
A Novel Approach Using a Minimum Cost Maximum Flow Algorithm for

Fault-Tolerant Topology Reconfiguration in NoC Architectures

Abstract - An approach using a minimum cost maximum flow

algorithm is proposed for fault-tolerant topology

reconfiguration in a Network-on-Chip system. Topology

reconfiguration is converted into a network flow problem by

constructing a directed graph with capacity constraints. A cost

factor is considered to differentiate between processing

elements. This approach maximizes the use of spare cores to

repair faulty systems, with minimal impact on area, throughput

and delay. It also provides a transparent virtual topology to

alleviate the burden for operating systems.

I. Introduction

The advance in VLSI manufacturing technology has made

it possible to integrate thousands of processing elements

(PEs) on a single chip. In terms of communication

infrastructure, Network-on-Chip (NoC) is considered as a

promising interconnect scheme for manycore processors [1].

With the increasing circuit density, the reliability of a

manycore system has become one of the most important

challenges. Many solutions have been proposed to sustain

the reliability of a system, including remapping [2], fault

tolerant routing algorithms [3] and various topologies for

implementing the communication infrastructure [4].

Improving the manufacturing process can help to increase

the reliability, but this approach will become increasingly

difficult in the future. A more practical solution is to provide

redundant hardware to construct a fault-free system [5].

A reconfigurable system usually has many free resources.

Due to its flexibility, these redundant resources can be

utilized for improving reliability. In this paper, redundancies

at the core level are considered, i.e. faulty PEs are replaced

by spare ones. The concept of virtual topology [6] is also

introduced because different chips may have different

topologies and a faulty PE may change the underlying

topology. A virtual topology is isomorphic to the topology of

the target design. Topology reconfiguration is implemented

by mapping between the virtual topology and the physical

topology. With limited resources on a chip, an important

question concerning topology reconfiguration is how to

improve reliability by using spare resources with the least

overhead.

In this paper, a novel approach using a minimum cost

maximum flow (MCMF) algorithm [7] in graph theory is

proposed for run-time topology reconfiguration. This

method repairs faults in PEs and to improve the reliability of

an NoC-based reconfigurable architecture at the cost of a

minor performance reduction, compared to a fault-free

system. The proposed approach successfully converts the

topology reconfiguration problem into a network flow

problem by constructing a directed graph based on the

topology. A cost metric is introduced to model the overhead

difference between PEs. Simulation results show that the

success rate to repair all faulty PEs is increased by up to

40% compared with previous approaches [13] using the

same redundant resources. The latency is 3.5% smaller and

throughput is 4.7% higher than previous approaches [12].

Besides, the proposed approach has a polynomial

computation time [7], which is suitable for run-time

reconfiguration.

II. Design Consideration and Related Work

A. Design Consideration

Given a set of reliable and defective PEs, an objective is

to obtain a system with the same functionality as the original

one. The design consideration is how to improve the repair

rate as much as possible with minimal impacts on the

operational overhead, including the repair rate, the increase

in reconfiguration time, the change of topology, and the

increase in area, throughput and latency. As area, throughput

and latency are common metrics for evaluating an NoC, they

are not discussed in detail here. Three additional evaluation

metrics including the repair rate, reconfiguration time and

topology are introduced as follows.

Repair rate is an important metric to evaluate the

effectiveness of a repair approach. It is defined as the

probability that the faulty PEs in a topology can be

successfully repaired by the spare ones. Different repair

strategies result in different repair rates. Under the

circumstances that the hardware resources on a chip are

limited, more options are offered to each defective PE in this

paper so that they can be efficiently repaired.

The reconfiguration time determines whether an approach

can be performed at run-time. It depends on the required

computation of the repair algorithm. If faults are detected at

run-time and repaired by reconfiguration, the overall

performance of the entire system will be improved. On the

other hand, when chips are produced and tested massively,

reconfiguration time is also an important parameter, because

it is closely related to the cost of a chip. Therefore, a faster

reconfiguration approach is preferred.
During configuration, topology is also one of the

considerations. When the faulty cores are replaced by spare

ones, the topology of the target design may become irregular

and would cause performance degradation due to the lack of

Leibo Liu, Yu Ren, *Chenchen Deng,

Shouyi Yin, Shaojun Wei

Institute of Microelectronics

Tsinghua University

Beijing 100084, China

Email: chenchendeng@tsinghua.edu.cn

Jie Han

Department of Electrical and

Computer Engineering

University of Alberta

Edmonton, AB, Canada T6G 2V4

prior knowledge of the faulty cores. For example, Fig. 1 (a)

shows a processor with 4×4 2D mesh topology. Suppose 4

spare cores are provided as shown in Fig. 1 (b). When faulty

cores are present, as shown in Fig. 1 (c) and (d), different

chips may have different topologies, and the topologies also

may not be the same as expected. It will be a big burden for

the operating system (OS) to optimize parallel programs on

different topologies. To address this problem, a unified

virtual topology is introduced. Reference Topology is

defined as the topology of the target design, e.g. Fig. 1 (a).

Fig. 1 (d) shows a topology with four spare cores. Physical

Topology is the topology of fault-free cores and their

interconnections, as shown in Fig. 1 (e). A fault-free 4×4

processor can still be obtained. Its topology is different but

isomorphic to the reference topology. In a reconstructed chip,

each core is considered to be virtually connected to its

neighbors. Virtual Topology is defined as the reconstructed

topology. Fig. 1 (f) is an example of a virtual 4×4 2D mesh

topology. The 9th, 12th, 15th and 19th PEs are four virtual

neighbors of the 13th PE. The 9th PE is considered to be

virtually located under the 8th PE, although they are

physically located side by side. A virtual topology appears

as unified for the OS and other programs regardless of the

underlying physical topology.

B. Related Work

There are many ways to implement the mapping between

the virtual and physical topologies. One possible solution is

to add a firmware layer to record the mapping information,

similar to the CORE_AVAILABLE_REG used in

UltraSPARC T1 processor [8]. OS works on the virtual

topology, and the firmware is responsible for transformation.

The idea of virtual topology is also applied in Cray T3E

network [9]. The mapping from physical to virtual numbers

is implemented by changing the routing table in each node

and logically renaming the logical “who am I” register.

Fault-free PEs Faulty PEsSpare PEs Routers

(a) (b)

(c) (d)

5

15

20

10

16

1

7 8

3 4

14

6

11

2

9

12 13

1917 18

5

15

20

10

1 2

86

11

7 9

12 13

1917 18

5

15

20

10

1 2 8

6

11

17

97

12 13

18 19

(e) (f)

Fig. 1. (a) The expected target design. (b) The implementation on a

chip. (c) and (d) A chip with faulty PEs. (e) The physical topology.

(f) A virtual topology.

Faults can be divided into two main categories: permanent

faults and transient ones. Permanent faults are usually

caused by manufacturing defects, aging effects, and/or

physical damages to the resources that generate or transport

data. One approach to dealing with permanent faults is fault

tolerant routing, which involves isolating the entire router

[10] or a few ports of a router [11]. Another method for

tolerating permanent faults is to use spare components to

replace defective elements [12]. Transient faults are usually

caused by neutron and alpha particles, power supply and

interconnect noise, electromagnetic inference and

electrostatic discharge. Error detecting/correcting codes are

pervasively used to handle these errors. In this paper, only

permanent faults are considered. Faults can occur at links,

network interface, router and processing element levels. A

VLSI processor integrates a large number of PEs on a single

chip. As the size of a system increases and the cost of a

single PE becomes relatively inexpensive compared with the

entire system, PE-level redundancy is considered efficient.

In this paper, only faults in PEs are considered while the

communication infrastructure is assumed to be fault-free.

In [12], for an N×N NoC system, a spare row of routers is

added. Every router within each column shares the common

spare router. However, if a column contains more than one

fault, spares in other columns cannot be utilized to repair the

faults which renders a low repair rate. In [13], a repair

strategy using two spares in one group is presented. It can

tolerate two failures within one group. These two

approaches are straightforward to implement. However,

there is room for improvement in the repair rate. In [14], a

novel repair technique is proposed to improve the yield of

through-silicon vias (TSVs). This technique enables faulty

TSVs to be repaired by redundant TSVs that are far apart.

An NoC is used as the communication infrastructure, so the

repair of TSVs is similar to the problem of repairing faulty

PEs. Thus this approach is applicable to a manycore system.

III. Proposed Topology Reconfiguration Approach

In this section, the reconfiguration from physical to virtual

topology is first introduced. Then reconfiguration algorithm

is detailed. Besides, the overhead of reconfiguration time,

throughput and latency is analyzed.

A. Topology Reconfiguration

Faulty PEs change the target design and the topology is

reconfigured by mapping from various physical topologies

to a unified virtual topology. Each router has a look-up table

and two registers for storing its physical and virtual numbers.

The index into the look-up table is the virtual address, while

the entry in the table is the physical address. The look-up

table provides a mapping from the physical topology to a

virtual topology. The failure information can be obtained

through various testing strategies. No matter what kind of

testing approach is adopted, when faults are captured, the

failure information is sent to the controller. The controller

calculates the virtual topology using the proposed algorithms.

Then the look-up table together with the virtual address

register is logically renamed. OS works on the virtual

topology. Fig. 2 shows an example of a virtual topology and

the mapping table. A packet sent from the virtual address #II

to #XVI is actually sent from the physical address 3 to 20. If

XY routing is used with X-axis first, the routing of the

packet will be 2 hops to the right and 4 hops downward.

B. Minimum Cost Maximum Flow (MCMF) Approach

A non-spare PE at location (x, y) is assumed to be faulty.

In a valid repair solution, it is logically replaced by a healthy

PE at location (x’, y’). To be more specific, the PE at

location (x’, y’) will be re-indexed as (x, y) in the

reconfigured mesh. The PE at location (x’, y’) will then be

replaced by a healthy PE at location (x’’, y’’) until the

replacement ends at a spare PE. The ordered sequence of

nodes (x, y), (x’, y’), (x’’, y’’)… involved in the replacement

chain is defined as a repair path. It is a sequence of

substitutions that logically replaces a faulty PE using a spare

one. A general methodology to reconfigure a mesh with

faulty PEs is equivalent to determining the repair paths. The

repair paths determine the neighbors of each PE, and then a

virtual topology is obtained. Fig. 3 shows an example to

illustrate the concept of a repair path and the reconfigured

virtual topology. The repair path is a virtual path indicating

the replacement of PEs, and it does not physically exist. In

contrast, the routing path is physically implemented by the

NoC, and it is determined by the source and destination

addresses.

If faulty PEs are detected, a repair path will start from a

faulty PE and end at a spare one. Each PE along the repair

path must be physically next to each other because PEs are

assumed to be replaced by physical neighbors. If multiple

repair paths are present, intersections are not allowed.

Because each PE can only be mapped to one index in the

virtual topology, an intersection means that the PE is

mapped to two locations. In summary, the set of repair paths

must meet the following requirements.

5

15

20

10

1 3 4

6

11

16

9

12 13 14

17 18

#IV

#XII

#XVI

#VIII

#I #II #III

#V

#IX

#XIII

#VII#VI

#X #XI

#XIV #XV

(a) Physical address (b) Virtual address

(c) Virtual topology

5

15

20

10

1 3 4

6

11

16

912

13 14

17 18

Fig. 2. Example of a virtual topology and the mapping table.

4

6 7 8 9

11 12 13 14

16 17 18 19

5

15

20

10

Fault-free PE Faulty PESpare PE Repair Path Router

1 2 3 46 7

8 911

12 13 14

16 17 18 19

5

15

10

(a) (b)
Fig. 3. (a) A 4×4 mesh with repair paths. (b) The reconfigured

virtual topology.

1) Each repair path is continuous;

2) The set of repair paths covers all faulty non-spare PEs;

3) There is no intersection between any repair paths.

Next, a repair algorithm referred to as MCMF is proposed

to analyze whether a mesh is repairable and how to generate

a repair path set. The problem of determining a set of

non-intersecting continuous repair paths can be converted

into an MCMF problem. It is a classical combinatorial

optimization problem, i.e., how to find the maximum flow

between a source and a target in a network with capacity

constraints (on nodes and edges). The relationship between

repair paths and the MCMF is stated as follows (see Fig. 4).

Consider the mesh as a directed graph. Each continuous

repair path can be seen as a unit flow starting from a faulty

PE and ending at a spare PE. The grid then becomes a

multi-source multi-target network. A unit capacity “1” on

each edge and node ensures that an edge or a node can only

be utilized once in the repair paths. By adding a super source

node that points to all the faulty PEs and merging all the

spare PEs into a target node, the grid is converted into a

single-source single-target network. Since each repair path is

defined by a unit flow from a source to a target in the

network, the weight of the maximum flow is equal to the

number of faulty PEs that can be repaired by spare PEs.

When all the faulty PEs find their repair paths, i.e., all the

faults can be repaired, the weight of the maximum flow is

equal to the number of faulty PEs.

In a practical application, PEs differ from each other.

Replacing a PE with another one will cause changes in the

system, so PEs should not be treated equally. As a result,

another variable, cost, is introduced to model these

differences. Cost is used to describe the overhead of

replacing a PE with another one. It can be any metric to

model the differences of the network. For example, in a

network with high throughput, edge delay is critical to

guarantee the quality of communication, so cost is defined as

the edge delay. In an area sensitive chip, cost is defined as

the hardware consumption. Cost can be defined on an edge

or a node, according to the problem requirement. As an

example in this paper, the amount of data transmission on

each PE is taken as cost. An H. 264 video-decoding

application [15] is chosen to be the benchmark. The H. 264

decoding algorithm is computation-intensive. Subtasks are

partitioned clearly, and they work independently of each

other. So they can be mapped onto different PEs and be

Virtual

address

Physical

address

Virtual

address

Physical

address

#I 1 #IX 11

#II 3 #X 13

#III 4 #XI 14

#IV 5 #XII 15

#V 6 #XIII 16

#VI 12 #XIV 17

#VII 9 #XV 18

#VIII 10 #XVI 20

Mapping Table

executed in parallel. Besides, the various amounts of

computation and communication in each subtask meet the

verification requirements of the proposed approach. H. 264

decoding algorithm is so widely used that resource codes

and verification data can be found easily, so it is used as

benchmark in this paper. Many other applications can be

used as benchmarks, too. In the example of H. 264

video-decoding algorithm, cost is defined as the volume of

transmitted data on each PE, because communication cost is

an important factor in this application. An H.264 decoder is

mainly composed of Inverse Discrete Cosine Transform –

Inverse Quantization (IDCT-IQ), Motion Compensation

(MC) and Deblocking blocks. The distribution of data

transmission is calculated, as shown in Table I. Each block

is randomly mapped onto one PE. Fig. 5 (a) shows an

example of the weighted graph with three faulty PEs.

Now, the NoC system topology reconfiguration is

converted into a minimum cost maximum flow problem in

graph theory. The MCMF algorithm is performed in

achieving the maximum flow of the directed graph while

simultaneously minimizing the cost under predetermined

cost constraints. A mesh is represented as a directed graph G

(V, E), where V is the set of nodes in the mesh, and E is the

set of edges between nodes. F is the set of faulty nodes.

Each node represents a PE and its corresponding router,

while the directed edge connecting two nodes is the wire

between two routers. Each edge and each node has a unit

capacity. This is described mathematically as follows.
TABLE I

Proportion of data transmission of each block in an H.264 decoder

IDCT-IQ MC Deblocking Others

52% 21% 17% 10%

S

Spare nodes

Faulty nodes

S S

T

T

T

T

S

T
Flow & Repair path

Link S Source

T Target
(a) (b)

Fig. 4. MCMF algorithm for determining the repair paths. (a)

Multiple-source multiple-target network. (b) Single-source

single-target network with flow and repair path.

4

6 7 8 9

11 12 13 14

16 17 18 19

5

15

20

10

1 2 3 46 7

12 811

16 13 14

17 18 19 20

5

15

9

Source

Target

3

0

1

1

MC

21

0

0

0

IDCT-IQ

52

Deblocking

17

1

1

1

0

2

0

0

0

0

0

Fault-free

PE

Faulty

PE

Spare

PE

Repair

Path
Router

Deblocking

IDCT-IQ

MC

Fig. 5. (a) An example for H. 264 video-decoding application.

(b) Reconfigured virtual topology.

1. The set of nodes is defined as },{' TSVV , where S

is the source node, and T is the target node.

2. The set of edges E is defined as follows:

1) For every pair of nodes (i, j) that are adjacent in the

grid, define two edges ji and ij ;

2) For every spare node Vvs , define an edge Tvs

3) For every faulty node Fv f , define an edge
fVS

3. Define the capacity of every edge to be 1.

4. Define the capacity of every node to be 1.

5. Solve the minimum cost maximum flow problem for

the graph constructed above.

A solution to the above problem will return the maximum

flow of the constructed graph, as well as individual flows.

The maximum flow indicates how many faulty PEs can be

repaired, and every flow represents a repair path. According

to the repair path set, a virtual topology can be obtained, as

shown in Fig. 5 (b). If the maximum flow is not equal to the

number of faulty PEs, some faults are not repaired.

C. Reconfiguration Time Analysis

The feature of the maximum flow between source and

target ensures that the faulty PEs are replaced by spare PEs

as much as possible, therefore improving the reliability of

the network. The MCMF problem has polynomial-time

solutions, which runs in O(ElogV(E+VlogV)) [7], where E is

the number of edges and V is the number of nodes. If cost is

not considered, i.e., every PE is considered to be identical,

then MCMF is degraded to a maximum flow (MF) problem.

In this way, the proposed algorithm has polynomial-time

solutions. Apart from the execution of the algorithm, it will

also take some time to reconfigure the look-up tables and the

virtual-address registers. Taking all the reconfiguration bits

into consideration, the refresh time is less than 3% of the

algorithm execution time. Furthermore, in practical

situations not all the routers and all the values in the look-up

tables in one router need refreshing. Only partial

reconfiguration is needed.

D. Throughput and Latency Overhead Analysis

From the viewpoint of the NoC, it is necessary to model

the performance degradation of different virtual topologies.

A metric named Distance Factor (DF) is introduced in [16].

It is used to describe the average hop count between virtual

neighbors, so it reflects the average delay and throughput of

a network. The distance factor between two nodes m and n is

defined as the physical hops between them (DFmn=Hopsmn).

The distance factor of node n (DFn) is defined as the average

distance factor between node n and all its virtual neighbors.

k

m

mnn DF
k

DF
1

1
 (1)

The DF of a topology is defined as the average DFn of all

its N nodes in the topology.

N

n

nDF
N

DF
1

1
 (2)

It is clear that the reference topology has the minimum

DF. DF=1 in a mesh, which means that each pair of virtual

neighbors is exactly one hop away from each other. Smaller

DF indicates shorter communication delay among virtual

neighbors.

Next, experiments are performed to evaluate the DF. Two

repair schemes are used as baseline solutions for comparison,

i.e., “N:1” [12] and “N:2” [13]. The N:1 scheme has one

column of spare PEs on the right border. If there is one

defective PE in a row, shifting is conducted to repair it with

the spare one. This scheme can tolerate one failure in each

row. The N:2 scheme has two spare PE columns, one on the

left and one on the right border. This scheme can tolerate at

most two failures in a row. For a fair comparison, MCMF is

considered to have the same spare resources as the baseline

schemes. In the comparison between MCMF and N:1, both

approaches are conducted on a 4×5 mesh. The MF approach

is also performed for comparison, in which the data

transmission of each PE is the same. These two approaches

are also compared with N:2 on 4×6 mesh. For each topology,

10,000 different fault patterns are considered, with PE

failure rate ranging from 1% to 10%. DF is calculated only

when all the faulty patterns in the network could be repaired.

Fig. 6 shows the DF comparison results. As shown in the

figure, DF increases with the increase of failure rate. In Fig.

6 (a), the N:1 scheme has the same DF as MF. This is

because under the circumstances that all the test fault

patterns can be repaired by both approaches, the fault

patterns that can be repaired by N:1 can also be repaired

using MF in the same way. In other words, N:1 scheme is a

subset of MF. The DF of MCMF is a little higher than MF

and N:1. By taking cost into consideration, MCMF tries to

find the maximum flow with the minimum cost. Because the

cost varies among PEs, the reconfigured topology may

become unbalanced resulting in a larger DF than MF. In Fig.

6 (b), compared with N:2, both MCMF and MF have smaller

DF. Because DF is used to describe the average hop between

virtual neighbors, it is predicted that the throughput and

latency using MCMF and MF is better than the baseline

schemes.

IV. Experimental Results

While reconfiguration time is analyzed in the previous

section, the performance of repair rate, throughput and

latency are evaluated on a cycle-accurate simulator. The

proposed approach is also implemented using Verilog and

verified on FPGA. In the following experiments, the

proposed approach uses the same topology and area as those

in the baseline approach.

A. Experimental Setup

The baseline schemes are the same as in DF calculation,

i.e. N:1 and N:2. The repair rate is obtained from simulation

using Matlab. Throughput and latency are measured in a

C++ NoC platform using Carbon SoC Designer. The packet

length is set to be 16 flits. Each input port has 3 virtual

channels and each channel has a FIFO buffer to store 4 flits.

Each PE injects packets independently and the destination of

a packet is randomly determined. XY routing is used, which

routes packets along the X-axis first, and then Y-axis. The

performance measures include system throughput and

latency. Average delay is the time required for a packet to

traverse the network from source to destination. Network

throughput is the packets delivering rate for a particular

traffic pattern. Each scheme may generate a different virtual

topology for a given fault pattern. The mapping between the

virtual topology and physical topology is given by a look-up

table. Thus the difference between the NoC models lies in

the look-up tables.

B. Repair Rate

Repair rate is the probability that faulty PEs can be

successfully repaired by spare ones. PEs are assumed to

work independently. All PEs including the spare ones are

subject to failures. The number of faulty PEs is varied from

1 to the maximum number of spare PEs. For each number of

faults, 3000 fault patterns are randomly generated. Fig. 7

shows the repair rate comparison between different spare

topologies and mesh sizes. With the increase of faults, the

repair rate using the two baseline schemes drops

significantly while MCMF maintains a much higher repair

rate. The N:2 scheme performs well for small meshes with a

repair rate of over 90%, but in the case of large meshes, the

repair rate drops by nearly 40% at the failure rate of 10%.

The N:1 scheme can only tolerate one fault at each row and

the N:2 scheme can tolerate at most two faults at each row.

When the number of faults increases, even if the faulty PEs

are fewer than the spare ones, they cannot be fully repaired.

In other words, the utilization efficiency of the spare

hardware is low. The PEs used for repair in MCMF are not

restricted to the faulty row, and it is more capable of using

spare PEs to repair faults.

It can also be observed that the repair rate of MCMF in an

8×9 mesh is higher than that of N:2 in a 4×6 mesh although

they both have 8 spare PEs. This indicates that redundancy

is not the only dominating factor for determining the final

repair rate. It implies that by using the MCMF algorithm, a

higher repair rate with less redundant resources can be

achieved. Hence, this algorithm can reduce the redundant

hardware required to obtain a high repair rate.

C. Throughput and Latency Overhead

The H. 264 video-decoding application is taken as an

example to measure the performance of MCMF. MCMF

and N:1 approaches are implemented on a 4×4 mesh, with 4

spare PEs in a column on the right border, the same as Fig. 1

(b). 4 out of the 20 PEs are randomly chosen to be faulty.

100 different faulty patterns are generated. A mesh with no

faults is also simulated for comparison. The average latency

and throughput are shown in Fig. 8. It can be seen that the

average latency increases with the increase of traffic

volume. Compared to N:1, the latency of MCMF is

decreased by 3.5%. Compared with the fault-free system, the

latency of MCMF is increased by 7.0%~10.1%. The

throughput of MCMF is 4.7% higher than N:1. Compared to

the fault-free system, the throughput of MCMF is decreased

by 4.1%~5.3%. If the differences of PEs are not considered,

MCMF is degraded to a MF algorithm. The data

transmission is the same between PEs. As an ideal case of

MCMF, the latency of MF is 4.5% smaller than N:1 and

5.3% smaller than N:2. The throughput is 11.3% higher than

N:1 and 6.3% higher than N:2.

V. Conclusions and Future Work

Effective fault-tolerant techniques are critical to ensure

the reliability of integrated circuits. In this paper, an

approach using an MCMF algorithm is proposed for

topology reconfiguration to improve fault-tolerance. Cost is

used to model different PEs in practical applications.

Experiment results show that the proposed approach

achieves a higher repair rate, higher throughput and shorter

delay than other approaches with the same topology. In

addition to that, a polynomial reconfiguration time is

achieved.

The proposed approaches are not restricted to use in

NoC-based manycore systems; they are also applicable to

many other highly integrated systems. For example, in a

reconfigurable system with many free PEs, how to organize

and utilize these PEs for communication and computation

during run-time reconfiguration presents a significant

challenge. The approaches presented in this paper may be

useful for addressing this issue and at the same time,

providing a unified topology for the OS and other programs.

0 0.02 0.04 0.06 0.08 0.1
0.95

1

1.05

1.1

1.15

1.2

1.25

Failure Rate
(a)

D
is

ta
n

c
e
 F

a
c
to

r

Mesh 4*5

N:1

MF

MCMF

0 0.02 0.04 0.06 0.08 0.1
0.95

1

1.05

1.1

1.15

1.2

1.25

Failure Rate
(b)

D
is

ta
n

c
e
 F

a
c
to

r

Mesh 4*6

N:2

MF

MCMF

Fig. 6. DF comparison between MCMF, MF, N:1 and N:2.

0 1 2 3 4
0

20

40

60

80

100

Failure Number

R
e
p

a
ir

 R
a

te
 [

%
]

Mesh 4*5

MCMF

N:1

0 2 4 6 8
0

20

40

60

80

100

Failure Number

R
e
p

a
ir

 R
a

te
 [

%
]

Mesh 8*9

MCMF

N:1

0 2 4 6 8
0

20

40

60

80

100

Failure Number

R
e
p

a
ir

 R
a

te
 [

%
]

Mesh 4*6

MCMF

N:2

0 5 10 15
0

20

40

60

80

100

Failure Number

R
e
p

a
ir

 R
a

te
 [

%
]

Mesh 8*10

MCMF

N:2

Fig. 7. Repair rate comparison.

0 0.2 0.4 0.6 0.8
40

50

60

70

80

90

Offered traffic (% of capacity)
(a)

L
a

te
n

c
y

 (
c
y

c
le

s)

0 Error

minimum-cost MF

N:1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Injecting PEs (% of total PEs)
(b)

T
h

r
o

u
g

h
p

u
t

(%
 o

f
c
a

p
a

c
it

y
)

Fig. 8. Latency and throughput comparison between MCMF and

N:1 approaches.

References

[1] W. J. Dally and B. Towles, “Route packets, not wires: on-chip

interconnection networks,” Proc. DAC, pp. 684-689, 2001.

[2] O. Derin, D. Kabakci, and L. Fiorin, “Online task remapping

strategies for fault-tolerant Network-on-Chip multiprocessors,”

Symp. NoCS, pp. 129-136, 2011.

[3] M. Ebrahimi, M. Daneshtalab, F. Farahnakian, et al., “HARAQ

congestion-aware learning model for highly adaptive routing

algorithm in on-chip networks,” Symp. NoCS, pp. 19-26, 2012.

[4] M. Janidarmian, V. S. Bokharaie, A. Khademzadeh, et al.,

“Sorena: new on chip network topology featuring efficient mapping

and simple deadlock free routing algorithm,” Conf. Computer and

Information Technology, pp. 2290-2299, 2010.

[5] Y. Ren, L. Liu, S. Yin, et al., “A fault tolerant NoC architecture

using quad-spare mesh topology and dynamic reconfiguration,” J.

Systems Architecture, vol. 59, no. 7, pp. 482-491, Aug. 2013.

[6] A. Gencata and B. Mukherjee, “Virtual-topology adaptation for

WDM mesh networks under dynamic traffic,” J. IEEE/ACM Trans.

on Networking (TON), vol. 11, no. 2, pp. 236-247, Apr. 2003.

[7] J. B. Orlin, “A faster strongly polynomial minimum cost flow

algorithm,” J. Operations research, vol.41, no.2, pp.338-350, 1993.

[8] P. J. Tan, T. Le, K.-H. Ng, et al., “Testing of UltraSPARC T1

Microprocessor and its Challenges,” IEEE International Test

Conference, pp. 1-10, 2006.

[9] S. L. Scott and G. M. Thorson, “The Cray T3E network:

adaptive routing in a high performance 3D torus,” Proc. Hot

Interconnects IV Symposium, pp. 147-156, Aug. 1996.

[10] M. B. Stensgaard and J. Sparso, “ReNoC: A Network-on-Chip

Architecture with Reconfigurable Topology”, Symp. NoCS, pp.

55-64, 2008

[11] D. Fick, A. DeOrio, J. Hu, et al., “Vicis: A reliable network

for unreliable silicon,” Proc. DAC, pp. 812-817, 2009.

[12] Y.-C. Chang, C.-T. Chiu, S.-Y. Lin, et al., “On the design and

analysis of fault tolerant NoC architecture using spare routers,”

Proc. ASP-DAC, pp. 431-436, 2011.

[13] U. Kang, H.-J. Chung, S. Heo et al., “8 Gb 3-D DDR3 DRAM

using through-silicon-via technology,” J. Solid-State Circuits

(JSSC), vol. 45, no. 1, pp. 111-119, 2010.

[14] L. Jiang, Q. Xu and B. Eklow. “On effective TSV repair for

3D-stacked ICs,” Conf. DATE, pp. 793-798, 2012.

[15] Y. Kim and S. Sair, “Designing real-time H.264 decoders with

dataflow architectures,” Conf. Hardware/Software Codesign and

System Synthesis, pp. 291-296, 2005.

[16] L. Zhang, Y. Han, Q. Xu, X. Li and H. Li, “On topology

reconfiguration for defect-tolerant NoC-based homogeneous

manycore systems,” IEEE Trans. VLSI, vol. 17, no. 9, pp.

1173-1186, Sep. 2009.

