
Efficient Approximate Decomposition Solver using Ising Model
Weihua Xiao

1
, Tingting Zhang

2
, Xingyue Qian

1
, Jie Han

2
, Weikang Qian

1,3

1
UM-SJTU Joint Institute and

3
MoE Key Lab of AI, Shanghai Jiao Tong University, China

2
Department of Electrical & Computer Engineering, University of Alberta, Canada

Abstract
Computing with memory is an energy-efficient computing ap-

proach. It pre-computes a function and stores its values in a lookup

table (LUT), which can be retrieved at runtime. Approximate Boolean

decomposition reduces the LUT size for implementing complex

functions, but it takes a long time to find a decomposition with a

minimal error. In this work, to address this issue, we propose an

efficient Ising model-based approximate Boolean decomposition

solver. First, a new column-based approximate disjoint decomposi-

tion method is proposed to fit the Ising model. Then, it is adapted

to the Ising model-based optimization solver. Moreover, two im-

provement techniques are developed for an efficient search of the

approximate disjoint decomposition when using simulated bifur-

cation to solve the Ising model. Experimental results show that

compared to the state-of-the-art work, our approach achieves a 11%

smaller mean error distance with an average 1.16× speedup when

approximately decomposing 16-input Boolean functions.

Keywords
Approximate decomposition, Simulated bifurcation, Approximate

lookup table, Ising model, Ising machine

1 Introduction
Computing with memory is one of the most effective low-power

techniques for building hardware accelerators for computational-

intensive applications. For this approach, the frequently used Boolean

functions are first computed, and then the results are stored in

lookup tables (LUTs). The Boolean functions can be computed at

runtime by reading the LUTs given the inputs [1]. However, this

approach suffers from the exponential increase of the LUT sizes

with the number of input bits. To address this issue, a low-hardware-

cost design paradigm, approximate computing, has been applied in

implementing complex functions in LUTs with a reduced size at a

cost of acceptable errors for error-tolerant applications [2].

Existing approximate LUT designs can be categorized into three

classes. The first class relies on Taylor approximation of functions [3,

4]. However, it cannot deal with non-continuous functions. The

second class is based on approximate input pattern matching [5, 6].

However, additional hardware is required to obtain exact results

when input pattern matching fails. The third one is developed

based on disjoint Boolean decomposition, or disjoint decomposition
for brevity [7]. For example, as shown in Fig. 1, a 32-bit LUT is

needed to store a Boolean function 𝐹 with 5 inputs. Suppose that a

The work at the Shanghai Jiao Tong University was supported by the National Natural

Science Foundation of China under Grant No. T2293700, T2293701, and T2293704,

and the work at the University of Alberta was supported by the Natural Sciences and

Engineering Research Council of Canada under Grant No. RES0048688, RES0051374,

and RES0054326. Weihua Xiao (email: 019370910014@sjtu.edu.cn) and Tingting Zhang

(email: ttzhang@ualberta.ca) contributed equally and should be considered as the co-

first authors. Corresponding authors: Jie Han (email: jhan8@ualberta.ca) and Weikang

Qian (email: qianwk@sjtu.edu.cn).

Figure 1: Reducing LUT size based on disjoint Boolean de-
composition.

disjoint decomposition (details will be introduced in Section 2.2) can

be applied to 𝐹 , which decomposes 𝐹 into two smaller functions 𝐺

and𝐻 such that 𝐹 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝐻 (𝐺 (𝑥1, 𝑥2, 𝑥3), 𝑥4, 𝑥5). With

the decomposition, we can store 𝐹 in two smaller LUTs with 16 bits

in total, leading to a 2× reduction in the size of LUTs. However, the

disjoint decomposition can only be applied to a Boolean function

satisfying some special conditions [7]. The approximate disjoint

decomposition is proposed to introduce approximation into an

unsatisfying Boolean function, such that it can have a disjoint

decomposition [8, 9].

In [9], a framework DALTA is proposed for approximate disjoint

decomposition of multi-output Boolean functions. In [10],DALTA is

improved based on the simulated annealing algorithm and extended

to support the non-disjoint decomposition. Both frameworks rely

on solving a key combinatorial optimization problem (COP) that

aims at minimizing the error due to the approximate disjoint de-

composition. Meng et al. formulate the COP as an integer linear

programming (ILP) problem and further solve it by an ILP solver [9].

However, it suffers from a poor scalability as the solution space

grows exponentially with the number of input bits of the function,

a common problem in solving general COPs [11]. To address the

scalability issue, a heuristic method is proposed for solving the

COP [9]. However, the method sacrifices the optimality of the solu-

tion. Thus, how to search the large solution space of this COP to

obtain a good trade-off between the efficiency and solution quality

remains as an open problem.

For efficient search in the solution space of COPs, Ising model-
based solvers have recently attracted a growing interest. The Ising

model mathematically emulates the energy of a physical system

constructed by magnetic spins with two states, denoted as −1 and

+1 [12]. The interactions among the spins and the bias on the

spins affect the spin states. The spin states that lead to the mini-

mized energy of the system provide the solution of a given COP.

Solving a COP using the Ising model involves two key steps: (1)

Ising formulation, which maps the given COP into the Ising model,

and (2) solution search, which finds the spin states by decreasing

the energy of the system. For the second step, various algorithms

have been developed [13], including simulated annealing [14] and

DAC ’61, Jun 23, 2024– Jun 27, 2024, San Francisco, CA Weihua Xiao1 , Tingting Zhang2 , Xingyue Qian1 , Jie Han2 , Weikang Qian1,3

simulated bifurcation (SB) [15]. Compared with simulated anneal-

ing, which requires the sequential update of the connected spins,

the SB algorithm updates the spin states in parallel [15]. This ad-

vantage motivates research on the applications of SB in real-time

optimization systems, such as stock trading systems [16], routing,

and scheduling [17].

In this work, we propose a high-performance Ising model-based

approximate disjoint decomposition approach to aid the design of

approximate LUTs. The main contributions are as follows.

(1) A new approximate disjoint decomposition approach, re-

ferred to as column-based approximate disjoint decomposition,
is proposed to fit the Ising model;

(2) Ising formulations of the column-based approximate disjoint

decomposition in two decomposition modes are developed

to adapt to the second-order Ising model;

(3) Two advanced strategies are developed for approximate dis-

joint decomposition using SB: a dynamic stop criterion to

identify if the system becomes steady, and a heuristic to im-

prove the search quality by pre-calculating some variable

values before some update iterations of SB.

The experiment results show that compared to the state-of-the-

art method [9], our method achieves a 11% smaller mean error

distance with an average 1.16× speedup when approximately de-

composing 16-input Boolean functions.

In the remainder of this paper, Section 2 introduces some pre-

liminaries. The Ising model-based approximate decomposition is

discussed in Section 3. Then, the experiment results are reported in

Section 4. Finally, Section 5 concludes the paper.

2 Preliminaries
2.1 Ising Model and Simulated Bifurcation
The Ising model describes the energy of a physical system with

𝑁 spins. The states of the 𝑁 spins are denoted by a vector 𝝈 =

(𝜎1, . . . , 𝜎𝑁), where 𝜎𝑖 ∈ {−1, +1} (1 ≤ 𝑖 ≤ 𝑁), called a spin vari-
able, denotes the state of the 𝑖-th spin. The energy of the system,

denoted by 𝐸 (𝝈), is calculated by the following second-order poly-

nomial [18]:

𝐸 (𝝈) = −∑𝑁
𝑖=1

ℎ𝑖𝜎𝑖 − 1

2

∑𝑁
𝑖=1

∑𝑁
𝑗=1

𝐽𝑖, 𝑗𝜎𝑖𝜎 𝑗 , (1)

where ℎ𝑖 (1 ≤ 𝑖 ≤ 𝑁) is the bias on 𝜎𝑖 and 𝐽𝑖, 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑁) is the

coefficient between 𝜎𝑖 and 𝜎 𝑗 . Note that 𝐽𝑖,𝑖 = 0 and 𝐽𝑖, 𝑗 = 𝐽 𝑗,𝑖 .

An efficient Ising model solver is based on SB, which simulates

the behavior of each spin in Ising model by an oscillator. It nu-

merically describes the bifurcation phenomena and adiabatic pro-

cesses in an oscillator network [15]. SB has a high computational

efficiency, since it updates all the spins simultaneously. The ap-

proximate solution, i.e., the spin state, is obtained by solving pairs

of differential equations related to the positions and momenta of

oscillators [15]. Euler integration is applied to solve the differential

equations, which iteratively updates the position values [19]. After

a fixed number of iterations, the spin state indicated by the sign of

position values provides a solution. This paper applies the recently

proposed high-performance ballistic SB (bSB) [20] to solve Ising

model-based problems.

𝒙𝟑𝒙𝟒
𝒙𝟏𝒙𝟐 00 01 10 11

00 1 1 0 0

01 0 0 0 0

10 1 1 1 1

11 0 0 1 1

V

S=
 (

3

1
2
4)

V1 V2

T = (0 0 1 1)

Figure 2: A Boolean matrix of a Boolean function with a
disjoint decomposition.

2.2 Row-based Disjoint Decomposition
Definition 1. Let 𝑔 be a Boolean function of 𝑛 input bits, denoted

by 𝑿 = (𝑥1, · · · , 𝑥𝑛). Let𝑤 = {𝑨,𝑩} be a partition on 𝑿 , such that
𝑨 ∪ 𝑩 = 𝑿 and 𝑨 ∩ 𝑩 = ∅. For simplicity, we call 𝑤 the input
partition. The function is said to have a disjoint decomposition over
the input partition𝑤 = {𝑨,𝑩} if there exist functions 𝜙 and 𝐹 , such
that 𝑔(𝑿) = 𝐹 (𝜙 (𝑩),𝑨), where𝑨 is called the free set and 𝑩 is called
the bound set.

In [7], a necessary and sufficient condition is proposed for a

Boolean function 𝑔(𝑿) to have a disjoint decomposition over a

given input partition𝑤 = {𝑨,𝑩}. The condition is described on a

matrix representation of the Boolean function’s truth table under

a given input partition, called the Boolean matrix, which uses the

variables in 𝑨 (resp. 𝑩) to define the rows (resp. columns). The

condition is as follows [7]:

Theorem 1. (Row-based Decomposition) A Boolean function 𝑓

has a disjoint decomposition over an input partition {𝐴, 𝐵}, if and
only if the corresponding Boolean matrix has at most the following
four distinct types of rows: 1) a pattern of all 0s; 2) a pattern of all 1s;
3) a fixed pattern 𝑽 of 0’s and 1’s; 4) the complement of 𝑽 .

To find a disjoint decomposition of a Boolean function 𝑔(𝑿) is
equivalent to determining three factors [9, 10]: 1) the input partition

𝑤 = {𝑨,𝑩}; 2) the fixed row pattern 𝑽 , which consists of 2
|𝑩 |

bits;

3) the row type vector 𝑺 , which has 2
|𝑨|

elements, and each element

𝑆𝑖 ∈ {1, 2, 3, 4} (1 ≤ 𝑖 ≤ 2
|𝑨|) represents the type of the 𝑖-th row in

the corresponding Boolean matrix. We denote the tuple (𝑤, 𝑽 , 𝑺)
as the setting of a row-based disjoint decomposition. The functions

𝜙 and 𝐹 can be obtained from the vectors 𝑽 and 𝑺 , respectively.

Example 1. Consider a Boolean matrix of a Boolean function 𝑓

shown in Fig. 2 over an input partition {𝐴, 𝐵}, where𝑨 = {𝑥1, 𝑥2} and
𝑩 = {𝑥3, 𝑥4}. It has four different types of rows with 𝑽 = (1, 1, 0, 0)
and 𝑺 = (3, 1, 2, 4). Thus, its corresponding Boolean function has a
disjoint decomposition with free set {𝑥1, 𝑥2} and bound set {𝑥3, 𝑥4}.
The truth table of function 𝜙 is given by 𝑽 , and thus, 𝜙 (𝑥3, 𝑥4) = 𝑥3.
The function 𝐹 is derived from 𝑺 as 𝐹 (𝜙 (𝑥3, 𝑥4), 𝑥1, 𝑥2) = 𝜙𝑥1𝑥2 +
𝑥1𝑥2 + ¯𝜙𝑥1𝑥2.

2.3 Row-based Approximate Disjoint
Decomposition

However, the conditions in Theorem 1 is hard to be satisfied for an

arbitrary Boolean function 𝑔(𝑿) over a given input partition𝑤 . To

tackle the unsatisfactory case, researchers approximate 𝑔(𝑿) into
𝑔(𝑿), such that𝑔(𝑿) has a disjoint decomposition [8–10]. More gen-

erally, amulti-output Boolean function𝑮 (𝑿) = (𝑔1 (𝑿), . . . , 𝑔𝑚 (𝑿))
can be approximated into 𝑮̂ (𝑿) = (𝑔1 (𝑿), . . . , 𝑔𝑚 (𝑿)), such that

Efficient Approximate Decomposition Solver using Ising Model DAC ’61, Jun 23, 2024– Jun 27, 2024, San Francisco, CA

each component function 𝑔𝑘 (𝑿) (1 ≤ 𝑘 ≤ 𝑚) has a disjoint decom-

position. Thus, we have to determine the setting (𝑤𝑘 , 𝑽𝑘 , 𝑺𝑘) for
each function 𝑔𝑘 (𝑿). However, different settings correspond to

different approximations of Boolean functions, leading to different

errors. The approximate disjoint decomposition is to derive the op-

timal setting for each component function to minimize the overall

error. In this work, two types of metrics are used to measure the

error: error rate (ER), which is the probability that an input pattern

produces a wrong output for the approximate function, and mean
error distance (MED), which measures the average deviation of the

output binary encoding, calculated as:

𝑀𝐸𝐷 (𝑮, ˆ𝑮) = ∑
𝑿 𝑝𝑿 |𝐵𝑖𝑛(𝑮 (𝑿)) − 𝐵𝑖𝑛(ˆ𝑮 (𝑿)) |, (2)

where 𝑝𝑿 is the occurrence probability of input pattern 𝑿 , and

𝐵𝑖𝑛(𝑾) is the binary number encoded by the Boolean vector𝑾 .

2.4 Core COP of Row-based Approximate
Disjoint Decomposition

We focus on themore general multi-output Boolean functions in this

paper. In [9], a framework DALTA is proposed for the approximate

disjoint decomposition over multi-output Boolean functions, on

which our proposed approximate decomposition solver is based. In-

stead of simultaneously deriving the optimal settings (𝑤𝑘 , 𝑽𝑘 , 𝑺𝑘)’s
for all component functions 𝑔𝑘 ’s, it optimizes the setting of each in-

dividually. This process is carried out sequentially, starting from the

most significant bit to the least significant bit, and it is repeated for

𝑅 rounds. However, the searching space of the setting (𝑤𝑘 , 𝑽𝑘 , 𝑺𝑘)
is large, which is hard to be optimized directly. DALTA randomly

generates 𝑃 candidate partitions 𝑤𝑘 ’s and then optimizes 𝑽𝑘 and

𝑺𝑘 for each partition to minimize the introduced error. Thus, the

core problem of the framework is a COP that optimizes 𝑽𝑘 and 𝑺𝑘
given a partition 𝑤𝑘 , called row-based core COP. There exist two
modes for solving row-based core COP:

• Separate mode: finding a setting (𝑽𝑘 , 𝑺𝑘) to minimize the

introduced ER for the current component function;

• Joint mode: finding a setting (𝑽𝑘 , 𝑺𝑘) to minimize the intro-

duced MED of all Boolean functions, which is computed by

fixing all the other Boolean functions to their accurate ver-

sions if they have not been optimized yet in the first round,

or their latest approximated versions otherwise.

3 Ising Model-based Approximate Disjoint
Decomposition

In this section, we develop an Ising model-based solver for the

core COP in the approximate disjoint decomposition. Instead of

the row-based approximate disjoint decomposition, we propose a

column-based approximate disjoint decomposition in Section 3.1,

which is more friendly to the Ising model. Moreover, we introduce

the column-based core COP. Section 3.2 then presents how to map

the column-based core COP into an Ising model. For efficiently

solving the COP by bSB, Section 3.3 proposes two improvement

techniques.

3.1 Column-based Approximate Disjoint
Decomposition

In [9], the row-based core COP is formulated as a constrained ILP

problem. However, this formulation has a poor scalability. To solve

this issue, we resort to Ising model-based solver. However, our

study finds that to solve a row-based core COP by an Ising model

requires a third-order Ising model, which is more complex than the

second-order Ising model shown in Eq. (1). To address this issue,

we resort to another necessary and sufficient condition for disjoint

decomposition as follows [7]:

Theorem 2. (Column-based Decomposition) Let {𝑨,𝑩} be a
partition on 𝑿 . A Boolean function 𝑓 has a disjoint decomposition
over {𝑨,𝑩}, if and only if its Boolean matrix with variables in sets 𝑨
and 𝑩 defining rows and columns, respectively, has at most two types
of columns.

For example, the Boolean matrix in Fig. 2, whose corresponding

Boolean function has a disjoint decomposition shown in Example 1,

has two types of columns, (1, 0, 1, 0) and (0, 0, 1, 1).
Based on Theorem 2, we propose a column-based approximate

disjoint decomposition. Consider a multi-output Boolean function,

and assume that the 𝑘-th (1 ≤ 𝑘 ≤ 𝑚) component function 𝑔𝑘 is

represented by a Boolean matrix with 𝑟 = 2
|𝐴 |

rows and 𝑐 = 2
|𝐵 |

columns. Denote the exact (resp. approximate) value at the 𝑖-th

(1 ≤ 𝑖 ≤ 𝑟) row and the 𝑗-th (1 ≤ 𝑗 ≤ 𝑐) column in the Boolean

matrix of the 𝑘-th component function as 𝑂𝑘𝑖 𝑗 (resp. 𝑂̂𝑘𝑖 𝑗).

To find a column-based disjoint decomposition for component

function 𝑔𝑘 is equivalent to determining a setting represented as

(𝑤𝑘 , 𝑽𝑘1
, 𝑽𝑘2

, 𝑻𝑘), where𝑤𝑘 is an input partition, 𝑽𝑘1
= (𝑉𝑘11

, . . . ,

𝑉𝑘1𝑟) ∈ {0, 1}𝑟 is the column pattern 1, 𝑽𝑘2
= (𝑉𝑘21

, . . . ,𝑉𝑘2𝑟) ∈
{0, 1}𝑟 is the column pattern 2, and 𝑻𝑘 = (𝑇𝑘1

, . . . ,𝑇𝑘𝑐) ∈ {0, 1}𝑐 is
the column type vector. Note that 𝑇𝑘 𝑗 = 0 (resp. 1) means that the

𝑗-th column equals column pattern 1 (resp. 2). For example, for the

Boolean matrix in Fig. 2, we have 𝑽𝑘1
= (1, 0, 1, 0), 𝑽𝑘2

= (0, 0, 1, 1),
and 𝑻𝑘 = (0, 0, 1, 1).

For the column-based approximate disjoint decomposition, our

target is to find an optimized setting (𝑤𝑘 , 𝑽𝑘1
, 𝑽𝑘2

, 𝑻𝑘) for 𝑔𝑘 to

minimize the total error. The corresponding column-based core COP
is to optimize 𝑽𝑘1

, 𝑽𝑘2
, and 𝑻𝑘 under a given input partition 𝑤𝑘 .

Clearly, the column-based core COP has (2𝑟 + 𝑐) binary variables.

The approximate value 𝑂̂𝑘𝑖 𝑗 satisfies that

𝑂̂𝑘𝑖 𝑗 = (1 −𝑇𝑘 𝑗)𝑉𝑘1𝑖 +𝑇𝑘 𝑗𝑉𝑘2𝑖 , (3)

i.e., the approximate value at the 𝑖-th row and the 𝑗-th column

equals the 𝑖-th element of the column pattern 1 if the 𝑗-th element

of the column type vector is 0; otherwise, it equals the 𝑖-th element

of the column pattern 2.

Example 2. Fig. 3 shows an example of the column-based disjoint
decomposition for a 3-output Boolean function. The column-based
decomposition settings of the first and third component functions have
been determined. For example,𝑤1 of the first component function is
{{𝑥1, 𝑥2}, {𝑥3, 𝑥4}}. In its corresponding Boolean matrix (leftmost), a
value inside (resp. outside) parentheses at the 𝑖-th row and 𝑗-th col-
umn represents the exact (resp. approximate) value of the component
function under the corresponding input pattern, i.e.,𝑂𝑘𝑖 𝑗 (resp. 𝑂̂𝑘𝑖 𝑗).
Note that an 𝑂̂𝑘𝑖 𝑗 is marked in red if 𝑂̂𝑘𝑖 𝑗 ≠ 𝑂𝑘𝑖 𝑗 . Its two column

DAC ’61, Jun 23, 2024– Jun 27, 2024, San Francisco, CA Weihua Xiao1 , Tingting Zhang2 , Xingyue Qian1 , Jie Han2 , Weikang Qian1,3

1(1) 1(0) 1(1) 1(1)

0(1) 1(1) 0(0) 1(1)

0(0) 0(0) 0(0) 0(0)

1(1) 1(1) 1(1) 1(1)

?(0) ?(1) ?(1) ?(1)

?(0) ?(1) ?(1) ?(0)

?(1) ?(1) ?(0) ?(1)

?(1) ?(1) ?(1) ?(1)

0(0) 0(0) 0(1) 0(0)

0(0) 1(1) 1(1) 1(1)

0(0) 1(1) 1(0) 1(1)

1(1) 0(1) 0(0) 0(0)

x1
x2

x3x4

x2
x3

x1x4

x3
x4

x1x2

k=1 k=2 k=3V11 V12

T1=(0, 1, 0, 1)

V31 V32

T3=(0, 1, 1, 1)

Figure 3: An example of the approximate disjoint decompo-
sition for a 3-output Boolean function. A value inside (resp.
outside) parentheses represents the exact (resp. approximate)
value of a Boolean function.

pattern vectors are 𝑉11 = (1, 0, 0, 1) and 𝑉12 = (1, 1, 0, 1), and the cor-
responding type vector is 𝑇1 = (0, 1, 0, 1). Similarly, 𝑉31, 𝑉32, and 𝑇3

are shown for the third component function under the input partition
𝑤3 = {{𝑥3, 𝑥4}, {𝑥1, 𝑥2}}. The approximate values are unknown of
the second component function, marked by ?. We have to determine
𝑉21, 𝑉22, and 𝑇2 under the partition𝑤2 = {{𝑥2, 𝑥3}, {𝑥1, 𝑥4}}.

3.2 Ising Formulation of Column-based Core
COP

This section shows the formulation of the column-based core COP

as an Ising model. Sections 3.2.1 and 3.2.2 consider separate-mode

and joint-mode approximate decompositions, respectively.

3.2.1 Ising Formulation of Column-based Core COP under the Sep-
arate Mode Under the separate mode, each of the𝑚 component

functions is treated separately. Consequently, the target is to min-

imize the ER of the approximate disjoint decomposition for each

function. Consider the approximate decomposition of the 𝑘-th com-

ponent function as an example. Denote the probability of the input

pattern corresponding to the 𝑖-th row and the 𝑗-th column in the

Boolean matrix for the 𝑘-th component function as 𝑝𝑘𝑖 𝑗 . The objec-

tive is to minimize the ER [9]:

min

∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗 |𝑂̂𝑘𝑖 𝑗 −𝑂𝑘𝑖 𝑗 |, (4)

where 𝑂̂𝑘𝑖 𝑗 is given by Eq. (3).

To solve the above COP using the Ising model, Eq. (4) needs to fit

the formulation shown in Eq. (1). Let 𝐸𝐷𝑘𝑖 𝑗 = |𝑂̂𝑘𝑖 𝑗 −𝑂𝑘𝑖 𝑗 |, where
1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑟 , and 1 ≤ 𝑗 ≤ 𝑐 . We first transform 𝐸𝐷𝑘𝑖 𝑗 to

avoid the use of absolute operation. Since 𝑂̂𝑘𝑖 𝑗 and the known𝑂𝑘𝑖 𝑗

are either 0 or 1, we have

𝐸𝐷𝑘𝑖 𝑗 =

{
𝑂̂𝑘𝑖 𝑗 if 𝑂𝑘𝑖 𝑗 = 0,

1 − 𝑂̂𝑘𝑖 𝑗 if 𝑂𝑘𝑖 𝑗 = 1.
(5)

Thus, 𝐸𝐷𝑘𝑖 𝑗 can be rewritten as

𝐸𝐷𝑘𝑖 𝑗 = (1 −𝑂𝑘𝑖 𝑗)𝑂̂𝑘𝑖 𝑗 +𝑂𝑘𝑖 𝑗 (1 − 𝑂̂𝑘𝑖 𝑗) . (6)

Hence, by replacing |𝑂̂𝑘𝑖 𝑗 −𝑂𝑘𝑖 𝑗 | in Eq. (4) by 𝐸𝐷𝑘𝑖 𝑗 in Eq. (6),

Eq. (4) is rewritten as

min

∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗 (𝑂𝑘𝑖 𝑗 + (1 − 2𝑂𝑘𝑖 𝑗)𝑂̂𝑘𝑖 𝑗). (7)

Note that the only unknowns in Eq. (7) are 𝑂̂𝑘𝑖 𝑗 , which, by

Eq. (3), depends on variables𝑇𝑘 𝑗 ,𝑉𝑘1𝑖 , and𝑉𝑘2𝑖 ∈ {0, 1}. In order to

formulate the minimization problem as an Ising model, the binary

variables 𝑇𝑘 𝑗 , 𝑉𝑘1𝑖 , and 𝑉𝑘2𝑖 are converted to the spin variables 𝑇𝑘 𝑗 ,
𝑉𝑘1𝑖 , and 𝑉𝑘2𝑖 in {−1, +1} using linear transformation, satisfying

𝑇𝑘 𝑗 =
𝑇𝑘 𝑗+1

2
, 𝑉𝑘1𝑖 =

𝑉𝑘1𝑖+1

2
, and 𝑉𝑘2𝑖 =

𝑉𝑘2𝑖+1

2
. Then, Eq. (3) is

reformulated using spin variables as

𝑂̂𝑘𝑖 𝑗 =
1

2
+ 𝑉𝑘1𝑖+𝑉𝑘2𝑖−𝑇𝑘 𝑗𝑉𝑘1𝑖+𝑇𝑘 𝑗𝑉𝑘2𝑖

4
. (8)

In total,𝑁 = 2𝑟+𝑐 spin variables are required for each component

function. Then, with the constant terms omitted, the COP in Eq. (7)

is expressed by a second-order Ising formulation using the spin

variables in Eq. (8) as follows:

𝐸 ({𝑇𝑘 𝑗 }, {𝑉𝑘1𝑖 }, {𝑉𝑘2𝑖 })

=

∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗 (1−2𝑂𝑘𝑖 𝑗) (𝑉̄𝑘1𝑖+𝑉̄𝑘2𝑖−𝑇𝑘 𝑗 𝑉̄𝑘1𝑖+𝑇𝑘 𝑗 𝑉̄𝑘2𝑖)
4

=
∑𝑟

𝑖=1
(∑𝑐

𝑗=1

𝑝𝑘𝑖 𝑗 (1−2𝑂𝑘𝑖 𝑗)
4

)𝑉𝑘1𝑖 +
∑𝑟

𝑖=1
(∑𝑐

𝑗=1

𝑝𝑘𝑖 𝑗 (1−2𝑂𝑘𝑖 𝑗)
4

)𝑉𝑘2𝑖

−∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗 (1−2𝑂𝑘𝑖 𝑗)
4

𝑇𝑘 𝑗𝑉𝑘1𝑖 +
∑𝑟

𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗 (1−2𝑂𝑘𝑖 𝑗)
4

𝑇𝑘 𝑗𝑉𝑘2𝑖 .

(9)

3.2.2 Ising Formulation of Column-based Core COP under the Joint
Mode The separate mode ignores the different significances of

output bits and hence, may cause a large error. To reduce the error,

the joint-mode decomposition is proposed in [9], which considers

the different significances of the component functions. This section

discusses the more general cases except for the first round, i.e., all

the component functions have been approximately decomposed.

The treatment for the first round is similar with some changes to

the coefficients.

Assume that the current optimization is performed on the Boolean

matrix for the 𝑘-th component function. Since inputs can be par-

titioned in different ways for different component functions, for

the 𝑙-th component function, we use 𝑖𝑙 and 𝑗𝑙 to index the known

Boolean value (𝑂̂𝑙𝑖𝑙 𝑗𝑙) for the input pattern corresponding to the

𝑖-th row and 𝑗-th column in the Boolean matrix for the 𝑘-th com-

ponent function. The objective is to minimize the MED between

the exact and approximate𝑚-bit outputs as follows [9]:

min

∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗𝐸𝐷𝑘𝑖 𝑗 , (10)

where

𝐸𝐷𝑘𝑖 𝑗 = |2𝑘−1𝑂̂𝑘𝑖 𝑗 +
∑𝑚
𝑙=1,𝑙≠𝑘

2
𝑙−1𝑂̂𝑙𝑖𝑙 𝑗𝑙 −

∑𝑚
𝑙=1

2
𝑙−1𝑂𝑙𝑖𝑙 𝑗𝑙 |,(11)

where 𝑂̂𝑘𝑖 𝑗 ’s are the only unknowns, which are given by Eq. (3).

An example of 𝐸𝐷𝑘𝑖 𝑗 is shown below.

Example 3. Consider the example shown in Fig. 3. We aim at
computing 𝐸𝐷213 in the second Boolean matrix in Fig. 3. The corre-
sponding input pattern is (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (1, 0, 0, 0). According to
the input pattern, we can derive (𝑖1, 𝑗1) = (3, 1) and (𝑖3, 𝑗3) = (1, 3).
Thus, 𝐸𝐷213 = |2𝑂̂213+ (1 ·0+4 ·0) − (1 ·0+2 ·1+4 ·1) | = |2𝑂̂213−6|.

Let 𝐷𝑘𝑖 𝑗 =
∑𝑚
𝑙=1,𝑙≠𝑘

2
𝑙−1𝑂̂𝑙𝑖𝑙 𝑗𝑙 −

∑𝑚
𝑙=1

2
𝑙−1𝑂𝑙𝑖𝑙 𝑗𝑙 . Then, 𝐸𝐷𝑘𝑖 𝑗 =

|2𝑘−1𝑂̂𝑘𝑖 𝑗 + 𝐷𝑘𝑖 𝑗 |. Similarly, in order to adapt to the Ising formu-

lation, 𝐸𝐷𝑘𝑖 𝑗 needs to be further simplified to avoid the use of

absolute operation. We distinguish two cases on 𝐸𝐷𝑘𝑖 𝑗 as follows:

• When −2
𝑘−1 ≤ 𝐷𝑘𝑖 𝑗 ≤ 0, we have

𝐸𝐷𝑘𝑖 𝑗 =

{
−𝐷𝑘𝑖 𝑗 , if 𝑂̂𝑘𝑖 𝑗 = 0,

2
𝑘−1𝑂̂𝑘𝑖 𝑗 + 𝐷𝑘𝑖 𝑗 , if 𝑂̂𝑘𝑖 𝑗 = 1.

Thus, we have

𝐸𝐷𝑘𝑖 𝑗 = (2𝑘−1𝑂̂𝑘𝑖 𝑗 + 𝐷𝑘𝑖 𝑗)𝑂̂𝑘𝑖 𝑗 − 𝐷𝑘𝑖 𝑗 (1 − 𝑂̂𝑘𝑖 𝑗) . (12)

Efficient Approximate Decomposition Solver using Ising Model DAC ’61, Jun 23, 2024– Jun 27, 2024, San Francisco, CA

Since 𝑂̂𝑘𝑖 𝑗 is a binary value, we have 𝑂̂2

𝑘𝑖 𝑗
= 𝑂̂𝑘𝑖 𝑗 . Thus

Eq. (12) can be further rewritten as

𝐸𝐷𝑘𝑖 𝑗 = (2𝑘−1 + 2𝐷𝑘𝑖 𝑗)𝑂̂𝑘𝑖 𝑗 − 𝐷𝑘𝑖 𝑗 . (13)

• When 𝐷𝑘𝑖 𝑗 < −2
𝑘−1

or 𝐷𝑘𝑖 𝑗 > 0, we have

𝐸𝐷𝑘𝑖 𝑗 =

{
2
𝑘−1𝑂̂𝑘𝑖 𝑗 + 𝐷𝑘𝑖 𝑗 𝐷𝑘𝑖 𝑗 > 0

−2
𝑘−1𝑂̂𝑘𝑖 𝑗 − 𝐷𝑘𝑖 𝑗 𝐷𝑘𝑖 𝑗 < −2

𝑘−1
. (14)

Equivalently, we have

𝐸𝐷𝑘𝑖 𝑗 = 2
𝑘−1𝑠𝑔𝑛(𝐷𝑘𝑖 𝑗)𝑂̂𝑘𝑖 𝑗 + 𝐷𝑘𝑖 𝑗𝑠𝑔𝑛(𝐷𝑘𝑖 𝑗), (15)

where 𝑠𝑔𝑛(𝑥) is 1 if 𝑥 ≥ 0 and −1 otherwise.

Thus, based on different values of 𝐷𝑘𝑖 𝑗 , which is known, we can

replace each 𝐸𝐷𝑘𝑖 𝑗 in Eq. (10) by either Eq. (13) or Eq. (15), which

are linear equations on 𝑂̂𝑘𝑖 𝑗 . We further replace each 𝑂̂𝑘𝑖 𝑗 by Eq. (8)

and drop the constant terms. Finally, we can rewrite Eq. (10) as the

following second-order Ising formulation with spin variables 𝑇𝑘 𝑗 ,

𝑉𝑘1𝑖 , and 𝑉𝑘2𝑖 :

𝐸 ({𝑇𝑘 𝑗 }, {𝑉𝑘1𝑖 }, {𝑉𝑘2𝑖 })

=

∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗𝑞𝑘𝑖 𝑗 (𝑉̄𝑘1𝑖+𝑉̄𝑘2𝑖−𝑇𝑘 𝑗 𝑉̄𝑘1𝑖+𝑇𝑘 𝑗 𝑉̄𝑘2𝑖)
4

=
∑𝑟

𝑖=1
(∑𝑐

𝑗=1

𝑝𝑘𝑖 𝑗𝑞𝑘𝑖 𝑗
4

)𝑉𝑘1𝑖 +
∑𝑟

𝑖=1
(∑𝑐

𝑗=1

𝑝𝑘𝑖 𝑗𝑞𝑘𝑖 𝑗
4

)𝑉𝑘2𝑖

−∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗𝑞𝑘𝑖 𝑗
4

𝑇𝑘 𝑗𝑉𝑘1𝑖 +
∑𝑟

𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗𝑞𝑘𝑖 𝑗
4

𝑇𝑘 𝑗𝑉𝑘2𝑖 ,

(16)

where 𝑞𝑘𝑖 𝑗 equals (2𝑘−1 + 2𝐷𝑘𝑖 𝑗) if −2
𝑘−1 ≤ 𝐷𝑘𝑖 𝑗 ≤ 0, and

2
𝑘−1𝑠𝑔𝑛(𝐷𝑘𝑖 𝑗) otherwise.
3.3 Improvement for bSB-based Approximate

Disjoint Decomposition
3.3.1 Dynamic Stop Criterion When using bSB to solve a COP,

a question is how many iterations the Euler integration requires.

The most common way is to choose a fixed number of iterations,

as described in Section 2.1. However, since there is no explicit re-

lationship found between solution convergence and the number

of iterations, we cannot guarantee that each spin has reached its

steady state after Euler integration using a given number of iter-

ations. Therefore, a dynamic stop approach is proposed to decide

when to stop the Euler integration in bSB. It has two steps:

(1) Sample the energy for every 𝑡 iterations, and at each sampling

time, compute the variance on the last 𝑠 sampled energies.

(2) Stop the Euler integration of bSB if the variance is smaller than

a predefined threshold 𝜖 ; otherwise, continue the integration.

Note that the computation of the energy can be implemented effi-

ciently with modern matrix computation libraries, and thus, using

the dynamic stop criterion only incurs little runtime overhead.

3.3.2 A Heuristic to Intervene State Update of bSB This section

proposes a heuristic to intervene the state update of parts of spins.

Its purpose is to improve the results of bSB. It is based on the

following straightforward claim on solving a variant of the column-

based core COP with given 𝑽𝑘1
and 𝑽𝑘2

.

Theorem 3. When solving a column-based core COP with given
𝑽𝑘1

and 𝑽𝑘2
, the optimal 𝑻𝑘 should satisfy that for each column, the

column pattern vector with a smaller error is selected.

The proposed heuristic is based on an observation that in each

sampling time for checking the dynamic stop criterion, the column

type vector 𝑻𝑘 is often not optimal with regard to the column

pattern vectors. Our heuristic is to reset the column type vector in

each sampling time as the optimal one given by Theorem 3, which

is subsequently fed back to bSB for further optimization.

4 Experimental Results
This section presents the experimental results. The approximate dis-

joint decomposition methods are implemented in C++. The matrix

and vector computation in the bSB solver are implemented using

Eigen library in C++ [21]. We use Gurobi [22] as the ILP solver.

All the experiments are conducted on a computer with a 16-core

1.9GHz AMD Ryzen 7 5800U processor and 16GB RAM.

The performance of approximate joint decomposition are eval-

uated over benchmarks in [9], including six continuous functions

(𝑐𝑜𝑠 (𝑥), 𝑡𝑎𝑛(𝑥), 𝑒𝑥𝑝 (𝑥), 𝑙𝑛(𝑥), 𝑒𝑟 𝑓 (𝑥), 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 (𝑥)) and four non-

continuous functions for arithmetic circuits from AxBench [23]

(Brent-Kung, Forwardk2j, Inversek2j, Multiplier). We consider two

quantization schemes: (1) the number of inputs 𝑛 = 9, the size of

the free set as 4, and the size of the bound set as 5; (2) the number of

inputs 𝑛 = 16, the size of the free set as 7, and the size of the bound

set as 9. The performance of different approaches is measured by

MED and runtime.

For our proposed Ising model-based method, the parameters

for the stop criterion in Section 3.3.1 are set as 𝑡 = 20 and 𝑠 = 20

when 𝑛 = 9, and 𝑡 = 10 and 𝑠 = 10 when 𝑛 = 16. The threshold

for energy variance is set as 𝜖 = 10
−8
. The proposed method is

compared to the state-of-the-art method in [9]. In that method,

the number of tried input partitions is limited by 𝑃 = 1000. The

number of the iterations is set as 𝑅 = 5. For the ILP solver Gurobi,

we set the runtime bound of solving a single ILP problem as 3600s.

If the runtime reaches the bound, Gurobi returns the current best

solution.

4.1 Performance on Small Input Number
This section considers the first quantization scheme, i.e., 𝑛 = 9,

which is a small input number. We compare the performance of

different approximate disjoint decomposition methods on six con-

tinuous functions for separate and joint modes as shown in Table 1.

The number of outputs is𝑚 = 9. For the case of 9-input Boolean

functions, the ILP-based method in [9], denoted as DALTA-ILP, can
be applied for both separate and joint modes, and we compare

our Ising model-based method to it for both modes. Moreover, our

method is also compared with the two heuristic methods for the

joint mode from [9] and [10], denoted as DALTA [9] and BS-SA [10],

respectively. Note that for a small input number, each input parti-

tion can be tried in DALTA, BS-SA, and our method.

Since the separate mode ignores the significance of different

Boolean functions, the approximate decomposition obtained under

the separate mode is less accurate than that found under the joint

mode. Under the separate mode, our method shows advantages

over DALTA-ILP in both accuracy and runtime. Using 418× shorter

runtime, it can find a solution with a 16% smaller MED. For the

joint mode, compared to DALTA, DALTA-ILP can find a better ap-

proximate decomposition with an average 20% decrease in MED

but with a significant increase in runtime. Using BS-SA approach

achieves an average 16% smaller MED in a shorter runtime than

using DALTA. However, the MED is larger than that obtained us-

ing DALTA-ILP. The experimental results show that our method

outperforms the existing ones in MED. It can lead to a 12% smaller

DAC ’61, Jun 23, 2024– Jun 27, 2024, San Francisco, CA Weihua Xiao1 , Tingting Zhang2 , Xingyue Qian1 , Jie Han2 , Weikang Qian1,3

Table 1: Comparison of approximate disjoint decomposition using different methods with the number of inputs 𝑛 = 9.
Benchmarks Separate Mode Joint Mode

Function Domain Range DALTA-ILP [9] Prop. DALTA [9] DALTA-ILP [9] BS-SA [10] Prop.
MED Time(𝑠) MED Time(𝑠) MED Time(𝑠) MED Time(𝑠) MED Time(𝑠) MED Time(𝑠)

𝒄𝒐𝒔 (𝒙) [0, 𝜋
2
] [0, 1] 11.64 258.37 8.33 0.56 2.96 3.06 2.48

3600

2.46 1.54 2.5 1.75

𝒕𝒂𝒏(𝒙) [0, 2𝜋
5
] [0, 3.08] 10.91 236.32 10.45 0.56 3.24 2.83 2.62 2.84 1.57 2.5 1.87

𝒆𝒙𝒑 (𝒙) [0, 3] [0, 20.09] 9.26 242.58 7.07 0.74 4.22 2.72 3.55 3.01 1.5 2.66 1.92

𝒍𝒏(𝒙) [1, 10] [0, 2.30] 8.32 224.68 6.57 0.49 4.69 6.77 2.55 2.9 1.49 2.72 2.77

𝒆𝒓𝒇 (𝒙) [0, 3] [0, 1] 5.07 139.6 4.61 0.42 1.85 2.76 2.66 2.66 1.38 1.9 1.55

𝒅𝒆𝒏𝒐𝒊𝒔𝒆 (𝒙) [0, 3] [0, 0.81] 10.91 229.25 9.69 0.46 4.75 2.81 3.38 4.27 1.51 2.8 1.51

Average 9.35 221.8 7.83 0.53 3.61 3.49 2.87 3600 3.02 1.49 2.51 1.89

The smallest average MED and the shortest average time are highlighted for separate and joint modes.

0 0.2 0.4 0.6 0.8 1 1.2

cos(x)

tan(x)

exp(x)

ln(x)

erf (x)

denoise(x)

Brent-Kung

Forwardk2j

Inversek2j

Multiplier

Ave

MED

Time

MED Time(s)

10.18 4477.86

3.14 3389.72

10.30 3865.39

10.65 5312.16

15.01 3983.88

33.94 4503.74

1.11 1886.98

1168.18 8261.07

379.68 6970.90

481.47 8506.03

211.37 5115.77

DALTA

Figure 4: The performance of Isingmodel-based approximate
disjoint decomposition vs. DALTA [9] for joint mode with
the number of inputs 𝑛 = 16.

MED than DALTA-ILP on average. Although our method requires

a relatively longer runtime than BS-SA, the accuracy is improved,

which is rather a challenge for other approaches.

4.2 Performance on Large Input Number
This section considers the second quantization scheme, i.e., 𝑛 = 16,

which is a relatively large input number. All the benchmarks are

used. The outputs for continuous functions are quantized to 16

bits (𝑚 = 16), and those for non-continuous functions are adjusted

accordingly (𝑚 = 9 for Brent-Kung and 𝑚 = 16 for others). In

this section, we only compare the proposed Ising model-based

method with DALTA over the joint mode, as the final error will be

large if using the separate mode for the 16-input Boolean functions.

When 𝑛 is large, it is impossible to try all input partitions. Thus,

DALTA randomly tries 𝑃 input partitions, while BS-SA tries more

sophisticated input partitions based on simulated annealing. As our

focus is to test the performance of our method for solving the core

COP, we just use DALTA’s random strategy for selecting the input

partition. Thus, for fairness, we do not compare with BS-SA in this

section.

Fig. 4 plots the ratios of MEDs obtained from our method to

those obtained from DALTA and also the ratios of runtimes of the

former to those of the latter. It also gives the MEDs and runtime

of DALTA. A ratio less than 1 means that our method is better. As

revealed in the figure, our method achieves an improvement in both

MED and runtime for six out of ten benchmarks. An average of 11%

smaller MED is obtained with an average 1.16× speedup in runtime.

Thus, the proposed Ising model-based approximate decomposition

approach has a better performance.

5 Conclusion
In this paper, an efficient Ising model-based approximate disjoint

decomposition method is developed to aid the design of low-cost

approximate LUTs. A column-based approximate disjoint decompo-

sition approach is first proposed, which is mathematically friendly

to a second-order Ising model-based COP solver. Then, it is fur-

ther adapted to the solver. Moreover, two improvement techniques

are proposed to guide the update of spin states during the search

for solutions using an SB-based Ising solver for approximate dis-

joint decomposition. The experiments on 16-bit Boolean functions

show that the proposed Ising model-based solver outperforms the

state-of-the-art method in both accuracy and runtime.

References
[1] J. Cong et al., “Energy-efficient computing using adaptive table lookup based on

nonvolatile memories,” in ISLPED. IEEE, 2013, pp. 280–285.

[2] Q. Xu et al., “Approximate computing: A survey,” IEEE Design & Test, vol. 33, no. 1,
pp. 8–22, 2016.

[3] M. J. Schulte and J. E. Stine, “Symmetric bipartite tables for accurate function

approximation,” in ARITH. IEEE, 1997, pp. 175–183.

[4] S.-F. Hsiao et al., “Hierarchical multipartite function evaluation,” IEEE TC, vol. 66,
no. 1, pp. 89–99, 2016.

[5] M. Imani et al., “Resistive configurable associative memory for approximate

computing,” in DATE. IEEE, 2016, pp. 1327–1332.

[6] A. Rahimi et al., “Approximate associative memristive memory for energy-

efficient GPUs,” in DATE. IEEE, 2015, pp. 1497–1502.

[7] V.-S. Shen and A. C. Mckellar, “An algorithm for the disjunctive decomposition

of switching functions,” IEEE TC, vol. 100, no. 3, pp. 239–248, 1970.
[8] Y. Yao et al., “Approximate disjoint bi-decomposition and its application to ap-

proximate logic synthesis,” in ICCD. IEEE, 2017, pp. 517–524.

[9] C. Meng et al., “DALTA: A decomposition-based approximate lookup table archi-

tecture,” in ICCAD. IEEE, 2021, pp. 1–8.

[10] X. Qian et al., “High-accuracy low-power reconfigurable architectures for

decomposition-based approximate lookup table,” in DATE. IEEE, 2023, pp.

1–6.

[11] B. H. Korte et al., Combinatorial optimization. Springer, 2011, vol. 1.

[12] B. A. Cipra, “An introduction to the Ising model,” Am. Math. Mon., vol. 94, no. 10,
pp. 937–959, 1987.

[13] T. Zhang et al., “A review of simulation algorithms of classical Ising machines

for combinatorial optimization,” in ISCAS. IEEE, 2022, pp. 1877–1881.

[14] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative studies,” Jour-
nal of statistical physics, vol. 34, no. 5, pp. 975–986, 1984.

[15] H. Goto et al., “Combinatorial optimization by simulating adiabatic bifurcations

in nonlinear Hamiltonian systems,” Sci. Adv., vol. 5, no. 4, p. eaav2372, 2019.
[16] K. Tatsumura et al., “Real-time trading system based on selections of poten-

tially profitable, uncorrelated, and balanced stocks by NP-hard combinatorial

optimization,” arXiv preprint arXiv:2307.06339, 2023.
[17] T. Zhang and J. Han, “Efficient traveling salesman problem solvers using the

Ising model with simulated bifurcation,” in DATE. IEEE, 2022, pp. 548–551.

[18] A. Lucas, “Ising formulations of many NP problems,” Front. Phys., 2014.
[19] T. Kanao and H. Goto, “Simulated bifurcation for higher-order cost functions,”

Applied Physics Express, vol. 16, no. 1, p. 014501, 2022.
[20] H. Goto et al., “High-performance combinatorial optimization based on classical

mechanics,” Sci. Adv., vol. 7, no. 6, p. eabe7953, 2021.
[21] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

[22] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online].

Available: https://www.gurobi.com

[23] A. Yazdanbakhsh et al., “AxBench: A multiplatform benchmark suite for approxi-

mate computing,” IEEE Des. Test, vol. 34, no. 2, pp. 60–68, 2016.

https://www.gurobi.com

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Ising Model and Simulated Bifurcation
	2.2 Row-based Disjoint Decomposition
	2.3 Row-based Approximate Disjoint Decomposition
	2.4 Core COP of Row-based Approximate Disjoint Decomposition

	3 Ising Model-based Approximate Disjoint Decomposition
	3.1 Column-based Approximate Disjoint Decomposition
	3.2 Ising Formulation of Column-based Core COP
	3.3 Improvement for bSB-based Approximate Disjoint Decomposition

	4 Experimental Results
	4.1 Performance on Smallblack Input Number
	4.2 Performance on Largeblack Input Number

	5 Conclusion
	References

