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Abstract
Ising model-based computers, or Ising machines, have recently
emerged as high-performance solvers for combinatorial optimiza-
tion problems (COPs). A simulated bifurcation (SB) Ising machine
searches for the solution by solving pairs of differential equations
related to the oscillator positions and momenta. It benefits from
massive parallelism but suffers from high energy. As an uncon-
ventional computing paradigm, dynamic stochastic computing im-
plements accumulation-based operations efficiently. By exploiting
the advantages in algorithm and hardware codesign, this article
proposes a high-performance stochastic SB machine (SSBM) with
efficient hardware. To this end, we develop a stochastic SB (sSB)
algorithm such that the multiply-and-accumulate (MAC) operation
is converted to multiplexing and addition while the numerical in-
tegration is implemented by using signed stochastic integrators
(SSIs). Specifically, the sSB stochastically ternarizes position values
used for the MAC operation. Two types of SB cells are constructed.
A stochastic computing SB cell contains two SSIs with a high area
efficiency, while a binary-stochastic computing SB cell contains
one binary integrator and one SSI with a reduced delay. Based on
sSB, an SSBM is then built by using the proposed SB cells as the
basic building block. The designs and syntheses of two SSBMs with
2000 fully connected spins require at least 10.62% smaller area than
the state-of-the-art designs. It shows the potential of stochastic
computing for SB to efficiently solve COPs.

CCS Concepts
• Hardware → Emerging architectures; • Theory of computa-
tion → Models of computation.
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1 Introduction
Combinatorial optimization is essential in social and industrial
applications, such as financial portfolio management and chip de-
sign [1]. Isingmodel-based solvers, or Isingmachines, have emerged
as an efficient domain-specific architecture for solving COPs with
a polynomial time. The Ising model describes the ferromagnetism
among a set of magnetic spins in statistical physics [2]. Ising ma-
chines can broadly be classified into two categories. One describes
the spin dynamics based on a physical model, implemented by, for
example, using superconducting circuits [3], pulse lasers [4], or
oscillators [5]. Another class utilizes various heuristic algorithms,
such as simulated annealing (SA) [6] and simulated bifurcation
(SB) [7], to numerically emulate spin dynamics. The latter is advan-
tageous over the former due to the ability to solve Ising problems
with dense spin-to-spin interactions with a high precision. However,
it faces with the drawback of a relatively high hardware cost.

Conventional SA emulates heating and cooling processes in met-
als. The performance bottleneck in the sequential update of spin
states requires developing variants of SA for fast energy conver-
gence. For instance, the stochastic cellular automata (SCA) anneal-
ing [8] leverages a two-layer spin structure for parallel spin update.
However, the use of spin replicas leads to low scalability. SB emu-
lates the adiabatic evolution of a classical nonlinear Hamiltonian
system of a network of oscillators [7, 9]. It accelerates the search
by the simultaneous update of spin states. Nevertheless, SB uses
continuous oscillator positions to obtain discrete spin states, so it
requires complex hardware for computation. Hence, it is imperative
to develop a hardware-friendly architecture for an SB machine.

As an unconventional paradigm, stochastic computing encodes a
number by an independent bit stream of 0’s and 1’s, which enables
performing arithmetic operations by using simple logic gates [10].
However, a long sequence is often required for a high accuracy,
thus leading to a high latency and energy consumption. With a
high efficiency, dynamic stochastic computing uses each bit in a
stochastic sequence, referred to as a dynamic stochastic sequence
(DSS), to encode a variable signal [11]. It is well suited for iterative
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accumulation-based computations. In particular, it can solve differ-
ential equations by using numerical integration with a significantly
reduced circuit complexity [11].

This paper presents the design of a first SB Ising machine using
stochastic computing, referred to as a stochastic SBmachine (SSBM).
The SSBM is implemented by using signed stochastic integrators
(SSIs) for numerical integration and stochastic ternarization to sim-
plify multipliers in the multiply-and-accumulate (MAC) operation.
The contributions of this work lie in the following novelties in the
algorithm and architecture design:

• A stochastic SB (sSB) algorithm ternarizes the values of os-
cillator positions so that the MAC operation is converted to
multiplexing and addition operations;

• A stochastic computing SB cell (SC-SBC) is built by using two
SSIs for area efficiency, and a binary-stochastic computing SB
cell (BSC-SBC) is constructed by using one binary integrator
and one SSI for delay reduction;

• To implement the sSB, a prototype SSBM is designed by
using the SC-SBC or BSC-SBC as a basic building block for
solving COPs such as the max-cut problem (MCP).

This paper is organized as follows. Section 2 introduces the basics
of SB and dynamic stochastic computing. Section 3 presents the sSB
algorithm and SB cell designs using SSIs. The circuit design of the
SSBM is discussed in Section 4. Section 5 reports the experimental
results. Section 6 concludes this paper.
2 Preliminaries
2.1 The Ising Model and Simulated Bifurcation
The Hamiltonian (𝐻 ) of an 𝑁 -spin Ising model is given by [1]

𝐻 = − 1
2
∑𝑁
𝑖,𝑗 𝐽𝑖 𝑗𝑠𝑖𝑠 𝑗 −

∑𝑁
𝑖 ℎ𝑖𝑠𝑖 , (1)

where 𝑠𝑖 (or 𝑠 𝑗 ) is the state of the 𝑖th (or 𝑗 th) spin with the value of
+1 or −1; 𝐽𝑖 𝑗 describes the interaction between 𝑠𝑖 and 𝑠 𝑗 ; ℎ𝑖 is the
external field on 𝑠𝑖 . Since the model can be reduced to one without
the external fields by introducing an ancillary spin [12], we focus on
the Ising model without external fields in the following discussion.

An SB algorithm numerically models the adiabatic evolution of
oscillator networks. It essentially solves pairs of differential equa-
tions related to the positions andmomenta of oscillators. The Hamil-
tonian equations of the system are given by [12]

¤𝑥𝑖,𝑡 = 𝑓 (𝒚𝒕 )𝑖 = 𝑎0𝑦𝑖,𝑡 , (2)
¤𝑦𝑖,𝑡 = 𝑔(𝒙𝒕 )𝑖 = −(𝑎0 − 𝑎(𝑡))𝑥𝑖,𝑡 + 𝑐0𝑃𝑖,𝑡 , (3)

where 𝒙𝒕 (= {𝑥1,𝑡 , ..., 𝑥𝑁,𝑡 }) and 𝒚𝒕 (= {𝑦1,𝑡 , ..., 𝑦𝑁,𝑡 }) are position
and momentum vectors at the 𝑡th time step, respectively; ¤𝑥𝑖,𝑡 and
¤𝑦𝑖,𝑡 are the derivatives of the 𝑖th oscillator position (𝑥𝑖,𝑡 ) and the
𝑖th oscillator momentum (𝑦𝑖,𝑡 ) with respect to the 𝑡th time step,
respectively; 𝑎0 and 𝑐0 are constants; 𝑎(𝑡) is a linearly-increasing
variable. 𝑥𝑖,𝑡 is replaced by its sign (𝑠𝑔𝑛(𝑥𝑖,𝑡 )) and 𝑦𝑖,𝑡 is reset to 0
when

��𝑥𝑖,𝑡 �� > 1. 𝑃𝑖,𝑡 is computed by using the interactions among
spins (𝑱 ) and position variables (𝒙𝒕 ). Two variant SBs, ballistic SB
(bSB) and discrete SB (dSB), differ in the expressions of 𝑃𝑖,𝑡 , given
by [12]

𝑃𝑖,𝑡 =

{ ∑𝑁
𝑗=1 𝐽𝑖 𝑗𝑥 𝑗,𝑡 in bSB∑𝑁

𝑗=1 𝐽𝑖 𝑗𝑠𝑔𝑛(𝑥 𝑗,𝑡 ) in dSB . (4)

When 𝑡 reaches the predefined number of iterations for update,
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(a) The circuit diagram of an SSNG. (b) The circuit diagram of an SSI.
Figure 1: Elements in sign-magnitude stochastic computing [13].
the sign of 𝑥𝑖,𝑡 indicates the state of the 𝑖th spin, i.e., 𝑠𝑖 in (1). The
states of spins provide the solution found by the SB.
2.2 Dynamic Stochastic Computing and

Stochastic Integrators
In dynamic stochastic computing, changing signals are encoded
by DSS’s consisting of ‘0’s and ‘1’s. The probability of each bit
being ‘1’ is equivalent to the (changing) probability encoded in a
DSS [11]. Various schemes are used to encode values within differ-
ent number ranges, including unipolar, bipolar, and sign-magnitude
representations. The latter two can be used to encode signed values
between [−1, 1]. However, the bipolar representation faces a larger
accuracy loss for numbers near zero due to its larger variance [13].
Since SB deals with signed position and momentum values with
magnitudes around zero at the beginning of a search, the two-bit
sign-magnitude representation is used in this work, one bit for the
sign and the other for the magnitude [14].

Figure 1(a) shows the circuit diagram of a signed stochastic num-
ber generator (SSNG). The input is an 𝑛-bit varying signal within
[−1, 1], denoted as 𝑎. The sign bit for 𝑎, i.e., its most significant bit,
𝑎[𝑛− 1], is output as𝐴𝑠 . The random number generator (RNG) gen-
erates uniformly distributed numbers within [0, 1]. The RNG and
the comparator are then used to generate a magnitude bit, denoted
by 𝐴𝑚 , and its expectation satisfies 𝐸 [𝐴𝑚] = |𝑎 |. If the magnitude
of 𝑎 is larger than the random number, a ‘1’ is generated; otherwise,
a ‘0’ is generated. Thus, the sign-magnitude DSS of 𝑎, denoted by 𝐴
(= {𝐴𝑠𝐴𝑚}), encodes the value of either 0, −1, or +1 with 𝐸 [𝐴] = 𝑎,
where 𝐴 is the encoded value of the DSS 𝐴.

The stochastic integrator is an essential sequential circuit in dy-
namic stochastic computing. As shown in Fig. 1(b), an SSI using the
sign-magnitude representation consists of a counter and an SSNG.
The counter with 𝑛-bit width counts from −2𝑛−1 to 2𝑛−1 − 1. Con-
sider two discrete-time digital signals 𝑎 and 𝑏 within [−1, 1]. Their
DSS’s 𝐴 (= {𝐴𝑠𝐴𝑚}) and 𝐵 (= {𝐵𝑠𝐵𝑚}) determine the increment
and decrement of the counter. Let the values of the input DSS’s 𝐴
and 𝐵 at the 𝑡th clock cycle be 𝐴𝑡 and 𝐵̂𝑡 , and the integers stored
in the counter at the 𝑡th and (𝑡 + 1)th clock cycle be 𝑟𝑡 and 𝑟𝑡+1,
respectively. The counter updates its value by following [13]

𝑟𝑡+1 = 𝑟𝑡 +𝐴𝑡 − 𝐵̂𝑡 . (5)

The value encoded by the𝑛-bit signed integer 𝑟 , denoted by 𝑟 , is a
signed value between −1 and 1, satisfying 𝑟 = 𝑟

2𝑛−1 . Finally, it is con-
verted to a sign-magnitude DSS, denoted as 𝑅 (= {𝑅𝑠𝑅𝑚}). Hence,
let the initial value for 𝑟 be 𝑟𝑖𝑛𝑡 , the SSI performs the computation
of 𝑟 for integrating 𝑎 − 𝑏 with the step size 1

2𝑛−1 .
3 Stochastic Simulated Bifurcation (sSB)
3.1 The Algorithm
Compared to bSB, dSB binarizes position values to {−1, 1} when
computing 𝑃𝑖,𝑡 , as in (4). In this way, theMACoperation is simplified
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to addition and subtraction. However, the binarization introduces
large numerical approximations in representing position values
since the magnitudes are around zero early in a search. It results
in an instability of the obtained solution quality and slow energy
convergence [12]. Moreover, the computation in SB is deterministic,
thus reducing its ability to jump out of local minima. Therefore, we
introduce zero as an additional quantized position value and utilize
a random threshold to determine the quantized value.

As a result, the sSB ternarizes position variables to {−1, 0, 1}
when computing 𝑃𝑖,𝑡 . It does not only avoid the massive use of
multipliers but also reduces power due to a high probability of
quantizing position values to zero. To solve an 𝑁 -spin Ising prob-
lem, sSB introduces a vector 𝒓𝒂𝒏𝒅 with 𝑁 random numbers. Each
position value is compared with a random number to determine
the ternarized value. Thus, 𝑃𝑖,𝑡 in (3) is computed as

𝑃𝑖,𝑡 =
∑𝑁
𝑗=1 𝐽𝑖 𝑗𝑅(𝑥 𝑗,𝑡 ), (6)

where

𝑅(𝑥 𝑗,𝑡 ) =


+1 𝑥 𝑗,𝑡 > rand𝑗
−1 𝑥 𝑗,𝑡 < −rand𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑠

, (7)

where rand𝑗 (1 ≤ 𝑗 ≤ 𝑁 ) is a random number within [0, 1] and
−1 ≤ 𝑥 𝑗,𝑡 ≤ 1.

3.2 Formulations of Stochastic SB Cell Designs
The semi-implicit Euler integration method has shown its efficiency
for SB to find a high-quality and stable solution [12]. In this way,
the momentum values are first updated and then the position values
are updated by using the new momentum values, as follows

𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡 + 𝜂𝑔(𝒙𝒕 )𝑖 , (8)
𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 + 𝜂𝑓 (𝒚𝒕+1)𝑖 , (9)

where 𝜂 is the time step size for the integrator, 𝑔(𝒙𝒕 )𝑖 and 𝑓 (𝒚𝒕+1)𝑖
are given in (2) and (3).

In SB, the momentum values are usually initialized to zero. Thus,
𝑦𝑖,0 = 0, and 𝑦𝑖,𝑡+1 is obtained by iterative computation as

𝑦𝑖,𝑡+1 = 𝜂
∑𝑡
𝑘=0 𝑔(𝒙𝒌 )𝑖 . (10)

Moreover, 𝑎0 in (2) is usually set to 1 and the position values
are usually initialized to random numbers. Thus, 𝑓 (𝒚𝒕+1) = 𝑦𝑖,𝑡+1.
Then, based on (9) and (10), the 𝑖th oscillator position value at the
(𝑡 + 1)th time step (𝑥𝑖,𝑡+1) can be computed as

𝑥𝑖,𝑡+1 = 𝑥𝑖,0 + 𝜂2
∑𝑡
𝑗=0

∑𝑗

𝑘=0 𝑔(𝒙𝒌 )𝑖 . (11)

3.2.1 The Stochastic Computing SB Cell (SC-SBC) We propose an
SC-SBC to solve the pairs of differential equations. As shown in
Fig. 2(a), an SC-SBC consists of two SSIs and one SSNG: one of the
two SSIs (named SSI1) is used for updating the momentum value
and the other (named SSI2) is used for updating the position value.

To reduce the errors introduced by the DSS encoding, 𝑔(𝒙𝒕 )𝑖
in (3) is first computed as the input of the SSNG and then converted
to a DSS 𝐺𝑖,𝑡 with the encoded value of 𝐺𝑖,𝑡 . Let the 𝑛-bit signed
binary numbers stored in the counters in SSI1 and SSI2 at the 𝑡 th (or
(𝑡 + 1)th) time step be 𝑦𝑖,𝑡 (or 𝑦𝑖,𝑡+1) and 𝑥𝑖,𝑡 (or 𝑥𝑖,𝑡+1), respectively.
The SC-SBC updates the values in the two counters at the (𝑡 + 1)th
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Figure 2: Circuit block diagrams of the proposed SB cells.

time step by

𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡 +𝐺𝑖,𝑡 , (12)
𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 + 𝑌𝑖,𝑡+1, (13)

where 𝑌𝑖,𝑡+1 is the encoded value of the DSS 𝑌𝑖,𝑡+1 for 𝑦𝑖,𝑡+1 (=
𝑦̂𝑖,𝑡+1
2𝑛−1 ).
To convert the integers in the counters into stochastic numbers

in the sign-magnitude representation, both sides of (12) and (13)
are normalized by 1

2𝑛−1 . Then, we have

𝐸 [𝑌𝑖,𝑡+1] = 𝐸 [𝑌𝑖,𝑡 ] + 1
2𝑛−1 𝐸 [𝐺𝑖,𝑡 ], (14)

𝐸 [𝑋𝑖,𝑡+1] = 𝐸 [𝑋𝑖,𝑡 ] + 1
2𝑛−1 𝐸 [𝑌𝑖,𝑡+1], (15)

where 𝑋𝑖,𝑡+1 (or 𝑋𝑖,𝑡 ) is the encoded value of the DSS 𝑋𝑖,𝑡+1 (or 𝑋𝑖,𝑡 )
for 𝑥𝑖,𝑡+1 (or 𝑥𝑖,𝑡 ); 𝐸 [𝑌𝑖,𝑡+1] = 𝑦𝑖,𝑡+1 =

𝑦̂𝑖,𝑡+1
2𝑛−1 , 𝐸 [𝑌𝑖,𝑡 ] = 𝑦𝑖,𝑡 =

𝑦̂𝑖,𝑡
2𝑛−1 ,

𝐸 [𝑋𝑖,𝑡+1] = 𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡+1
2𝑛−1 , and 𝐸 [𝑋𝑖,𝑡 ] = 𝑥𝑖,𝑡 =

𝑥𝑖,𝑡
2𝑛−1 .

Given 𝐸 [𝐺𝑖,𝑡 ] = 𝑔(𝒙𝒕 )𝑖 and the initially encoded value by the
integer stored in the counter in SSI1, 𝑦𝑖,0 = 0 (thus 𝐸 [𝑌𝑖,0] = 0),
based on (14), 𝐸 [𝑌𝑖,𝑡+1] is obtained as

𝐸 [𝑌𝑖,𝑡+1] = 𝜂
∑𝑡
𝑘=0

1
2𝑛−1𝑔(𝒙𝒌 )𝑖 . (16)

Let 𝑥𝑖,0 be the initially encoded value by the integer stored in
the counter in SSI2. Based on (15) and (16), 𝐸 [𝑋𝑖,𝑡+1] is obtained as

𝐸 [𝑋𝑖,𝑡+1] = 𝑥𝑖,0 + 1
2𝑛−1

∑𝑡
𝑗=0

∑𝑗

𝑘=0
1

2𝑛−1𝑔(𝒙𝒌 )𝑖 , (17)

which is equivalent to (11) when 𝜂 = 1
2𝑛−1 .

3.2.2 The Binary-Stochastic Computing SB Cell (BSC-SBC) The
derivative in (3) leverages the interactions between spins to help
determine the evolution of position and momentum values. To
improve the computational accuracy, we propose a BSC-SBC. As
shown in Fig. 2(b), it consists of a binary Euler integrator (BEI)
to update the momentum value, an SSNG to convert the binary
momentum value to its DSS, and an SSI to update the position value.
In the BEI, the derivative value is first multiplied with the step size.
Then, the product is added to the value updated in the previous
time step for implementing a Euler integration.

Given 𝑔(𝒙𝒕 ) and 𝜂 as inputs, BEI performs the computation in (8)
to obtain 𝑦𝑖,𝑡+1. 𝑦𝑖,𝑡+1 can be formulated as (10). As the output of
the SSNG, 𝑌𝑖,𝑡+1 satisfies 𝐸 [𝑌𝑖,𝑡+1] = 𝑦𝑖,𝑡+1 and then it is sent to SSI.
Similar as the analysis in Section 3.2.1, the output of SSI satisfies

𝐸 [𝑋𝑖,𝑡+1] = 𝑥𝑖,0 +
𝜂
∑𝑡+1

𝑗=1 𝐸 [𝑌𝑖,𝑗 ]
2𝑛−1 = 𝑥𝑖,0 +

𝜂
∑𝑡

𝑗=0
∑𝑗

𝑘=0 𝑔 (𝒙𝒌 )𝑖
2𝑛−1 (18)

which is equivalent to (11) when 𝜂 = 1
2𝑛−1 .
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4 A Stochastic Simulated Bifurcation Machine
4.1 The Overall Architecture
To implement the sSB, the position values are first initialized and
the time-changing parameter in (3) is calculated. After obtaining
the ternarized position values, the 𝑃𝑖,𝑡 value in (6) is computed
for updating the momentum value as per (3). Subsequently, the
position value is updated using the new momentum value by (2).
After running a predefined number of iterations for the update, the
sign bit in the position value provides the solution for the COP.
The hardware design of an SSBM is presented in Fig. 3 for the sSB,
by using either SC-SBCs or BSC-SBCs as basic building blocks to
implement the integration.

In Fig. 3, the 𝑁 -spin SSBM consists of a linearly increasing pa-
rameter generator (LPG), 𝑁 spin units and two memory blocks (an
X_mem and a RN_mem). The LPG computes −(𝑎0 − 𝑎(𝑡)) in (3) as
a linearly increasing parameter by a pre-calculated value 𝐴 for the
determined iteration for the update. Then, the spin unit computes
the derivative value in (3) and updates the position and momentum
values by using either an SC-SBC or a BSC-SBC. The X_mem stores
the ternarized position values generated from the SBC. The DSS of
the position value obtained by comparing the position value with a
random number takes one value from +1, −1, and 0. Its generation
mechanism is similar to that of the ternarized position value in
(7). Therefore, the DSS’s of position values generated by the SB
cell are used as 𝑅(𝑥 𝑗,𝑡 ) in (6). The RN_mem stores 𝑁 𝑛-bit random
numbers for SBCs in the 𝑁 spin units. To improve the accuracy of
stochastic computing, the random numbers are generated by using
low-discrepancy Sobol sequences [13]. Moreover, to reduce the
variance of the estimated position value, the same random number
is used in the SSNGs of an SBC [13]. In this way, the RN𝑖 is used in
the spin unit 𝑖 (1 ≤ 𝑖 ≤ 𝑁 ).

4.2 The Spin Unit Design
Given spin unit 1 as an example, the J1 module stores 𝑁 − 1 in-
teractions (𝐽1𝑗 , where 1 ≤ 𝑗 ≤ 𝑁 and 𝑗 ≠ 1) between the 1st spin
and the other 𝑁 − 1 spins (Note that 𝐽11 = 0). The GX module
generates the derivative value in (3), i.e., 𝑔1 for spin unit 1. The
AX calculates the first term in (3). The 𝑃1 in (6) is calculated in the
MAC and then multiplied by 𝑐0 to implement the second term in
(3). Since sSB ternarizes the position values for the MAC as in (6),
the multiplications of interaction values and ternarized position
values are implemented by using multiplexing operations in MUL.
The MUL and ADD modules can be reused to save hardware at a
cost of delay; an accumulator (ACC) is required to obtain the 𝑃1
value.

4.2.1 The Circuit Design of the SC-SBC Taking 𝑔1 and 𝑅𝑁1 as the
inputs, in the SC-SBC, the binary value 𝑔1 is first converted to its
DSS 𝐺1 (𝐺𝑠𝐺𝑚). Since the counter in SSI1 updates the value only
depending on one increment signal, it is implemented by using
𝑛-bit adders and a register, where 𝑛 = ⌈|𝑙𝑜𝑔(𝜂) |⌉ + 1. Since 𝐺1 can
only be 0, +1 and −1, to adapt to the number representation in the
𝑛-bit adders, 𝑛 − 1 copies of 𝐺𝑠 and one 𝐺𝑚 , i.e., (𝐺𝑠𝐺𝑠 ...𝐺𝑚)2, are
used as one input of the adder. The updated momentum from the
output of the adder is then converted to its DSS 𝑌1 (𝑌𝑠𝑌𝑚) by the
SSNG. Given (𝑌𝑠𝑌𝑠 ...𝑌𝑚)2 as the input, SSI2 updates the position
value. Required by the update rule, the position value during the
search is constrained within [−1, 1]; otherwise, the position value
is replaced by its sign and the momentum value is reset to 0. To
simplify the implementation, the carry out bit 𝐶𝑜𝑢𝑡 from the 𝑛-bit
adder in SSI2 is used to detect if an overflow occurs. If 𝐶𝑜𝑢𝑡 = 1,
the momentum value will be reset to 0 and the position value will
retain its previous value; otherwise, their values will be updated
depending on the outputs of the adders.
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Figure 3: A general architecture of an 𝑁 -spin SSBM. LPG: a linearly increasing parameter generator; GX: a momentum derivative (as in (3))
calculator; MAC: a multiply-accumulate unit (as in (6)); MUL: an element-wise multiplication unit; ADD: an addition unit; ACC: an accumulator;
AX: a calculator for the first term in (3); SBC: a simulated bifurcation cell; J1: an interaction memory unit for the 1st spin; X_mem: a memory
unit for DSS’s of position values; and RN_mem: a memory unit for random numbers.
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4.2.2 The Circuit Design of the BSC-SBC The BSC-SBC shares a
similar mechanism with the SC-BSC, but it updates the momentum
value using BEI. In BEI, the incremental value of the momentum,
i.e., 𝑔1 multiplied with the time step 𝜂, is implemented by right
shifting 𝑔1 with 𝑛 − 1 bits. An𝑚-bit adder performs the addition
of this value to the current momentum (where𝑚 depends on the
computation precision in GX). The addition result is then converted
to a DSS using an SSNG and sent to the SSI.

5 Evaluation
5.1 Solving Max-cut Problems (MCPs)
The solution quality is evaluated on an MCP, the widely used 𝐾2000
benchmark [8, 15], which is an Ising problem with 2000 fully con-
nected spins. The average (𝐴𝑣𝑒), maximum (𝑀𝑎𝑥), and minimum
(𝑀𝑖𝑛) of the cut values are obtained by different SB machines with
the time step (𝑇𝑠 ) of 1000 and 10000 from 100 trials, as shown in
Fig. 4. A larger 𝐴𝑣𝑒 ,𝑀𝑎𝑥 and𝑀𝑖𝑛 indicate a higher general perfor-
mance, a higher likelihood to jump out of the local optima, and a
higher stability, respectively. The manually tunable time step sizes
(𝜂 in (8) and (9)) of 0.125, 0.25, and 0.5 are considered, thus the
bit-width of the adder in the SSI (𝑛) can be 4, 3, and 2, respectively.
Note that Fig. 4 presents the highest values in the three metrics
obtained by the bSBM and dSBM using different time step sizes.

Compared with dSBM, the bSBM attains higher 𝐴𝑣𝑒 ,𝑀𝑎𝑥 , and
𝑀𝑖𝑛 when 𝑇𝑠 = 1000 because the energy converges in a short
search in the bSBM. However, with the increase of 𝑇𝑠 , it becomes
vulnerable for bSBM to be stuck in the local minima. The dSBM
outperforms the bSBM in finding a better solution, indicated by
higher 𝐴𝑣𝑒 and𝑀𝑎𝑥 , when 𝑇𝑠 = 10000. Due to the computational
accuracy loss introduced by the use of binarized position values,
the dSBM cannot achieve a fast convergence but it has a higher
probability of jumping out of the local minima in a long search.
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Figure 4: Solution quality (in the statistics of cut values) of using
the bSB machine (bSBM), the dSB machine (dSBM), the sSB machine
built by using SC-SBCs (SC-SBM), and the sSBmachine built by using
BSC-SBCs (BSC-SBM) to solve the𝐾2000 benchmark.𝐾2000: 2000 nodes,
1999000 edges, a complete graph, best-known cut value: 33337.

Table 1: The Values of 𝑃𝑔 and 𝑆𝑔 for the 𝐾2000 Benchmark
Vaules of 𝑃𝑔 SB Machines
and 𝑆𝑔 with𝑇𝑠 bSBM dSBM SC-SBM BSC-SBM

𝑻𝑺 = 1000
𝑃99.5% 38% 4% 6% 22%
𝑆99.5% 7633 112811 74426 18534

𝑻𝑺 = 10000
𝑃99.8% 0 6% 4% 2%
𝑆99.8% - 744265 1128110 2279481

𝑃𝑔 =
𝑇𝑟𝑔

𝑇𝑟
, where𝑇𝑟 is the total number of trials and𝑇𝑟𝑔 is the number of trials

that an SB machine obtains the target solution with the target quality 𝑔 [15].
𝑆𝑔 = 𝑇𝑠

𝑙𝑜𝑔0.01
𝑙𝑜𝑔 (1−𝑃𝑔 ) , where𝑇𝑠 is the total number of time steps [15].

For the proposed SSBM (either SC-SBM or BSC-SBM), higher𝐴𝑣𝑒
and𝑀𝑖𝑛 values are obtained with 𝜂 = 0.5 than with 𝜂 = 0.125, 0.25.
Moreover, evaluated by 𝐴𝑣𝑒 and 𝑀𝑖𝑛, the BSC-SBM with 𝜂 = 0.5
performs better than the SC-SBM with 𝜂 = 0.5 when𝑇𝑠 = 1000, but
the SC-SBM with 𝜂 = 0.5 obtains a higher solution quality when
𝑇𝑠 = 10000. It shows the advantages of BSC-SBM in a short search,
and SC-SBM in a long search. It also indicates that although BSC-
SBM provides more accurate computation than SC-SBM, it is more
likely to be stuck in a local minimum, thus easier to discontinue
the energy convergence process in a long search. However, the
randomness introduced by the use of multiple DSS’s in the SC-SBM
allows the system to traverse more energy states. The SC-SBM and
BSC-SBM with 𝜂 = 0.5 yield a more stable solution quality than
the dSBM, indicated by the larger 𝑀𝑖𝑛 values. When 𝑇𝑠 = 1000,
compared with using dSBM, using the BSC-SBM with 𝜂 = 0.5
results in larger 𝐴𝑣𝑒 , 𝑀𝑎𝑥 and 𝑀𝑖𝑛. Moreover, when 𝑇𝑠 = 10000,
the SC-SBM with 𝜂 = 0.5 consistently outperforms the bSBM.

The results in the metrics of probability-to-target (𝑃𝑔) and step-
to-target (𝑆𝑔) are reported in Table 1. For 𝑇𝑠 = 1000, the bSBM
can quickly find a good solution, whereas the dSBM struggles to
improve the cut values in a short search. The SSBMs can achieve a
higher 𝑃99.5% value than dSBM. For 𝑇𝑠 = 10000, compared to dSBM
and SSBMs, it is difficult for bSBM to reach 99.8% of the best-known
cut value due to the lack of ability to jump out of the local minima.
It shows that SSBMs find a better solution than dSBM in a short
search and have a lower probability of being stuck at the local
minima than bSBM in a long search.

5.2 Circuit Measurements
We first compare the proposed SC-SBM and BSC-SBM with the
designs based on existing bSB and dSB algorithms.We consider 2-bit
coefficient precision and the SSI in the SSBMs uses a 4-bit adder (𝑛 =

4). Note that all the spins perform parallel computation in the MAC
unit. A pipeline strategy can be adopted depending on different
hardware limitations when building a large-scale Ising machine.
For a fair comparison, the bSBM and dSBM are implemented using
the same experimental setup. For a 50-spin system, we use a clock
frequency of 200 MHz because the bSBM has a longer critical path.
Although not shown, due to space limitation, our experiments
indicate that compared to the BSC-SBM, the SC-SBM requires a
smaller area due to the use of two SSIs. However, it incurs a longer
delay. Compared to the bSBM, the SSBM saves up to 74% in both
area and power with a 1.2× speedup. Moreover, both SSBMs use
a similar area as the dSBM that uses binarized position values for
MAC. Notably, due to a high probability of quantizing position
values to zeros in SSBMs, a reduction of at least 44% in power is
achieved with a 1.19× speedup.
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Table 2: The Circuit Measurements of Ising Machines
D-wave[3] JSSC’15[16] JSSC’21[8] ISSCC’21[17] CICC’21[18] JSSC’22[19] ISSCC’23[20] SC-SBM BSC-SBM

Computing
Method

Quantum
Annealing

CMOS
Annealing

SCA
Annealing

Metropolis
Annealing

Simulated
Annealing

Simulated
Annealing

Metamorphic
Annealing

Simulated
Bifurcation

Simulated
Bifurcation

Technology Superconductor 65nm CMOS 65nm CMOS 65nm CMOS 65nm CMOS 65nm CMOS 40nm CMOS 40nm CMOS 40nm CMOS
# Spins 2𝑘 20𝑘 512 16𝑘 252 480 512 2𝑘 2𝑘

Topology Chimera Lattice Complete King King King Complete Complete Complete
# Interaction per Spin 5 5 511 8 8 8 511 1999 1999
Coefficient Bit-Width N/A 2 5 5 4 4 8 2 2

Spin Type Qubit SRAM SRAM Register Register Register Register Register Register
Power per Spin 12.2𝑊 2.83 𝜇𝑊 1.27𝑚𝑊 N/A 1.33 𝜇𝑊 0.18 𝜇𝑊 44-95𝑚𝑊 0.74𝑚𝑊 0.64𝑚𝑊
Area per Spin N/A 289 𝜇𝑚2 12207 𝜇𝑚2 552 𝜇𝑚2 1671 𝜇𝑚2 832 𝜇𝑚2

N/A 6370 𝜇𝑚2 6453 𝜇𝑚2

(Normalized Area) (6.86 ×) (1.13 ×) (3.28 ×) (12.41 ×) (6.17 ×) (1 ×) (1.01 ×)
Frequency N/A 100𝑀𝐻𝑧 320𝑀𝐻𝑧 100𝑀𝐻𝑧 64𝑀𝐻𝑧 200𝑀𝐻𝑧 134-336𝑀𝐻𝑧 250𝑀𝐻𝑧 250𝑀𝐻𝑧

# Spin Update Cycles N/A N/A 512 22 N/A 1 N/A 20 20
N/A: not reported. #: the number. Normalized area= (Area per Spin)/[(# Interaction per Spin) · (Coefficient Bit-Width) · (feature size)2]. Simulation results for SC-SBM and
BSC-SBM are obtained by using the Synopsys Design Compiler. A CMOS 40 nm technology is applied with a supply voltage of 1.0 V and a temperature of 25◦𝐶 .

Table 2 compares the 2000-spin SC-SBM and BSC-SBM with the
state-of-the-art works. Most of the Ising machines in the literature
are implemented with a sparsely connected spin structure with
different topologies. For a wider application scope, the proposed
Ising machines uses a fully connected spin structure as the design
in [8]. The dense connectivity between spins leads to an increase
in area and power. If the power is normalized by the (squared)
feature size, compared with the Ising machine in [8], the spins
in SC-SBM and BSC-SBM require 1.5× and 1.3× more power per
spin, respectively, due to the 3.9× larger connectivity. However, if
the area is normalized for a spin by the coefficient bit-width, the
number of spin interactions, and (squared) feature size, it is found
that the proposed SC-SBM and BSC-SBM utilize at least 10.62%
smaller area.
6 Conclusion
In this paper, a high-performance fully connected stochastic SB ma-
chine (SSBM) is designed for efficient and accurate combinatorial
optimization using the Ising model. A stochastic SB (sSB) algorithm
is developed to reduce the implementation complexity of the MAC
by ternarizing position values. Therefore, the MAC operation can
be realized by multiplexing and addition. Based on stochastic com-
puting, two efficient SB cells are further designed by using SSIs
to solve pairs of differential equations in SB. Specifically, the area-
efficient SC-SBC consists of two SSIs, whereas the power-efficient
BSC-SBC is built by using one binary integrator and one SSI. Exper-
iments on a 2000-spin Ising problem show that the SSBM realizes
fast energy convergence in a short search and also prevents the
Ising model from being stuck at a local minimum in a long search.
Moreover, the prototypes of the SSBM using the SC-SBC or BSC-
SBC as a building block are respectively developed and synthesized.
An improvement of at least 44% in power is achieved with a 1.19×
speedup, compared to conventional SB machines. Finally, a fully
connected 2000-spin system of the SSBM requires 10.62% less area
than state-of-the-art designs. The performance of the SSBM will
be investigated for solving larger-scale combinatorial optimization
problems in future work.

Acknowledgments
The work at University of Alberta was supported by the Natu-
ral Sciences and Engineering Research Council of Canada under

Grant No. RES0048688, RES0051374 and RES0054326. The work at
ShanghaiTech University was supported by National Natural Sci-
ence Foundation of China under Grant No. 62104127 and Shanghai
Sailing Program under Grant No. 22YF1428300.

References
[1] A. Lucas, “Ising formulations of many NP problems,” Front. Phys., vol. 2, p. 5,

2014.
[2] N. Mohseni et al., “Ising machines as hardware solvers of combinatorial optimiza-

tion problems,” Nat. Rev. Phys., vol. 4, no. 6, pp. 363–379, 2022.
[3] M. W. Johnson et al., “Quantum annealing with manufactured spins,” Nature, vol.

473, no. 7346, pp. 194–198, 2011.
[4] Y. Yamamoto et al., “Coherent Ising machines-quantum optics and neural network

perspectives,” Appl. Phys. Lett., vol. 117, no. 16, p. 160501, 2020.
[5] T. Wang and J. Roychowdhury, “OIM: Oscillator-based Ising machines for solving

combinatorial optimisation problems,” in UCNC. Springer, 2019, pp. 232–256.
[6] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative studies,” J.

Stat. Phys., vol. 34, no. 5, pp. 975–986, 1984.
[7] H. Goto et al., “Combinatorial optimization by simulating adiabatic bifurcations

in nonlinear Hamiltonian systems,” Sci. Adv., vol. 5, no. 4, p. eaav2372, 2019.
[8] K. Yamamoto et al., “STATICA: A 512-spin 0.25 M-weight annealing processor

with an all-spin-updates-at-once architecture for combinatorial optimization
with complete spin-spin interactions,” IEEE JSSC, vol. 56, no. 1, pp. 165–178, 2021.

[9] T. Zhang and J. Han, “Efficient traveling salesman problem solvers using the
Ising model with simulated bifurcation,” in DATE. IEEE, 2022, pp. 548–551.

[10] B. R. Gaines, “Stochastic computing systems,” Adv. Inf. Syst. Sci.: Volume 2, pp.
37–172, 1969.

[11] S. Liu et al., “Introduction to dynamic stochastic computing,” IEEE Circuits Syst.
Mag., vol. 20, no. 3, pp. 19–33, 2020.

[12] H. Goto et al., “High-performance combinatorial optimization based on classical
mechanics,” Sci. Adv., vol. 7, no. 6, p. eabe7953, 2021.

[13] S. Liu et al., “Gradient descent using stochastic circuits for efficient training of
learning machines,” IEEE TCAD, vol. 37, no. 11, pp. 2530–2541, 2018.

[14] A. Zhakatayev et al., “Sign-magnitude SC: getting 10x accuracy for free in sto-
chastic computing for deep neural networks,” in DAC. ACM, 2018, pp. 1–6.

[15] T. Kanao and H. Goto, “Simulated bifurcation assisted by thermal fluctuation,”
Commun. Phys., vol. 5, no. 1, p. 153, 2022.

[16] M. Yamaoka et al., “A 20k-spin Ising chip to solve combinatorial optimization
problems with CMOS annealing,” IEEE JSSC, vol. 51, no. 1, pp. 303–309, 2015.

[17] T. Takemoto et al., “4.6 a 144kb annealing system composed of 9×16kb annealing
processor chips with scalable chip-to-chip connections for large-scale combina-
torial optimization problems,” in ISSCC, vol. 64. IEEE, 2021, pp. 64–66.

[18] Y. Su et al., “A 252 spins scalable CMOS Ising chip featuring sparse and recon-
figurable spin interconnects for combinatorial optimization problems,” in CICC.
IEEE, 2021, pp. 1–2.

[19] Y. Su et al., “A scalable CMOS Ising computer featuring sparse and reconfigurable
spin interconnects for solving combinatorial optimization problems,” IEEE JSSC,
vol. 57, no. 3, pp. 858–868, 2022.

[20] K. Kawamura et al., “Amorphica: 4-replica 512 fully connected spin 336MHz meta-
morphic annealer with programmable optimization strategy and compressed-
spin-transfer multi-chip extension,” in ISSCC. IEEE, 2023, pp. 42–44.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Ising Model and Simulated Bifurcation
	2.2 Dynamic Stochastic Computing and Stochastic Integrators

	3 Stochastic Simulated Bifurcation (sSB)
	3.1 The Algorithm
	3.2  Formulations of Stochastic SB Cell Designs

	4 A Stochastic Simulated Bifurcation Machine
	4.1 The Overall Architecture
	4.2 The Spin Unit Design

	5 Evaluation
	5.1 Solving Max-cut Problems (MCPs)
	5.2 Circuit Measurements

	6 Conclusion
	Acknowledgments
	References

