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Abstract—Many approximate arithmetic circuits have been pro-
posed for high-performance and low-power applications. However,
most designs are either hardware-efficient with a low accuracy
or very accurate with a limited hardware saving, mostly due
to the use of a static approximation. In this paper, an adaptive
approximation approach is proposed for the design of a divider. In
this design, division is computed by using a reduced-width divider
and a shifter by adaptively pruning the input bits. Specifically,
for a 2n/n division 2k/k bits are selected starting from the
most significant ‘1’ in the dividend/divisor. At the same time,
redundant least significant bits (LSBs) are truncated or if the
number of remaining LSBs is smaller than 2k for the dividend
or k for the divisor, ‘0’s are appended to the LSBs of the input.
To avoid overflow, a 2(k + 1)/(k + 1) divider is used to compute
the division of the 2k-bit dividend and the k-bit divisor, both
with the most significant bits being ‘0’. Thus, k < n is a key
variable that determines the size of the divider and the accuracy
of the approximate design. Finally, an error correction circuit
is proposed to recover the error caused by the shifter by using
OR gates. The synthesis results in an industrial 28nm CMOS
process show that the proposed 16/8 approximate divider using
an 8/4 accurate divider is 2.5× as fast and consumes 34.42% of
the power of the accurate 16/8 design. Compared with the other
approximate dividers, the proposed design is significantly more
accurate at a similar power-delay product. Moreover, simulation
results show that the proposed approximate divider outperforms
the other designs in two image processing applications.

Index Terms—adaptive approximation, approximate divider,
overflow, accuracy, low-power

I. INTRODUCTION

Compared with multiplication and addition, division is a
less frequently used arithmetic operation [1]; however, its long
latency determines the speed of an application once it is
used. Several schemes have been proposed to improve the
performance of division, such as using a high-radix [2] or a
carry/borrow lookahead circuit in an array divider [3]. However,
the improvement in performance is usually obtained at the
expense of a high power dissipation and a large area due to
the complexity of its intrinsic structure.

On the other hand, precise computing is not required for
many applications such as image processing, clustering and
recognition due to the inherent error tolerance. It has been the
main reason for the wide interest and investigation into the
emerging paradigm of approximate or inexact computing [4].
A large number of approximate designs have been proposed for
multiplication and addition for pursuing improvements in speed,
power dissipation and/or circuit complexity [5]. Compared with
multiplication and addition, less attention has been paid to the
approximation of division.

Division can be implemented in sequential and combinational
circuits. Sequential division is usually implemented by using the
digit recurrent algorithm [6] or the functional iterative algorithm
[7]. Its latency is significantly longer than a combinational
divider due to the recurrent/iterative nature of its operation.
A combinational division is implemented by shift and sub-
traction/addition operations. An 8/4 unsigned restoring array
divider is shown in Fig. 1. In general, n2 subtractor cells are
required in a 2n/n unsigned restoring array divider. Due to
the borrow ripples in each row, the critical path is in O(n2),
while it is in O(n) for an n×n array multiplier. Thus, an array
divider incurs a higher hardware overhead and a lower speed
than multipliers.

In [8], [9], three approximate subtractors have been proposed
for an array divider by simplifying the transistor-level circuit
of an accurate subtractor. Four replacement schemes, namely
vertical, horizontal, square and triangle replacements, are then
considered for nonrestoring [8] and restoring array dividers
[9]. To ensure a high accuracy, only the less significant part
of the divider is approximated. Therefore, the critical path
delays of these designs, denoted as AXDnr and AXDr, are not
significantly reduced. The savings in power dissipation and area
are also small compared with the accurate array divider.
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Fig. 1. An 8/4 unsigned restoring array divider with constituent
subtractor cells [1].



To save additional hardware, a dynamic approximate divider
(DAXD) has been designed [10]. In a 2n/n DAXD, 2k/k
bits in the inputs are dynamically selected starting from the
most significant ‘1’, whereas the least significant bits (LSBs)
are truncated. The quotient is finally obtained approximately
by using a 2k/k exact divider and a shifter. As the circuit
complexity and critical path of a 2n/n array divider are in
O(n2) [1], DAXD shows a substantial improvement in speed,
area and power consumption compared with AXDnr and AXDr.
However, the accuracy of DAXD is very low due to the overflow
problem caused by the truncation and the 2k/k divider.

In addition to array dividers, a rounding-based approximate
divider, referred to as SEERAD, has been proposed [11]. To
compute A/B, the divisor B is rounded to a form of 2K+L/D,
where K = blog2(B)c, and L and D are constant integers.
Then, the value of A/B is approximated by A × D/2K+L.
By arranging D and L, four accuracy levels are devised for
SEERAD. Thus, approximate division is implemented by a
rounding block, a look-up table, a small multiplier, adders and a
shifter. Without using a traditional division structure, SEERAD
is fast, but it incurs a substantial power dissipation and a large
area due to the use of the look-up table.

In this paper, a novel approximate unsigned divider using
adaptive approximation is proposed for low-power and high-
performance operation. In this design, input pruning, division
strategy, and error correction work synergistically to ensure a
high accuracy with a very low maximum error distance.

This paper presents the following novel contributions. Adap-
tive pruning schemes are analyzed in detail for four different
scenarios of the dividend and divisor. Based on this analysis,
new division strategies are proposed to avoid the possible
occurrence of overflow found in the approximate divider in [10].
Finally, an error correction circuit using OR gates is utilized for
achieving a high accuracy at a very small hardware overhead.

Compared with the exact 16/8 array divider, the proposed
adaptive approximation-based divider (denoted as AAXD) using
an 8/4 divider achieves a speedup by 60.51%, a reduction in
power dissipation by 65.88% and in area by 38.63%. For a
more accurate configuration using a 12/6 divider, the AAXD
is 26.54% faster and 34.13% more power efficient than the
accurate design. Two image processing applications, change
detection and foreground extraction, show that a higher image
quality is obtained by using the proposed design than using
other approximate dividers.

II. PROPOSED APPROXIMATE DIVIDER

A. Motivation

Two widely used division algorithms are the nonrestoring
division and restoring division. In the restoring division, the
partial remainder is corrected when a subtraction yields a
negative result, whereas it is not corrected in the nonrestoring
division. In this paper, the more commonly used restoring divi-
sion is considered. Different from multiplication and addition,
the inputs of division have a strict range requirement. In a 2n/n
divider, the n most significant bits (MSBs) of the dividend A
must be smaller than the divisor B to guarantee that no overflow
occurs [1].

For approximations in an adder or a multiplier, truncation
is an efficient approach to reducing hardware consumption

[5], [12]. Improvements in power dissipation and critical path
delay can also be obtained for an approximate divider design;
however, the static approximation using traditional truncation
on the LSBs of the input operands results in large relative
errors, especially for small input operands. Thus, the proposed
approximate divider uses adaptive approximation by selectively
discarding some LSBs of the input operands; then, a smaller
divider is used to process the remaining bits.

B. Design

The basic structure of the proposed approximate unsigned
divider is shown in Fig. 2. In this design, 2k (or k) MSBs of
the dividend (or divisor) are adaptively chosen from the 2n (or
n) inputs using leading one position detectors (LOPDs) and
multiplexers (here, k < n), according to the pruning scheme.
An exact 2(k+1)/(k+1) divider is then used to compute the
division of the selected bits. The (k+1)-bit quotient is shifted by
a shifter for a number of bits calculated by a subtractor, which
results in a (n + 1)-bit intermediate result. Finally, the n-bit
approximate quotient is obtained by correcting the (n+ 1)-bit
intermediate result using an error correction circuit. The detailed
structure of each circuit in Fig. 2 is discussed next.

C. Input Pruning

Fig. 3 shows a straightforward pruning scheme for
a 2n-bit unsigned dividend A =

∑2n−1
i=0 ai2

i =
(a2n−1a2n−2 · · · a1a0)2. To obtain a 2k-bit dividend, ‘0’s at the
bit positions higher than the most significant ‘1’ are truncated;
the redundant LSBs are pruned if the number of remaining
LSBs is larger than 2k. Similarly, a k-bit number is determined
from the n-bit divisor B =

∑n−1
i=0 bi2

i = (bn−1bn−2 · · · b1b0)2.
Let the bit positions of the most significant ‘1’, known as the

leading ‘1’ positions, for A and B be lA and lB , respectively.
Input operands of a division can be determined as in Fig. 3
when lA and lB are larger than or equal to 2k − 1 and k −
1, respectively. A different pruning scheme is required for the
input operands when lA < 2k − 1 or lB < k − 1. Therefore,
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Fig. 2. Proposed adaptive approximation-based divider (AAXD).
LOPD: leading one position detector.
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Fig. 3. Pruning scheme for a 2n-bit unsigned number A when lA ≥
2k − 1 [10].

four scenarios are discussed here for different values of lA and
lB to find the most appropriate pruning scheme.

(i) lA ≥ 2k − 1 and lB ≥ k − 1
In this case, the pruned dividend Ap = 2lA +∑lA−1

i=lA−2k+1 ai2
i = (1alA−1 · · · alA−2k+1)2, and the

pruned divisor Bp = 2lB +
∑lB−1

i=lB−k+1 bi2
i =

(1blB−1 · · · blB−k+1)2, then the division becomes

Ap

Bp
=

(1alA−1 · · · alA−2k+1)2
(1blB−1 · · · blB−k+1)2

. (1)

A proper sized divider should be used to eliminate over-
flow for the largest possible quotient of Ap/Bp. The
largest quotient is obtained when Ap = (11 · · · 1)2 =
22k − 1 and Bp = (10 · · · 0)2 = 2k−1, which is given
by

b2
2k − 1

2k−1
c = 2k+1 − 1. (2)

As the bit-width of the output for a 2k/k divider is k,
overflow occurs when the quotient is larger than 2k − 1.
This indicates that overflow is possible when using a 2k/k
divider to compute Ap/Bp even when there is no overflow
for a 2n/n divider computing A/B. As per (2), the output
of the reduced-width divider should use at least k+1 bits
to avoid overflow. Therefore, the 2k-bit pruned dividend
is expanded to (2k + 2)-bit by adding two ‘0’s at the
(2k+ 2)th and (2k+ 1)th bit positions; a ‘0’ is added to
the (k + 1)th bit position of the pruned divisor. Then, a
2(k+1)/(k+1) divider is used to compute the division.
No overflow occurs because (001alA−1 · · · alA−k+2)2 is
always smaller than (01blB−1 · · · blB−k+1)2.

As A ≈ Ap · 2lA−2k+1, and B ≈ Bp · 2lB−k+1, the
approximate A/B is given by

A

B
≈ 2lA−2k+1Ap

2lB−k+1Bp
= bAp

Bp
c2lA−lB−k. (3)

This is the quotient of the 2(k + 1)/(k + 1) divider
multiplied by 2lA−lB−k. In this case, the multiplication
is implemented by left shifting bAp

Bp
c for lA− lB − k bits.

The largest possible value of lA−lB−k is n−k because
lA − lB ≤ n, in which case the approximate quotient is
(n+1)-bit. It is generated by left shifting the (k+1)-bit
quotient of the reduced-width divider for (n− k) bits. To
ensure an n-bit output for a 2n/n divider, the quotient
is approximated by 2n − 1 = (11 · · · 1)2 using an error
correction circuit when the nth bit of the shifted result is
‘1’.

The smallest possible value of lA−lB−k is −n−k+1,
in which case the output quotient is a fractional value. As
only integer numbers are considered for a 2n/n unsigned
divider, the quotient is approximated by 0 when lA−lB−k
is smaller than or equal to −(k + 1).

(ii) lA ≥ 2k − 1 and lB < k − 1

When lB < k − 1, the most significant ‘1’ of B is
located in one of its k LSBs. Thus, the pruning scheme
in Fig. 3 is not applicable. In [10], k LSBs of B are
selected as the divisor for a 2k/k divider, which indicates
Bp = (bk−1 · · · b0)2. Then, the quotient is given by

Ap

Bp
=

(1alA−1 · · · alA−2k+1)2
(bk−1 · · · b0)2

. (4)

As lB < k − 1, bk−1 = 0 and hence,
(1alA−1 · · · alA−k+1)2 is always larger than
(bk−1 · · · b0)2. Overflow is possible even when a
2(k + 1)/(k + 1) divider is used.

To solve this problem, another pruning scheme is
designed for lB < k − 1, as shown in Fig. 4. The
k-bit Bp is composed of lB + 1 LSBs in B as the
higher bits and k − lB − 1 ‘0’s as the lower bits, i.e.,
Bp = (1blB−1 · · · b00 · · · 0)2. Then, the division becomes

Ap

Bp
=

(1alA−1 · · · alA−2k+1)2
(1blB−1 · · · b00 · · · 0)2

. (5)

This is similar to (1) in scenario (i). Thus, 2-bit and 1-bit
‘0’s are appended to the most significant positions of Ap

and Bp, and a 2(k+1)/(k+1) divider is used to compute
Ap/Bp to avoid overflow. The approximate result of A/B
is also given by (3).

(iii) lA < 2k − 1 and lB ≥ k − 1
Note that the dividend A can be zero, in which case

lA is set to zero (i.e., with the same leading one position
as number (00 · · · 01)2). Because Ap = (a00 · · · 0)2 when
lA = 0, the quotient is obtained as 0 no matter a0 is
‘0’ or ‘1’. As discussed above, Ap and Bp are pruned
using the schemes shown in Fig. 4 and Fig. 3, respectively.
Thus, the same approximate division is obtained by using
a 2(k + 1)/(k + 1) divider as in (3).

(iv) lA < 2k − 1 and lB < k − 1
Both the input operands of the division are pruned

using the scheme in Fig. 4. In this scenario, an accurate
2n/n division is performed by using a 2(k + 1)/(k + 1)
divider.

D. Leading One Position Detection (LOPD)

As shown in Fig. 2, a leading one position detector (LOPD)
is used to detect the bit position of the most significant ‘1’ in
each input. It is implemented by a priority encoder. Table I is
the truth table for the function of an 8-to-3 priority encoder,
i.e.,

O0 = I7 ∨ I6(I5 ∨ I4I3 ∨ I4I2I1), (6)

O1 = I7 ∨ I6 ∨ I5I4(I3 ∨ I2), (7)

O2 = I7 ∨ I6 ∨ I5 ∨ I4, (8)

where the disjunction “∨” is implemented by an OR operation.
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Fig. 4. Pruning scheme for an n-bit unsigned number B when lB <
k − 1.



TABLE I. Truth table of an 8-to-3 priority encoder.
Inputs Outputs

I7 I6 I5 I4 I3 I2 I1 I0 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 X 0 0 1
0 0 0 0 0 1 X X 0 1 0
0 0 0 0 1 X X X 0 1 1
0 0 0 1 X X X X 1 0 0
0 0 1 X X X X X 1 0 1
0 1 X X X X X X 1 1 0
1 X X X X X X X 1 1 1

The leading one positions (lA and lB) are then used to
determine the 2k-bit Ap and the k-bit Bp from the 2n-bit
dividend and the n-bit divisor, respectively. Multiplexers are
used to implement the pruning schemes in Figs. 3 and 4.
The pruned inputs Ap and Bp are then processed by using
a 2(k + 1)/(k + 1) divider. Note that the structure of the
2(k+ 1)/(k+ 1) divider can be different according to specific
application requirements, e.g., an array divider, a sequential
divider or a high-radix divider. Meanwhile, the shifting direction
and number of bits are computed by subtracting the two leading
one positions using a (dlog2(2n)e+ 1)-bit subtractor. (n+ 1)-
bit intermediate result Qs is generated after left shifting the
(k+1)-bit output of the reduced-width divider for lA− lB − k
bits. Finally, the error correction circuit uses n OR gates to
perform qi = qsi ∨ qsn, i = 0, 1, · · · , n− 1, where qi and qsi
are the ith LSBs of Q and Qs, respectively. This circuit corrects
the erroneous results that are larger than 2n − 1 (qsn = 1) to
2n − 1(qsi = 1 for i = 0, 1, · · · , n− 1), which ensures that an
n-bit approximate quotient is obtained.

The most significant circuit of the proposed approximate
divider is the 2(k + 1)/(k + 1) divider, whereas other compo-
nents (LOPD, multiplexer, subtractor and shifter) are relatively
small. Moreover, the subtractor works in parallel with the
2(k+1)/(k+1) divider. Thus, the circuit complexity and critical
path of the approximate divider are close to O((k+1)2) when
a 2(k + 1)/(k + 1) array divider is used. This is significantly
smaller compared with that of the exact array divider (O(n2)),
especially for a small k.

III. SIMULATION RESULTS

To assess the accuracy and circuit characteristics, the pro-
posed design is implemented in MATLAB and VHDL. The
other approximate dividers, AXDr, DAXD and SEERAD, are
considered for comparison.

A. Error Characteristics

The error rate (ER), normalized mean error distance
(NMED), mean relative error distance (MRED) and the
maximum error distance (EDmax) are considered to evaluate
the accuracy of 16/8 approximate dividers. The NMED is
defined as the mean value of the error distances normalized
by the maximum possible accurate output. The MRED is the
mean value of the relative error distance that is the absolute
ratio between the error distance and the accurate output. All
valid combinations in the range of [0, 65535] and (0, 255] are
used as the input dividends and divisors. They are carefully
selected to meet the no overflow condition of an accurate 16/8
divider. The simulation results are shown in Table II, in which
AXDr1, AXDr2, and AXDr3 are the approximate restoring
array dividers with triangle replacement using approximate

TABLE II. Error characteristics of approximate 16/8 dividers.

Divider Parameter ER
(%)

NMED
(%)

MRED
(%) EDmax

AXDr1 10 80.94 1.32 4.32 116
AXDr1 9 71.12 0.67 2.45 102
AXDr1 8 50.93 0.29 1.21 51
AXDr2 10 93.51 2.45 11.88 245
AXDr2 9 88.19 1.33 6.20 227
AXDr2 8 78.38 0.72 3.38 160
AXDr3 10 78.64 0.97 3.25 119
AXDr3 9 66.63 0.51 1.84 109
AXDr3 8 48.39 0.26 0.96 85

SEERAD 1 99.99 7.64 15.58 96
SEERAD 2 99.99 4.11 8.52 64
SEERAD 3 99.99 2.23 4.97 81
SEERAD 4 99.99 1.09 2.71 165

DAXD 8 91.43 7.44 16.39 240
DAXD 10 85.57 6.65 14.74 224
DAXD 12 75.77 6.39 13.41 205
AAXD 6 91.06 2.97 6.61 49
AAXD 8 84.49 1.46 3.12 27
AAXD 10 73.74 0.72 1.52 14

Note: The parameter value is for the replacement depth and the
accuracy level for AXDrs and SEERAD, respectively. It is the
bit-width of the pruned dividend in DAXD and AAXD.

subtractor 1, 2, and 3, respectively [9]. The parameter value
is the replacement depth for AXDrs, while it is the accuracy
level for SEERAD. For DAXD and the proposed adaptive
approximate divider (AAXD), the parameter value is the bit-
width of the pruned dividend Ap.

Table II shows that the proposed AAXD has the smallest
EDmax, whereas DAXD has the largest EDmax due to the
overflow caused by approximation. The EDmax of AXDr2 is
also very large. Among all designs, AXDr1 and AXDr3 have
relatively small ERs, whereas SEERAD has the largest ER
that is close to 100%. AAXD shows similar moderate ERs
as AXDr2 and DAXD. In terms of NMED, AXDrs show the
best performance, and AAXD has slightly larger values. DAXD
and SEERAD of accuracy levels 1 and 2 result in very large
values of NMED. The MRED shows a similar trend with
the NMED except that AXDr2 with a depth of 10 results in
a very large MRED.

In summary, the proposed AAXD is very accurate in terms
of EDmax, NMED and MRED compared with the other
approximate designs. AXDr1 and AXDr3 are also very accurate
because only some less significant subtractors are approximat-
ed; however, their hardware improvements are very limited, as
shown next. The accuracy of DAXD is lower than other designs
due to the possible overflow.

B. Circuit Measurements

To obtain the circuit measurements, the approximate dividers
and the exact unsigned restoring array divider (EXDr) are
implemented in VHDL and synthesized in ST’s 28nm CMOS
process using the Synopsys Design Compiler under the same
voltage, temperature and frequency. The supply voltage is 1
V , the simulation temperature is 25◦C, and the frequency used
for power estimation is 200 MHz. The critical path delay and
area are reported by the Synopsys Design Compiler. The power
dissipation is estimated by using the PrimeTime-PX tool with 5
million random input combinations. For ease of comparison, the
same array structure and subtractor cells are used in the accurate
part of AXDrs, DAXD and AAXD. As more complex figures



TABLE III. Circuit measurements of the considered dividers.

Divider Parameter Delay
(ns)

Area
(µm2)

Power
(µW )

PDP
(fJ)

ADP
(ns · µm2)

EXDr – 4.71 285.8 128.00 602.88 1,345.9
AXDr1 10 4.38 280.2 113.90 498.88 1,227.3
AXDr1 9 4.40 281.2 116.70 513.48 1,237.3
AXDr1 8 4.44 282.3 119.50 530.58 1,253.6
AXDr2 10 4.65 252.6 94.68 440.26 1,174.7
AXDr2 9 4.67 259.5 100.80 470.74 1,211.8
AXDr2 8 4.69 267.5 108.00 506.52 1,254.5
AXDr3 10 4.38 216.6 59.98 262.71 948.6
AXDr3 9 4.39 227.3 70.38 308.97 998.0
AXDr3 8 4.42 239.6 82.29 363.72 1,058.9

SEERAD 1 1.15 204.3 56.04 64.45 235.0
SEERAD 2 2.02 253.1 80.61 162.83 511.3
SEERAD 3 1.81 333.4 107.80 195.12 603.5
SEERAD 4 2.23 480.1 169.80 378.65 1,070.7

DAXD 8 2.06 206.9 53.49 110.19 426.3
DAXD 10 2.73 245.5 63.83 174.26 670.1
DAXD 12 3.69 286.9 86.99 320.99 1,058.7
AAXD 6 1.86 175.4 43.67 81.23 326.3
AAXD 8 2.59 231.4 61.82 160.11 598.5
AAXD 10 3.46 294.9 84.31 291.71 1,020.4

of merit, the power-delay product (PDP) and area-delay product
(ADP) are calculated from the measurements. The results are
reported in Table III.

Compared with the accurate design, the proposed 16/8
AAXD with a 6-bit pruned dividend is 60.51% faster and
achieves 38.63% and 65.88% reductions in area and power
dissipation, respectively. Using a 12/6 accurate divider (for a
10-bit pruned dividend), the AAXD incurs a 26.54% shorter
delay and consumes a smaller power by 34.13% than the
accurate design, albeit with a 3.18% increase in area due to
the additional circuits of LOPDs, multiplexers, subtractor and
shifter. Overall, the PDP and ADP of the proposed design
are reduced by 51.61% to 86.53%, and 24.18% to 75.76%,
respectively.

Among all considered designs, SEERAD shows the shortest
delay because its critical path is significantly reduced due to
the use of a multiplier instead of a divider structure. However,
SEERAD incurs a large area and high power consumption
when its accuracy level is 3 or 4 due to the lookup table used
for storing the constants. Although SEERAD-1 (for accuracy
level 1) and SEERAD-2 (for accuracy level 2) are more power
and area efficient with a very short delay, their accuracy is
significantly lower than the other approximate dividers, as
shown in Table II.

The hardware improvements for AXDr1 and AXDr2 are very
minor compared with the accurate counterpart, although the
power and area reductions are larger for AXDr3. Moreover,
AXDrs are the slowest because replacing the exact subtrac-
tors with approximate ones does not significantly reduce the
carry/borrow chain or the critical path. DAXD shows a rather
small delay and power dissipation, but its area is slightly larger
than the accurate design when a 12/6 accurate divider is used.

Compared with the other approximate dividers, the proposed
AAXD outperforms AXDr1 and AXDr2 in delay, area and
power dissipation. Also, it shows a shorter delay and a similar
power dissipation and therefore, smaller values of PDP and
ADP (except for AAXD-10) compared with AXDr3. Using a
same sized accurate divider, AAXD is faster and more power
efficient than DAXD. Compared with the two SEERADs with
higher accuracy, SEERAD-3 and SEERAD-4, AAXD-8 and

AAXD-10 show smaller PDP and ADP.

C. Discussion

For a further comparison of approximate dividers, the er-
ror and circuit measures are jointly considered. The metrics
MRED and PDP are selected as representatives to show
the error and circuit characteristics. As shown in Fig. 5, the
proposed AAXD has a much smaller value of MRED than the
other approximate designs when a similar PDP is considered.
AXDr3 also shows a good tradeoff in MRED and PDP with a
higher accuracy, however its delay is very long. Although some
configurations of AXDr1 and AXDr2 show small MREDs,
their PDPs are generally high. On the contrary, DAXD has a
very low PDP but a significantly large MRED. The MRED
and PDP are moderate for SEERAD, and they vary with the
accuracy level. Overall, the proposed AAXD shows the best
tradeoff among the considered approximate dividers.

IV. IMAGE PROCESSING APPLICATIONS

In addition to human perceptual limitations, some image
processing algorithms are inherently error tolerant. Therefore,
approximate circuits have widely been used in image processing
to improve hardware efficiency. As two common applications
of dividers, change detection and foreground extraction [13]
are considered to further assess the accuracy of approximate
dividers.

Change Detection: Change detection in image processing
can be implemented by computing the ratio of two pixel values
using a divider. For the two 8-bit gray-level images in Fig. 6(a)
and (b), the pixel values of the first image are multiplied by 64
as the dividends at a higher precision. Thus, 16/8 dividers are
sufficient for this application. The designs with similar values of
PDP (about 300 fJ) are selected, including AXDr3-9, DAXD-
12 and AAXD-10 (see Fig. 5). For the other approximate
designs, configurations with PDPs close to 300 fJ are selected,
including AXDr1-10, AXDr2-10 and SEERAD-4.

Fig. 6 shows the output images for change detection; the peak
signal-to-noise ratios (PSNRs) are shown in the parentheses.
The gray-level images are obtained by scaling the division
results to 8-bit pixel values using

Pout = 255× Pratio − Pmin

Pmax − Pmin
, (9)

Fig. 5. A comparison of approximate dividers in PDP and MRED.
The replacement depths of AXDr1, AXDr2 and AXDr3 are from 8 to
10 from right to left. The accuracy levels of SEERAD are from 1 to
4 from left to right. The pruned dividend width is from 8 to 12 for
DAXD, and it is from 6 to 10 for AAXD from left to right.



(a) Input image 1 (b) Input image 2 (c) Accurate output

(d) AXDr1-10
(32.14 dB)

(e) AXDr2-10
(18.39 dB)

(f) AXDr3-9
(39.27 dB)

(g) SEERAD-4
(36.61 dB)

(h) DAXD-12
(23.56 dB)

(i) AAXD-10
(40.16 dB)

Fig. 6. Change detection quality using different dividers (PSNR).

where Pratio is a computed pixel ratio, Pmax and Pmin are
the maximum and minimum values of the division results,
respectively. As can be seen, AAXD-10 and AXDr3-9 per-
form similarly well as an accurate divider, whereas AXDr-2
and DAXD-12 produce results with a low quality. AXDr1-
10 and SEERAD-4 produce images that are acceptable for a
visual inspection. The quantitative evaluation in PSNR produces
consistent results as the visual inspection.

Foreground Extraction: By using pixel division, the unwant-
ed illumination can be removed from an illuminated image to
show the objects in the foreground more clearly. Similar to
the change detection, the 8-bit gray-level pixel values of the
illuminated image (Fig. 7(a)) are multiplied by 64 to obtain
a higher precision. Fig. 7(b) shows the background that needs
to be removed. The same design configurations of the 16/8
approximate dividers are selected for the foreground extraction
as for the change detection. As shown in Fig. 7, the foreground
extraction quality (after scaling to 8-bit gray-level images using
(9)) by AXDr2-10 is rather poor, and the defects in the image
obtained by DAXD-12 are also significant. AAXD-10 produces
the most accurate extracted image compared to the one by
accurate dividers. The PSNR values in the parentheses indicate
that AAXD-10 performs the best, followed by SEERAD-4,
and the other designs have poorer performance for foreground
extraction.

V. CONCLUSION

This paper proposes an approximate unsigned divider using
adaptive approximation. A novel pruning scheme and error
correction circuits are utilized for the divider to attain a high
accuracy. The use of a reduced-width divider and a shifter leads
to a high-performance and low-power operation. As per the
synthesis results in ST’s 28nm CMOS process, the proposed
design achieves improvements by more than 60% in speed
and power dissipation compared with an accurate design. The
proposed divider is more accurate than the other approximate
dividers when a similar PDP is considered. Two image process-

(a) Illuminated image (b) Background image (c) Accurate output

(d) AXDr1-10
(15.00 dB)

(e) AXDr2-10
(8.19 dB)

(f) AXDr3-9
(18.80 dB)

(g) SEERAD-4
(23.46 dB)

(h) DAXD-12
(14.42 dB)

(i) AAXD-10
(26.42 dB)

Fig. 7. Foreground extraction quality using different dividers (PSNR).

ing applications illustrate the accuracy and hardware efficiency
of the proposed design.
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