|7PPG M) o ppG | .. " oo PPG
Encoder Encoder Encoder
Pool Pro) =+ Pari Pman‘ = Porn], Pogu -l)"Pl(l'mB]-l)‘ P(M-l)(rm/sl-n'
Wallace Tree-0 Wallace Tree-1 W—j}ﬁ?; _Tlr)ee
Pl |p101 ptlo| |ptn PtimA-10| | PUamA-11
<<3 <<3(Im/31-1
d() 3 o ¢
-d(n
» Wallace Tree
CLA

-e(n)

Fig. 5. Proposed error computation scheme using distributed arithmetic. PPG: the partial product generator; CLA: the m-bit carry

lookahead adder.

vectors PP; ; are generated online and accumulated. Initially,
the inputs w(n) and x(n) are truncated and compensated
(will be discussed in Section IV-A). Then, the partial product
vectors PP;; (i=0,1,--- ,M—1and j=0,1,---,[m/3]—1) in
the weighted sum operation for y(n) are generated using the
radix-8 Booth encoder, the partial product generator (PPG)
and the approximate recoding adder from the approximate
radix-8 Booth multiplier (ABM2-R15) in [29]. The Radix-8
Booth encoder is used to encode every 4 bits in the weight
wi(n) (with an overlap of one bit) into one number W!(n)
(i.e., 0,+1,£2,43 and £4), as per Table I and (7). The
partial product generator (PPG) and the approximate recoding
adder (to generate 3 x x(n —i)) are used to produce partial
products PP;; as per (10). The partial product vectors are then
accumulated by the Wallace trees.

An M-input Wallace tree is used to compute (10) and
hence, [m/3] such Wallace trees are required to obtain
pp(n). Let the two intermediate results generated by the
Wallace tree be ptjp and pt;ji, then pp;(n) = ptjo+ ptji. To
implement it, a multi-bit carry-propagation adder is needed,
which causes a long latency. Thus, the intermediate results
ptjo and pt;; are kept for the next stage to eliminate the long
latency. In this case, y(n) = & -pp(n) = [20,23, ... ,23[m/31-3].
[ptoo + pto1,ptio + Ptit,- P31 —10 + Plm/31-01) -

Let & = [20,202323 ... 23[m/31=3 23[m/31-3] and
PP(n) = [ptoo, Plot, P1io, Pits == s Pl(fm/31—1)0s P(fm/3)-1)1) >
then y(n) = O - pp(n). The negative error signal

—e(n) = yln) — d(m) = [5.1]- [E‘;((’Z))d]-
implemented by shifting the intermediate results followed
by a Wallace tree, as shown in Fig. 5. Also, —d(n) is
the input to the Wallace tree to reduce the long latency
of a carry-propagation adder for computing e(n). Thus, a
(2[m/3] + 1)-input Wallace tree is used. Finally, the negative

This step can be

error output is obtained by adding the two output vectors of
the Wallace tree using an m-bit carry lookahead adder (CLA).

Specifically, several LSBs of the input signals and the
weights are initially truncated and compensated. Then, the
partial products are generated by the PPGs as in [29]. The
partial product vectors PP;; are obtained by left shifting the
multiplicand when the recoded digit number W/ (n) is +2 or
+4. For a +3 value of W/ (n), a recoding adder is required to
generate 3x(n —i). In this design, the approximate recoding
adder in ABM2-R15 is used to reduce the latency (albeit
not shown in Fig. 5). When w/(n) is negative, the PP,; is
approximately computed by inverting all bits of the partial
product vector produced by the corresponding positive W/ (n).
As in ABM2-R15, half of the partial products at the LSB
positions is truncated for a fixed-width multiplication output,
as shown in Fig. 6. The ‘1’ in the last row is the average
error compensation due to partial product truncation. Finally,
the approximate Wallace trees proposed in Section IV-B and
one accurate CLA are used to implement the accumulation
operation.

Compared with the conventional error computation circuit
in Fig. 3, the proposed design saves the delay of a final
adder in the multiplier due to the DA. Moreover, the use of
the Wallace trees in the proposed scheme makes it even faster.
Finally, the area and power consumption of the design are
significantly reduced due to the approximation in the partial
product generation and accumulation.

B. Weight Update Module

For the weight update in the FIR adaptive filter, pe(n)
is first obtained by right shifting with a truncation error
compensation. Let the m-bit negative output in 2’s complement
from the error computation block take the value —e(n) =

SUBMITTED FOR REVIEW

e Ol
e o Ol

o0

o0
'Y X Xl
XX E R
eoe e~
X X X X
XX KX B
XX KX 2=
(X XK X XK
XX E XK X
000 000O0
o0 00O OO

1
[]
[]

[N N

11
o0

o000 OO0
- 0000000

Fig. 6. Partial product tree of an approximate 20 x 20 radix-8
Booth multiplier with truncation. @: a partial product; @: the

sign bit; @: the inverted sign bit.

—epy_ 12! +ZT;02 ej2/, where ¢; is the j"* LSB in the output.
In this case e(n) is represented as an integer for easier analysis;
it can be easily transformed to a fixed-point format by shifting.
If the step size pu for the weight update is 27¢ and ¢q is
a positive integer, —pe(n) = —e, 12" 97! +Z’]’.’;02 ej2/71 by
right shifting —e(n) by g bits. By truncating the ¢ LSBs in the
fractional part, —te(n) & —e, 12" 17 + Y172 027041 =
(em—1---eqr2eq411)2, where the ‘17 at the LSB position is the
error compensation for truncation. pe(n) is then obtained by a
2’s complement operation, i.e., pe(n) = (€y—1---€g+2€4+11)2,
where ¢; is the inverted value of ¢;, i=¢g+1,g+2,--- ,m—1.
After shifting and the 2’s complementing operation, pe(n)
can be represented by (m — g) bits by keeping one sign
bit. Therefore, an (m — ¢) x m multiplication is sufficient for
computing each weight increment pe(n)x(n —i). Fig. 7
shows the partial product tree based on an approximate Booth
multiplier (ABM-R15) when m and g are 20 and 8, where the
partial products at the 19 LSB positions are truncated.

Let v(n) = pe(n), and v(n) = —vy_q_1(n)2m 4" +
Z;’;qu v;(n) in 2’s complement, where v;(n) is the j* LSB
of v(n). As per the radix-8 Booth algorithm, v(n) can be
represented as

[(m—q)/3]-1 5
v(n) = (-2 V3j+2(l’l) +2v3j41 (n)+ V3j(l’l)
j=0
o [m=g)/31-1 . (b
tsja)2V = Y T2V,
=0
where V;(n) = —2%v3;42(n) +2v3,11(n) +v3;(n) +v3j_1(n) is

the radix-8 recoded number in {—4,-3,-2,—1,0,1,2,3,4}.
According to (4), wi(n+ 1) is given by
4 () -5l — 1) i () — | V(n)-x(n—i)
wi(n+1) =v(n) -x(n—1i)+w;(n) =[8,,1] { wi(n) 1 ,
where §, = [20,23,- ,23Hm’q>/31’3], an
Vi(n),-+ ,V(m—g)/31-1(n)]". Therefore, a (
cooocee
1 1 000000
l10e0o0ec0ee0e

FEEEEREREEERX
1

Fig. 7. Partial product tree of an approximate 12 x 20 radix-8
Booth multiplier with truncation. @: a partial product; @: the
sign bit; @: the inverted sign bit.

input Wallace tree and a final m-bit adder are sufficient for
implementing the accumulation in (12).

Fig. 8 shows the proposed weight update circuit, only one
radix-8 Booth encoder is required for the M multiplications
because pe(n) is the same for the M weights. Also, the
recoding adders for calculating 3x(n — i) are shared with
the ones in the error computation module as they share the
same input multiplicands ([x(n),x(n— 1), -+ ,x(n — M + 1)]).
Similarly, a PPG is used to compute the partial product
vectors V(n) - x(n—1i). Then, the partial product vectors and
the weight at the former iteration w;(n) are accumulated
by a ([(m—¢q)/3] + 1)-input Wallace tree. The new weight
wi(n+ 1) is obtained by adding the two output vectors of
the Wallace tree using an m-bit CLA. As the weight update
module is more sensitive to errors, a smaller number of LSBs
is approximated in the Wallace tree.

Consequently, the proposed weight update design saves
(M — 1) radix-8 Booth encoders and M recoding adders
compared with a conventional multiplier based design. It
significantly reduces the area and power dissipation when M is
large. Moreover, the critical path delay of the proposed design
is reduced by 2x of the delay of an adder (i.e., by the delays
of the recoding adder and the final adder in the multiplication)
compared with the design in Fig. 4.

IV. TRUNCATED PARTIAL PRODUCT GENERATION AND
APPROXIMATE ACCUMULATION

To reduce area, power dissipation and critical path delay of
the proposed deign, the partial products in DA are generated
by truncating some LSBs of the inputs.

In a parallel DA architecture, accumulation is usually imple-
mented by an adder tree. As the carry-propagating adders in an
adder tree are very slow, a Wallace tree is used in this design
to speed up the accumulation stage. Moreover, the Wallace tree
is approximated to lower the hardware cost.

A. Truncated Partial Product Generation

Due to the partial product accumulation, the final result of
an inner product will not be significantly affected if the average
error of the approximate partial products is small.

An m-bit number A in 2’s complement can be represented
as A= —a,_2"! —1—2?1:52 a;2', where a; is the i'" LSB of A,
and the most significant bit a,,— is the sign bit. Let Ay be the
remaining value of A with k (1 <k <m/2) LSBs truncated.
Then, Ay = —a,—12" '+ ¥ 2a;2". Let A be Y1) a2, the
truncation error is then Ay —A = —Ap. Let the probability
of a; =1 be p, where 0 < p < 1. The average error due to
truncation is given by

k—1

E[-Al=-pY 2"=p(1-2Y, (13)
i=0

where E[-] denotes an expected value. The maximum error
distance (in the absolute value of the error) occurs when the
k LSBs of A are all ones. So, the maximum error distance

SUBMITTED FOR REVIEW

x(n) b x(n-1) b x(n-2) b x(n-M+1)
adix-8 4 Y M
M} RBooth J‘P{ PPG ‘ LP{ PPG ‘ LP{ PPG ‘ PPG
ncoder
£ " T3 ();...; ()¢...¢ "
Wolnt allace | W12 allace | W2 allace Wy (1 allace
- WTruee : WTrlee : WTrLe = WT:lee
w W W
’ CLA ‘ ’ CLA ‘ ’ CLA ‘ CLA
lwg(nﬂ) iw](rﬁrl) iwz(nﬂ) Wy (nt1)

Fig. 8. Proposed weight update scheme. PPG: the partial product generator; CLA: the m-bit carry lookahead adder.

(Dmax) of AH is

k—1
Dpax =Y 2/ =2F—1. (14)
i=0

As per (13), the average error of a truncated number is
approximately —2%p. To compensate this error, 2€p is added
to Ay. Assume 0 and 1 are equally likely to occur, i.e.,
the probability of a; =1 or @; = 0 is 27!, In this case, the

compensation error is 2¥~!. The compensated number A’ is
given by

m—2
A=A+ =—q, 2"+ Y a2,
i=k—1

15)

where a;_; is ‘1°, and m is the bit width of A. In this case,
truncation error becomes A’ — A = —A; + 25 1; the average
error of the truncated number in (13) is reduced to E[—Az] +
2k=1 —2=1 The D,,,, occurs when k LSBs of A are zeros; it
is reduced to 2¢~!. Using this error compensation scheme for
the truncated input operands, the average error of the partial
products can be computed in a signed multiplication. Assume
that X = Xy + X; and Y = Yy + Y, are the multiplicand and
multiplier, respectively, the average error of the partial products
is then given by

E[Epp) = E[(Xp + 2 1) (vy +2F71)
— (X +X1) (Yu + Y1)

where Xy = —x,,12" "' + Y2020 X = Y0020 Yy =
— Y12 Y™ 2 y,2" and ¥y, = Y2 | y:2". When the probabil-
ity of x; =1 and y; = 1 is 0.5, E[Xy] = E[Yy] is 271 (=2""' +
Y22l = =271 and E[X;] = E[Y;] is 2571 =271 as per
(13). As X and Y are independent, E[YyXL] = E[Yy]|E[XL],
E[XyY | = E[Xy)E[YL] and E[X.Y.] = E[X.|E[YL]. The average
error of the partial products in (16) becomes

; (16)

E|Epp] = 2 Y(E[Xy] + E[Yh]) +2%72)—
(EXu|E[YL]+E[Yy]E[X.] + E[XL|E[YL]).
=02

A7)

This result indicates that the number of partial products in
a DA architecture can be reduced by truncating some LSBs of
the input data, and the accumulated sum can be rather accurate
by using the proposed error compensation.

For a fixed-width implementation of DA, the partial products
at the less significant bit positions can be truncated as in the
fixed-width multiplication. Thus, the partial product generation
and error compensation schemes for a fixed-width multiplier
are further applied to the proposed DA partial product genera-
tion. In the fixed-width multiplier design, the partial products
at the lower half bit positions are truncated, and the error is
compensated by an error compensation strategy. Several error
compensation strategies have been proposed for fixed-width
Booth multipliers [29]-[32]. Among them, the probabilistic
[32] and approximate recoding adder based approaches are
very efficient and applicable to the radix-8 Booth algorithm.
The comparison in [29] shows that the approximate recod-
ing adder based scheme is significantly more accurate and
hardware-efficient than the probabilistic approach for a radix-8
Booth fixed-width multiplier.

In the proposed FIR adaptive filter, therefore, the m-bit input
data are truncated by k LSBs and compensated first. The partial
products are then approximately generated using the radix-8
Booth encoder and the PPG in the (m—k+1) x (m—k+1)
ABM2-R15. To assess the accuracy of the approximate partial
product generation scheme for DA, the inner product with
a length of 64 is simulated. In this simulation, 5 LSBs of
the inputs are truncated and compensated. The inputs are five
million combinations; each combination consists of 64 16-bit
random integers generated from the normal distribution. The
inputs are divided by 2'3 to ensure that the inputs are in the
range of [—1,1) and in the fixed-point representation with 1
sign bit and 15 fractional bits. The input combinations for
the simulation are selected to make sure their inner products
are in the range of [—1,1). Thus, the inner products are
also represented by 16-bit fixed-point numbers with 1 sign
bit and 15 fractional bits. Errors are then computed as the
difference between the approximate results and the accurate
results. To show the errors in integers, both the accurate
and approximate inner products are multiplied by 2!5. The
simulation results show that about 99.79% of the errors are
within (—400,400). Fig. 9 shows the distribution of the errors,
where the mean and standard deviation of the errors are around
4 and 122, respectively. Since the range for the accurate outputs
is [—32768,32767), the simulation results indicate that most
of the errors due to the approximate partial product generation
are very small.

SUBMITTED FOR REVIEW

0.04

0.03

0.02

probability

0.01

0
-600 -400 -200 0 200 400 600
error

Fig. 9. The error distribution of the proposed approximate
partial product generation for DA.

B. Approximate Accumulation

Fig. 10(a) and (b) show the structures of a traditional
adder tree (AT) and a Wallace tree (WT) for six m-bit inputs,
respectively. For an AT, there are (M — 1) m-bit adders in
[logoM] stages for M inputs (M > 2). Thus, the circuit area
and the critical path delay are Cy7 = (M — 1) X Gys and
tar = [logoM| X tyya, where Cyq and t,4 are the circuit area
and critical path delay of an m-bit adder. However, the WT
requires |log; sM| (for M > 13; there is not a general formula
to represent the number of required stages in a WT for
M < 13) carry-save stages and one final m-bit carry propagate
adder for M inputs. Thus, the circuit area and the critical
path delay of the WT are Cyr = (M —2) X m X Cpa + Cipa
and tyr = |log1sM| X tpa + tya, where Cpy and tpy are the
circuit area and critical path delay of a full adder [33]. It is
evident that Cqyr > Cwr when Ca > m X Cpa, and tar > twr
when 4 > % X tra. As % decreases with the
increase of M, a WT is more efficient in delay than an
AT when M is large. In an extreme case where M = 4,
tar =2 X tpa and twr =2 X taf + 14 (a 4-input WT requires
2 stages). Therefore, a WT is faster than an AT as long as
tma > 2 X tpa. For the ripple carry adder (RCA), C4 and #,4
are proportional to m, while they are proportional to logym and
mlogym, respectively, for a fast carry lookahead adder (CLA).
Obviously, a WT has a similar size of circuit with an AT when
RCAs are used. On the other hand, a WT has a smaller circuit
than an AT when CLAs are used. Additionally, the speed of a
WT can be improved by up to 30% by optimizing the signal
connections among full adders using the algorithm in [34].
Thus, a speed-optimized WT is implemented for the parallel
mode DA in the proposed FIR adaptive filter design.

To further reduce circuit complexity, approximation is ap-
plied to the less significant part of a WT as in the lower-part-
OR adder (LOA) [27]. In the LOA, the less significant bits are
"added" by OR gates and an AND gate is used to generate a
carry-in signal for the more significant bits that are summed
by a precise adder. LOA is an efficient approximate adder for
the accumulative operation due to its low average error [25].
Fig. 10(c) shows an approximate Wallace tree (AWT), in
which the less significant bits are accumulated by 3-input OR

R N A R R

m-bit adder m-bit adder ‘ m-bit adder | Stage 1
Stage 3
(2)
4, @ @] 4, (@ [o[@]
B @ - |@ By
4 @ o Stage 1 4 @ 0\ Stage 1
B (@ o B (@ [@|[@]
4, 1@ - |@® A,
B e e B o o\
@) Q0 o o Qoo . 00
Ol ... O O Stage 2 Ol...I0 O O O O Stage2
o 0] o/hl'e!
O 00 O O
O o] 0 © o oo ... 00
O ... O O O Stage 3 Q]...[0] © O O O Stage3
e 10 e
O ... O0O0O O.HOOOWOO‘
O O 0O OO0 0O (OO)

—~
=
=
—
o
-~

Fig. 10. Accumulation of partial products by (a) a traditional
adder tree, (b) a Wallace tree and (c) an approximate Wallace
tree. @: an input bit; O: the sum bit from the previous layer;
O: the carry bit from the previous layer; L] : a full adder; D
: an OR gate; D . an AND gate.

gates instead of full adders, and 2-input AND gates are used
to generate the carry bits for the more significant bits (that
are accurately accumulated by full adders). The number of
approximate LSBs determines the accuracy of an AWT. Thus,
by changing the number of approximate LSBs, the AWT is
configured into a circuit with variable accuracy. As the number
of ‘I’s in the intermediate results increases within a Wallace
tree due to the OR operation, it is more likely to generate an
error in a later stage. Therefore, the last few stages in a Wallace
tree can be accurately accumulated by using full adders to
ensure a high accuracy.

The accuracy and measurement of various accumulation
circuits are shown in Table II. The accuracy and power
dissipation are obtained using 10 million input combinations.
Each input combination consists of 64 or 128 16-bit random
integer numbers. Specifically, the critical path delay and area
are reported by the Synopsys design compiler (DC) by syn-
thesizing the designs in ST’s 28 nm CMOS technology with
a supply voltage of 1.0 V. The power dissipation is estimated
by the PrimeTime-PX with a clock period of 1 ns. Table II
shows that the accurate WT is slightly faster and consumes
similar or slightly lower power than the AT using CLAs. The
area of the WT is significantly smaller than that of its AT
counterpart. More significant improvement in latency, area and
power dissipation is obtained for a larger bit width.

For the AWTs, their average errors are very small when
the number of approximate LSBs is smaller than 5. Also,
the standard deviation increases rapidly when the number of
approximate LSBs is larger than 4. For hardware, the AWTs

SUBMITTED FOR REVIEW

TABLE II. Error and circuit measurements of designs for partial product accumulation.

input Desi # approximated ~ Average Standard deviation Delay Area Power ADP PDP
nputs csign LSBs error (10%) (ns) (um®) (mW) (um?-ns) (pJ)
AT - 0 0 083 6091 698 5,055 5.80
WT - 0 0 081 4595 665 3,722 539
o AWT 2 0.82 2.17 079 4521 649 3,572 5.13
AWT 3 1.74 3.38 079 3889 564 3,072 4.46
AWT 4 6.76 4.99 079 3,630 487 2,868 3.84
AWT 5 15.07 7.19 077 3582 474 2,758 3.65
AT = 0 0 096 10984 1240 10,544 11.90
WT - 0 0 094 9206 1240 8,654 11.66
128 AWT 2 0.14 3.09 092 8809 656 8,104 1122
AWT 3 4.52 4.84 093 7743 10.50 7,201 9.77
AWT 4 8.11 7.11 092 7,073 932 6,507 8.58
AWT 5 10.62 10.17 092 6341 824 5,833 7.58
with 4 approximate LSBs achieve more than 43% reduction in
area-delay product (ADP) and about 30% reduction in power-
delay product (PDP) compared with conventional ATs. Or ? Y\
/ :
V. SIMULATION AND SYNTHESIS RESULTS - -20 ¢ J \‘
. . . Q f !
The adaptive filter is employed to simulate an unknown S : 1
system as an application of system identification. 64-tap and E
128-tap FIR adaptive filters are considered to assess the pro- %,
posed design as low and high order applications. The unknown =
. . —— unknown system
systems under consideration are a 48-tap bandpass FIR filter e 20-bit
and a 103-tap high-pass FIR filter, which are identified by a | | ' |.. 16-bit
64-tap FIR adaptive filter and a 128-tap FIR adaptive filter, ==+ 14-bit
respectively. The step size for the adaptive algorithm is 275. ‘ = — 12-bit ‘
The input signal is a random vector generated from the 0 05 1 15 2 25

standard normal distribution in [—1,1). White Gaussian noise
with a signal-to-noise ratio of 40 dB is added to the output
signals of the unknown systems as interference noise.

For an m-bit fixed-point implementation of the FIR adaptive
filter, 1 bit is used for the sign bit and m — 1 bits are used for
the fractional part as the input is within the range [—1,1).

A. Accuracy Evaluation

To evaluate the accuracy and convergence of the designs, the
mean squared error (MSE) and the normalized misalignment
are considered. The MSE measures the difference between the
outputs of an unknown system and the adaptive filter. To show
the performance in convergence, the MSE is computed at each
iteration of the algorithm. Considering the variance in the MSE
and computation time, the MSE is averaged over 20 indepen-
dent trials smoothed by a 20-point moving-average filter. The
normalized misalignment indicates the difference between an
unknown system’s weights and the weights estimated by the
adaptive filter at each iteration. It is given by [35]

h—w(n
nn) = ZOlogloM, (18)
il
where || || is the Euclidean norm operation, h is the weight

vector of the unknown system, and w(n) is the adaptive weight
vector at the n'" iteration.

Initially, the accurate direct-form FIR adaptive filters in
Figs. 3 and 4 at different resolutions (or bit widths) are
simulated to investigate the effect of the resolution on accuracy.

Angular frequency normalized by fS

Fig. 11. The impulse responses of the identified systems by
using accurate FIR adaptive filters at different resolutions.

For an m-bit implementation, the multiplication and addition
are implemented by an accurate m x m radix-8 Booth multiplier
and an accurate m-bit CLA, respectively. The 2m-bit product
by an m x m multiplier is truncated and rounded to m-bit.
For the "unknown system" of a 48-tap FIR bandpass filter,
Fig. 11 shows the impulse responses of the identified systems
using 20-bit, 16-bit, 14-bit and 12-bit fixed-point FIR adaptive
filters after 30,000 iterations. It can be seen that the results
by the 12-bit and 14-bit implementations are far off from
the "unknown system", while the results by the 16-bit and
20-bit implementations are more accurate due to the higher
resolutions.

Based on the comparison results of the accurate FIR adaptive
filters, the 20-bit implementation for the proposed FIR adaptive
filter is selected to compare with the most efficient DLMS-
based designs in [7] at the same resolution. Four configurations
of the proposed design are considered for different numbers
of truncated LSBs on the input data: TO (with no truncated
bit), TS5 (with 5 truncated LSBs), T7 (with 7 truncated LSBs)
and T9 (with 9 truncated LSBs). The simulation results in
Table II show the tradeoff between accuracy and hardware
usage of the AWT. It shows that the AWT with 4 approximate
LSBs achieves the best tradeoff with a high accuracy and low
power dissipation. Thus, in the error computation module, 4
LSBs are approximated in the four least significant WTs, and

SUBMITTED FOR REVIEW

Mean squared error (dB)

Number of iterations (x 512)
(@)

Misalignment (dB)

0 10 20 30 40 50 60
Number of iterations (x 512)

()

Fig. 12. Convergence of accurate FIR adaptive filters at differ-
ent resolutions (a) learning curves in the mean squared error
and (b) learning curves in the normalized misalignment.

2 LSBs are approximated in the two more significant WTs.
The other Wallace trees used in the proposed design remain
accurate. For the DLMS design, the schemes without pruning
and with a pruning parameter of 11, referred to as DLMS (TO0)
and DLMS (T11), are considered as well.

As shown in the learning curves for the 64-tap filters in
Fig. 13, the proposed designs have a similar convergence
speed and steady-state MSE as the 20-bit and 16-bit accurate
designs. Compared with the DLMS design, the proposed
designs converge slightly faster to a lower MSE, as shown
in Fig. 13(b). The normalized misalignment shown in
Fig. 14 indicates that the proposed designs result in similar
learning processes as the 20-bit accurate design; these designs
outperform the other considered designs. The DLMS design
causes a high misalignment, which indicates that the system
weights identified by the DLMS design are far from those of
the actual system.

For the 128-tap FIR adaptive filter designs, the learning
results are shown in Fig. 15. As can be seen, the convergence

— 20-bit
. e 16-bit
—-—-14-bit
~ — Proposed (T0) ||
o i — — Proposed (T5)
AN . Proposed (T7)
5-25) & Proposed (T9) 1
5 i
B Y
EB H
-3¢
=
-35+
40+ ‘
0 10
Number of iterations (x 512)
(@
-15 T T T T T
-~ DLMS(T0)
—DLMS(T11)
i, ~ — Proposed (TO) | |
-20 Py — — Proposed (T5)
& Y Proposed (T7)
A Proposed (T9)
5-25 1
5}
B
o]
% -30
=
-35+
-40 i L L L L L
0 10 20 30 40 50 60

Number of iterations (x 512)
(b)
Fig. 13. Comparison of learning curves in the mean squared

error between the proposed 64-tap adaptive filters and (a)
accurate implementations and (b) DLMS-based designs.

o
)
5
£ e
c Sl
=) T
8 T
= 30" DLMS(TO) -
-~ DLMS(T11)
-35— — Proposed (T0O)
— — Proposed (T5)
-40 Proposed (T7)
45 Proposed (T9) ‘ ‘ ‘
0 10 20 30 40 50 60

Number of iterations (x 512)
Fig. 14. Learning curves in the normalized misalignment of
64-tap FIR adaptive filter designs.

SUBMITTED FOR REVIEW

-15
— 20-bit

Proposed (T0)
— — Proposed (T5)
Proposed (T7)
Proposed (T9)

Mean squared error (dB)

.\
y,\nm. .,\54 56 58

‘\'EI Yojrd

AL Ny .
R m‘f\y“ "VL"/'\“:'V: \’\ Vv w;‘:,.)’
40+ *er,wwamm q

0 10 20 30 40 50 60
Number of iterations (x 512)

(a)

-15

--=-DLMS(T0)
—DLMS(T11)

Proposed (T0O)
— — Proposed (T5) ||
. Proposed (T7)
= i'\l\ Proposed (T9)

251 W
: W\ P
;‘u: -38 A ..\' /\Z\Qeﬂ./
5 M A \I/‘ N _v_/

30} M_ RN AN
-11‘;__ -39 \//\/

W‘;%w -395
35+ * F

-20 i,
A

Mean squared error (dB)
=
T

i %*“““"Mﬁ MFMW

0 10 20 30 40 50 60
Number of iterations (x 512)

(b)
Fig. 15. Comparison of learning curves in the mean squared

error between the proposed 128-tap adaptive filters and (a)
accurate implementations and (b) DLMS-based designs.

5
0 e
5+
_10 .
o
S.15}
2
£-20
B e
@ -25
2 3o l-DLMS(TO)
DLMS(T11)
35 Proposed (T0)
— — Proposed (T5)
-40 Proposed (T7)
roposed (T9
5 L Proposed (T9) ‘ ‘ ‘
0 10 20 30 40 50 60

Number of iterations (x 512)
Fig. 16. Learning curves in the normalized misalignment of
128-tap FIR adaptive filter designs.

speeds of the proposed TO and TS5 are slightly slower, whereas
the learning curves for the MSE of the T7 and T9 are similar
to the accurate 20-bit and 16-bit designs. Fig. 15(b) shows
that the proposed designs (except for the TO) perform better
than the DLMS designs with lower steady-state MSEs. Similar
learning curves in the normalized misalignment are obtained
for the 128-tap designs and shown in Fig. 16. However, the
differences between the proposed designs are rather noticeable.
In this case, the learning curves in the misalignment of TO and
TS5 are closer to the accurate 16-bit design, and the curves for
T7 and T9 are closer to the accurate 20-bit design. Moreover,
the steady-state MSEs of the considered designs (reported in
Table III) show a similar trend.

B. Hardware Efficiency

To evaluate the hardware efficiency, the filter designs are
implemented in VHDL and synthesized by the Synopsys DC
in ST’s 28 nm CMOS technology. For ease of comparison,
all designs are synthesized in the same process with the
same supply voltage, temperature, optimization option and
clock period. The supply voltage and temperature are 1.0
V and 25 °C, respectively. The critical path delay, area and
power dissipation of the designs are reported by the Synopsys
DC. The average power dissipation is estimated by using
the PrimeTime-PX with the same inputs as in the accuracy
evaluation. The clock period for the power estimation is 4 ns.

For the performance evaluation, the values of the energy
per operation (EPO) and throughput per area (TPA) [36] are
computed for the considered designs. The EPO is defined as
the energy consumed per operation during one clock period,
and the TPA is defined as the number of operations per unit
time and per unit area. They are respectively given by

EPO = t,, X Power, (19)

and
TPA =1/ (tyin X Area), (20)

where 1,, and t,;, are respectively the time required per
operation, i.e., the operating clock period of a circuit, and
the shortest time required per operation (or the critical path
delay of a combinational circuit). Power is the total power
consumption including the dynamic and leakage powers. Area
is the circuit area.

Table IV shows the hardware measurements of the FIR
adaptive filter circuits. The "shared-LUT" denotes an accurate
20-bit fixed-point implementation of the FIR adaptive filter
using shared LUTs (16-word) [20]; CLAs are used to imple-
ment the additions in this design. For a fair comparison, in
the other accurate implementations without using DA (20-bit,
16-bit, 14-bit and 12-bit), the multiplications and additions
are implemented by radix-8 Booth multipliers and CLAs,
respectively. The additions in the DLMS-based design are
implemented by CLAs too. During the synthesis, the shortest
critical path delay is found such that the tightest timing
constraint is applied to each design with no timing violation.
Table IV shows that the shared-LUT design is the slowest
and that its improvements in area and power are very small

SUBMITTED FOR REVIEW

TABLE III. Steady-state MSEs of considered FIR adaptive filter designs in an increasing order (dB).

Filter length 20-bit 16-bit proposed (T7) proposed (T9) proposed (T5) proposed (T0) 14-bit DLMS (TO) DLMS (T11)
64 -39.98 -39.86 -39.80 -39.78 -39.67 -38.59 -38.94 -39.53 -38.56
128 -39.97 -39.85 -39.37 -39.32 -38.90 -38.40 -38.59 -38.21 -38.20

TABLE IV. Hardware characteristics of FIR adaptive filter designs.
Filter Design Delay Are;l I;[;)\ngr L;siigre Eg? (opzfziion EPO reduction ~ TPA increase
length () m)Gawy (W) Joperation) /(s) (%) %
20-bit 278 246472 853 191.6 341.2 1,459 0.00 0.00
16-bit 273 222,021 78.4 171.8 313.6 1,650 8.09 13.05
14-bit 2,67 214,142 754 172.9 301.6 1,749 11.61 19.84
12-bit 2.65 193,616 67.6 154.7 270.4 1,949 20.75 33.54
64 DLMS (TO) 0.73 208,178 84.2 119.0 336.8 6,580 1.29 350.88
DLMS (T11) 0.74 188,785 76.8 103.9 306.8 7,158 10.08 390.47
shared-LUT 292 217,296 679 253.7 271.6 1,576 20.40 7.99
proposed (TO) 2.13 98,644 37.2 76.43 148.8 4,759 56.39 226.11
proposed (T5) 2.13 93,897 355 74.27 142.0 5,000 58.39 242.60
proposed (T7) 2.11 94,593 36.0 77.29 144.0 5,010 57.80 243.30
proposed (T9) 2.11 84,577 32.8 67.61 131.2 5,604 61.55 283.95
20-bit 290 448,025 1504 3273 601.6 770 0.00 0.00
16-bit 2.86 433,610 146.8 3314 587.2 806 2.39 4.77
14-bit 2.85 368,019 1254 271.5 501.6 953 16.62 23.88
12-bit 2.81 362,233 123.5 279.0 494.0 982 17.88 27.65
128 DLMS (TO) 0.77 384,163 154.3 207.2 617.2 3,380 -2.59 339.23
DLMS (T11) 076 359,219 145.1 193.5 508.4 3,663 3.52 375.91
shared-LUT 3.10 405,515 1233 271.0 493.2 795 18.02 3.36
proposed (TO) 2.29 193,439 703 146.4 281.2 2,257 53.26 193.31
proposed (T5) 2.27 184,281 67.4 141.1 269.6 2,391 55.19 210.59
proposed (T7) 2.25 175,127 65.7 137.9 262.8 2,537 56.32 229.74
proposed (T9) 224 170,672 63.7 134.8 254.8 2,615 57.65 239.85

Note: In the accurate implementations (20-bit, 16-bit, 14-bit and 12-bit), the multiplications and
additions are implemented by radix-8 Booth multipliers and CLAs, respectively. The additions in the
DLMS-based design and the shared-LUT design are implemented by CLAs. .

compared to the 20-bit implementation. The long delay is
mainly due to the update and access of the LUTs. The DA
architecture using LUTs is more efficient for an FIR filter
with fixed coefficients, for which no update is required for
the LUTs. The hardware efficiency of the shared-LUT design
decreases with the increase of the filter length. The proposed
designs require shorter critical path delays than the accurate
designs; however, the DLMS designs use the shortest delays
due to the pipelining implementation. Increasing the number
of truncated LSBs on the inputs has a more significant effect
on reductions in area and power consumption than on delay,
because the critical path of the Wallace tree in the proposed
design is very short and reducing the accumulated partial
product bits does not change it much. Among the considered
designs, the proposed designs require the lowest area and
power dissipation. The accurate designs incur the longest
critical path delay, and the DLMS designs require slightly
smaller area than the accurate ones. Furthermore, the DLMS
designs incur higher power dissipations than some accurate
designs due to the large hardware overhead caused by the
additional latches used for pipelining. The proposed designs
show the lowest EPO, whereas the DLMS designs require the
highest EPO.

Finally, the EPO reduction and TPA increase of the filter
designs are reported in the last two columns of Table IV.
The proposed designs achieve nearly a 55% EPO reduction
and a 3.2x TPA on average compared to the accurate 20-bit

implementation. Additionally, they show a 45%-51% reduction
in EPO and 2.3x to 2.9x TPA compared with an accurate 12-
bit implementation. The EPO of the DLMS designs is larger
by 2%-9% due to the high power dissipation. However, the
TPAs are larger by 3.4x to 3.9x due to the shorter critical
path delay. Compared with DLMS designs, the proposed ones
show lower TPAs and smaller EPOs by 15%-40% and 45%-
64%, respectively.

VI

The cerebellum plays a key role in the control of eye move-
ment in the saccadic system; this involuntary eye movement
is referred to as the vestibulo-ocular reflex (VOR). The VOR
stabilizes a visual stimulus into the center of the retina (fovea)
for a clear vision when the head moves [37]. Fig. 17 shows
a simplified model of the VOR, where the cerebellum predicts
the eye plant output and indirectly compensates the movement
command. In the saccadic system, the head movements are
sensed by the vestibular system consisting of semicircular
canals and otolith organs [38]. For simplicity, only the horizon-
tal head velocity sensed by the horizontal canal is considered
as the input. The horizontal canal is modeled as a high-pass
filter, V(s) = ﬁ, where T, = 65 [38]. The brainstem acts
as a control center that receives the sensory information and
compensation signals from the cerebellum. It then generates
commands to drive the eye muscles for movement. The transfer

CEREBELLAR MODEL EVALUATION

SUBMITTED FOR REVIEW

Fig. 17. A simplified model of the VOR.

0.05 T T
Accurate (20-bit)
0.04 - —— Accurate (18-bit)
Accurate (16-bit)
0.03 - —— DLMS(TO0) m
— — DLMS(T11)
Proposed (TO) [
Proposed (T5)

0.02

0.01

0

-0.01

Retinal Slip (deg/s)

-0.02

-0.03

-004 | i ‘ .

0.05
0 05 1 15 2 25 3 35 4 45 5
t(

Fig. 18. The retinal slip during a 55 VOR training.

functions of the brainstem and the eye plant are given by

: 1/T,) :
B(s) = Gy + %/T and P(s) = s+1S/STT éﬂéT& respectively,
where G; =1, G; =5.05, T; = 500ms, T; 70ms, T, = 5Tms

and T, = 200ms [39].

To evaluate the accuracy of the approximate cerebellar
model, the saccadic system in Fig. 17 is implemented in
MATLAB. The cerebellar model is implemented in an n-bit
fixed-point format consisting of 1 sign bit and (n— 1) fractional
bits. Fig. 18 shows the retinal slip (i.e., error signal) during a
5-s training, where the constant delay 7 is 1 ms, M is 128, and
the step size u is set to 278, It can be seen that the accurate
20-bit fixed-point cerebellar model produces the lowest stable
retinal slip, followed by the 18-bit implementation, whereas
the retinal slip of the 16-bit implementation does not converge.
The proposed TO and DLMS designs achieve a similarly small
retinal slip as the accurate 20-bit design. However, the DLMS
designs show more fluctuations than the proposed TO at the
stable phase, as shown in the inset. The proposed TS5 converges
faster than the other designs, but it generates a similar retinal
slip as the accurate 18-bit design that is slightly higher than
the accurate 20-bit design. As the VOR system requires a
higher accuracy than the system identification application, a
converged retinal slip cannot be obtained by using the other
configurations of the proposed design.

VII. CONCLUSION

This paper proposes a high-performance and energy-efficient
fixed-point FIR adaptive filter design. It utilizes an integrat-
ed circuit of approximate distributed arithmetic (DA), so it
achieves significant improvements in delay, area and power
dissipation. Approximate partial product generation and ac-
cumulation schemes are proposed for the error computation

and weight update modules in the adaptive filter. Moreover, an
approximate radix-8 Booth algorithm is applied to the DA. The
critical path and hardware complexity are significantly reduced
due to the use of approximate and distributed arithmetic.

Two system identification applications using 64-tap and 128-
tap FIR adaptive filters are considered to assess the quality of
the proposed design. At a similar accuracy, the proposed design
consumes more than 55% lower EPO and achieves a 3.2x TPA
compared with the corresponding accurate design. Compared
to a state-of-the-art design, the proposed design achieves a
45-64% reduction in EPO with a higher accuracy. A visual
saccadic system using the proposed approximate adaptive
filter in a cerebellar model achieves a similar retinal slip in
vestibulo-ocular reflex as using an accurate filter. These results
indicate that approximate arithmetic circuits are applicable to
integrated circuit design for a better performance and energy
efficiency.

REFERENCES

[1] D. Marr and W. T. Thach, “A theory of cerebellar cortex,” The Journal
of Physiology, vol. 202, no. 3, pp. 437-470, 1969.

[2] J. S. Albus, “A theory of cerebellar function,” Mathematical Bio-
sciences, vol. 10, no. 1-2, pp. 25-61, 1971.

[3] T. W. Calvert and F. Meno, “Neural systems modeling applied to the
cerebellum,” IEEE Transactions on Systems, Man, and Cybernetics,
no. 3, pp. 363-374, 1972.

[4] M. Hassul and P. D. Daniels, “Cerebellar dynamics: the mossy fiber
input,” IEEE Transactions on Biomedical Engineering, no. 5, pp. 449—
456, 19717.

[5] M. Fujita, “Adaptive filter model of the cerebellum,” Biological cyber-
netics, vol. 45, no. 3, pp. 195-206, 1982.

[6] D.Comminiello, M. Scarpiniti, L. A. Azpicueta-Ruiz, J. Arenas-Garcia,
and A. Uncini, “Functional link adaptive filters for nonlinear acoustic
echo cancellation,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 21, no. 7, pp. 1502-1512, 2013.

[71 P. K. Meher and S. Y. Park, “Area-delay-power efficient fixed-point
LMS adaptive filter with low adaptation-delay,” IEEE transactions on
VLSI systems, vol. 22, no. 2, pp. 362-371, 2014.

[8] M. Ito, “Cerebellar circuitry as a neuronal machine,
neurobiology, vol. 78, no. 3, pp. 272-303, 2006.

[9] A. Lenz, S. R. Anderson, A. G. Pipe, C. Melhuish, P. Dean, and
J. Porrill, “Cerebellar-inspired adaptive control of a robot eye actuated
by pneumatic artificial muscles,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 39, no. 6, pp. 1420-1433,
2009.

[10] E. H. Krishna, M. Raghuram, K. V. Madhav, and K. A. Reddy, “Acoustic
echo cancellation using a computationally efficient transform domain
LMS adaptive filter,” in International Conference on Information Sci-
ences Signal Processing and their Applications, 2010, pp. 409-412.

Progress in

[11] T. K. Paul and T. Ogunfunmi, “On the convergence behavior of the
affine projection algorithm for adaptive filters,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 58, no. 8, pp. 1813-1826,
2011.

[12] P. K. Meher and S. Y. Park, “Critical-path analysis and low-complexity
implementation of the LMS adaptive algorithm,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 61, no. 3, pp. 778-788,
2014.

[13] N. V. Thakor and Y.-S. Zhu, “Applications of adaptive filtering to
ECG analysis: noise cancellation and arrhythmia detection,” IEEE

Transactions on Biomedical Engineering, vol. 38, no. 8, pp. 785-794,
1991.

SUBMITTED FOR REVIEW

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

S. A. White, “Applications of distributed arithmetic to digital signal
processing: A tutorial review,” IEEE Assp Magazine, vol. 6, no. 3, pp.
4-19, 1989.

P. K. Meher, S. Chandrasekaran, and A. Amira, “FPGA realization
of FIR filters by efficient and flexible systolization using distributed
arithmetic,” IEEE transactions on signal processing, vol. 56, no. 7, pp.
3009-3017, 2008.

H. Yoo and D. V. Anderson, “Hardware-efficient distributed arithmetic
architecture for high-order digital filters,” in IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, vol. 5, 2005, pp.
125-128.

S. Mirzaei, A. Hosangadi, and R. Kastner, “FPGA implementation of
high speed FIR filters using add and shift method,” in International
Conference on Computer Design, 2007, pp. 308-313.

R. Guo and L. S. DeBrunner, “Two high-performance adaptive filter
implementation schemes using distributed arithmetic,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 58, no. 9, pp.
600-604, 2011.

B. K. Mohanty and P. K. Meher, “A high-performance energy-efficient
architecture for FIR adaptive filter based on new distributed arithmetic
formulation of block LMS algorithm,” IEEE transactions on signal
processing, vol. 61, no. 4, pp. 921-932, 2013.

S. Y. Park and P. K. Meher, “Efficient FPGA and ASIC realizations
of DA-based reconfigurable FIR digital filter,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 61, no. 7, pp. 511-515,
2014.

G. Long, F. Ling, and J. G. Proakis, “The LMS algorithm with delayed
coefficient adaptation,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 37, no. 9, pp. 1397-1405, 1989.

P. Kabal, “The stability of adaptive minimum mean square error equaliz-
ers using delayed adjustment,” IEEE transactions on Communications,
vol. 31, no. 3, pp. 430-432, 1983.

Y.-H. Chen, J.-N. Chen, T.-Y. Chang, and C.-W. Lu, “High-throughput
multistandard transform core supporting MPEG/H.264/VC-1 using
common sharing distributed arithmetic,” IEEE Transactions on VLSI
Systems, vol. 22, no. 3, pp. 463—474, 2014.

M. Martina, G. Masera, M. R. Roch, and G. Piccinini, “Result-
biased distributed-arithmetic-based filter architectures for approximately
computing the DWT,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 62, no. 8, pp. 2103-2113, 2015.

H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classifi-
cation, and comparative evaluation of approximate arithmetic circuits,”
ACM Journal on Emerging Technologies in Computing Systems, vol. 13,
no. 4, p. 60, 2017.

E. J. King and E. E. Swartzlander, “Data-dependent truncation scheme
for parallel multipliers,” in Conference Record of the Thirty-First
Asilomar Conference on Signals, Systems & Computers, vol. 2,
1997, pp. 1178-1182.

H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-
inspired imprecise computational blocks for efficient VLSI implemen-
tation of soft-computing applications,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 57, no. 4, pp. 850-862, Apr. 2010.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” ACM Sigplan Notices, vol. 49, no. 4, pp. 269-284,
2014.

H. Jiang, J. Han, F. Qiao, and F. Lombardi, “Approximate radix-
8 Booth multipliers for low-power and high-performance operation,”
IEEE Transactions on Computers, vol. 65, no. 8, pp. 2638-2644, 2016.
K.-J. Cho, K.-C. Lee, J.-G. Chung, and K. K. Parhi, “Design of low-
error fixed-width modified booth multiplier,” IEEE Transactions on
VLSI Systems, vol. 12, no. 5, pp. 522-531, 2004.

J.-P. Wang, S.-R. Kuang, and S.-C. Liang, “High-accuracy fixed-width
modified booth multipliers for lossy applications,” IEEE Transactions
on VLSI Systems, vol. 19, no. 1, pp. 52-60, 2011.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(391

C.-Y. Li, Y.-H. Chen, T.-Y. Chang, and J.-N. Chen, “A probabilistic
estimation bias circuit for fixed-width booth multiplier and its DCT
applications,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 58, no. 4, pp. 215-219, 2011.

K. C. Bickerstaff, E. E. Swartzlander, and M. J. Schulte, “Analysis
of column compression multipliers,” in IEEE Symposium on Computer
Arithmetic, 2001, pp. 33-39.

V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for speed
optimized partial product reduction and generation of fast parallel
multipliers using an algorithmic approach,” IEEE Transactions on
Computers, vol. 45, no. 3, pp. 294-306, 1996.

K.-A. Lee, W.-S. Gan, and S. M. Kuo, Subband adaptive filtering:
theory and implementation. John Wiley & Sons, 2009.

R. Wang, J. Han, B. Cockburn, and D. Elliott, “Stochastic circuit design
and performance evaluation of vector quantization for different error
measures,” IEEE Transactions on VLSI Systems, vol. 24, no. 10, pp.
3169-3183, 2016.

M. Antonelli, A. J. Duran, E. Chinellato, and A. P. Del Pobil, “Adaptive
saccade controller inspired by the primates’ cerebellum,” in /IEEE
International Conference on Robotics and Automation, 2015, pp. 5048—
5053.

M. Ranjbaran and H. L. Galiana, “Hybrid model of the context
dependent vestibulo-ocular reflex: implications for vergence-version
interactions,” Frontiers in computational neuroscience, vol. 9, 2015.

P. Dean, J. Porrill, and J. V. Stone, “Visual awareness and the cerebel-

lum: possible role of decorrelation control,” Progress in brain research,
vol. 144, pp. 61-75, 2004.

