
Hardware Efficient Weight-Binarized Spiking Neural
Networks

Chengcheng Tang
Dept. of Electrical and Computer Engineering

University of Alberta
Edmonton, Alberta, Canada

ctang8@ualberta.ca

Jie Han
Dept. of Electrical and Computer Engineering

University of Alberta
Edmonton, Alberta, Canada

jhan8@ualberta.ca

Abstract—The advancement in spiking neural networks (SNNs)
provides a promising and alternative approach to conventional
artificial neural networks (ANNs) with higher energy efficiency.
However, the significant requirements on memory usage presents a
performance bottleneck on resource constrained devices. Inspired
by the notion of binarized neural networks (BNNs), we incorporate
the design principles in BNNs into that of SNNs to reduce
the stringent resource requirements. Specifically, the weights are
binarized to 1 and −1 for implementing the functions of excitatory
and inhibitory synapses. Hence, the proposed design is referred
to as a weight-binarized spiking neural network (WB-SNN). In
the WB-SNN, only one bit is used for the weight or a spike; for
the latter, 1 and 0 indicate a spike and no spike, respectively. A
priority encoder is used to identify the index of an active neuron
as a basic unit to construct the WB-SNN. We further design a
fully connected neural network that consists of an input layer,
an output layer, and fully connected layers of different sizes. A
counter is utilized in each neuron to complete the accumulation of
weights. The WB-SNN design is validated by using a multi-layer
perceptron on the MNIST dataset. Hardware implementations on
FPGAs show that the WB-SNN attains a significant saving of
memory with only a limited accuracy loss compared with its SNN
and BNN counterparts.

Index Terms—Spiking neural networks, priority encoder, bina-
rized weights, field programmable gate arrays (FPGAs)

I. INTRODUCTION

To emulate the human brain, spiking neural networks (SNNs)
have shown a significant potential to save energy and hardware
usage compared with conventional artificial neural networks
(ANNs) [1]. While understanding how the brain processes
complex information is still an ongoing topic in neural science
[2], [3], either the firing rate (or frequency) [4], [5] or the
firing latency (or order) is used to encode the signal intensity
in a neuron. Such encoding schemes enable the operation of
SNNs to be event driven, that is, neurons only have to update
their states upon the arrival of spikes, thus saving energy.

Another merit of spike-based computation is its potential to
decompose costly arithmetic operations into repetitive simple
tasks. For instance, the weighted sum can be transformed into
a series of additions over a period of time, which leads to
a multiplier-less and highly parallel system. One example is
the neuromorphic chip, TrueNorth [6], which contains one
million neurons working in parallel and each neuron uses a
random number generator, an integrator and a threshold unit to

instantiate the augmented integrate-and-fire (IF) model without
using multipliers.

As the size of SNNs grows, however, memory becomes the
bottleneck for further improving the performance. The increas-
ing number of parameters has brought challenges to hardware
design to effectively access the distributed memories. This
inefficacy has become the major limitation of implementing
SNNs on hardware-constrained platforms.

As another efficient model, binarized neural networks
(BNNs) employ binary values (+1 and −1) for both weights
and activations, so the key arithmetic operation, multiply-and-
accumulate, can be replaced by an XNOR-count operation
[7]. Such simplifications enable considerable memory savings
without incurring a significant loss in accuracy.

In this paper, the design principle of binarization in BNNs
is introduced into SNNs by leveraging the binary weights (+1
and −1) while keeping neuron activations to be +1 (for firing a
spike) or 0 (for no spike). This design is referred to as a weight
binarized spiking neural network (WB-SNN). It is different
from the so-called binary weight SNN (BW-SNN) [8] in that the
weights are −1, 0 and 1 in the BW-SNNs. Therefore, a sign
extension is required for the weights, so incurring additional
hardware. However, the weights in the proposed WB-SNNs
are truly binary in +1 and −1 that can be stored as 1 and 0
in the memory, respectively. Then, the binary weights can be
accumulated by using counters during the IF process.

The main contributions of this paper are: 1) The memory is
substantially reduced in the WB-SNNs because of the binary
weights. Additionally, the XNOR-count operation in BNNs is
replaced by the priority encoders (PEs) shared by all neurons
in one layer for a higher hardware efficiency. 2) This design is
extended into linear (fully connected) layers so that one of the
basic neural network models, the multi-layer perceptron (MLP),
is supported. 3) The design is verified on the Modified National
Institute of Standards and Technology (MNIST) dataset imple-
mented on field programmable gate arrays (FPGAs). Substantial
hardware savings are obtained when compared with some
baseline designs.

II. PRELIMINARIES
A. Spiking Neural Networks (SNNs)

SNNs imitate the bioelectric activities observed in biological
systems, as illustrated in Fig. 1. A neuron in SNNs receives

several channels of input spike trains from other neurons in
the former layer through its synapses. Each incoming spike
will change the internal membrane potential of the neuron
by an amount determined by the amplitude of the synapse
weight. When this potential exceeds a predefined threshold Vth,
an output spike is generated and the potential value is reset.
The structure of SNNs is composed of several layers of such
neurons that rely on these spikes to communicate and transmit
information.

Several neuron models are applicable in SNNs, each of which
uses a different function to describe the dynamics of neuron
potential. Among these various representations, the IF model
[1] is the simplest and most commonly used one. Its behavior
can be expressed as

vi =

∫ ∑
j

Wi,jSj(t)dt, (1)

where vi is the internal membrane potential of neuron i in
one layer and Wi,j is the weight for the synaptic connection
between neuron i in the current layer and neuron j in the
previous layer. Sj(t) is an impulse function given by a spike
train of ‘0’s and ‘1’s.

The computation in SNNs is rather simple because the
neuron is activated by event-based spike trains so that the
multiplication is transformed into integration. Therefore, no
multiplier is needed in the hardware implementation. The
variation in the neuron potential can be realized by an integrator
that accumulates the synaptic weights on an event-triggered
basis. SNNs can also be viewed as one form of binarization
in the neuron activation while the weight values stay numeric.
Moving one step forward toward binarizing both the weights
and activations of neurons will lead to (fully) binarized SNNs.
The computation is anticipated to be even simpler.

B. Binarized Neural Networks (BNNs)

The idea of BNNs was proposed in [7] as an effort to replace
arithmetic operations with bit-wise operations. In a BNN, the
weights and activations are constrained to binary values, such
as −1 and +1. Therefore, a single bit can be used to quantize
both synaptic weights and neuron activations. For example: the
bit value 1 is used to represent +1 and 0 indicates −1. Thus,
the multiplication is equivalent to an XNOR operation.

In order to convert the real values in ANNs into this binary
representation, several functions have been utilized, including
the deterministic binarization function and stochastic binariza-
tion function [7]. The first one is known as Sign(x) with the
binarized weight or activation, xb, given by,

xb = Sign(x) =

{
−1 x < 0,
+1 otherwise,

(2)

where x is a real-valued variable in BNNs as either a weight or
an activation. In stochastic binarization, the variables get −1 or
+1 depending on a probability determined by the hard sigmoid
function σ(x),

σ(x) = min(1,max(0,
x+ 1

2
)). (3)

Fig. 1. Analogue between a biological neuron and a neuron in stochastic SNNs.
(a) A biological neuron. (b) A neuron in SNNs and the spike train generation
mechanism in the Integrate-and-Fire process.

The stochastic binarization needs to generate random bits to
simulate probabilistic events, which would incur additional
hardware. Therefore, we use the deterministic function to im-
plement the binarization. However, the stochastic binarization
function is used in the training process to approximate the
derivative of binarization during back propagation.

III. A DESIGN FRAMEWORK FOR WB-SNNS

This section describes how different types of neuron layers
are designed and connected in the WB-SNN. They can be used
to build various types of neural networks as reusable units.

A. A Priority Encoder (PE)

A PE is a basic unit widely used in the WB-SNN design. It
encodes the index of the activated bit with the highest priority
among all inputs. We rely on it to identify the index of an
active neuron (i.e., a neuron with an output spike) in a group
of neurons. The schematic and truth table of an 8-input priority
encoder is outlined in Fig. 2. It should be noted that the least
significant input D0 has no impact on the output. It is reserved
for the case when there is no input spike. Thus, it is not
instantiated in hardware. This is true for all PEs in this design.

When working with a priority resolving (PRI) circuit [9], all
the channels with logic-high inputs will be located and their
indexes are sent to the output one by one. In collaboration
with the PE, the PRI circuit is used to avoid repeated encoding
of the same bit. When the PE finishes encoding the bit with

Fig. 2. (a) An 8 to 3 priority encoder (PE8). (b) The truth table. (c) PE32
constructed by a PE4 and a PE8 [9].

the highest priority, the PRI clears this bit so that the PE can
move on to encode the bit with the second highest priority.
Since the output of a PE is in the binary format, the width of
the output signal is reduced to log2N for an N -channel input.
When the PE is placed between two layers of neurons in a
network, its output can be utilized to find the memory location
and the signal width is also reduced from N to log2N .

One useful feature of a PE is its ability to construct a large
PE using smaller ones. Fig. 2(c) shows how a 32-input PE is
obtained using 4-input and 8-input PEs. This feature provides
considerable flexibility to make it fit into neuron layers of
different sizes.

B. The Input Layer

While the WB-SNN uses spikes as a medium in all its inner
layers, it is not the case for the input layer. The system receives
real pixel values in images as inputs. Nonetheless, this does not
cause any further alteration to the design except that the counter
is replaced with an accumulator to support the accumulation
of real values in this layer. Then, depending on if the input
values are sparse or not, we can choose whether to omit the
PE&PRI block or not. If the input image contains many zero
pixel values, we can keep using the PE&PRI block to select
only non-zero values and skip accumulating the zeros. If most
of the pixel values in the input image are non-zeros, we can
remove the PE&PRI block and accumulate every value in the
input image. In the former case, the inference latency is reduced
while hardware is saved in the latter case.

As can be seen in Fig. 3, the pixel values are sent to the input
layer one by one. Although causing extra latency, this operation
makes this design hardware efficient. The sign bit of each value
is XNORed with the binary weight stored in the memory.

The output of the XNOR gate is then concatenated with the
magnitude bits and sent to an accumulator for integration.
The accumulation is then compared with the predetermined
threshold for firing a spike. After this IF process, the neurons
in the next layer will receive the generated spike train.

Fig. 3. Input layer design of the WB-SNNs.

C. Design of the Fully Connected Layer

Fully-connected (FC) layers can be found in various types
of ANN instantiations such as the MLP. In an FC layer,
each neuron is connected via a synapse with every neuron in
the previous layer. Therefore, the number of synapses grows
quadratically with the layer size, i.e., O(N2), which is costly
when implementing large neural networks.

Fig. 4. Fully connected layer design in the WB-SNNs.

The design of the FC layer in the WB-SNN is illustrated in
Fig. 4. Since the neuron output is either 0 or 1, all neurons
from the previous layer are first connected to a PE&PRI block.
This block will transfer the active or inactive status of each
neuron into a binary number that indicates the neuron for which
the input is 1. This binary number is then sent to the random
access memory (RAM) where the weight is stored. The RAMs
have multiple layers, each of which corresponds to one output
neuron. Note that all RAMs share the same input address signal
because each output neuron is connected with all input neurons.
The only difference lies in the weight signal which is stored

separately in the RAM. This feature also facilitates the parallel
processing of the neurons. The output from the RAM is then
sent to the processing unit for integration and spike generation.

One may wonder how −1 is stored and realized in the WB-
SNN. It is achieved by using an up/down counter, as shown
in Fig. 4. When the input is 1, the counter counts up; when
the input is 0, the counter counts down. In that way, we only
need one bit to store the weight and at the same time, to
achieve excitatory or inhibitory synapse behavior. Compared
with conventional FC layers, only neurons with active outputs
are selected and processed because of the use of PE&PRI. This
feature does not only save energy but also reduces the inference
latency.

IV. HARDWARE IMPLEMENTATION AND PERFORMANCE
EVALUATION

To verify the WB-SNN design, we implemented it on the
FPGA as a configurable unit. A widely used NN model, the
MLP, was tested and its performance on inference accuracy and
hardware utilization were evaluated on the MNIST dataset [10].
The FPGA platform adopted in the experiments is the Xilinx
Virtex7 xc7vx485t board. The results were compared with the
state-of-the-art designs from the literature.

The MLP is one type of classical feedforward ANNs. It
usually consists of several fully connected layers and is widely
benchmarked for small image classification datasets such as the
MNIST. The number of layers and the number of neurons in
each layer can be different and can affect the recognition accu-
racy and hardware utilization. To fully assess the performance
of the WB-SNN design and compare it with previous work,
MLP models of different sizes were constructed and evaluated.
These models were first trained on a graphic processing unit
(GPU) platform and then implemented on the FPGA.

In order to attain a high accuracy while keeping the weights
binarized, some common training tactics in BNNs are applied in
the training of the WB-SNN models. For example, an L-2 norm
regularization R2(w) = (1 − |w|)2 is added to the total loss
function so that the weight value, w, that diverges from 1 or −1
will be penalized [11]. The augmented loss function, J(W,b),
is constructed from the original loss function, L(W,b), as

J(W,b) = L(W,b) + λ
∑
i

R2(Wi), (4)

where W and b represent weights and bias terms, respectively.
Wi contains the weights at the ith layer. λ is a parameter that
is used to adjust the ratio of regularization applied to the total
loss. It is selected to be 0.001 in our experiments.

Simulations of hardware implementations of the WB-SNNs
were conducted for several MLP models, including 784-N -N -
10, i.e., one input layer with 784 nodes, two hidden layers with
N nodes each and one output layer with 10 nodes. Five MLP
neural network models of different sizes, i.e., with a hidden
layer of 63, 127, 255, 511 and 1023 nodes, were developed
and their accuracies during training are shown in Fig. 5. Note
that the size of hidden layers we choose is always equal to
2N−1 with an integer N . That is to reserve an empty space in
the PE for the all-zero input. This is one significant feature of

Fig. 5. Training accuracy of MLPs with hidden layers of different sizes.

the WB-SNN. The activations and the weights of neurons are
trained to be 0, 1 and −1, 1, respectively. The hard sigmoid
function is used during the backward propagation to binarize
the weight. The detailed explanation of this function is given
in Section II.B. BNNs.

It is not surprising that the training accuracy is positively
associated with the number of nodes in the hidden layer, i.e., a
larger number of nodes produces a higher accuracy. On the
other hand, it is also found that the accuracy can be quite
low when the number of neurons in the hidden layer is small
because of the binarized weights. For example, the 63-node
model achieves an accuracy of only around 91%. However, the
accuracy improves when the size of the hidden layer increases.
When there are 1023 nodes, the accuracy increases to around
99%. Therefore, the inadequacy due to the binarized weight is
largely offset by the number of neurons in the network.

The inference test on the 10,000 images in the MNIST
dataset was conducted on FPGAs. The accuracy and execution
process were also recorded. Fig. 6 shows the snapshot of
the inference process for the 784-1023-1023-10 model. The
membrane potential of a neuron and the generated spike stream
are presented in Fig. 6(a). It also showcases the IF process
of the neuron. However, a neuron is not always active during
inference. It remains silent for a certain amount of time and
does not elicit spikes. It is a common behavior of the neurons
in the WB-SNN. To better illustrate this, we also recorded
the number of spikes generated by the neurons in the second
hidden layer, as shown in Fig. 6(b) and (c). As can be seen,
most of the neurons are located between a sparsity from 30%
to 40% and the overall sparsity is 33.01%, which mean that
the WB-SNN uses only about one third of all neurons during
the inference. The sparsity here represents the percentage of
activated neurons. This sparsity helps save energy and execution
time in the overall architecture.

The hardware costs of the MLP models with selected sizes
and their inference accuracy are summarized in Table I. To
help better illustrate the cost effectiveness of the WB-SNN,
the hardware utilization of a previous design [12] is listed
under the same conditions. As can be seen from Table I, the
storage of those weights in the size of Block Random-Access
Memories (BRAMs) is inevitably larger than the proposed WB-
SNN design. The required usage of BRAMs by the 784-255-
255-10 MLP structure is only 11.0, whereas it is 395.5 for a

Fig. 6. A snapshot of the inference process in the second hidden layer for the
784-1023-1023-10 network on FPGAs. (a) The membrane potential value of a
neuron and the generated spike stream. (b) Number of spikes elicited by the
nodes. (c) The histogram of node sparsity.

4-layer MLP structure with the same hidden layer size in the
stochastic SNN in [12] (the unit of BRAMs is 18 Kbits each).
That merely takes 1.07% of the total amount of BRAMs on
the FPGA and 2.78% BRAM utilization for the same structure
in the stochastic SNN. From the comparison between the two
networks with the smallest and largest hidden layers, as shown
in Table I, the storage saving is around 30 times. These results
indicate that the WB-SNN is much more hardware efficient
than its previous counterpart. Generally, it uses less than 20%
of look-up tables (LUTs) and Flip-Flops (FFs) for hidden layers
of the same size compared to [12]. The saving in memory, i.e.,
the BRAM, is more significant as the WB-SNN uses only 1
bit to store a weight while the design in [12] requires 32-bit
floating-point numbers. Therefore, the memory in the WB-SNN
is reduced by about 30 times, which is consistent with what we
expect from the reduction in the binary representation of the
weights.

On the other hand, the inference accuracy of the WB-SNN
is lower than its full-precision counterpart if the same NN
structure is considered for comparison. Although there is an
accuracy loss for the WB-SNNs, as shown in Table I, the
numbers of LUTs and FFs are reduced to only 17.94% and
10.93%, respectively, of those used by the previous design with
255 neurons in the hidden layers. The reduction in memory
or BRAM usage is even more significant. Furthermore, this
accuracy drop tends to diminish as the number of neurons
in the hidden layer increases. The accuracy loss declines
from 6.76% for the network with 63-node hidden layers to
2.35% for the 255-node hidden layer model. Moreover, a
larger number of neurons can be used in the WB-SNN to
achieve an even higher accuracy. As shown in the last row of
Table I, the WB-SNN with 1023-node hidden layers achieves

TABLE I
HARDWARE UTILIZATION AND INFERENCE ACCURACY OF MLP MODELS

WITH DIFFERENT SIZES

Structure
Size LUTs FFs BRAMs Inference

Accuracy

784-63-
63-10

16555
(5.45%)

20347
(3.36%)

101.5
(9.85%)

97.37% [12]

1653
(0.54%)

1043
(0.17%)

3.5
(0.34%)

90.61% this work

784-127-
127-10

24089
(7.93%)

24982
(4.11%)

199.5
(19.37%)

97.88% [12]

3189
(1.05%)

1939
(0.32%)

6.5
(0.63%)

93.31% this work

784-255-
255-10

39015
(12.85%)

34217
(5.64%)

395.5
(38.4%)

98.24% [12]

6999
(2.31%)

3741
(0.62%)

11.0
(1.07%)

95.89% this work

784-1023-
1023-10

24784
(8.16%)

14603
(0.81%)

56.5
(5.49%)

97.97% this work

LUT: look-up table; FF: flip-flop;
BRAMs: block random-access memories (18 Kbits each)

a comparable accuracy as the 127-node full-precision model,
but it requires significantly smaller hardware, especially for the
BRAM. Therefore, there is a trade-off between the hardware
utilization and inference accuracy. As the number of neurons
in the hidden layer increases, the hardware becomes only
moderately larger, however it leads to a large increase in
recognition accuracy. For the 784-1023-1023-10 WB-SNN, this
accuracy is 97.97% while the used BRAMs are 56.5 × 18
Kbits, much smaller than those required in the stochastic SNNs.

As an effort to assess the overall performance of the WB-
SNN, we also compared our work with a large set of prior
designs. Considering that the WB-SNN inherits features from
both SNNs and BNNs, we selected some representative designs
from these two categories for comparison. As can be seen from
the results in Table II, the WB-SNN achieves a high accuracy
at a relatively low hardware cost. For example, the WB-SNN
uses only 53% of the LUTs, 48% of the FFs and 38% of the
BRAMs required in the SNN model in [14] and 76% of the
LUTs, 22% of the FFs and 47% of the BRAMs in the BNN
model in [19] to achieve the same accuracy. Some other models
return slightly higher accuracy, but their hardware costs are
much larger than the WB-SNN. The model in [16] uses less
resources but its accuracy is quite low and the implementation
is not as efficient as the 255-node WB-SNN model (in Table
I). Therefore, the WB-SNN design achieves both hardware
efficiency and high accuracy at the same time. Although the
FPGA implementation does not produce an accurate energy
profile, the power dissipation is low considering that only one
bit is used to encode information and that the spikes are sparse
in the WB-SNN.

TABLE II
COMPARISON OF THE WB-SNN WITH OTHER SNN AND BNN DESIGNS

Design
Source Framework Platform Structure Bit Width LUTs FFs BRAMs Accuracy

[14] SNN Kintex-7
XC7K325T

784-1024-
1024-10 16-bit 46,371 30,417 150 97.7%

[16] SNN Spartan-6
XC6SLX45

784-500-500-
10

Hybrid (5,
8 or 32-bit) 11,489 4,705 110 93.8%

[17] SNN Virtex-7
xc7vx485t

784(Conv.)-
512-384-10 8-bit 44,000 – 217.5 98.1%

[18] BNN Kintex-7
XC7K325

784-1024-
1024-1024-10 1-bit 88,000 115,000 124 98.4%

[19] BNN Spartan XC7S50 784-256-256-
256-10 1-bit 32,600 65,200 120 97.87%

[20] BNN Zynq UltraScale+
ZU19EG

784-256-256-
10 1-bit 91,131 – 4.5 95.83%

[20] BNN Zynq UltraScale+
ZU19EG

784-1024-
1024-10 1-bit 82,988 – 396 98.4%

this work WB-SNN Virtex-7
xc7vx485t

784-1023-
1023-10 1-bit 24,784 14,603 56.6 97.97%

V. CONCLUSION

A hardware-efficient WB-SNN design is proposed in this
paper by introducing binarized weights into SNNs. This bi-
narization significantly reduces the memory requirement for
storing the weights in SNNs. A priority encoder (PE) is utilized
as the basic unit to construct different layers in neural networks.
Since PEs are shared among all neurons in one layer and its
output is used to find the weight stored in the memory, the
WB-SNN achieves a high hardware efficiency. An MLP model
is instantiated and evaluated on the MNIST dataset to verify
the proposed design. Hardware implementations on an FPGA
show that the WB-SNN attains comparable accuracy while
utilizing far less resources than other designs in the literature.
The classification accuracy is high in a larger MLP structure
with only slightly increased hardware.

In summary, the WB-SNN design significantly reduces mem-
ory utilization and achieves a high hardware efficiency while
keeping a high inference accuracy. Future work will investigate
more complex models such as the convolutional neural network
for applications using a larger dataset such as the CIFAR-10.

REFERENCES

[1] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E.
Vianello, and E. Beigne, “Spiking neural networks hardware implemen-
tations and challenges: a survey.” ACM Journal on Emerging Technologies
in Computing Systems, vol. 15, no. 2, pp.1-35, 2019.

[2] A. Kumar, S. Rotter, and A. Aertsen, “Spiking activity propagation in
neuronal networks: reconciling different perspectives on neural coding,”
Nature reviews. Neuroscience, vol. 11. pp. 615-27. 2010.

[3] R. V. Rullen and S. J. Thorpe, “Rate coding versus temporal order coding:
what the retinal ganglion cells tell the visual cortex,” Neural Computation,
vol. 13, no. 6, pp. 1255-1283, June 2001

[4] H. Tang, H. Kim, H. Kim and J. Park, “Spike counts based low complexity
SNN architecture with binary synapse,” IEEE Trans. Biomed. Circuits
Syst. , vol. 13, no. 6, pp. 1664-1677, Dec. 2019.

[5] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Front. Comput. Neurosci., vol.
9, p. 99, Aug. 2015.

[6] F. Akopyan et al., “TrueNorth: design and tool flow of a 65 mW 1 million
neuron programmable neurosynaptic chip,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 10, pp. 1537-1557, Oct. 2015.

[7] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” 2016, [online] Available:
https://arxiv.org/abs/1602.02830.

[8] P. -Y. Chuang, P. -Y. Tan, C. -W. Wu and J. -M. Lu, “A 90nm 103.14
TOPS/W Binary-Weight Spiking Neural Network CMOS ASIC for Real-
Time Object Classification,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1-6.

[9] X. Nguyen, H. Nguyen and C. Pham, “A Scalable High-Performance
Priority Encoder Using 1D-Array to 2D-Array Conversion,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 64, no. 9, pp. 1102–1106, Sep. 2017.

[10] LeCun, Yann and Cortes, Corinna, “MNIST handwritten digit database,”
2010

[11] W. Tang, G. Hua, L. Wang, “How to Train a Compact Binary Neural
Network with High Accuracy?” in Proc. the Thirty-First AAAI Conf. on
Artificial Intelligence, San Francisco, CA, USA, Feb. 2017, pp. 2625-
2631.

[12] C. Tang and J. Han, “Design and Implementation of a Highly Accurate
Stochastic Spiking Neural Network,” in Proc. 2021 IEEE Workshop on
Signal Processing Systems (SiPS), Coimbra, Portugal, 2021, pp. 1-6.

[13] S. Liu, W. J. Gross and J. Han, “Introduction to Dynamic Stochastic
Computing,” IEEE Circuits Syst. Mag., vol. 20, no. 3, pp. 19-33, 2020.

[14] Y. Liu, Y. Chen, W. Ye and Y. Gui, “FPGA-NHAP: A general FPGA-
based neuromorphic hardware acceleration platform with high speed and
low power,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 6, pp.
2553-2566, June 2022.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.

[16] D. Ma et al., “Darwin: A neuromorphic hardware co-processor based on
spiking neural networks,” J. Syst. Archit., vol. 77, pp. 43-51, 2017.

[17] M. T. L. Aung, C. Qu, L. Yang, T. Luo, R. S. M. Goh and W. -F.
Wong, “DeepFire: acceleration of convolutional spiking neural network
on modern field programmable gate arrays,” in Proc. 2021 31st Int. Conf.
on Field-Programmable Logic & Appl. (FPL), 2021, pp. 28-32.

[18] P. Jokic, S. Emery and L. Benini, “BinaryEye: A 20 kfps streaming
camera system on FPGA with real-time on-device image recognition
using binary neural networks,” in 2018 IEEE 13th Int. Symp. on Ind.
Embedded Syst. (SIES), 2018, pp. 1-7.

[19] M. Ghasemzadeh, M. Samragh and F. Koushanfar, “ReBNet: residual
binarized neural network,” in Proc. Annu. IEEE Symp. Field-Program.
Cust. Comput. Mach., 2018, pp. 57-64.

[20] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
K. Vissers, “Finn: a framework for fast, scalable binarized neural network
inference,” in Proc. ACM/SIGDA Int. Symp. on Field- Programm. Gate
Arrays, 2017, pp. 1-10.

