
A Hardware-Efficient Logarithmic Multiplier with
Improved Accuracy

Mohammad Saeed Ansari
University of Alberta

Edmonton, AB, Canada
ansari2@ualberta.ca

Bruce F. Cockburn
University of Alberta

Edmonton, AB, Canada
cockburn@ualberta.ca

Jie Han
University of Alberta

Edmonton, AB, Canada
jhan8@ualberta.ca

Abstract—Logarithmic multipliers take the base-2 logarithm
of the operands and perform multiplication by only using shift
and addition operations. Since computing the logarithm is often
an approximate process, some accuracy loss is inevitable in such
designs. However, the area, latency, and power consumption can
be significantly improved at the cost of accuracy loss. This paper
presents a novel method to approximate log2N that, unlike the
existing approaches, rounds N to its nearest power of two instead
of the highest power of two smaller than or equal to N . This
approximation technique is then used to design two improved
16×16 logarithmic multipliers that use exact and approximate
adders (ILM-EA and ILM-AA, respectively). These multipliers
achieve up to 24.42% and 9.82% savings in area and power-delay
product, respectively, compared to the state-of-the-art design
in the literature with similar accuracy. The proposed designs
are evaluated in the Joint Photographic Experts Group (JPEG)
image compression algorithm and their advantages over other
approximate logarithmic multipliers are shown.

Index Terms—approximate computing, logarithmic multiplier,
hardware-efficient multiplier, JPEG image compression

I. INTRODUCTION

Advances in semiconductor technology, besides providing
many benefits, have made digital circuits more vulnerable to
parameter variations (process, voltage, and temperature) and
soft errors. Thus ensuring strictly accurate computing is getting
increasingly challenging [1]. On the other hand, there exist
many applications, such as multimedia processing, for which
fully accurate results are not required and there might be a
range of acceptable results rather than a unique result [2].
Approximate computing can be attractive to such applications
due to its potentially significant reduction in design costs while
still producing sufficiently accurate results.

Multiplication is a key arithmetic operation that is highly
optimized in processors [3]. Logarithmic multipliers convert
multiplication into only shift and addition operations, thus
allowing it to be done faster with smaller power consumption
and area overhead [4]. Logarithmic multipliers are inherently
approximate designs due to: (1) a limited number of precision
bits and (2) the inaccuracy in computing the function log(x)
[5]. Using either piece-wise linear approximations over a
finely subdivided input domain or iterative techniques can
compensate for the accuracy loss in computing log2(x) [6].

This work was supported financially by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) (Project No. RES0018685 and
RES0025211).

Among the existing approaches for the hardware imple-
mentation of logarithmic conversion, piece-wise polynomial
approximation is usually the most efficient solution [4], [7]–
[9]. The first piece-wise polynomial approximation was likely
proposed by Mitchell [10]. Several Mitchell-based methods
have been proposed to improve the accuracy. However, the ap-
proximation error in the Mitchell-based approaches is always
negative (i.e., the approximate result is smaller than the exact
value) [6]. This systematic error causes problems in repetitive
or iterative operations, such as matrix multiplications, since
the errors do not cancel and are accumulated.

This paper proposes a novel approximation method with
a double-sided error distribution that can be used as a more
accurate baseline design instead of the Mitchell approach. Two
improved logarithmic multipliers are constructed using exact
and approximate adders, referred to as ILM-EA and ILM-AA,
respectively. They are then evaluated in the Joint Photographic
Experts Group (JPEG) application.

The remainder of this paper is organized as follows: Section
II presents the proposed approximation approach and the
resulting logarithmic multipliers. Section III discusses the error
and hardware performance of the proposed and state-of-the-art
logarithmic multipliers. The JPEG application is considered in
Section IV to evaluate the proposed design. Finally, Section
V concludes the paper.

II. PROPOSED TECHNIQUES

Let Z be the n-bit binary representation of a positive integer
N . Without the loss of generality, let zk, k ≤ n, be the most
significant ‘1’ in Z. Hence, N can be represented as:

N = 2k(1 + x) = 2k+1(1− y), (1)

where 0 ≤ x, y ≤ 1.

A. Proposed approximation approach

The conventional approximation approaches use the highest
power of two smaller than the given number N . Instead, we
propose the approximation given in Algorithm 1. Note that
2k ≤ N < 2k+1. Let d1 and d2 denote the differences N −2k

and 2k+1 −N , respectively. As shown in Algorithm 1, when
d1 < d2 we underestimate the value of log2N ; otherwise, we
overestimate it.



The exact, Mitchell, and the proposed methods for com-
puting log2N are plotted in Fig. 1. Note that the proposed
approximation results in more than 6× smaller average error
(over the range [1, 255]) than the Mitchell method (0.0088 vs.
0.0568), which is due to the double-sided error distribution of
the proposed approach.

Algorithm 1 Proposed approximation for log2N

1: N = 2k(1 + x) = 2k+1(1− y) where 0 ≤ x, y ≤ 1
2: d1 = N − 2k . error in underestimate
3: d2 = 2k+1 −N . error in overestimate
4: if d1 < d2 then . use underestimate
5: x = d1/2

k

6: log2N ≈ k + x
7: else . use overestimate
8: y = d2/2

k+1

9: log2N ≈ k + 1− y
10: end if

Fig. 1: Approximation of log2N .

B. Proposed multiplier designs

1) High-level description: The proposed multiplier first
transforms the multiplicand α and multiplier β to the closest
powers of two plus an additional term. Hence, the multiplica-
tion can be rewritten as:

α = m1 + q1, where m1 = 2k1 (2)

β = m2 + q2, where m2 = 2k2 (3)

α× β ≈ (2k1+k2 + q22
k1 + q12

k2) +��q1q2. (4)

As shown in (4), the three most significant terms are all
multiplications by powers of two that can be easily performed
as left-shift operations in hardware. In our design, the least
significant term (q1q2) is ignored and left as the approximation

error. A more detailed description of the proposed approximate
multiplier is provided in Algorithm 2, where NOD, PE and
DEC stand for the nearest-one detector, the priority encoder,
and the decoder. Detailed descriptions of these three compo-
nents are given in the following subsection.

Algorithm 2 Proposed approximate multiplier

1: procedure M(α, β)
2: α, β: inputs, γ: approximate output
3: m1 ← NOD(α),
4: k1 ← PE(m1),
5: q1 ← α−m1, . for steps 3-5 see (2)
6: m2 ← NOD(β),
7: k2 ← PE(m2),
8: q2 ← β −m2, . for steps 6-8 see (3)
9: q12

k2 ← q1 << k2,
10: q22

k1 ← q2 << k1,
11: 2k1+k2 ← DEC(k1 + k2),
12: γ ← 2k1+k2 + q22

k1 + q12
k2 . . for steps 9-12 see (4)

2) Hardware implementation: The proposed approximate
multipliers can be implemented by either: (1) implementing
the logic to calculate the nearest powers of two or (2) using
look-up tables (LUTs). We decided not to use LUTs for the
following two reasons:
• The algorithm for finding the two closest powers of two

in the proposed approximate multiplier is simple and can
be easily done in hardware.

• Memory usage is a serious bottleneck for many appli-
cations, such as in neural networks [11], [12]. Hence,
avoiding LUTs helps the proposed design to be applicable
for a broader range of applications.

The block diagram of the proposed approximate multiplier
is given in Fig. 2(a). The nearest-one detector (NOD) circuit
(Fig. 2(b)) is based on a leading-one detector (LOD) circuit.
However, unlike the LOD, NOD finds the nearest power of
two to its given input. Note that similar to some existing LODs
[13], [14], the proposed NOD evaluates from the MSB to the
LSB.

The priority encoder (PE) then determines the number of
required shifts based on the NOD’s output. The two residue
terms q1 and q2 are also calculated and shifted according to
the k2 and k1 values, respectively, and a decoder generates
the most significant term, 2k1+k2 . Finally, the three resulting
terms are summed up to obtain the approximate product.

As mentioned before, the Mitchell multiplier always under-
estimates the actual product. To address this issue, the authors
in the recent paper [6] used a set-one-adder (SOA) with k
approximation bits, SOA-k. The SOA-k puts 1 for the k LSBs
and therefore, always overestimates the actual result. This is
used in [6] to improves the accuracy of the Mitchell multiplier
with less hardware cost than the Mitchells’. Our proposed
design, on the other hand, might round up or down, depending
on the input operands and, therefore, it has a double-sided error
distribution. This is one major benefit of our proposed design
compared to the existing designs in the literature.



(a) Block diagram of the proposed
logarithmic multiplier.

(b) Proposed 16-bit nearest-one detector (NOD) circuit.

Fig. 2: The proposed approximate logarithmic multiplier design.

To further improve the hardware efficiency, we used ap-
proximate adders to accumulate the base-2 logarithms of the
input operands. We used a modified SOA-k adder in which
instead of setting all of the k LSBs to ‘1’ they are set to
‘1’ and ‘0’ alternatively. For instance, for SOA-7 we use
“0101010” instead of “1111111”. By doing so, the resulting
adder sometimes overestimates and sometimes underestimates
the exact result. Therefore, the double-sided error distribution
property in the proposed approximate multiplier ILM-AA is
also preserved.

III. PERFORMANCE EVALUATION

A. Accuracy metrics

The three accuracy metrics (1) error rate (ER), (2) the mean
relative error distance (MRED), and (3) the normalized mean
error distance (NMED, the mean error distance normalized by
the maximum output of the accurate design) [2], [15] were
calculated for 16×16 logarithmic multipliers and the results
are given in Table I.

TABLE I: Error characteristics of logarithmic multipliers.

Multiplier Type MRED ER(%) NMED
LM [10] 0.0384 99.77 0.0092

ALM-SOA-11 [6] 0.0330 98.97 0.0080
This work: ILM-AA 0.0290 99.99 0.0072
This work: ILM-EA 0.0289 99.95 0.0069

Since the exhaustive simulation is too time consuming,
we generated a sample of 107 random cases to obtain the
results in Table I. Moreover, the effect of the number of
approximation bits on the accuracy of the 16×16 logarithmic
multipliers is evident in Fig. 3. According to Fig. 3, using more
than eleven bits for approximation significantly reduces the
accuracy of ALM-SOA, while the proposed ILM-AA is more
robust. However, we also used eleven bits for approximation
in our analysis for a fair comparison.

The results in Table I show that the proposed ILM-EA
(using exact adders) and ILM-AA (using approximate adders)
are the most accurate with respect to MRED and NMED.

Fig. 3: Effects of the number of truncated bits on the
accuracy of 16×16 logarithmic multipliers.

B. Hardware metrics

We implemented all of the designs in VHDL and then
synthesized them using the Synopsys Design Compiler (DC)
for ST Micro’s CMOS 28-nm process. Note that the default
settings for DC were used for all the simulations to ensure a
fair comparison.

As shown in Table II, both the fastest and smallest design
is ILM-AA, which is 41.48% faster and 40.77% smaller than
the base Mitchell design, while being 24.48% more accurate
than it. With respect to power, ALM-SOA consumes 3.62%
less power than the proposed ILM-AA, while ILM-AA has
the lowest PDP value among the four considered designs.

TABLE II: Hardware characteristics analysis.

Multiplier
Type

Power
(µW )

Delay
(nS)

Area
(µm2)

PDP
(fJ)

LM [10] 94.97 2.29 357.41 217.48
ALM-SOA-11 [6] 67.97 1.54 281.35 104.65

ILM-AA 70.43 1.34 211.67 94.37
ILM-EA 140.00 2.26 387.43 316.40

Table III compares the PDP-MRED product for the
four considered multipliers. The designs with lower MRED



and smaller PDP and PDP-MRED product are, conse-
quently, preferable. Hence, the proposed ILM-AA is the most
hardware-efficient design.

TABLE III: Comparison of PDP-MRED products for the
logarithmic multipliers.

Multiplier Type PDP × MRED
LM [10] 8.35

ALM-SOA-11 [6] 3.45
ILM-AA 2.73
ILM-EA 9.14

IV. JPEG APPLICATION

JPEG was an early and still important image compression
standard [16]. The first step in the JPEG algorithm is to
partition the pixels of an image I into 8×8 blocks [17]. Then,
the Discrete Cosine Transform (DCT) is applied to each block
and the resulting DCT coefficients are quantized in order to
minimize the high-frequency content. The quantization is ac-
complished by dividing the matrix of coefficients element-wise
by the quantization matrix. Note that we used the quantization
matrix (Q) in [18] corresponding to quality factor QF=10.
Decompression can be done by performing all of these steps
in the reverse order. First, we multiply (by using approximate
multipliers) the obtained quantized matrix from the previous
step by Q to generate the matrix of DCT coefficients. The
inverse DCT is then used to recover the original component
matrix. Finally, all of the 8×8 blocks are reassembled to form
an image, I ′, of the same size as the original image I . In
our experiment, the image ‘Lena’ is compressed by using
the JPEG algorithm with the standard quantization matrix (Q)
[18].

The quality of the five decompressed images, one using an
exact multiplier and four using logarithmic multipliers, are
compared by using the structural similarity (SSIM) measure
[19]. As shown in Table IV, the proposed designs ILM-EA
and ILM-AA produce the highest SSIM values next to the
exact multiplier.

TABLE IV: SSIM values for decompressed images using
exact and logarithmic multipliers.

Multiplier Type SSIM
Exact multiplier 0.7743

LM [10] 0.7618
ALM-SOA-11 [6] 0.7615

ILM-AA 0.7631
ILM-EA 0.7631

V. CONCLUSION

This work proposes a novel approximation method to ef-
ficiently compute log2N . Using this method, two improved
logarithmic multipliers are designed, ILM-EA and ILM-AA.
Both designs are highly accurate and have the smallest MRED
values compared to other logarithmic designs in the literature.
The less accurate ILM-AA multiplier is 25% smaller than the
recent design in [6] and has the smallest PDP and latency.
In fact, it is 9.82% more energy-efficient, 12.98% faster, and

12.42% more accurate than the logarithmic multipliers in
[6]. Finally, JPEG image compression was considered as an
application, for which the proposed designs show a higher
output image quality than the other designs.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 18th IEEE European Test
Symposium (ETS), pp. 1–6, 2013.

[2] M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han, “Low-power
approximate multipliers using encoded partial products and approximate
compressors,” IEEE Journal on Emerging and Selected Topics in Cir-
cuits and Systems, vol. 8, no. 3, pp. 404–416, 2018.

[3] M. de la Guia Solaz, W. Han, and R. Conway, “A flexible low power
DSP with a programmable truncated multiplier,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 59, no. 11, pp. 2555–2568,
2012.

[4] J. Y. L. Low and C. C. Jong, “Unified Mitchell-based approximation
for efficient logarithmic conversion circuit,” IEEE Transactions on
Computers, vol. 64, no. 6, pp. 1783–1797, 2015.

[5] V. Paliouras and T. Stouraitis, “Low-power properties of the logarithmic
number system,” in 15th IEEE Symposium on Computer Arithmetic,
pp. 229–236, 2001.

[6] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi,
“Design and evaluation of approximate logarithmic multipliers for low
power error-tolerant applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 65, no. 9, pp. 2856–2868, 2018.

[7] D. De Caro, N. Petra, and A. G. Strollo, “Efficient logarithmic converters
for digital signal processing applications,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 58, no. 10, pp. 667–671, 2011.

[8] T.-B. Juang, S.-H. Chen, and H.-J. Cheng, “A lower error and rom-free
logarithmic converter for digital signal processing applications,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 12,
pp. 931–935, 2009.

[9] B.-G. Nam, H. Kim, and H.-J. Yoo, “Power and area-efficient unified
computation of vector and elementary functions for handheld 3D graph-
ics systems,” IEEE Transactions on Computers, vol. 57, pp. 490–504,
2008.

[10] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Transactions on Electronic Computers, no. 4, pp. 512–
517, 1962.

[11] G. Srinivasan, P. Wijesinghe, S. S. Sarwar, A. Jaiswal, and K. Roy,
“Significance driven hybrid 8t-6t SRAM for energy-efficient synaptic
storage in artificial neural networks,” in Design, Automation & Test in
Europe Conference Exhibition (DATE), pp. 151–156, 2016.

[12] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and K. Roy,
“Energy-efficient neural computing with approximate multipliers,” ACM
Journal on Emerging Technologies in Computing Systems (JETC),
vol. 14, no. 2, p. 16, 2018.

[13] K. H. Abed and R. E. Siferd, “VLSI implementations of low-power
leading-one detector circuits,” in Proceedings of the IEEE SoutheastCon,
pp. 279–284, IEEE, 2005.

[14] K. Kunaraj and R. Seshasayanan, “Leading one detectors and leading
one position detectors-an evolutionary design methodology,” Canadian
Journal of Electrical and Computer Engineering, vol. 36, no. 3, pp. 103–
110, 2013.

[15] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classifi-
cation, and comparative evaluation of approximate arithmetic circuits,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 13, no. 4, p. 60, 2017.

[16] G. K. Wallace, “The JPEG still picture compression standard,” Commu-
nications of the ACM, vol. 34, no. 4, pp. 30–44, 1991.

[17] T. Suzuki and T. Yoshida, “Lower complexity lifting structures for
hierarchical lapped transforms highly compatible with JPEG XR stan-
dard,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 27, no. 12, pp. 2652–2660, 2016.

[18] J. Yang, G. Zhu, and Y.-Q. Shi, “Analyzing the effect of JPEG compres-
sion on local variance of image intensity,” IEEE Transactions on Image
Processing, vol. 25, no. 6, pp. 2647–2656, 2016.

[19] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.


