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ABSTRACT
A novel ordinary di�erential equation (ODE) solver is proposed by
using a stochastic integrator to implement the accumulative func-
tion of the Euler method. We show that a stochastic integrator is an
unbiased estimator for a Euler numerical solution. Unlike in con-
ventional stochastic circuits, in which long stochastic bit streams
are required to produce a result with a high accuracy, the proposed
stochastic ODE solver provides an estimate of the solution for every
bit in the stochastic bit stream, thus signi�cantly reducing the la-
tency and energy consumption of the circuit. Complex ODE solvers
are constructed for solving nonhomogeneous ODEs, systems of
ODEs and higher-order ODEs. Experimental results show that the
stochastic ODE solvers provide very accurate solutions compared
to their binary counterparts, with on average an energy saving of
46% (up to 74%), 8⇥ throughput per area (up to nearly 12⇥) and a
runtime reduction of 72% (up to 82%).
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1 INTRODUCTION
Ordinary di�erential equations (ODEs) are widely used in the mod-
eling of natural processes in physics, chemistry and biology, as
well as in solving problems in many engineering and social studies
such as scienti�c computing and economics. Various algorithms
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have been developed for solving an ODE. However, most of the
algorithms are computationally intensive, especially when solving
problems for a large scale system. While a general-purpose pro-
cessor is often used, acceleration has been achieved by using the
massively parallel structure of graphics processing units (GPUs)
[7, 9]. However, a GPU is not well suited for mobile and embedded
applications because it is large and power hungry compared to a
tailored ASIC design.

Conventional digital ODE solvers require the use of adders, mul-
tipliers, registers and complex control circuitry, such as in a digital
di�erential analyzer (DDA) [14]. Although more e�cient imple-
mentations have been proposed by using concurrent processing
paths [2], a conventional binary design still requires a complex
datapath and control circuitry.

Stochastic computing (SC) is a di�erent computing paradigm
that uses random binary bit streams to encode a real value and
digital logic to perform computation [5]. In the unipolar represen-
tation of SC, a number s in [0, 1] is compared with a uniformly
distributed random number in [0, 1] to obtain one bit in a bit stream.
The probability of a single bit being “1” is then s . The digital im-
plementation of a stochastic number generator (SNG) is shown in
Figure 1, where both s and the random number are in n-bit binary
format. The bipolar representation encodes a number s in [�1, 1]
by a linear mapping (s + 1)/2 to [0, 1].

A number of SC applications have been proposed, including func-
tion generation [15], LDPC decoders [17], and learning machines
[10]. An SC circuit has the unique features of simple hardware and
high fault tolerance. However, it often requires long stochastic bit
streams to achieve a high accuracy, which results in a long latency
in SC [8]. Subsequently, this long latency has a negative impact on
the energy e�ciency of a stochastic circuit. Recently, low discrep-
ancy (LD) sequences have been used to replace conventional linear
feed back shift register (LFSR)-generated pseudorandom sequences
for reducing the latency and energy of a stochastic circuit [1, 12].

A stochastic integratorwas originally proposed in [5] as a sequen-
tial SC element. A stochastic integrator consists of two components:
an n-bit or 2n -state up/down counter and an SNG. The counter can
be modeled by a �nite state machine (FSM) of 2n states and the
SNG generates a stochastic bit stream encoding the probability
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Figure 1: A stochastic number generator (SNG).
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for the value stored in the counter. The stochastic bit stream is
then employed to compute complex functions such as high-order
polynomials, logarithm and trigonometric functions [13] and per-
form division [3]. Nevertheless, the up/down counter inside the
stochastic integrator carries useful information, which is often over-
looked. Gaines showed that a network of stochastic integrators with
feedback, called adaptive digital elements or ADDIEs, can solve
Laplace‘s equations and serve as a Bayesian estimator/predictor
[5].

In this paper, a novel ODE solver is proposed by using SC circuits.
Detailed formulation shows that a single stochastic ODE solver
provides an unbiased estimate of the Euler numerical solution for
an ODE. Three error reduction schemes are further proposed and
veri�ed by both theory and simulation. The approach to building
more complex ODE solvers is demonstrated by constructing the
circuits for solving three typical ODEs. With a high accuracy, the
proposed stochastic ODE solvers show signi�cant advantages in
energy consumption, throughput and performance, compared with
their binary counterparts.

2 PROPOSED STOCHASTIC ODE SOLVERS
2.1 Formulation
The circuit diagram and a symbol of the stochastic integrator are
shown in Figure 2 [5]. A key component in a stochastic integrator
is a 2n -state up/down counter. A random number generator (RNG)
and a comparator work as an SNG for generating a stochastic bit
stream, Seqout , to encode the value stored in the counter. The
bit stream can be used as a feedback for itself or as an input bit
stream for subsequent stochastic integrators. If not used, the RNG
and the comparator can be removed to reduce hardware cost. The
input signalsA and B carry stochastic bit streams, which determine
whether to increase, decrease or keep the value of the counter.

The counter is typically a 2n-state counter with n-bit width,
counting from 0 to 2n � 1. The initial value is determined by the
input of the application. Let I denote the integer value stored in
the counter. The probability to be encoded by the output stochastic
bit stream is I/2n in the unipolar representation or 2 ⇥ I/2n � 1 in
the bipolar representation. Due to the space limitation, only the
unipolar representation is considered in this paper; designs for the
bipolar representation can similarly be derived by a linear mapping.

Let the two bits in the input streamsA and B be ai and bi respec-
tively at the ith clock cycle. The function of the up/down counter
is then

                 2n-state Counter    
INC

DEC

RNG

>
Seqout

A

B Seqout

(a) (b)

comparator

A

B

+

-

Countout

Countout (si)

Figure 2: A stochastic integrator: (a) the circuit block dia-
gram; (b) a symbol.

Ii+1 =

8>>><
>>>:

Ii + 1 if ai = 1 and bi = 0
Ii if ai = bi ,
Ii � 1 if ai = 0 and bi = 1

(1)

where Ii and Ii+1 are the integers stored in the counter at the ith
and (i + 1)th clock cycles. Equivalently, we have

Ii+1 = Ii + ai � bi . (2)
The expectation of Ii+1, E[Ii+1], is given by

E[Ii+1] = E[Ii + ai � bi ] = E[Ii ] + E[ai ] � E[bi ]. (3)
Let the probability that ai is “1” at the ith clock cycle be pa,i and

the probability that bi is “1” be pb,i , (3) becomes [16]:

E[Ii+1] = E[Ii ] + pa,i � pb,i . (4)
To convert an integer into a stochastic number in the unipolar

representation, both sides of (4) are normalized by 1
2n . Hence, (4) is

transformed to

E[si+1] = E[si ] +
1
2n

(pa,i � pb,i ), (5)

where si = Ii/2n and si+1 = Ii+1/2n . If the initial value in the
counter is s0, then by an iterative accumulation of (5), the expected
value of sk at the (arbitrary) kth clock cycle (k = 1, 2, . . . ) is ob-
tained as

E[sk ] = s0 +
1
2n

k�1’
i=0

(pa,i � pb,i ). (6)

For an ODE d�(t )
dt = f (t ,�(t)), the numerical solution for a given

t can be estimated by considering the derivative of �(t) at a discrete
ti as

d�(t)
dt

|t=ti = lim
�t!0

�(ti + �t) � �(ti )
�t

⇡ �(ti + h) � �(ti )
h

(7)

where h is a small value for the time interval �t . Let ti+1 = ti + h
(ti = h · i when t0 = 0 and h is a constant, i = 0, 1, 2, . . . ), (7) leads
to the solution by the Euler method [4]:

�̂i+1 = �i + hf (ti ,�i ), (8)
where �̂i+1 is the numerical estimation of the function value of
�(t) at ti+1, i.e., �(ti+1), and h is the step size for the estimate. Let t
start from t = 0, with h = 1

2n and f (t ,�(t)) = pa (t) � pb (t), (8) is
simpli�ed to

�̂i+1 = �i +
1
2n

[pa (
i

2n
) � pb (

i

2n
)]. (9)

If the initial condition of the ODE is �0, the estimate of the
solution at the kth step is given by an iterative accumulation of (9)
over i , which leads to

�̂k = �0 +
1
2n

k�1’
i=0

[pa (
i

2n
) � pb (

i

2n
)]. (10)

Hence, for the ODE
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d�(t)
dt
= pa (t) � pb (t), (11)

the Euler numerical solution �̂k provides an estimated value of the
function �(t) at t = k/2n , k = 0, 1, 2, . . . , i.e.,

�( k
2n

) ⇡ �̂k . (12)

Let the input sequences of the stochastic integrator encode the
probabilities pa (t) and pb (t) at t = i/2n , i.e., pa,i = pa ( i

2n ) and
pb,i = pb ( i

2n ); as per (6) and (10), the normalized expected value
of the up/down counter at the kth clock cycle, E[sk ], provides an
unbiased estimate of the Euler solution at the kth time step, �̂k , for
the same initial condition, i.e. �0 = s0. By (12), we obtain

�( k
2n

) ⇡ E[sk ], (13)

that is, E[sk ] (k = 1, 2, . . . ) provides an approximate solution of
the ODE (11) with a step size of 1/2n .

The input bit streams only serve as the control signals for the
counter, while the output of the counter provides the Euler estimate,
one estimate at each time step or per clock cycle, thus achieving
great e�ciency.

2.2 Stochastic ODE Solver Designs
In this section, several designs are proposed as typical ODE solvers.
Note that all the ODEs and parameters are chosen so that the solu-
tion lies in the range [0, 1] of the stochastic unipolar representation;
otherwise, it is considered that an over�ow occurs. To evaluate
accuracy, the analytical solutions are also obtained for comparison.

2.2.1 Nonhomogeneous ODEs. Nonhomogeneous ODEs refer
to the type of ODEs that involves time, i.e., using t-related terms.

As per (11) and (13), if pa (t) = 1 and pb (t) = 0, a stochastic
integrator solves the ODE

d�(t)
dt
= 1 � 0, (14)

with �(0) = 0, i.e., the counter is initialized to “0”. The analytical
solution for (14) is �(t) = t . It is produced by the output of the
counter, as shown in the stochastic integrator at the �rst stage in
Figure 3. If the output sequence from the stochastic integrator is
connected to a subsequent stochastic integrator (with 0 as another
input), the cascaded structure, as shown at the �rst two stages in
Figure 3, solves the ODE

d�(t)
dt
= t , (15)

+

-

1

0
+

-0 +

-0

1
6y(t)=     t3

y(t)=t
y(t)=     t21

2

Figure 3: A stochastic ODE solver for (14), (15) and (16).

with �(0) = 0. The analytical solution for (15) is �(t) = (1/2)t2, esti-
mated in the circuit by the output of the second counter. Similarly,
three stages of the cascaded structure solves

d�(t)
dt
=

1
2
t2, (16)

with �(0) = 0. The analytical solution for (16) is �(t) = (1/6)t3,
estimated by the output of the third counter.

Hence, the cascaded stochastic integrators in Figure 3 are solvers
for a set of nonhomogeneous ODEs. In the cascaded structure, the
integrators in the earlier stages are used to generate the stochastic
bit stream for the t-related terms in the ODE to be solved.

The cascading of the stochastic integrators can be continued for
solving an ODEwith a higher-order polynomial as its solution. Note
that the output sequence of the integrator at the last stage is not
connected to any other components, so the RNG and comparator
in this stochastic integrator can be removed.

2.2.2 Systems of ODEs. A system of ODEs can be solved by
using multiple stochastic integrators. For a system of ODEs such as

( d�1(t )
dt = �2(t) � 0.5,

d�2(t )
dt = 0.5 � �1(t),

(17)

with �1(0) = 0 and �2(0) = 0.5 as the initial values of the two
counters. For this system, two cross-coupled stochastic integrators
provide a solution by utilizing the output bit stream from one
integrator as an input of the other integrator, as shown in Figure
4. In this design, the other inputs are set to 0.5, as determined by
(17). The analytical solution for (17) is �1(t) = 0.5 � 0.5 cos(t) and
�2(t) = 0.5 + 0.5 sin(t). Other values other than 0.5 can be used in
(17) if they do not result in an over�ow.

2.2.3 Higher-order ODEs. To solve anmth order ODE, at leastm
stochastic integrators are required since one stochastic integrator
performs a single integration. For a second order ODE such as

d2�(t)
dt

+ 2
d�(t)
dt
+ �(t) = 0, (18)

with �(0) = 0, d�(t )dt |t=0 = 1, an additional function, z(t) = d�(t )
dt +

2�(t), is introduced for the �rst two terms in (18) such that dz(t )
dt =

d2�(t )
dt + 2 d�(t )dt . By doing so, the order of the ODE is lowered and

(18) is converted into two �rst-order ODEs

+

-

+

-

y1(t)

y2(t)

0.5

0.5

Figure 4: A stochastic ODE solver for (17).
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( dz(t )
dt = ��(t),

d�(t )
dt = z(t) � 2�(t).

(19)

In Figure 5, the �rst stochastic integrator solves the �rst ODE
in (19) by initializing the counter to z(0) = d�(t )

dt |t=0 + 2�(0) = 1.
The inverter serves as a stochastic subtractor that computes the
function 1��(t). The second stochastic integrator solves the second
ODE by initializing the counter to �(0) = 0.

Due to the ⇥2 factor for �(t), the updating rule of the second
stochastic integrator becomes: Ii+1 = Ii + ai � 2bi , where ai and
bi are two bits of the input stochastic bit streams at the ith clock
cycle. The counter is modi�ed to take multiple bits as inputs for
the stochastic sequence of 2bi .The analytical solution for (18) is
�(t) = te�t ; z(t) = (t + 1)e�t is computed by the �rst stochastic
integrator as an intermediate result.

3 ERROR REDUCTION SCHEMES
One major disadvantage in SC is the loss of accuracy [8]. Usually, it
is believed that multiple independent RNGs need to be utilized for
a higher accuracy, which inevitably increases hardware overhead.
However, we show here that sharing RNGs can reduce the variance
in the solution of a stochastic ODE solver, thus reducing error.

The error in the solution of a stochastic ODE solver is mainly
caused by : (1) the Euler numerical method and (2) the randomness
in SC.

In the Euler method, the error is measured by the local truncation
error (LTE) and global truncation error (GTE). The LTE refers to
the error introduced in a single step of estimation and the GTE
refers to the error caused in multiple steps. The LTE and GTE are
proportional to h2 and h respectively, where h is the step size [4].
Thus a simple solution is to increase the bit width of the up/down
counter to reduce the step size (h = 1/2n , where n is the bit width
of the counter), thereby reducing error due to the Euler method.
Note that increasing the bit width of the counter leads to a better
granularity in the �nal solution, but it does not signi�cantly increase
the latency of the stochastic circuit, unlike in conventional SC.

The error introduced by SC is related to the variance of the deriv-
ative term, ai � bi . When independent RNGs are used to generate
ai and bi , the variance at a single step is given by:

Var[ai � bi ] = pa,i (1 � pa,i ) + pb,i (1 � pb,i ). (20)

The total variance is the sum of variances at each step if each
random number is independently generated, as is approximately
the case for using an LFSR.

+

-

y(t)

1

z(t)
×2

+

-

Figure 5: A stochastic ODE solver for (18).

However, if the same RNG is used to generate A and B, the
probability distribution of ai � bi is shown in Table 1 (assume
pa,i � pb,i ). In this case, the variance of ai � bi can be derived as:

Vars [ai � bi ] = E[(ai � bi � E(ai � bi ))2]
= (pa,i � pb,i )(1 � pa,i + pb,i ).

(21)

Because Vars [ai � bi ] � Var[ai � bi ] = �2pb,i (1 � pa,i )  0,
we obtain Vars [ai � bi ]  Var[ai � bi ] for any i = 0, 1, 2, . . . .
Therefore, sharing the use of RNGs to generate input stochastic bit
streams improves the accuracy. The same conclusion can similarly
be obtained for pa,i < pb,i .

Further improvement of the accuracy can be achieved by using
LD sequences for a faster convergence and thus better progressive
precision [1, 6].

4 EXPERIMENTS AND RESULTS
4.1 Validation of the Proposed Designs
In this section, the proposed stochastic ODE solvers are validated
by hardware simulations using VHDL. The designs are synthesized
by Synopsys Design Compiler and analyzed by Mentor Graphic
ModelSimwith the STM 28nm technology library. The same temper-
ature and supply voltage are used in all simulations. The numerical
solution is produced by using 8-bit counters with a step size of 1/28.

Figure 6 shows the results produced by the circuit in Figure 3
for solving (14), (15) and (16), in comparison with the analytical
results. Note that for t > 1, the result is not shown as it exceeds
the range of the unipolar representation in SC. The simulation
results are depicted in Figure 7 for two full periods along with the
analytical solution for (17). A full period of the sine/cosine function
can be generated within 1609 clock cycles (d2 ⇥ � ⇥ 28e), while
a conventional SC function generation method requires 1024-bit
sequences to produce a single result [13]. Thus, a stochastic ODE
solver can be used as an e�cient function generator. The simulation
results produced by the circuit in Figure 5 are depicted in Figure 8,
in comparison with the analytical results.

As seen from the results, the 8-bit stochastic ODE solvers produce
very accurate solutions when compared to the analytical results. A
quantitative evaluation of the results using the root mean square
error (RMSE) is reported next.

4.2 Validation of the Error Reduction Schemes
The accuracy of the stochastic ODE solvers with di�erent con�g-
urations is measured to verify the three error reduction schemes
by: (1) increasing the bit width; (2) sharing the use of RNGs; (3)
using LD Sobol sequences [12]. The proposed design in Figure 4

Table 1: Probability distribution of ai � bi when the same
RNG is used to generate A and B

ai � bi Probability
-1 0
0 1 � pa,i + pb,i
1 pa,i � pb,i
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is considered for an RMSE analysis in the �rst full period of the
functions �1(t) and �2(t). The results are shown in Figure 9.

As can be seen, the circuit with a larger width tends to have
a lower RMSE. In general, the circuits using LD sequences pro-
duce more accurate results than those using pseudorandom (PR)
sequences generated by LFSRs. For the same bit width, the circuits
using PR sequences with shared RNGs provide more accurate nu-
merical solutions than those using independent RNGs. When LD
sequences are used, the RMSE is not signi�cantly a�ected by us-
ing shared RNGs. Nevertheless, LD sequences are adopted with

4 6 8 10 12 14 16
Bit width

10-4

10-3

10-2

10-1

R
M

SE

LD w/ sharing
LD w/o sharing
PR w/ sharing
PR w/o sharing

Figure 9: RMSE of �1(t) and �2(t) for the stochastic ODE
solver in Figure 4 under di�erent con�gurations.

the RNG-sharing scheme for reducing hardware cost and energy
consumption [12].

4.3 Performance Evaluation
The accuracy and hardware cost of the stochastic ODE solvers
are evaluated and compared with their binary counterparts. The
binary circuits are implemented by using a second-order Runge
Kutta (RK2) (midpoint) numerical method [4]. The RK2 method is
also known as a modi�ed Euler method with GTE in O(h2) and
LTE in O(h3). The numerical solution of an ODE in the form of
d�(t )
dt = f (�(t), t) using the RK2 method is given by

�̂i+1 = �i + hf (ti +
h

2
,�i +

h

2
f (ti ,�i )), (22)

where h is the step size of the estimate. The bit width of the sto-
chastic ODE solver is set to 8, so that h is 1/28 for the stochastic
ODE solver. The binary ODE solvers also employ 8-bit designs with
a step size of 1/28 for comparison. The RK2 method performs itera-
tive additions and multiplications. For a step size of 1/28, however,
the multiplication can be simpli�ed by shifting. Thus, a binary RK2
ODE solver can be implemented by iterative shifting and additions
[11].

For the stochastic solvers, the RNG in a stochastic integrator is
implemented by the simplest Sobol sequence generator, a reversely
mapped counter [1]. The RNG is shared to reduce the hardware
cost. As a result, only one RNG is required to generate stochastic
bit streams for each design.

The accuracy of the hardware ODE solvers is measured by RMSE.
The hardware e�ciency is measured by energy per operation (EPO),
throughput per area (TPA) and minimum runtime. The EPO is the
total energy consumed for completing one estimate of the solution,
obtained as the power multiplied by the clock period. The TPA
is the maximum throughput per area and per time unit, given by
1/(area⇥ critical path delay). The minimum runtime is obtained by
multiplying the critical path delay and the number of clock cycles
needed to obtain the solutions in Figures 6, 7 and 8 respectively. The
power, area and critical path delay are �rst measured to compute
the EPO, TPA and minimum runtime.

As shown in the simulation results in Table 2, all stochastic ODE
solvers have a smaller EPO, minimum runtime and a larger TPA
than their binary counterparts. The stochastic ODE solver achieves
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Table 2: Hardware performance comparison

ODE Metric SC RK2 Improvement

(15)
EPO (fJ) 144.49 201.05 28%

TPA (w/µs/µm2) 13.84 3.86 258%
Runtime (ns) 104.96 263.68 60%

(16)
EPO (fJ) 186.10 253.05 26%

TPA (w/µs/µm2) 9.76 0.94 934%
Runtime (ns) 104.96 586.24 82%

(17)
EPO (fJ) 201.21 466.00 56%

TPA (w/µs/µm2) 4.75 0.58 716%
Runtime (ns) 2573.59 8557.20 70%

(18)
EPO (fJ) 156.04 591.62 74%

TPA (w/µs/µm2) 5.68 0.44 1184%
Runtime (ns) 1597.44 6819.84 76%

up to 74% in energy saving, up to nearly 12⇥ throughput enhance-
ment and up to 82% drop in runtime. On average, the stochastic
designs achieve an energy saving of 46%, 7⇥ TPA improvement and
a 72% reduction of runtime due to the smaller delay and area. Due
to the random �uctuations in an SC circuit, the RMSE is larger for
a stochastic ODE solver than for a binary ODE solver, as shown in
Table 3. However, the RMSE is in the order of 10�3, which indicates
that the accuracy obtained by a stochastic ODE solver is quite high.

Figure 10 shows the accuracy and hardware e�ciency of the
design in Figure 4, compared to its binary counterpart with various
bit widths and step sizes. In Figure 10(a), the stochastic design shows
a smaller RMSE when the bit width is 4. However, the accuracy
of a binary design becomes higher for a larger bit width. When a
similar RMSE is achieved (e.g., for 8-bit binary and 10-bit stochastic
designs), the stochastic design shows considerable advantages in
EPO and TPA over the binary design, despite with a slightly longer
runtime.

5 CONCLUSIONS AND FUTURE WORK
In this paper, a novel circuit design for solving an ODE is proposed
by using a stochastic integrator to implement the Euler numerical
method. The integrator provides an unbiased estimate of the Eu-
ler numerical solution. The stochastic ODE solver produces one
estimate of the solution for every bit in the stochastic bit stream,
so it is very e�cient compared to conventional stochastic designs.
The stochastic solvers are constructed for three types of ODEs
and the solutions are validated. Sharing the use of RNGs is e�ec-
tive in reducing the error for pseudorandom sequences while it
is less e�ective for deterministic LD sequences. The solutions for

Table 3: Accuracy comparison (RMSE in 10�3)

ODE SC RK2

(15) 5.66 3.70
(16) 3.88 2.37
(17) 4.69 3.59
(18) 5.86 2.11
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Figure 10: Comparison of stochastic and binary ODE solvers
with di�erent bit widths.

the proposed designs are currently limited to [0, 1] in the unipolar
representation (or [-1, 1] in the bipolar representation). Extended
range of representations for the solutions will be investigated in
future work.
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