
Upward Packet Popup for Deadlock Freedom in Modular Chiplet-Based Systems

Yibo Wu∗, Liang Wang†, Xiaohang Wang‡, Jie Han§, Jianfeng Zhu∗, Honglan Jiang¶, Shouyi Yin∗, Shaojun Wei∗, Leibo Liu∗
∗ School of Integrated Circuits, Tsinghua University, Beijing, China

Corresponding author: Leibo Liu, liulb@tsinghua.edu.cn
† School of Computer Science and Engineering, Beihang University, Beijing, China

‡ School of Software Engineering, South China University of Technology, Guangzhou, China
§ Department of Electrical and Computer Engineering, University of Alberta, Canada

¶ Department of Micro-Nano Electronic, Shanghai Jiao Tong University, Shanghai, China

Abstract—Monolithic SoCs can be decomposed into dis-
parate chiplets that support integration with advanced pack-
aging technologies. This concept is promising in reducing the
manufacturing cost of large scale SoCs due to the higher yield
rate and reusability of chiplets. The chiplets should be designed
in a modular manner without holistic system knowledge so
that they can be reused in different SoCs. However, the design
modularity is a major challenge to the networks-on-chip (NoCs)
of chiplets.

New deadlocks may occur across both the chiplets and
the interposer due to the integration, even if the NoC of
each individually designed chiplet is deadlock free. However,
conventional deadlock freedom approaches are unsuitable to
handle such deadlocks because they require holistic knowledge
and violate the modularity. Although there are several mod-
ular approaches that specifically target at integration-induced
deadlocks, their routing is overly restricted and the injection
control incurs additional latency. They also lack flexibility in
dynamically changing topologies due to their complex software
algorithm and the hard-wired components.

In this paper, a key insight on the chiplet integration-induced
deadlocks is gained, inspired by which a deadlock recovery
framework (named UPP) is proposed. Specifically, it is verified
that an integration-induced deadlock always involves a stalled
upward packet moving from the interposer to the connected
chiplet via the vertical link. Thus, UPP detects a deadlock by
discovering the upward packet and recovers the system from
deadlock by transmitting the upward packet to its destination.
Hybrid flow control mechanisms are proposed to enable the
upward packet to bypass the buffers and be transmitted via
the normal router datapath. To guarantee the ejection of the
upward packet after transmission, a lightweight protocol is
proposed to reserve ejection queue entries of the network
interface. Experimental results show that while adhering to
design modularity, UPP provides an average runtime speedup
of 3.1%∼10.3% with an area overhead of less than 4%.

Keywords-Deadlock Recovery, Modular, Chiplet, Network-
on-Chip;

I. INTRODUCTION

In chiplet-based systems, a SoC is decomposed into
chiplets which are stacked on an interposer via advanced
packaging technologies [5], [22]. Due to the high yield rate
and the reusability of small chiplets, the manufacturing cost
for large scale SoCs is significantly reduced [27]. A critical

DRAM

DRAM

DRAM

NI

L1

L2

C

R

NI

L1

L2

C

B

NI

L1

L2

C

B

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

B

NI

L1

L2

C

B

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

B

NI

L1

L2

C

B

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

B

NI

L1

L2

C

B

NI

L1

L2

C

R

C Core L1 L1 cache L2 L2 cache

NI Network

interface
R Chiplet

router

B Boundary

router

Interposer

router

DRAM

DRAM

DRAM

DRAM

DRAM

Chiplet

Interposer

DRAM

DRAM

DRAM

NI

L1

L2

C

R

NI

L1

L2

C

B

NI

L1

L2

C

B

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

B

NI

L1

L2

C

B

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

B

NI

L1

L2

C

B

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

R

NI

L1

L2

C

B

NI

L1

L2

C

B

NI

L1

L2

C

R

C Core L1 L1 cache L2 L2 cache

NI Network

interface
R Chiplet

router

B Boundary

router

Interposer

router

DRAM

DRAM

DRAM

DRAM

DRAM

Chiplet

Interposer

Deadlock

Figure 1. An overview of the baseline system and a deadlock buffer
dependency chain that crosses two chiplets. The topologies of both the
interposer and chiplets are 4×4 mesh networks. Each chiplet is connected
to four interposer routers via four boundary routers and four vertical links.

issue for chiplet-based systems is the modularity of chiplet
design [51]. If the chiplet needs to be reused across variously
configured systems [27], the design and verification of each
chiplet should be modular and independent of the rest of the
system.

There is an emerging research focus on constructing
chiplet-based systems on active interposers [43]. While ad-
hering to design modularity, such systems require additional
effort in resolving routing deadlocks that may occur in the
NoC. Even if each chiplet has a local NoC that is modularly
designed and locally free of deadlocks, new deadlocks
spanning across different chiplets and the interposer may be
introduced when these chiplets are integrated together [51].
Fig. 1 shows a baseline system used in this paper, where
a possible deadlock that crosses two chiplets occurs due to
chiplet integration on the active interposer.

Conventional deadlock freedom approaches that are pro-
posed for flat networks are unsuitable to handle integration-
induced deadlocks. These approaches require a global view
of the whole system and prevent each chiplet from indepen-
dently configuring and optimizing its design space, thereby
violating the modularity and reusability of chiplets. For
example, spanning tree-based approaches execute multiple
system-scale breadth-first searches for routing table con-
struction and turn restriction placement [2], [32]. However,

the knowledge of the whole system topology is unavailable
at the time of designing modular chiplets.

Recently, there are approaches specifically proposed for
modular chiplet-based systems [24], [51]. The composable
routing [51] places unidirectional turn restrictions on the
chiplet boundary routers. Remote control [24] uses a per-
mission subnetwork for injection control to separate intra-
chiplet and inter-chiplet traffic flows. However, these ap-
proaches are not satisfactory in terms of performance and
flexibility. The excessive turn restrictions of the composable
routing reduces path diversity and incurs load imbalance.
The injection control of remote control results in a longer
latency. Besides, if the network is dynamically reconfigured
due to faulty components [2], [34] or power gating [38],
[39], the complex software algorithm of the composable
routing and the hard-wired permission subnetwork of remote
control render themselves inflexible.

To achieve both high performance and flexibility while
ensuring chiplet design modularity, UPP, which obtains
routing deadlock freedom in modular chiplet-based systems
through Upward Packet Popup is proposed. UPP leverages
a key insight: an integration-induced deadlock crossing
multiple chiplets always involves an upward packet. This
upward packet is permanently stalled in the interposer router
due to deadlock while attempting to reach the connected
chiplet via the upward vertical link. This insight indicates
that a deadlock buffer dependency chain can be broken
if the upward packet could be successfully transmitted to
its destination chiplet router and ejected. The popup here
denotes the operations of both transmission and ejection of
a packet from the interposer to the destination chiplet. As a
deadlock recovery framework, UPP permits the formation of
deadlocks, but always efficiently recovers the network from
deadlocks after detecting them.

This paper makes the following contributions:
• We identify the close relationship between upward

packets and integration-induced deadlocks. This observation
is generic in any chiplet-based systems and provides a new
thinking in resolving integration-induced deadlocks.

• We design UPP as a deadlock recovery framework.
Deadlocks may occur in the fully adaptive network, while
UPP always detects the deadlocks and recovers the system
from deadlocks through upward packet popup. The strategy
of detection and recovery achieves full path diversity and
avoids performance penalty when the network is free of
deadlocks.

• We present a detailed implementation of UPP. UPP
adopts a simple timeout mechanism for deadlock detection
and minimizes the negative impact of false positives. The
recovery procedure of UPP consists of a lightweight pro-
tocol for ejection and hybrid flow control mechanisms for
transmission. Compared with state-of-the-art approaches in
modular chiplet-based systems, UPP improves the satura-
tion throughput by 18%∼72% and reduces the latency by

4.5%∼8.2%, at the expense of less than 4% area overhead.

II. BACKGROUND

A. Chiplet-Based System

To confront with the slowdown of Moore’s law and
Dennard’ scaling, the concept of dividing a large SoC into
small chiplets and integrating them with advanced packag-
ing technology is becoming increasingly popular. Although
most researches and industry products [4], [27], [41], [46]
integrate chiplets on passive interposers that only serve the
purpose of routing, recent studies have shown that using
active interposers can be practical [22], [43]; thus, many
components in chiplets are offloaded to the interposer and
chiplets can be further simplified. The active interposer is
a large chip with an NoC connected with chiplet NoCs
via multiple vertical links for inter-chiplet communication.
Chiplet-based systems should be composable and modular
for reusing chiplets in different systems. Even if each chiplet
may come from different vendors with variable hardware
configurations, the system is still functionally correct when
these independently designed and verified chiplets are in-
tegrated together [51]. However, chiplet design modularity
poses a severe challenge in ensuring correctness in the
system NoC. Integrating such modularly designed chiplets
can introduce new deadlocks 1 that span across multiple
chiplets and the interposer.

B. NoC Routing Deadlock Freedom

Routing deadlock is a cyclic buffer dependency chain.
To resolve it, existing approaches can be classified into five
categories according to their fundamental theories [29], [37]:

(1) Dally’s theory-based approaches: These approaches
construct an acyclic channel dependency graph (CDG) [11]
for deadlock freedom [2], [11], [14], [23], [25], [32], [33].

(2) Duato’s theory-based approaches: Duato’s theory [13]
proves that in a cyclic CDG, the network is still deadlock
free by maintaining an acyclic escape path [3], [34], [39],
[45].

(3) Bubble flow control (BFC)-based approaches: BFC
[8], [9], [35], [38], [47] uses bubble buffers to sustain
packets’ movement for deadlock freedom.

(4) Deflection-based approaches: These approaches [16],
[17], [26], [29]–[31], [49], [50] deflect a flit to another output
port when contention exists. There might be misrouting, but
the packet movement is guaranteed for deadlock freedom.

(5) SPIN-based approaches: SPIN [37] views the deadlock
as a lack of coordination. It resolves deadlocks by orches-
trating packets along the deadlock chain to move one hop
forward.

1UPP targets at routing deadlocks. Protocol deadlocks are assumed to be
handled by using multiple virtual networks.

Table I
QUALITATIVE COMPARISON OF EXISTING DEADLOCK FREEDOM APPROACHES

Design Modularity System Performance Network Flexibility
topology VC flow control full path diversity w/o injection control topology independence

Conventional
approaches

Dally’s theory-based % X X % X %

Duato’s theory-based % % X % X %

BFC-based X X % X X X

Deflection-based X X % X X X

SPIN-based X X % X X X

Modular
approaches

Composable routing X X X % X %

Remote control X X X X % %

UPP (this work) X X X X X X

III. MOTIVATION

Among the numerous NoC deadlock freedom approaches,
the topology-agnostic ones can address deadlocks in any
irregular topologies. However, they are unsuitable to han-
dle integration-induced deadlocks because they can violate
design modularity (Sec. III-A). On the other hand, although
there are other approaches proposed specifically for modular
chiplet-based systems, they suffer from poor performance
(Sec. III-B) and low flexibility (Sec. III-C). As summarized
in Tab. I, existing approaches have weaknesses in terms of
either design modularity, performance or flexibility, which
motivates the necessity of developing UPP.

A. Design Modularity of Chiplets

Design modularity is imperative to guarantee that each
chiplet can be independently configured and optimized in its
design space. However, conventional NoC deadlock freedom
approaches typically require holistic system knowledge and
violate the design modularity. Although there can be multi-
ple definitions of design modularity, this paper focuses on
three modularity attributes for the system NoC:

Topology modularity: Each chiplet has its local topology
that is optimized for its configurations and applications.
Topology modularity is considered to be satisfied if an
individual chiplet design is not affected by the topology
of the rest of the system. Dally’s theory-based approaches
that place turn or VC usage restrictions violate the topology
modularity. Duato’s theory-based approaches that place turn
restrictions in the escape path also violate the topology
modularity.

VC modularity: Each chiplet independently configures
its number of VCs according to its hardware budget, power,
traffic load, etc. VC modularity is considered to be satisfied
if an approach allows minimally 1 VC per virtual network
(VNet). Duato’s theory-based approaches that use additional
VCs to construct the escape path violate the VC modularity.

Flow control mechanism modularity: Most NoC de-
signs adopt wormhole or virtual cut-through flow control

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

(a)

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

(b)

Figure 2. (a) The composable routing imposes 8 unidirectional turn
restrictions (red arrows) on the 4 red boundary routers in a 4×4 mesh
chiplet. (b) Remote control uses tree-like permission subnetworks (brown
arrows) for boundary buffer reservation.

mechanisms [21]. Flow control mechanism modularity is
considered to be satisfied if an approach can support both
of these flow control mechanisms. BFC-based approaches
require virtual cut-through and violate this modularity.
Deflection-based approaches need to support packet trunca-
tion and reassembling if they are applied in networks using
wormhole. The procedures of truncation and reassembling
are hardware-expensive and usually not supported in most
NoCs. The synchronized packet movement in SPIN also
requires virtual cut-through flow control and violates this
modularity.

Consequently, none of the conventional deadlock freedom
approaches possesses all the three attributes for design
modularity, as shown in Tab. I.

B. System Performance

The composable routing [51] and remote control [24] are
specifically designed for modular chiplet-based systems. The
composable routing observes that from the perspective of an
individual chiplet, the rest of the system can be abstracted
into a virtual node connecting with the chiplet via boundary
routers. Therefore, it is possible to place unidirectional
turn restrictions solely on the boundary routers to avoid
deadlocks.

Remote control avoids integration-induced deadlocks
through injection control. It observes that in the deadlock
dependency chain, there is always an intra-chiplet packet
being blocked by an inter-chiplet packet. Hence, deadlocks
can be avoided by isolating inter-chiplet packets and intra-
chiplet packets. Remote control adds additional buffers at
boundary routers that can store all inter-chiplet packets for
the isolation. Before an inter-chiplet packet is injected, it
needs to send a signal on a hard-wired permission subnet-
work to the boundary router and reserve a buffer slot.

Although both of these two approaches satisfy the mod-
ularity attributes, their throughput and latency are penalized
due to the wasted path diversity and the injection control.

Path diversity: The composable routing places excessive
turn restrictions on boundary routers. As the chiplets are
connected with the interposer via boundary routers, the
network path diversity is severely affected. Fig. 2(a) shows
the composable routing in a 4×4 mesh chiplet; it places 8
unidirectional turn restrictions on the 4 boundary routers.
The throughput is reduced due to the wasted bandwidth.
Worse still, the turn restrictions force all inter-chiplet packets
from router 2∼11 to reach the interposer via boundary router
2. Many packets are forced to take a longer route to reach
the interposer, resulting in an increase in latency.

Injection control: In remote control, the inter-chiplet
packet injection control requires at least 2 additional cycles
for the handshaking round-trip time. Besides, due to the
limited boundary buffer resources, this latency grows due
to the contention in buffer reservation. When inter-chiplet
packets are crossing the boundary routers, remote control
requires these packetst to attend switch allocation, switch
traversal and VC allocation in three separate stages. This
further induces one-cycle latency when remote control is
applied in state-of-the-art router pipelines [21] where the
VC allocation and switch allocation stages are performed in
parallel.2

C. Network Flexibility

In large scale SoCs where the chiplet design concept is
more likely adopted, the hardware faults and power gating
can lead to a dynamic reconfiguration of the network topol-
ogy [2], [18], [38]. To achieve a higher flexibility in dynamic
topologies, an approach should be topology-independent and
be able to reconfigure within an acceptable time [23], [38].

The composable routing lacks network flexibility. In order
to place the turn restrictions, it uses a complex software
algorithm that sweeps all possible combinations of turn
restrictions, checks their network connectivity if the turn
restrictions were applied and finally selects the one that
likely has the best performance. Such procedures with
exponential complexity are practical only during the design

2Although we acknowledge that the injection control of remote control
could be more efficient by using specialized circuits or credit-based control,
possible optimization mechanisms are outside the scope of this paper.

time of a chiplet. Remote control constructs a tree-like
permission subnetwork for the inter-chiplet packet injection
control. In order to reduce the reservation round-trip delay,
the subnetwork is hard-wired as shown in Fig. 2(b). Such
an architecture lacks flexibility and cannot dynamically
reconfigure when the topology changes.

IV. DEADLOCK FREEDOM THEORY AND THE BASIC
DESIGN

A. Deadlock Freedom Theory

UPP is proposed based on a key observation: in a
chiplet-based system, an integration-induced deadlock
always involves at least an upward packet, that is
stalled while attempting to move upward from an
interposer router to the connected chiplet boundary
router. Therefore, by removing the upward packet from the
interposer router and sending it to the destination router
through the chiplet, the buffer dependency chain is broken
and the corresponding deadlock is resolved. The procedures
of transmitting and ejecting a packet is denoted as popup.
Fig. 3 exemplifies an upward packet and how UPP resolves
the deadlock.

1) Benefit of the upward packet popup: An integration-
induced deadlock can theoretically involve any packets in
the system. Among all candidate packets, why is the up-
ward packet in particular worth being handled for deadlock
freedom? To answer it, upward packet popup is compared
with other possible options in resolving deadlocks.

The first option is to deal with all packets that have the
chance to be in a deadlock. This option is the one adopted
by conventional NoC deadlock approaches. As any packets
can be involved in a deadlock, this option requires a holistic
view of the whole system and violates the design modularity.

The second option is to deal with all intra-chiplet and
inter-chiplet packets on the boundary routers. This option
is adopted by the composable routing and remote control.
Due to the typically low frequency of deadlocks [18], [28],
[37], most packets are not involved in real deadlocks. This
option thus unnecessarily leads to performance penalty on
these packets.

The third option is to deal with a downward packet
(symmetric to the upward packet) that is involved in a
deadlock. Due to the routing algorithm of chiplet-based
systems (detailed in Sec. V-D), an upward packet can
directly reach the destination chiplet via popup, whereas a
downward packet needs to enter the interposer first, then
cross the interposer and finally reach the destination chiplet.
Thus, the upward packet popup incurs a shorter latency and
is obviously more efficient.

B. Basic Design of UPP

UPP is a deadlock recovery framework [12], [38], i.e.,
UPP allows integration-induced deadlocks to form and

P0

P1

P11 P10

P2

P9

R0 R1 R2

R9R10R11

Chiplet

Interposer

P3

R3
P4

R8

R4 R5

R6R7

P5

P6

P7P8

P0

P1

P10

P2

P9

R0 R1 R2

R9R10R11

Chiplet

Interposer

P3

R3
P4

R8

R4 R5

R6R7

P5

P6

P7P8

NI

P11

Popup

R0 R1 R2

R5R6

P0

P1 P2 P4

P6

R3
P3

R4

P5

Interposer

Chiplet

R0 R1 R2

R5R6

P0

P1 P2 P4

R3
P3

R4

P5

Interposer

Chiplet

NI

P6

Popup

A deadlock dependency chain!

The deadlock dependency chain is broken!

Chiplet Chiplet

Chiplet Chiplet

Upward Packet

(a)

P0

P1

P11 P10

P2

P9

R0 R1 R2

R9R10R11

Chiplet

Interposer

P3

R3
P4

R8

R4 R5

R6R7

P5

P6

P7P8

P0

P1

P10

P2

P9

R0 R1 R2

R9R10R11

Chiplet

Interposer

P3

R3
P4

R8

R4 R5

R6R7

P5

P6

P7P8

NI

P11

Popup

R0 R1 R2

R5R6

P0

P1 P2 P4

P6

R3
P3

R4

P5

Interposer

Chiplet

R0 R1 R2

R5R6

P0

P1 P2 P4

R3
P3

R4

P5

Interposer

Chiplet

NI

P6

Popup

A deadlock dependency chain!

The deadlock dependency chain is broken!

Chiplet Chiplet

Chiplet Chiplet

Upward Packet

(b)

Figure 3. Deadlock freedom with UPP. The grey squares represent
interposer routers. The pink squares represent chiplet boundary routers.
The yellow squares represent the other normal chiplet routers. (a) Packet
P0∼P6 constitute an integration-induced deadlock which crosses both the
chiplet and the interposer. Packet P6 is the upward packet. (b) After upward
packet popup, packet P6 is sent through the chiplet and reaches the NI of
its destination router R2. Now the buffer dependency chain is broken and
the deadlock is resolved.

temporarily exist, but then detects and recovers from all
deadlocks with upward packet popup.

1) Deadlock detection: For the deadlock detection (de-
tailed in Sec. V-A), UPP first determines the existence of
a deadlock by using a simple timeout mechanism. When
a deadlock is there, UPP then selects a possible upward
packet from all stalling packets in a round robin manner
for popup. Since any packets attempting to move upward
from the interposer either successfully proceed upward to
their destination chiplets, or keep being stalled until they
are deemed as upward packets, this two-step mechanism
is able to detect all deadlocks. However, as the timeout
mechanism does not distinguish a real deadlock from a
temporary congestion [38], [50], a concern for using this
mechanism is the possible false positive detections. The im-
plementation and evaluation of UPP demonstrate that: first,
dealing with false positives is actually resolving congestion
and promoting packets’ forward progress; second, the popup
procedures merely spend a small number of resources on
handling false positives.

2) Deadlock recovery: For the deadlock recovery, UPP
needs to address two problems. The first one relates to the
upward packet ejection (detailed in Sec. V-B). When the
upward packet reaches its destination NI, it might cannot
be ejected due to a full ejection queue. UPP addresses
this problem by using a lightweight protocol that reserves
an empty ejection queue entry for the upward packet to
eject. The protocol requires additional three types of signals,
UPP req, UPP ack and UPP stop. Two 32-bit buffers are
added in each chiplet router so that these signals can be

transmitted in the same router datapath as the normal head
flits.

The second problem relates to the upward packet trans-
mission through the chiplet to its destination router (detailed
in Sec. V-C). The routing path might be full of congested
packets and there are no free buffers in intermediate chiplet
routers to temporarily hold the upward packet. UPP ad-
dresses it by using hybrid flow control mechanisms of both
wormhole (or virtual cut-through) and circuit switching in
the chiplet [10], [20]. The aforementioned protocol helps set
up a circuit for the upward packet to bypass buffers and be
transmitted without any blocking.

During the deadlock recovery, an assumption is made
that packets proceeding to the same destination chiplet
router should enter the destination chiplet through the same
boundary router. The reasonability of the assumption is
disscussed in Sec. V-D.

V. UPP IMPLEMENTATION

A. Deadlock Detection

UPP uses a two-step mechanism for deadlock detection.
The first step confirms whether an interposer router is likely
to be involved in a deadlock. The second step discovers
the upward packet of a deadlock for subsequent popup
procedures.

In the first step, UPP equips each interposer router with
one timeout counter per VNet. The timeout counter records
the duration that there exist packets of this VNet that are
stalled while moving upward from the interposer router, but
none of them has been sent out from the up output port to
the connected chiplet. If the counter is over a pre-configured
threshold value, UPP deems that there is a deadlock in
this VNet. This design leverages the key observation that
an integration-induced deadlock always involves an upward
packet, i.e., always involves the up output port. Thus, when
there is a deadlock, the up output port should be permanently
blocked for the corresponding VNet.

After confirming a deadlock, UPP enters the second step.
In the deadlocked VNet, among all the VCs that has a packet
stalling while moving upward, a round robin arbiter selects a
packet from one VC as the upward packet. As it is expensive
to tell whether these packets are real upward packets or
they encounter a serious congestion, the arbiter ensures that
sooner or later all packets stalled while moving upward have
the chance to be selected as the upward packet for popup.

There is a restriction on deadlock detection that each
interposer router can select at most one upward packet for
each VNet, regardless of the number of input ports and
the number of VCs. In this way, if multiple deadlocks of
the same VNet involve the same interposer router, they are
resolved serially via popup so as to relieve the pressure of
recovery and reduce hardware overhead. On the contrary,
deadlocks of different VNets are resolved concurrently to

BW

RC

SA

VCS
ST LT

BW SA ST LTBody/Tail flit

Head flit,

Protocol signals

Interposer router Destination NI

1. select an upward packet

2. send a PoM_req to destination

NI
1. receive the PoM_req

2. successfully reserve an

ejection queue slot

3. send a PoM_ack to

destination NI

3. receive the PoM_ack

4. send the upward packet

3. the upward packet proceeds

before the PoM_ack is received

4. send a PoM_stop to destination

NI

4. receive the PoM_stop

5. recycle the reserved

ejection queue slot

4. receive the upward packet

5. eject the upward packet

Type

3 bits

Destination router and NI

8 bits

VNet

3 bits

UPP_req,

UPP_stop

UPP_ack
Type

3 bits

VNet

3 bits

Upward flit ST LT

Interposer router Chiplet Destination NI

1. Discover an upward packet

3. Receive the UPP_req

2. Send an UPP_req

4. Reserve an ejection queue entry

5. Send an UPP_ack

8. Receive the UPP_ack

9. Drop the UPP_ack

10. Receive the UPP_stop

11. Remove the reservation

Interposer router Chiplet Destination NI

1. Discover an upward packet

3. Receive the UPP_req

2. Send an UPP_req

4. Reserve an ejection queue entry

5. Send an UPP_ack

6. Receive the UPP_ack

7. Send the upward packet

8. Receive the upward packet

9. Eject the upward packet

7. Send an UPP_stop

6. Upward packet proceeds

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Input VC

4 bits

Start

3 bits

Figure 4. The message encoding of UPP req, UPP ack and UPP stop.
The grey fields are only used in wormhole flow control.

guarantee the correctness of popup, as further detailed in
Sec. V-B4.

Although the timeout mechanism might introduce false
positives, handling false positives together with deadlocks
is necessary for better network performance. In the first
detection step, when UPP discovers a potential deadlock,
the up output port of the interposer router has been idle for
a long time, which is indeed a tremendous waste of network
bandwidth. Therefore, dealing with false positives promotes
the forward movement of congested packets, makes a better
usage of bandwidth and improves throughput.

B. Upward Packet Ejection

To cope with the situation that an upward packet cannot
get ejected due to a full ejection queue when it reaches the
destination NI, UPP uses a lightweight protocol to reserve an
ejection queue entry before the upward packet is popped up.
The protocol adds three types of signals that are transmitted
through the normal router datapath by adding two 32-bit
buffers in each chiplet router.

1) Protocol design: The protocol adds three types of
signals, UPP req, UPP ack and UPP stop that are used
obeying the following three rules.

• After an interposer router selects an upward packet, the
router sends an UPP req to the destination NI to reserve an
ejection queue entry before popup.

• After the destination NI receives an UPP req and
successfully reserves an ejection queue entry, it sends an
UPP ack back to the interposer router. The interposer router
can start the upward packet popup process for deadlock
recovery only if the UPP ack is received.
• Before receiving the UPP ack, if the upward packet

is not involved in a real deadlock and proceeds to the
connected chiplet, the interposer router sends an UPP stop
to the destination NI so that the reserved ejection queue entry
can be recycled. Later when the interposer router receives
the UPP ack, the UPP ack is discarded.

2) Protocol signals transmission: The three new types of
signals are transmitted between an interposer router and a
chiplet NI in the same manner as a normal head flit, i.e.,
they go through the same router pipeline and use the same
crossbars and links. One additional buffer is added in every
chiplet router to transmit both UPP req and UPP stop and
another is added to transmit UPP ack. As no data payload
is carried, these signals use a compact encoding format in
order to narrow down the required buffer width, as shown

BW

RC

SA

VCS
ST LT

BW SA ST LTBody/Tail flit

Head flit,

Protocol signals

Interposer router Destination NI

1. select an upward packet

2. send a PoM_req to destination

NI
1. receive the PoM_req

2. successfully reserve an

ejection queue slot

3. send a PoM_ack to

destination NI

3. receive the PoM_ack

4. send the upward packet

3. the upward packet proceeds

before the PoM_ack is received

4. send a PoM_stop to destination

NI

4. receive the PoM_stop

5. recycle the reserved

ejection queue slot

4. receive the upward packet

5. eject the upward packet

Type

3 bits

Destination router and NI

8 bits

VNet

3 bits

UPP_req,

UPP_stop

UPP_ack
Type

3 bits

VNet

3 bits

Upward flit ST LT

Interposer router Chiplet Destination NI

1. Discover an upward packet

3. Receive the UPP_req

2. Send an UPP_req

4. Reserve an ejection queue entry

5. Send an UPP_ack

8. Receive the UPP_ack

9. Drop the UPP_ack

10. Receive the UPP_stop

11. Remove the reservation

Interposer router Chiplet Destination NI

1. Discover an upward packet

3. Receive the UPP_req

2. Send an UPP_req

4. Reserve an ejection queue entry

5. Send an UPP_ack

6. Receive the UPP_ack

7. Send the upward packet

8. Receive the upward packet

9. Eject the upward packet

7. Send an UPP_stop

6. Upward packet proceeds

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Figure 5. The router pipeline of different types of flits/protocol sig-
nals. ’BW’ and ’RC’ are short for buffer write and route computation,
respectively. ’SA’ and ’VCS’ stand for switch allocation and VC selection,
respectively. ’ST’ denotes switch traversal. ’LT’ means link traversal.

in Fig. 4. UPP req and UPP stop have the same encoding
format, where 3 bits specify the signal type, 8 bits specify the
destination router and NI for route computation, and another
3 bits specify the VNet of the upward packet with one-
hot encoding (the MESI cache coherence protocol used for
evaluation in this paper requires 3 VNets). If the interposer
uses the wormhole flow control, UPP req has an additional
4-bit field to specify the input VC where the upward packet
locates at (detailed in Sec. V-B3). As for UPP ack, the 8-
bit field for destination router and NI are removed because
UPP ack does not attend normal route computation as
explained in the next paragraph. An additional 3-bit field
with one-hot encoding specifies whether the popup process
of each VNet has started. If the interposer uses the wormhole
flow control, UPP ack has another 3-bit field with one-
hot encoding to indicate whether the popup process of this
VNet has started when the UPP ack is received. Thus,
UPP req and UPP stop require an additional 18-bit buffer,
while UPP ack requires a 9-bit buffer. In the implementation
and evaluation, these two buffers are 32-bit wide for a
conservative estimation.

Fig. 5 shows the router pipeline used in this paper. When
a flit enters a router, it attends buffer write as well as route
computation if it is a head flit. In the next cycle, it attends
switch allocation. If the flit succeeds in switch allocation,
it is randomly allocated a free VC by the VC selection
[21]. The flit enters switch traversal and link traversal stages
in the following two cycles. Body and tail flits bypass the
route computation and VC selection stages. The three new
types of signals attend the same pipeline stages as head
flits, except that they have a higher priority than the other
normal flits during the switch allocation to assure they reach
the destination without blocking. When an UPP ack is sent
from a chiplet router back to an interposer router, it does
not attend the normal route computation but instead follows
the reverse routing path of its corresponding UPP req.

3) Supporting wormhole flow control: If the interposer
uses wormhole flow control and the discovered upward
packet has partly been transmitted to the chiplet, starting
upward packet popup from the interposer router can result
in packet truncation. Therefore, several slight modifications

are added to support wormhole flow control.
First, if a discovered upward packet is partly-transmitted,

the UPP req follows the route of the upward packet (with
the 4-bit input VC field) until the head flit is found. Then,
the corresponding chiplet router tags the VC of the head flit
so that upward packet popup would start from this position.

Second, when the UPP ack follows the reverse route of
the UPP req and reaches the chiplet router where the head
flit locates at, if the head flit has been sent out, the UPP ack
is directly discarded. Otherwise, the upward packet popup
starts instantly. Then, the corresponding VNet in the 3-bit
start field of the UPP ack is set to 1 to indicate the start of
popup and the UPP ack continues to be sent to the interposer
router. When the UPP ack reaches the interposer router, the
interposer router is informed that the upward packet popup
has already started in the chiplet by scanning the 3-bit start
field. The interposer router behaves as normal until the last
flit of the upward packet is sent out to the up output port.
Then, the upward packet popup process completes for this
VNet.

4) Proof of correctness: To prove the correctness of the
above protocol, i.e., an UPP req can always succeed in
reserving an ejection queue entry, an exemplary scenario of
a simple request-response cache coherence protocol is used.

In the NoC model, a router is connected with a processing
element (PE, e.g., core, cache, directory) via NI. The NI
has injection queues to receive messages from the PE and
segment messages into packets for injection. Also, the NI
has ejection queues to receive packets from the network and
reassemble them into messages before they are consumed by
the PE. Both NI injection and ejection queues are separated
for each message class to avoid protocol deadlocks [18],
[42]. Based on this model, there are two cases to discuss.

In the first case, an UPP req is reserving a response
ejection queue entry. When response messages reach the PE
through the ejection queue, they can always get consumed
timely by the PE because response message is the terminat-
ing message type of the request-response cache coherence
protocol [42]. Therefore, the response message ejection
queue would never be permanently full and the UPP req can
always succeed in reserving an entry. In addition, as UPP
ensures concurrent upward packet popup for different VNets,
response packets can always reach their destinations and get
consumed by the PE, regardless of the routing condition of
other message types.

In the second case, an UPP req is reserving a request
ejection queue entry. When the PE is processing a request
message from the ejection queue, it checks whether there
is an available injection queue entry to buffer the response
message that the message processing will generate. If there
is, the request message is consumed. An ejection queue entry
is freed up and the UPP req is able to reserve an entry. Oth-
erwise, the PE delays the processing of the request message
until the response injection queue has available entries. As

proved in the first case that any response packets can always
get consumed, the VNet for response packets become idle at
last so that all response packets in the injection queue can be
injected. Therefore, there will be available response injection
queue entries and the request message can get consumed.
Consequently, the UPP req is able to reserve an entry when
a request message is consumed.

5) Avoiding protocol signal contention: As each chiplet
router incorporates only two additional 32-bit buffers, UPP
needs to address the potential contentions among the proto-
col signals that can result in buffer overflow. This problem
is discussed by considering the following four cases.

First, UPP req and UPP stop from the same interposer
router: Protocol signals from the same interposer router
are sent out in a serial manner. By ensuring that the
minimum time gap between the two consecutive signals is
Size of Data Packet + 1 cycles, no contention occurs
between them.

Second, UPP req and UPP stop from different interposer
routers: One way to avoid the possible contention is by
coordinating among the interposer routers connected with
the same chiplet, so that for each VNet, there is only one
popup underway in the chiplet. The other is by modifying
the routing algorithm. It trades off routing adaptiveness for
better popup parallelism. As detailed later in Sec. V-D, the
routing algorithm used in UPP has a characteristic that in
order to reach one chiplet router, flits (including the signals)
from the interposer must have entered the chiplet from the
same boundary router, i.e., the same connected interposer
router.

Third, multiple UPP acks from the same chiplet router:
As UPP acks follows the reverse routing paths of their
UPP reqs, these signals should have the same destination
interposer router. The contention can be avoided by sending
these signals in a serial manner.

Fourth, multiple UPP acks from different chiplet routers:
In this case, contentions are possible if these signals have
the same destination interposer router. However, as the UPP
deadlock detection ensures at most number of V Nets
concurrent upward packet popups of different VNets from
one interposer router, these signals can thus be merged by
ORing their 3-bit one-hot VNet and start fields of Fig. 4.

C. Upward Packet Transmission

While transmitting the upward packet to its destination
NI, there might be no available buffers in the routing path
to temporarily store the upward packet. Although additional
flit-sized buffers can be added, this hardware overhead is
avoided by adopting hybrid flow control mechanisms in the
chiplet. The chiplet uses wormhole flow control (or virtual
cut through) for both normal flits and the protocol signals,
whereas uses circuit switching for transmitting the upward
flits in a buffer-bypassing manner.

The insight is that, before transmitting an upward flit,
an UPP req has already been sent from the interposer
router to the same destination router. Therefore, the UPP req
can help set up a circuit so that the upward flit can be
transmitted in a buffer-bypassing manner. The UPP req goes
through the same router pipeline stages as a normal head flit.
After the UPP req attends route computation, the connection
between the input and the output ports can be recorded in
the chiplet router. As a chiplet router can receive at most
Number of V Nets UPP reqs, the chiplet router needs
to record at most Number of V Nets connections. The
upward flit follows the same routing path of the UPP req by
looking up the connection records using its VNet id instead
of attending route computation. It directly attends switch
traversal with a higher priority than any other flits (including
the protocol signals) without attending switch allocation.
In this way, the upward flit can bypass buffers and only
go through one router pipeline stage of switch traversal, as
shown in Fig. 5.

The overhead of popup is the bandwidth used for sending
the additional protocol signals because upward flits always
make forward progress. As shown in the evaluation of Sec.
VI, the bandwidth waste due to signal transmission has a
negligible influence on performance and false positive in
deadlock detection should not be a concern for UPP.

1) Avoiding conflicts between upward flits and protocol
signals: Although it is mentioned in Sec. V-B5 that protocol
signals from the same interposer router are sent out serially
and contention-free among them, there could however be
contention between upward flits and protocol signals due
to their different pipeline stages (one stage for upward flits
and three stages for protocol signals). A later upward flit
can catch up with a previous protocol signal, which results
in conflicts of crossbar switch usage. To avoid such conflict,
the upward flit is given a higher priority. Consequently, the
protocol signal is delayed for one cycle.

After delaying the protocol signal, a new concern arises.
When a previously sent protocol signal is delayed by upward
flits, could it be caught up by a later signal without being
delayed? There are two cases to discuss.

In the first case, the later signal is sent out from the
interposer router before upward flits are sent out. If the
previous signal is caught up by these upward flits, then the
later signal must have also been caught up by these flits,
resulting in no conflict between the two signals.

In the second case, the later signal is sent out after upward
flits are sent out. Assuming that N upward flits are sent out
after the previous signal and before the later signal. There
must be a time gap of at least N + P cycles between the
previous and the later signals. P represents the number of
pipeline stages. In the worst scenario, the previous signal is
delayed by upward flits by N cycles. Then, there is still a
time gap of P cycles. Hence, there is no conflict between
the two signals.

D. Routing Algorithm

In chiplet-based systems, the routing algorithm decides
how the three types of packets are transmitted:

First, packets moving within the chiplet or the interposer:
Each chiplet and the interposer has a local routing algorithm
(as in normal flat networks) to transmit these packets.

Second, packets moving from a chiplet to the interposer:
When a packet is injected into the chiplet, the routing
algorithm selects a chiplet boundary router as an interme-
diate destination router for the packet. After reaching the
boundary router by the local chiplet routing algorithm, this
packet can enter the interposer via the downward vertical
link.

Third, packets that move from the interposer to a chiplet:
When a packet enters the interposer, the routing algorithm
selects an interposer router as an intermediate destination
router for the packet. After reaching the interposer router
by the local interposer routing algorithm, this packet can
reach the chiplet via the upward vertical link.

For the first type of packets, UPP allows each chiplet and
the interposer to use a locally optimized routing algorithm,
e.g., XY routing in regular mesh networks and ARIADNE
[2] in irregular networks. For the second and third type
of packets, UPP statically binds each chiplet router with
the closest boundary router of the same chiplet together. If
there are multiple boundary routers with the same minimal
distance, the chiplet router is randomly bound with one of
them. To transmit the second type of packets, the routing
algorithm selects the boundary router bound with the source
chiplet router. To transmit the third type of packets, the rout-
ing algorithm selects the interposer router whose connected
boundary router is bound with the destination chiplet router.
This mechanism adheres to chiplet design modularity since
the static binding does not require system knowledge outside
an individual chiplet.

In dealing with the third type of packets, the static binding
between chiplet routers and boundary routers avoids the
contention among signals as mentioned in Sec. V-B. If
different packets have the same destination chiplet router,
they will enter the destination chiplet from the same in-
terposer router. A concern is whether the static binding
mechanism degrades the network performance due to the
lack of adaptiveness. However, it is observed that a dy-
namic binding incurs non-minimal routing because an inter-
chiplet packet might select a more distant boundary router,
thereby increasing the latency and reducing the throughput.
Therefore, the modified routing algorithm is preferred over
interposer router coordination.

E. UPP Microarchitecture

Fig. 6 shows the microarchitectural modifications to an
interposer router, a chiplet router and a chiplet NI.

Modifications to an interposer router: The grey compo-
nents around the up output port are added in every interposer

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

CrossbarSwitch

VC Selection

Switch Allocation

Route

Computation

UPP Counter

UPP Arbiter

UPP_req unit

UPP_ack unit

UPP_stop unit

East

Inport

North

Inport

Local

Inport

Up

Inport

East

Outport

North

Outport

Local

Outport

Up

Outport

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

VC0

VC1

VCN
…

CrossbarSwitch

VC Selection

Switch Allocation

Route

Computation

East Outport

West Outport

South Outport

North Outport

Local Outport

Up Outport

East

Inport

West

Inport

South

Inport

North

Inport

Local

Inport

Up

Inport

PoM_req/stop buffer

Vnet In

0

1

2

OutVnet In

0

1

2

Out
PoM_ack buffer

UPP_req/stop buffer

Vnet In

0

1

2

OutVnet In

0

1

2

Out

UPP_ack buffer

Vnet Reserved

0

1

2

Vnet Reserved

0

1

2

PE

UPP_ack unit
UPP_req unit

UPP_stop unit

VNet0

VNet1

VNetN
…

VNet0

VNet1

VNetN
…

VNet0

VNet1

VNetN
…

VNet0

VNet1

VNetN
…

Injection Queues Ejection Queues

Network Interface

Router

Vnet Stage

0

1

2

DestPosVnet Stage

0

1

2

DestPos

...

...

Figure 6. UPP router and NI microarchitecture. The light grey box in the
middle encloses the modifications to an interposer router. The light yellow
box on the top encloses the modifications to a chiplet router. The light
green box at the bottom encloses the modifications to the chiplet NI.

router. The UPP counter of each VNet is used to record
the idle time of the up output port. The UPP arbiter of
each VNet is a round robin arbiter; it arbitrates over all
VCs of its VNet to select a stalled packet as the upward
packet. The table with an entry for each VNet records
the stage of the popup, the position and the destination
of the upward packet. The stage of the popup includes the
following information: whether a popup occurs in this VNet,
whether the UPP req has been sent, whether the UPP ack
has been received, whether an UPP stop should be sent and
whether the upward packet has been sent out. The UPP req,
UPP ack and UPP stop units are used to send/receive the
corresponding signals in a serial manner.

Modifications to a chiplet router: The yellow com-
ponents on the top of Fig. 6 are added in every chiplet
router. A 32-bit UPP ack buffer is used to transmit all
UPP ack signals without buffer backpressure [21]. To avoid
buffer overflow, the buffer is able to merge UPP ack signals
belonging to different VNets. A 32-bit UPP req/UPP stop
buffer is used to transmit both UPP req and UPP stop
signals without buffer backpressure. There is no buffer
overflow as proved in Sec. V-B. These two buffers are shared
by all input ports by adding several multiplexers. The table
with an entry for each VNet records the input and the output

Table II
SIMULATION CONFIGURATIONS

Full system simulation configurations

Cores x86 out-of order cores, 1 GHz, 192-entry
reorder buffer, issue width: 8

L1 I/D cache 32KB per core, private, 4-way set associative

L2 cache 1MB per core, shared, 8-way set associative

Directories 8 directories on the interposer

Cache coherence MESI directory coherence protocol

Network configurations

Topology baseline system: 1 4x4 mesh interposer, 4
4x4 mesh chiplets

VCs 3 VNets, with 1 or 4 VCs per VNet, each
VC has 4 flit-sized buffers

Router pipeline 3 stages

Link latency: 1 cycle, width: 128 bits

Flow control wormhole

Packet size data packet: 5 flits, control packet: 1 flit

Synthetic simulation
uniform random, bit complement, bit
rotation, transpose, with a mix of control
and data packets

Full system simulation PARSEC [6], SPLASH-2 [48]

UPP detection threshold 20 cycles

ports of the crossbar switch connection. UPP ack signals
look up this table to follow the reverse routing path of
the corresponding UPP req signals. Upward packets look
up this table for circuit switching flow control. When an
upward flit arrives, it directly enters switch traversal without
allocation. The other flits and protocol signals are forced to
stall even if they have been granted the same input port or
output port. The switch allocator gives a higher priority to
protocol signals than normal flits, by always giving grants to
signals during allocation. Normal flit requests for the same
ports as protocol signals are rejected by ANDing with 0.
There is neglible complexity except for a few gates.

Modifications to a chiplet NI: The green components
at the bottom of Fig. 6 are added in every chiplet NI. At
the ejection queue side, the UPP req and UPP stop units
process the received UPP req and UPP stop signals and
interact with the table. The table with an entry for each
VNet records the reservation conditions of the ejection queue
entry. After successfully reserving an entry, the UPP ack
unit at the injection queue side generates an UPP ack and
injects it into the network.

VI. EVALUATION

In this section, UPP is evaluated in gem5 simulator [7]
with the Garnet NoC model [1]. The adopted topology is the
baseline system shown in Fig. 1. To illustrate the generality
of UPP, experiments upon larger and faulty systems are also
conducted. UPP is compared with two other approaches that

0
20
40
60
80

100

0 0.05 0.1 0.15 0.2

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Uniform Random

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Bit Complement

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1 0.15 0.2

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Bit Rotation

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1 0.15

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Transpose

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

(a)

0
20
40
60
80

100

0 0.05 0.1 0.15 0.2

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Uniform Random

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Bit Complement

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1 0.15 0.2

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Bit Rotation

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1 0.15

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Transpose

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

(b)

0
20
40
60
80

100

0 0.05 0.1 0.15 0.2

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Uniform Random

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Bit Complement

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1 0.15 0.2

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Bit Rotation

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1 0.15

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Transpose

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

(c)

0
20
40
60
80

100

0 0.05 0.1 0.15 0.2

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Uniform Random

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Bit Complement

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1 0.15 0.2

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Bit Rotation

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

0
20
40
60
80

100

0 0.05 0.1 0.15

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Transpose

composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

(d)

Figure 7. Latency comparison under four synthetic traffic patterns as the injection rate increases. Each VNet has 1 or 4 VCs.

composable PoM
runtime runtime

blackscholes 0.042154 1 0.039426 93.53% 2 7662747
bodytrack 0.310954 1 0.292917 94.20% 74 97771501
canneal 0.180644 1 0.150443 83.28% 2910 1.16E+08
dedup 0.719648 1 0.699675 97.22% 0 1.56E+08
facesim 0.8s 63.9171 1 60.6064 94.82% 4
fluidanimate 0.107712 1 0.081835 75.98% 19 26330615
swaptions 0.41476 1 0.370124 89.24% 267 3.09E+08

+ vips 0.176131 1 0.170412 96.75% 0

barnes 0.9s 115.7137 1 88.6062 76.57% 15
cholesky 0.9s 35.34366 1 33.56269 94.96% 3
fft 0.151065 1 0.134908 89.30% 14939 1.66E+08
lu_cb 0.180621 1 0.178252 98.69% 70 48000817

+ lu_ncb 0.05s simd 0.154923 1 0.145 93.59% 19
radiosity 1.5s 35.28645 1 33.67528 95.43% 14
radix 0.336837 1 0.3187 94.62% 19419 1.92E+08

+ raytrace 0.09s simd 44.3244 1 39.38875 88.86% 6
water_nsquared 0.047361 1 0.046133 97.41% 13 12988189

+ water_spatial 96.344 1 64.5439 66.99% 11
geomean 1 89.63%

composable PoM
facesim 10306617 63.9171 10306735 60.6064 4
barnes 4260215 115.7137 4260225 88.6062 15
cholesky 4871852 35.34366 4871857 33.56269 3
lu_ncb 26012579 56.9618 26014787 44.7037 19
radiosity 10822527 35.28645 10822604 33.67528 14
raytrace 1695328 44.3244 1695403 39.38875 6
water_spat 3614893 96.344 3617481 93.3288 11

0
0.2
0.4
0.6
0.8

1
1.2

N
or

m
al

iz
ed

 ru
nt

im
e

composable remote control UPP

(a)

composable PoM rc
runtime runtime upward papackets runtime

blackscholes 0.03896 1 0.03794 97.38% 2 7562718 0.038551 98.95%
bodytrack 0.288319 1 0.276738 95.98% 0 98553798 0.283788 98.43%
canneal 0.168614 1 0.135979 80.65% 0 1.15E+08 0.14002 83.04%
dedup 0.708688 1 0.688057 97.09% 0 1.56E+08 0.704683 99.43%
fluidanimate 0.10671 1 0.101752 95.35% 19 29493847 0.105576 98.94%
fft 0.096115 1 0.091967 95.68% 5 1.63E+08 0.092505 96.24%
swaptions 0.343778 1 0.343778 100.00% 0 3.09E+08 0.348588 101.40%
water_nsquared 0.048106 1 0.046267 96.18% 0 13016629 0.048099 99.99%
lu_cb 0.177738 1 0.171782 96.65% 0 48431489 0.174086 97.95%
radix 0.282839 1 0.270546 95.65% 0 1.9E+08 0.284639 100.64%
geomean 1 94.92% 97.36%

blackscholes 0.03896 1 0.03794 97.38% 2 7562718 0.038551 98.95%
bodytrack 0.288319 1 0.276738 95.98% 0 98553798 0.283788 98.43%
canneal 0.168614 1 0.135979 80.65% 0 1.15E+08 0.14002 83.04%
dedup 0.708688 1 0.688057 97.09% 0 1.56E+08 0.704683 99.43%
facesim 0.8s 32.20445 1 31.54326 97.95% 31.49517 97.80%
fluidanimate 0.10671 1 0.101752 95.35% 19 29493847 0.105576 98.94%
swaptions 0.343778 1 0.343778 100.00% 0 3.09E+08 0.348588 101.40%

+ vips 0.04s 0.164539 1 0.158656 96.42% 0 0.166347 101.10%

barnes 0.9s 29.59211 1 28.59836 96.64% 0 28.69344 96.96%
cholesky 0.9s 32.57046 1 31.34605 96.24% 0 33.05255 101.48%
fft 0.096115 1 0.091967 95.68% 5 1.63E+08 0.092505 96.24%
lu_cb 0.177738 1 0.171782 96.65% 0 48431489 0.174086 97.95%

+ lu_ncb 0.05s simd 0.131441 1 0.119653 91.03% 0 0.125467 95.45%
radiosity 1.5s 29.73551 1 28.82306 96.93% 0 30.28812 101.86%
radix 0.282839 1 0.270546 95.65% 0 1.9E+08 0.284639 100.64%
raytrace 0.09s simd 33.53878 1 31.95507 95.28% 0 33.80286 100.79%
water_nsquared 0.048106 1 0.046267 96.18% 0 13016629 0.048099 99.99%
water_spat* 29.6205 1 28.69349 96.87% 0 30.44828 102.79%
geomean 1 95.35% 98.41%

0
0.2
0.4
0.6
0.8

1
1.2

N
or

m
al

iz
ed

 ru
nt

im
e

composable remote control UPP

(b)

Figure 8. Normalized runtime comparison of full system simulations. (a)
System with 1 VC per VNet. (b) System with 4 VCs per VNet.

are also proposed for modular chiplet-based systems, i.e., the
composable routing [51] and remote control [24]. All three
approaches use XY routing in both chiplets and the inter-
poser for local deadlock freedom. The composable routing
uses a different boundary router selection mechanism [51]
that leads to non-minimal routing due to its unidirectional
turn restrictions. Remote control uses the same boundary
router selection mechanism as UPP. Each boundary router
in remote control is equipped with four data packet-sized
buffers. Other simulation configurations are given in Tab. II.

A. Performance in the baseline system

Fig. 7 and show the latency comparisons as the injection
rate increases under four synthetic traffic patterns. The
warmup time is 10K cycles and the simulation time is
100K cycles. Regardless of the imposed traffic pattern and
the number of VCs, UPP always has a higher saturation
throughput and a lower latency. Compared with the com-
posable routing, UPP improves the saturation throughput by
18%∼72% as well as reduces the latency by 4.5%∼6.6%.
The performance benefits can be attributed to three reasons.
First, UPP does not impose turn restrictions on boundary
routers and thus maximizes the inter-chiplet bandwidth
utilization. Second, UPP does not force any packets to
take a non-minimal route to reach the destination and thus

1VC 4VCs
composable

injection raflits net lat queue lat latency figure
0.002333 0.001 2871 0.002243 39.0077 2.0237 41.0314 41.0314 0.002333
0.011667 0.005 14318 0.011186 40.6547 2.0999 42.7546 42.7546 0.023333
0.023333 0.01 29093 0.022729 43.9755 2.3659 46.3414 46.3414 0.046667

0.035 0.015 43716 0.034153 59.4468 7.0931 66.5399 66.5399 0.07
0.037333 0.016 46664 0.036456 66.1605 13.9851 80.1456 80.1456 0.081667
0.039667 0.017 0 53.8714 3.2825 57.1539 110 0.084
0.044333 0.019 0 61.6443 6.9065 68.5508 0.086333
0.046667 0.02 0 65.7072 8.5181 74.2253 0.088667

0.049 0.021 0 91.0354 82.0344 173.0698 0.091
0.093333

PoM
injection raflits net lat queue lat latency figure

0.002333 0.001 2872 0.002244 37.1845 2.0237 39.2082 39.2082
0.011667 0.005 14323 0.01119 38.4205 2.1017 40.5222 40.5222 0.002333
0.023333 0.01 29097 0.022732 41.2142 2.3088 43.523 43.523 0.023333

0.035 0.015 43722 0.034158 46.8454 2.9215 49.7669 49.7669 0.046667
0.037333 0.016 46760 0.036531 50.3612 3.6907 54.0519 0.07
0.039667 0.017 49752 0.038869 56.3482 8.0366 64.3848 64.3848 0.081667

0.042 0.018 0 68.9205 15.8753 84.7958 110 0.093333
0.044333 0.019 0.095667

0.098
rc 0.100333

injection raflits net lat queue lat latency figure
0.002333 0.001 2869 0.002241 40.2736 2.0359 42.3095 42.3095
0.011667 0.005 14321 0.011188 42 2.1397 43.7779 43.7779
0.023333 0.01 29109 0.022741 44.3629 2.3712 46.7341 46.7341 0.002333

0.035 0.015 43705 0.034145 50.767 2.5708 53.3378 53.3378 0.023333
0.037333 0.016 46749 0.036523 54.4917 2.6968 57.1885 0.046667
0.039667 0.017 49761 0.038876 62.2484 3.4296 65.678 69.1076 0.07

0.042 0.018 52789 0.041241 68.3883 3.7308 72.1191 0.081667
0.044333 0.019 110 0.093333

0.095667
0.098

0.100333

composablPoM
1VC 0.015 0.017
4VCs 0.038 0.042

1VC 41.0314 39.2082
4VCs 40.8292 39.033

20
40
60
80

100

te
nc

y
(c

yc
le

s)

0

20

40

60

80

100

0 0.03 0.06 0.09 0.12

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)
composable-1VC remote control-1VC
UPP-1VC composable-4VCs
remote control-4VCs UPP-4VCs

Figure 9. Latency comparison in a 128-node chiplet-based system.

has a lower latency. Third, the boundary router selection
mechanism of UPP achieves a better load balance than the
composable routing. In fact, the composable routing also
claims to achieve load balance in boundary router selection
[51]. Nonetheless, it brings about an unbalanced network
due to the excessive turn restrictions as described in Sec.
III-B. The saturation throughput of remote control is almost
the same as that of UPP. This is because both approaches
achieve full path diversity and load balance in the baseline
system. However, remote control has a 5.7%∼8.2% longer
latency than UPP due to its injection control. Although the
permission network for injection control is hard-wired and
optimized for a low round trip latency, there is still a latency
penalty of minimally 2 cycles for each inter-chiplet packet
before injection.

Fig. 8 shows the runtime results of gem5 full system sim-
ulations with PARSEC [6] and SPLASH-2 [48] benchmarks.
The results are normalized to those of the composable rout-
ing. On average, UPP reduces the runtime by 5.7%∼10.3%
in 1-VC system and 3.1%∼4.6% in 4-VCs system. Although
remote control has the same high saturation throughput as
UPP, it occasionally degrades the performance (e.g., canneal
in 1-VC system) due to its longer latency.

B. Generality Analysis

Sec. VI-A shows the experimental results in one specific
chiplet-based system topology. In this section, more exper-
iments are conducted to demonstrate the generality of UPP
in other system topologies.

Fig. 9 shows the latency comparison in a larger system
with a 4×8 interposer and 8 4×4 chiplets. Only the results
under uniform random traffic is presented because the gen-
eral trend is very similar among different traffic patterns.
UPP still achieves a saturation throughput improvement of

latency throughput latency throughput latency throughput
latency saturation throughput
composab 33.30981 0.988 2 composab 0.017 0.850 2 2 composab 0.988 composab 0.850 2 UPP-1VC 0.967 UPP-1VC 1.000 2 rc-1VC 1.032 rc-1VC 1.000
UPP-1VC 32.57911 0.967 2 UPP-1VC 0.02 1.000 2 4 composab 1.000 composab 1.000 4 UPP-1VC 0.952 UPP-1VC 1.250 4 rc-1VC 1.031 rc-1VC 1.250
rc-1VC 34.79741 1.032 2 rc-1VC 0.02 1.000 2 8 composab 0.914 composab 1.450 8 UPP-1VC 0.874 UPP-1VC 1.750 8 rc-1VC 0.941 rc-1VC 1.850
composab 33.1307 0.983 2 composab 0.038 1.900 2
UPP-4VCs 32.4477 0.963 2 UPP-4VCs 0.043 2.150 2 2 composab 0.983 composab 1.900 2 UPP-4VCs 0.963 UPP-4VCs 2.150 2 rc-1VC 1.028 rc-1VC 2.150
rc-1VC 34.6627 1.028 2 rc-1VC 0.043 2.150 2 4 composab 0.996 composab 2.400 4 UPP-4VCs 0.948 UPP-4VCs 3.900 4 rc-4VCs 1.028 rc-4VCs 3.900
composab 33.7072 1.000 4 composab 0.02 1.000 4 8 composab 0.912 composab 2.400 8 UPP-4VCs 0.871 UPP-4VCs 3.900 8 rc-4VCs 0.939 rc-4VCs 3.900
UPP-1VC 32.0908 0.952 4 UPP-1VC 0.025 1.250 4
rc-1VC 34.7497 1.031 4 rc-1VC 0.025 1.250 4
composab 33.5601 0.996 4 composab 0.048 2.400 4
UPP-4VCs 31.9673 0.948 4 UPP-4VCs 0.078 3.900 4
rc-4VCs 34.6346 1.028 4 rc-4VCs 0.078 3.900 4
composab 30.81423 0.914 8 composab 0.029 1.450 8
UPP-1VC 29.45984 0.874 8 UPP-1VC 0.035 1.750 8
rc-1VC 31.7324 0.941 8 rc-1VC 0.037 1.850 8
composab 30.73522 0.912 8 composab 0.048 2.400 8
UPP-4VCs 29.36688 0.871 8 UPP-4VCs 0.078 3.900 8
rc-4VCs 31.63989 0.939 8 rc-4VCs 0.078 3.900 8

0.85

0.9

0.95

1

1.05

2 4 8

N
or

m
al

iz
ed

 la
te

nc
y

Number of boundary routers per chiplet
composable-1VC composable-4VCs
rc-1VC rc-4VCs
UPP-1VC UPP-4VCs

0

1

2

3

4

2 4 8N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of boundary routers per chiplet
composable-1VC composable-4VCs
rc-1VC rc-4VCs
UPP-1VC UPP-4VCs

(a)

latency throughput latency throughput latency throughput
latency saturation throughput
composab 33.30981 0.988 2 composab 0.017 0.850 2 2 composab 0.988 composab 0.850 2 UPP-1VC 0.967 UPP-1VC 1.000 2 rc-1VC 1.032 rc-1VC 1.000
UPP-1VC 32.57911 0.967 2 UPP-1VC 0.02 1.000 2 4 composab 1.000 composab 1.000 4 UPP-1VC 0.952 UPP-1VC 1.250 4 rc-1VC 1.031 rc-1VC 1.250
rc-1VC 34.79741 1.032 2 rc-1VC 0.02 1.000 2 8 composab 0.914 composab 1.450 8 UPP-1VC 0.874 UPP-1VC 1.750 8 rc-1VC 0.941 rc-1VC 1.850
composab 33.1307 0.983 2 composab 0.038 1.900 2
UPP-4VCs 32.4477 0.963 2 UPP-4VCs 0.043 2.150 2 2 composab 0.983 composab 1.900 2 UPP-4VCs 0.963 UPP-4VCs 2.150 2 rc-1VC 1.028 rc-1VC 2.150
rc-1VC 34.6627 1.028 2 rc-1VC 0.043 2.150 2 4 composab 0.996 composab 2.400 4 UPP-4VCs 0.948 UPP-4VCs 3.900 4 rc-4VCs 1.028 rc-4VCs 3.900
composab 33.7072 1.000 4 composab 0.02 1.000 4 8 composab 0.912 composab 2.400 8 UPP-4VCs 0.871 UPP-4VCs 3.900 8 rc-4VCs 0.939 rc-4VCs 3.900
UPP-1VC 32.0908 0.952 4 UPP-1VC 0.025 1.250 4
rc-1VC 34.7497 1.031 4 rc-1VC 0.025 1.250 4
composab 33.5601 0.996 4 composab 0.048 2.400 4
UPP-4VCs 31.9673 0.948 4 UPP-4VCs 0.078 3.900 4
rc-4VCs 34.6346 1.028 4 rc-4VCs 0.078 3.900 4
composab 30.81423 0.914 8 composab 0.029 1.450 8
UPP-1VC 29.45984 0.874 8 UPP-1VC 0.035 1.750 8
rc-1VC 31.7324 0.941 8 rc-1VC 0.037 1.850 8
composab 30.73522 0.912 8 composab 0.048 2.400 8
UPP-4VCs 29.36688 0.871 8 UPP-4VCs 0.078 3.900 8
rc-4VCs 31.63989 0.939 8 rc-4VCs 0.078 3.900 8

0.85

0.9

0.95

1

1.05

2 4 8

N
or

m
al

iz
ed

 la
te

nc
y

Number of boundary routers per chiplet
composable-1VC composable-4VCs
rc-1VC rc-4VCs
UPP-1VC UPP-4VCs

0

1

2

3

4

2 4 8N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of boundary routers per chiplet
composable-1VC composable-4VCs
rc-1VC rc-4VCs
UPP-1VC UPP-4VCs

(b)

Figure 10. Sensitivity study of the number of boundary routers per chiplet.
Results are normalized to that of the composable routing when there is 1 VC
per VNet. (a) Normalized latency comparison. (b) Normalized throughput
comparison.

11%∼13% and a latency reduction of 4.4%∼7.4%. How-
ever, compared with the results in the baseline system of
Fig. 7, the throughput gap is much smaller. The reason
is that the network is inherently less load-balanced as the
network scales up. Therefore, the throughput loss due to
load imbalance in the composable routing is relatively less
significant.

Fig. 10 is the sensitivity study of the number of boundary
routers per chiplet. All three approaches have a higher
throughput and a lower latency. But UPP always deliver a
better performance than the others.

Fig. 11 shows the latency comparisons in faulty systems.
The systems are devised by designating a certain number of
links in the baseline system to be faulty [2], [18], [28], [38].
Several different faulty topologies are randomly generated
and the average results are presented. The composable
routing is not compared against, as its complex algorithm
traverses all possible combinations of turn restrictions and
takes an unacceptably long time in a faulty chiplet-based
system. Remote control is also not compared against because
its hard-wired permission subnetwork cannot adapt to a
dynamically changing topology 3. As the number of faulty
links increases, the saturation throughput of UPP shows a
graceful degradation and the latency slightly increases.

Although UPP is proposed for chiplet-based systems that
use active interposers, UPP can also be applied to systems
using passive substrates. For example, consider a star-like
system where chiplets are integrated on a passive substrate
[27], [51], a central chiplet serves the purpose of I/O and is
connected with the other chiplets. From the perspective of
the network, the system is same as the baseline system of
Fig. 1 and the central chiplet can be treated equivalently as
an active interposer [51]. Therefore, UPP still applies in this
scenario.

C. Performance Impact of False Positives

As mentioned earlier, the performance impact of false
positives lies in the bandwidth utilized for transmitting the

3Even if remote control uses an idealized permission subnetwork that can
adapt to any faulty systems, after conducting experiments, remote control
still has the same saturation throughput as UPP due to the full path diversity
but a longer latency due to the injection control.

4VCs
0

injection raflits net lat queue lat latency figure
0.002333 0.001 1530 0.002391 29.9673 2 31.9673 31.9673 0.002333
0.023333 0.01 14611 0.02283 30.6828 2 32.6828 32.6828 0.004667
0.046667 0.02 29493 0.046083 31.0805 2 33.0805 33.0805 0.007

0.07 0.03 44684 0.069819 31.7516 2.0009 33.7525 33.7525 0.009333
0.093333 0.04 59766 0.093384 32.4523 2 34.4523 34.4523 0.011667
0.116667 0.05 74781 0.116845 33.6922 2.0009 35.6931 35.6931 0.014

0.14 0.06 89756 0.140244 35.9645 2.0022 37.9667 37.9667 0.016333
0.163333 0.07 104549 0.163358 41.4821 2.0129 43.495 43.495 0.018667
0.172667 0.074 110498 0.172653 47.45 2.452 49.902 0.021

0.175 0.075 110498 0.172653 47.45 2.452 49.902 49.902 0.023333
0.179667 0.077 114838 0.179434 57.4747 7.6948 65.1695 0.025667

0.182 0.078 116593 0.182177 65.3494 12.0236 77.373 77.373 0.028
0.184333 0.079 0 78.5725 32.7566 111.3291 110 0.030333

0.032667
0.035

0.037333
0.039667

0.042
0.044333
0.046667

0.049
0.051333
0.053667

0.056
0.058333
0.060667

0.063
0.065333
0.067667

0.07
0.072333
0.074667

0.077
0.079333
0.081667

0.084
0.086333
0.088667

0.091
0.093333
0.095667

0.098
0.100333
0.102667

0.105
0.107333
0.109667

0.112
0.114333
0.116667

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)
0 faulty link 1 faulty link
5 faulty links 10 faulty links
15 faulty links 20 faulty links

0

20

40

60

80

100

0 0.03 0.06 0.09

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)
0 faulty link 1 faulty link
5 faulty links 10 faulty links
15 faulty links 20 faulty links

(a)

4VCs
0

injection raflits net lat queue lat latency figure
0.002333 0.001 1530 0.002391 29.9673 2 31.9673 31.9673 0.002333
0.023333 0.01 14611 0.02283 30.6828 2 32.6828 32.6828 0.004667
0.046667 0.02 29493 0.046083 31.0805 2 33.0805 33.0805 0.007

0.07 0.03 44684 0.069819 31.7516 2.0009 33.7525 33.7525 0.009333
0.093333 0.04 59766 0.093384 32.4523 2 34.4523 34.4523 0.011667
0.116667 0.05 74781 0.116845 33.6922 2.0009 35.6931 35.6931 0.014

0.14 0.06 89756 0.140244 35.9645 2.0022 37.9667 37.9667 0.016333
0.163333 0.07 104549 0.163358 41.4821 2.0129 43.495 43.495 0.018667
0.172667 0.074 110498 0.172653 47.45 2.452 49.902 0.021

0.175 0.075 110498 0.172653 47.45 2.452 49.902 49.902 0.023333
0.179667 0.077 114838 0.179434 57.4747 7.6948 65.1695 0.025667

0.182 0.078 116593 0.182177 65.3494 12.0236 77.373 77.373 0.028
0.184333 0.079 0 78.5725 32.7566 111.3291 110 0.030333

0.032667
0.035

0.037333
0.039667

0.042
0.044333
0.046667

0.049
0.051333
0.053667

0.056
0.058333
0.060667

0.063
0.065333
0.067667

0.07
0.072333
0.074667

0.077
0.079333
0.081667

0.084
0.086333
0.088667

0.091
0.093333
0.095667

0.098
0.100333
0.102667

0.105
0.107333
0.109667

0.112
0.114333
0.116667

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)
0 faulty link 1 faulty link
5 faulty links 10 faulty links
15 faulty links 20 faulty links

(b)

Figure 11. Latency comparison in irregular systems with variable numbers
of faulty links. (a) Systems with 1 VC per VNet. (b) Systems with 4 VCs
per VNet.

1VC 4VCs
upward papackets upward papackets 1VC 4VCs

blackschol 2 7662747 2.61E-07 2 7562718 2.64E-07 blackschol 2 2
bodytrack 74 97771501 7.57E-07 0 98553798 0.00E+00 bodytrack 74 0
canneal 2910 1.16E+08 2.51E-05 0 1.15E+08 0.00E+00 canneal 2910 0
dedup 0 1.56E+08 0.00E+00 0 1.56E+08 0.00E+00 dedup 0 0
fluidanima 19 26330615 7.22E-07 19 29493847 6.44E-07 facesim 4 0
fft 14939 1.66E+08 9.02E-05 5 1.63E+08 3.06E-08 fluidanima 19 19
swaptions 267 3.09E+08 8.65E-07 0 3.09E+08 0.00E+00 swaptions 267 0
water_nsq 13 12988189 1.00E-06 0 13016629 0.00E+00 vips 0 0
lu_cb 70 48000817 1.46E-06 0 48431489 0.00E+00 barnes 15 0
radix 19419 1.92E+08 1.01E-04 0 1.9E+08 0.00E+00 cholesky 3 0

fft 14939 5
lu_cb 70 0
lu_ncb 19 0
radiosity 14 0
radix 19419 0
raytrace 6 0
water_nsq 13 0
water_spat 11 0

2 74

29
10

0 4 19 26
7

0 15 3

14
93

9

70 19 14

19
41

9

6 132 0 0 0 0 19 0 0 0 0 5 0 0 0 0 0 0

0
5000

10000
15000
20000

N
um

be
r o

f u
pw

ar
d

pa
ck

et
s

1 VC per VNet 4 VCs per VNet

Figure 12. The number of detected upward packets during gem5 full
system simulations.

20-cycle-1
100-cycle-
1000-cycle
20-cycle-4
100-cycle-
1000-cycle

0
20
40
60
80

100

0 0.05 0.1 0.15 0.2

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

20-cycle-1VC 100-cycle-1VC
1000-cycle-1VC 20-cycle-4VCs
100-cycle-4VCs 1000-cycle-4VCs

0.00

0.05

0.10

0.15

0.20

20
-c

yc
le

-1
VC

10
0-

cy
cl

e-
1V

C

10
00

-c
yc

le
-1

VC

20
-c

yc
le

-4
VC

s

10
0-

cy
cl

e-
4V

C
s

10
00

-c
yc

le
-4

VC
s

Th
ro

ug
hp

ut
 (f

lit
s/

cy
cl

e/
no

de
)

0%
2%
4%
6%
8%

10%

0 0.2

Pe
rc

en
ta

ge

Injection ra

20-cycle-1VC

1000-cycle-1V

100-cycle-4VC

(a)

4VCs
0.00% 0.002333 0.001
0.00% 0.004667 0.002
0.00% 0.007 0.003
0.00% 0.009333 0.004
0.00% 0.011667 0.005
0.00% 0.014 0.006
0.00% 0.016333 0.007
0.00% 0.018667 0.008
0.00% 0.021 0.009
0.00% 0.023333 0.01
0.00% 0.025667 0.011
0.00% 0.028 0.012
0.00% 0.030333 0.013
0.00% 0.032667 0.014
0.00% 0.035 0.015
0.00% 0.037333 0.016
0.00% 0.039667 0.017
0.00% 0.042 0.018
0.00% 0.044333 0.019
0.00% 0.046667 0.02
0.00% 0.049 0.021
0.00% 0.051333 0.022
0.00% 0.053667 0.023
0.00% 0.056 0.024
0.00% 0.058333 0.025
0.00% 0.060667 0.026
0.00% 0.063 0.027
0.00% 0.065333 0.028
0.00% 0.067667 0.029
0.00% 0.07 0.03
0.00% 0.072333 0.031
0.02% 0.074667 0.032
0.09% 0.077 0.033
0.04% 0.079333 0.034
0.12% 0.081667 0.035
0.07% 0.084 0.036
0.00% 0.086333 0.037
0.09% 0.088667 0.038
0.04% 0.091 0.039
0.06% 0.093333 0.04
0.06% 0.095667 0.041
0.05% 0.098 0.042
0.03% 0.100333 0.043
0.03% 0.102667 0.044
0.06% 0.105 0.045
0.07% 0.107333 0.046
0.06% 0.109667 0.047
0.07% 0.112 0.048
0.05% 0.114333 0.049
0.04% 0.116667 0.05
0.05% 0.119 0.051
0.08% 0.121333 0.052
0.05% 0.123667 0.053

0%
2%
4%
6%
8%

10%

0 0.2 0.4 0.6 0.8

Pe
rc

en
ta

ge

Injection rate (flits/cycle/node)

20-cycle-1VC 100-cycle-1VC

1000-cycle-1VC 20-cycle-4VCs

100-cycle-4VCs 1000-cycle-4VCs

0.0%

0.1%

0.2%

0.3%

0.4%

0 0.2 0.4 0.6 0.8

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Uniform Random - 4VCs

20-cycle 100-cycle 1000-cycle

(b)

Figure 13. Sensitivity study of UPP detection threshold value. (a) The
impact on saturation throughput. (b) The percentage of upward packets
among all packets.

protocol signals, which is proportional to the number of
detected upward packets. Thus, the numbers of detected
upward packets during full system simulations are recorded
to demonstrate the performance impact due to false positives,
as shown in Fig. 12. Across all the benchmarks, the number
of upward packets never exceeds 20000, which is less than
0.01% of the total number of packets (that is in the order of
108). When the number of VCs per VNet increases from 1
to 4, the number of upward packets is significantly reduced.
Therefore, the bandwidth waste of protocol signals and the
false positives have little impact on system performance.

Fig. 13(a) demonstrates that the UPP detection threshold
value has little impact on the saturation throughput. Fig.
13(b) gives the reasons. When there is 1 VC per VNet, most
of the network bandwidth is left unused due to head-of-
line blocking [21] or deadlocks. The percentage of upward
packets is higher and false positives can be frequent. But
UPP utlizes the wasted bandwidth for recovery and thus
does not impact the throughput. When there are 4 VCs
per VNet, the percentage of upward packets never exceeds
0.4%. Therefore, the false positives are too rare to affect the
throughput.

composabPoM remote control
chiplet router - 1 VC 0.00% 3.77% 4.14%
chiplet router - 4 VCs 0.00% 1.50% 1.65%
interposer router - 1 VC 0.00% 2.62% 0.00%
interposer router - 4 VCs 0.00% 1.47% 0.00%

0.00% 0.00% 0.00% 0.00%

3.77%

1.50%

2.62%

1.47%

4.14%

1.65%

0.00% 0.00%
0%
1%
2%
3%
4%
5%

chiplet router - 1 VC chiplet router - 4 VCs interposer router - 1 VC interposer router - 4 VCsH
ar

dw
ar

e
ov

er
he

ad

composable remote control UPP

Figure 14. Hardware overhead comparison in chiplet and interposer
routers. The system has either 1 or 4 VCs per VNet.

1VC
composable
flits link runtime buf dyn xbar dyn arbiter dynclk dyn link dyn buf sta xbar sta arbiter sta clk sta link sta dyn sta total

blackscholes 17223255 1.11E+08 0.042154 2.80E+05 6.90E+04 5.66E+03 8.01E+05 4.38E+05 2.51E+07 2.77E+06 3.14E+05 2.42E+02 3.03E+05 1.59E+06 2.85E+07 3.01E+07 5.29% 94.71% blackscholes
bodytrack 2.8E+08 1.75E+09 0.310954 4.46E+06 1.10E+06 9.00E+04 5.91E+06 6.99E+06 1.85E+08 2.04E+07 2.32E+06 1.79E+03 2.23E+06 1.85E+07 2.10E+08 2.29E+08 8.10% 91.90% bodytrack
canneal 2.91E+08 1.76E+09 0.180644 4.49E+06 1.11E+06 9.06E+04 3.43E+06 7.07E+06 1.08E+08 1.19E+07 1.35E+06 1.04E+03 1.30E+06 1.62E+07 1.22E+08 1.38E+08 11.69% 88.31% canneal
dedup 3.88E+08 2.34E+09 0.719648 5.98E+06 1.47E+06 1.21E+05 1.37E+07 9.42E+06 4.29E+08 4.72E+07 5.36E+06 4.13E+03 5.17E+06 3.07E+07 4.87E+08 5.18E+08 5.93% 94.07% dedup
facesim 63.9171 10306617 58066522 0.1 1.50E+05 3.69E+04 3.02E+03 1.90E+06 2.38E+05 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 2.33E+06 6.77E+07 7.00E+07 3.32% 96.68% facesim
fluidanimate 72344387 4.42E+08 0.107712 1.13E+06 2.77E+05 2.27E+04 2.05E+06 1.77E+06 6.42E+07 7.07E+06 8.02E+05 6.18E+02 7.73E+05 5.24E+06 7.29E+07 7.81E+07 6.71% 93.29% fluidanimate
swaptions 8.05E+08 5.03E+09 0.41476 1.28E+07 3.15E+06 2.58E+05 7.88E+06 2.00E+07 2.47E+08 2.72E+07 3.09E+06 2.38E+03 2.98E+06 4.41E+07 2.81E+08 3.25E+08 13.58% 86.42% swaptions
vips 32320480 2.17E+08 0.176131 5.47E+05 1.35E+05 1.10E+04 3.35E+06 8.51E+05 1.05E+08 1.16E+07 1.31E+06 1.01E+03 1.26E+06 4.89E+06 1.19E+08 1.24E+08 3.94% 96.06% vips
barnes 115.7137 4260215 20154219 0.1 5.35E+04 1.32E+04 1.08E+03 1.90E+06 8.66E+04 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 2.05E+06 6.77E+07 6.97E+07 2.95% 97.05% barnes
cholesky 35.34366 4871852 28534622 0.1 7.32E+04 1.80E+04 1.48E+03 1.90E+06 1.16E+05 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 2.11E+06 6.77E+07 6.98E+07 3.02% 96.98% cholesky
fft 4.09E+08 2.41E+09 0.151065 6.17E+06 1.52E+06 1.24E+05 2.87E+06 9.73E+06 9.01E+07 9.91E+06 1.13E+06 8.67E+02 1.08E+06 2.04E+07 1.02E+08 1.23E+08 16.65% 83.35% fft
lu_cb 1.25E+08 7.83E+08 0.180621 1.99E+06 4.90E+05 4.01E+04 3.43E+06 3.12E+06 1.08E+08 1.19E+07 1.35E+06 1.04E+03 1.30E+06 9.07E+06 1.22E+08 1.31E+08 6.91% 93.09% lu_cb
lu_ncb 1.91E+08 1.14E+09 0.154923 2.92E+06 7.19E+05 5.89E+04 2.94E+06 4.60E+06 9.24E+07 1.02E+07 1.15E+06 8.89E+02 1.11E+06 1.12E+07 1.05E+08 1.16E+08 9.68% 90.32% lu_ncb
radiosity 35.28645 10822527 55449634 0.1 1.45E+05 3.57E+04 2.93E+03 1.90E+06 2.33E+05 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 2.32E+06 6.77E+07 7.00E+07 3.31% 96.69% radiosity
radix 4.76E+08 2.82E+09 0.336837 7.22E+06 1.78E+06 1.46E+05 6.40E+06 1.14E+07 2.01E+08 2.21E+07 2.51E+06 1.93E+03 2.42E+06 2.69E+07 2.28E+08 2.55E+08 10.57% 89.43% radix
raytrace 44.3244 1695328 10065789 0.1 2.58E+04 6.34E+03 5.20E+02 1.90E+06 4.06E+04 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 1.97E+06 6.77E+07 6.96E+07 2.83% 97.17% raytrace
water_nsquared 32781159 2.02E+08 0.047361 5.14E+05 1.27E+05 1.04E+04 9.00E+05 8.08E+05 2.82E+07 3.11E+06 3.53E+05 2.72E+02 3.40E+05 2.36E+06 3.20E+07 3.44E+07 6.86% 93.14% water_nsquared

remote control
flits link runtime buf dyn xbar dyn arbiter dynclk dyn link dyn buf sta xbar sta arbiter sta clk sta link sta dyn sta total

blackscholes 17208436 1.02E+08 0.041572 2.61E+05 6.43E+04 5.27E+03 7.90E+05 4.12E+05 2.48E+07 2.73E+06 3.10E+05 2.39E+02 2.98E+05 1.53E+06 2.81E+07 2.97E+07 5.17% 94.83% blackscholes
bodytrack 2.79E+08 1.63E+09 0.299502 4.17E+06 1.03E+06 8.42E+04 5.69E+06 6.59E+06 1.79E+08 1.97E+07 2.23E+06 1.72E+03 2.15E+06 1.76E+07 2.03E+08 2.20E+08 7.98% 92.02% bodytrack
canneal 2.92E+08 1.65E+09 0.187414 4.25E+06 1.05E+06 8.57E+04 3.56E+06 6.74E+06 1.12E+08 1.23E+07 1.40E+06 1.08E+03 1.35E+06 1.57E+07 1.27E+08 1.42E+08 11.00% 89.00% canneal
dedup 3.89E+08 2.27E+09 0.742632 5.83E+06 1.43E+06 1.18E+05 1.41E+07 9.20E+06 4.43E+08 4.87E+07 5.53E+06 4.26E+03 5.33E+06 3.07E+07 5.02E+08 5.33E+08 5.76% 94.24% dedup
facesim 63.0665 10306445 56526499 0.1 1.46E+05 3.60E+04 2.95E+03 1.87E+06 2.33E+05 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 2.29E+06 6.68E+07 6.91E+07 3.32% 96.68% facesim
fluidanimate 71800448 4.12E+08 0.110505 1.06E+06 2.61E+05 2.14E+04 2.10E+06 1.68E+06 6.59E+07 7.25E+06 8.23E+05 6.34E+02 7.93E+05 5.12E+06 7.48E+07 7.99E+07 6.41% 93.59% fluidanimate
swaptions 8E+08 4.68E+09 0.378951 1.20E+07 2.95E+06 2.42E+05 7.20E+06 1.89E+07 2.26E+08 2.49E+07 2.82E+06 2.18E+03 2.72E+06 4.13E+07 2.56E+08 2.98E+08 13.88% 86.12% swaptions
vips 31863295 1.97E+08 0.177798 5.02E+05 1.24E+05 1.01E+04 3.38E+06 7.88E+05 1.06E+08 1.17E+07 1.32E+06 1.02E+03 1.28E+06 4.80E+06 1.20E+08 1.25E+08 3.84% 96.16% vips
barnes 87.6146 4260211 19420742 0.1 5.19E+04 1.28E+04 1.05E+03 1.44E+06 8.43E+04 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 1.59E+06 5.12E+07 5.28E+07 3.01% 96.99% barnes
cholesky 35.52073 4871717 27117575 0.1 7.01E+04 1.73E+04 1.41E+03 1.91E+06 1.11E+05 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 2.11E+06 6.80E+07 7.01E+07 3.01% 96.99% cholesky
fft 3.99E+08 2.2E+09 0.136691 5.69E+06 1.40E+06 1.15E+05 2.60E+06 9.04E+06 8.15E+07 8.97E+06 1.02E+06 7.85E+02 9.81E+05 1.88E+07 9.25E+07 1.11E+08 16.92% 83.08% fft
lu_cb 1.26E+08 7.43E+08 0.181682 1.90E+06 4.69E+05 3.84E+04 3.45E+06 3.00E+06 1.08E+08 1.19E+07 1.35E+06 1.04E+03 1.30E+06 8.87E+06 1.23E+08 1.32E+08 6.73% 93.27% lu_cb
lu_ncb 1.91E+08 1.07E+09 0.145507 2.77E+06 6.83E+05 5.60E+04 2.76E+06 4.40E+06 8.68E+07 9.55E+06 1.08E+06 8.35E+02 1.04E+06 1.07E+07 9.85E+07 1.09E+08 9.78% 90.22% lu_ncb
radiosity 35.45309 10822325 53237456 0.1 1.40E+05 3.45E+04 2.83E+03 1.91E+06 2.26E+05 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 2.31E+06 6.80E+07 7.03E+07 3.29% 96.71% radiosity
radix 4.84E+08 2.69E+09 0.325993 6.94E+06 1.71E+06 1.40E+05 6.19E+06 1.10E+07 1.94E+08 2.14E+07 2.43E+06 1.87E+03 2.34E+06 2.60E+07 2.21E+08 2.47E+08 10.55% 89.45% radix
raytrace 41.91961 1695236 9527404 0.1 2.46E+04 6.05E+03 4.96E+02 1.80E+06 3.90E+04 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 1.87E+06 6.40E+07 6.59E+07 2.83% 97.17% raytrace
water_nsquared 33098166 1.91E+08 0.048447 4.91E+05 1.21E+05 9.90E+03 9.20E+05 7.76E+05 2.89E+07 3.18E+06 3.61E+05 2.78E+02 3.48E+05 2.32E+06 3.28E+07 3.51E+07 6.60% 93.40% water_nsquared

PoM
flits link runtime buf dyn xbar dyn arbiter dynclk dyn link dyn buf sta xbar sta arbiter sta clk sta link sta dyn sta total

blackscholes 17032111 1.01E+08 0.039426 2.59E+05 6.37E+04 5.22E+03 7.49E+05 4.08E+05 2.35E+07 2.59E+06 2.94E+05 2.26E+02 2.83E+05 1.48E+06 2.67E+07 2.82E+07 5.27% 94.73% blackscholes
bodytrack 2.78E+08 1.62E+09 0.292917 4.16E+06 1.02E+06 8.40E+04 5.56E+06 6.58E+06 1.75E+08 1.92E+07 2.18E+06 1.68E+03 2.10E+06 1.74E+07 1.98E+08 2.16E+08 8.08% 91.92% bodytrack
canneal 2.86E+08 1.62E+09 0.150443 4.16E+06 1.03E+06 8.41E+04 2.86E+06 6.60E+06 8.97E+07 9.87E+06 1.12E+06 8.64E+02 1.08E+06 1.47E+07 1.02E+08 1.17E+08 12.64% 87.36% canneal
dedup 3.87E+08 2.21E+09 0.699675 5.68E+06 1.40E+06 1.15E+05 1.33E+07 9.00E+06 4.17E+08 4.59E+07 5.21E+06 4.02E+03 5.02E+06 2.95E+07 4.73E+08 5.03E+08 5.86% 94.14% dedup
facesim 60.6064 10306735 56524846 0.1 1.46E+05 3.60E+04 2.95E+03 1.80E+06 2.33E+05 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 2.22E+06 6.42E+07 6.64E+07 3.34% 96.66% facesim
fluidanimate 62227927 3.55E+08 0.081835 9.15E+05 2.25E+05 1.85E+04 1.55E+06 1.45E+06 4.88E+07 5.37E+06 6.09E+05 4.70E+02 5.87E+05 4.16E+06 5.54E+07 5.95E+07 6.99% 93.01% fluidanimate
swaptions 7.99E+08 4.67E+09 0.370124 1.20E+07 2.95E+06 2.42E+05 7.03E+06 1.89E+07 2.21E+08 2.43E+07 2.76E+06 2.12E+03 2.66E+06 4.11E+07 2.50E+08 2.92E+08 14.10% 85.90% swaptions
vips 31897711 1.97E+08 0.170412 5.02E+05 1.24E+05 1.01E+04 3.24E+06 7.88E+05 1.02E+08 1.12E+07 1.27E+06 9.78E+02 1.22E+06 4.66E+06 1.15E+08 1.20E+08 3.89% 96.11% vips
barnes 88.6062 4260225 19425076 0.1 5.19E+04 1.28E+04 1.05E+03 1.45E+06 8.44E+04 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 1.60E+06 5.18E+07 5.34E+07 3.00% 97.00% barnes
cholesky 33.56269 4871857 27116891 0.1 7.01E+04 1.73E+04 1.41E+03 1.80E+06 1.11E+05 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 2.00E+06 6.43E+07 6.63E+07 3.02% 96.98% cholesky
fft 4.04E+08 2.23E+09 0.134908 5.77E+06 1.42E+06 1.16E+05 2.56E+06 9.17E+06 8.05E+07 8.85E+06 1.00E+06 7.74E+02 9.68E+05 1.90E+07 9.13E+07 1.10E+08 17.25% 82.75% fft
lu_cb 1.25E+08 7.42E+08 0.178252 1.90E+06 4.68E+05 3.83E+04 3.39E+06 3.00E+06 1.06E+08 1.17E+07 1.33E+06 1.02E+03 1.28E+06 8.79E+06 1.21E+08 1.29E+08 6.79% 93.21% lu_cb
lu_ncb 1.91E+08 1.14E+09 0.145 2.92E+06 7.19E+05 5.90E+04 2.75E+06 4.60E+06 8.65E+07 9.52E+06 1.08E+06 8.32E+02 1.04E+06 1.11E+07 9.81E+07 1.09E+08 10.13% 89.87% lu_ncb
radiosity 33.67528 10822604 53253020 0.1 1.40E+05 3.46E+04 2.83E+03 1.81E+06 2.26E+05 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 2.22E+06 6.46E+07 6.68E+07 3.32% 96.68% radiosity
radix 4.85E+08 2.69E+09 0.3187 6.96E+06 1.71E+06 1.41E+05 6.05E+06 1.11E+07 1.90E+08 2.09E+07 2.37E+06 1.83E+03 2.29E+06 2.59E+07 2.16E+08 2.42E+08 10.73% 89.27% radix
raytrace 39.38875 1695403 9526486 0.1 2.46E+04 6.05E+03 4.96E+02 1.69E+06 3.90E+04 5.96E+07 6.56E+06 7.45E+05 5.74E+02 7.18E+05 1.76E+06 6.01E+07 6.19E+07 2.84% 97.16% raytrace
water_nsquared 32821445 1.89E+08 0.046133 4.86E+05 1.20E+05 9.82E+03 8.76E+05 7.69E+05 2.75E+07 3.03E+06 3.44E+05 2.65E+02 3.31E+05 2.26E+06 3.12E+07 3.35E+07 6.76% 93.24% water_nsquared

composable remote control PoM
Buffer blackschol 3.01E+07 1 2.97E+07 0.985 2.82E+07 0.935
 Dynami 2.19E-12 2.19E-03 bodytrack 2.29E+08 1 2.20E+08 0.962 2.16E+08 0.942
 Leakage 7.45E-03 7.45E+06 canneal 1.38E+08 1 1.42E+08 1.029 1.17E+08 0.842
Crossbar dedup 5.18E+08 1 5.33E+08 1.030 5.03E+08 0.972
 Dynami 5.39E-13 5.39E-04 facesim 7.00E+07 1 6.91E+07 0.987 6.64E+07 0.948
 Leakage 8.20E-04 8.20E+05 fluidanima 7.81E+07 1 7.99E+07 1.023 5.95E+07 0.762
Switch allocator swaptions 3.25E+08 1 2.98E+08 0.917 2.92E+08 0.898
 Dynami 4.42E-14 4.42E-05 vips 1.24E+08 1 1.25E+08 1.008 1.20E+08 0.967
 Leakage 9.31E-05 9.31E+04 barnes 6.97E+07 1 5.28E+07 0.758 5.34E+07 0.766
Clock cholesky 6.98E+07 1 7.01E+07 1.005 6.63E+07 0.950
 Dynami 2.97E-04 1.90E+07 fft 1.23E+08 1 1.11E+08 0.908 1.10E+08 0.900
 Leakage 5.74E-06 5.74E+03 lu_cb 1.31E+08 1 1.32E+08 1.004 1.29E+08 0.986
Total lu_ncb 1.16E+08 1 1.09E+08 0.940 1.09E+08 0.941
 Dynami 2.97E-04 2.97E+05 radiosity 7.00E+07 1 7.03E+07 1.005 6.68E+07 0.954
 Leakage 8.38E-03 5.36E+08 radix 2.55E+08 1 2.47E+08 0.968 2.42E+08 0.948

raytrace 6.96E+07 1 6.59E+07 0.946 6.19E+07 0.889
Link water_nsq 3.44E+07 1 3.51E+07 1.020 3.35E+07 0.973
 Dynami 3.02E-12 3.02E-03 geomean 1.000 0.968 0.913
 Leakage 1.55E-05 7.18E+06

0
0.2
0.4
0.6
0.8

1
1.2

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

composable remote control UPP

(a)

4VCs
composable
flits link runtime buf dyn xbar dyn arbiter dynclk dyn link dyn buf sta xbar sta arbiter sta clk sta link sta dyn sta total

blackscholes 17065207 1.09E+08 0.03896 8.23E+05 6.82E+04 2.41E+04 7.95E+05 4.33E+05 8.56E+07 2.56E+06 1.68E+06 2.24E+02 2.80E+05 2.14E+06 9.01E+07 9.23E+07 2.32% 97.68% blackscholes
bodytrack 2.76E+08 1.73E+09 0.288319 1.31E+07 1.08E+06 3.83E+05 5.88E+06 6.90E+06 6.33E+08 1.89E+07 1.24E+07 1.66E+03 2.07E+06 2.73E+07 6.67E+08 6.94E+08 3.94% 96.06% bodytrack
canneal 2.9E+08 1.75E+09 0.168614 1.33E+07 1.10E+06 3.88E+05 3.44E+06 7.03E+06 3.70E+08 1.11E+07 7.25E+06 9.68E+02 1.21E+06 2.52E+07 3.90E+08 4.15E+08 6.07% 93.93% canneal
dedup 3.87E+08 2.36E+09 0.708688 1.79E+07 1.48E+06 5.23E+05 1.45E+07 9.46E+06 1.56E+09 4.65E+07 3.05E+07 4.07E+03 5.09E+06 4.38E+07 1.64E+09 1.68E+09 2.60% 97.40% dedup
facesim 32.20445 10306735 58072942 0.1 4.45E+05 3.69E+04 1.30E+04 2.04E+06 2.38E+05 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.77E+06 2.31E+08 2.34E+08 1.18% 98.82% facesim
fluidanimate 71393468 4.39E+08 0.10671 3.32E+06 2.75E+05 9.72E+04 2.18E+06 1.75E+06 2.34E+08 7.00E+06 4.59E+06 6.13E+02 7.66E+05 7.62E+06 2.47E+08 2.54E+08 3.00% 97.00% fluidanimate
swaptions 7.95E+08 4.97E+09 0.343778 3.75E+07 3.11E+06 1.10E+06 7.01E+06 1.98E+07 7.55E+08 2.26E+07 1.48E+07 1.97E+03 2.47E+06 6.85E+07 7.95E+08 8.64E+08 7.93% 92.07% swaptions
vips 33049543 2.21E+08 0.164539 1.65E+06 1.37E+05 4.84E+04 3.36E+06 8.67E+05 3.62E+08 1.08E+07 7.08E+06 9.45E+02 1.18E+06 6.06E+06 3.81E+08 3.87E+08 1.57% 98.43% vips
barnes 29.59211 4260223 20148631 0.1 1.59E+05 1.32E+04 4.65E+03 2.04E+06 8.65E+04 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.30E+06 2.31E+08 2.34E+08 0.99% 99.01% barnes
cholesky 32.57046 4871890 28537567 0.1 2.17E+05 1.80E+04 6.37E+03 2.04E+06 1.16E+05 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.40E+06 2.31E+08 2.34E+08 1.03% 98.97% cholesky
fft 4.02E+08 2.36E+09 0.096115 1.80E+07 1.49E+06 5.26E+05 1.96E+06 9.55E+06 2.11E+08 6.31E+06 4.13E+06 5.52E+02 6.90E+05 3.15E+07 2.22E+08 2.54E+08 12.41% 87.59% fft
lu_cb 1.25E+08 7.83E+08 0.177738 5.91E+06 4.90E+05 1.73E+05 3.63E+06 3.12E+06 3.91E+08 1.17E+07 7.64E+06 1.02E+03 1.28E+06 1.33E+07 4.11E+08 4.24E+08 3.14% 96.86% lu_cb
lu_ncb 1.88E+08 1.13E+09 0.131441 8.55E+06 7.08E+05 2.50E+05 2.68E+06 4.53E+06 2.89E+08 8.63E+06 5.65E+06 7.55E+02 9.43E+05 1.67E+07 3.04E+08 3.21E+08 5.21% 94.79% lu_ncb
radiosity 29.73551 10822467 55447892 0.1 4.31E+05 3.57E+04 1.26E+04 2.04E+06 2.33E+05 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.75E+06 2.31E+08 2.34E+08 1.18% 98.82% radiosity
radix 4.83E+08 2.86E+09 0.282839 2.17E+07 1.80E+06 6.36E+05 5.77E+06 1.15E+07 6.21E+08 1.86E+07 1.22E+07 1.62E+03 2.03E+06 4.15E+07 6.54E+08 6.96E+08 5.96% 94.04% radix
raytrace 33.53878 1695481 10066540 0.1 7.65E+04 6.34E+03 2.24E+03 2.04E+06 4.06E+04 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.17E+06 2.31E+08 2.33E+08 0.93% 99.07% raytrace
water_nsquared 32805982 2.03E+08 0.048106 1.54E+06 1.27E+05 4.50E+04 9.81E+05 8.11E+05 1.06E+08 3.16E+06 2.07E+06 2.76E+02 3.45E+05 3.50E+06 1.11E+08 1.15E+08 3.05% 96.95% water_nsquared

remote control
flits link runtime buf dyn xbar dyn arbiter dynclk dyn link dyn buf sta xbar sta arbiter sta clk sta link sta dyn sta total

blackscholes 16990741 1.01E+08 0.038551 7.68E+05 6.36E+04 2.25E+04 7.86E+05 4.07E+05 8.47E+07 2.53E+06 1.66E+06 2.21E+02 2.77E+05 2.05E+06 8.92E+07 9.12E+07 2.25% 97.75% blackscholes
bodytrack 2.75E+08 1.6E+09 0.283788 1.22E+07 1.01E+06 3.58E+05 5.79E+06 6.50E+06 6.24E+08 1.86E+07 1.22E+07 1.63E+03 2.04E+06 2.59E+07 6.56E+08 6.82E+08 3.80% 96.20% bodytrack
canneal 2.84E+08 1.61E+09 0.14002 1.23E+07 1.02E+06 3.60E+05 2.86E+06 6.57E+06 3.08E+08 9.19E+06 6.02E+06 8.04E+02 1.01E+06 2.31E+07 3.24E+08 3.47E+08 6.66% 93.34% canneal
dedup 3.88E+08 2.38E+09 0.704683 1.80E+07 1.49E+06 5.27E+05 1.44E+07 9.52E+06 1.55E+09 4.62E+07 3.03E+07 4.05E+03 5.06E+06 4.39E+07 1.63E+09 1.67E+09 2.62% 97.38% dedup
facesim 31.49517 10306807 56526219 0.1 4.35E+05 3.60E+04 1.27E+04 1.99E+06 2.33E+05 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.71E+06 2.26E+08 2.29E+08 1.18% 98.82% facesim
fluidanimate 71511232 4.12E+08 0.105576 3.15E+06 2.61E+05 9.22E+04 2.15E+06 1.68E+06 2.32E+08 6.93E+06 4.54E+06 6.06E+02 7.58E+05 7.33E+06 2.44E+08 2.52E+08 2.91% 97.09% fluidanimate
swaptions 7.97E+08 4.66E+09 0.348588 3.55E+07 2.94E+06 1.04E+06 7.11E+06 1.89E+07 7.66E+08 2.29E+07 1.50E+07 2.00E+03 2.50E+06 6.55E+07 8.06E+08 8.72E+08 7.51% 92.49% swaptions
vips 32210576 1.99E+08 0.166347 1.50E+06 1.24E+05 4.40E+04 3.39E+06 7.94E+05 3.65E+08 1.09E+07 7.15E+06 9.55E+02 1.19E+06 5.86E+06 3.85E+08 3.91E+08 1.50% 98.50% vips
barnes 28.69344 4260217 19426471 0.1 1.54E+05 1.28E+04 4.51E+03 1.98E+06 8.44E+04 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.23E+06 2.24E+08 2.26E+08 0.99% 99.01% barnes
cholesky 33.05255 4871717 27115068 0.1 2.08E+05 1.72E+04 6.09E+03 2.07E+06 1.11E+05 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.41E+06 2.35E+08 2.37E+08 1.02% 98.98% cholesky
fft 3.99E+08 2.2E+09 0.092505 1.69E+07 1.40E+06 4.95E+05 1.89E+06 9.04E+06 2.03E+08 6.07E+06 3.98E+06 5.31E+02 6.64E+05 2.97E+07 2.14E+08 2.44E+08 12.20% 87.80% fft
lu_cb 1.24E+08 7.29E+08 0.174086 5.55E+06 4.60E+05 1.62E+05 3.55E+06 2.95E+06 3.82E+08 1.14E+07 7.49E+06 9.99E+02 1.25E+06 1.27E+07 4.03E+08 4.15E+08 3.05% 96.95% lu_cb
lu_ncb 1.9E+08 1.08E+09 0.125467 8.26E+06 6.84E+05 2.42E+05 2.56E+06 4.40E+06 2.76E+08 8.23E+06 5.40E+06 7.20E+02 9.01E+05 1.61E+07 2.90E+08 3.06E+08 5.27% 94.73% lu_ncb
radiosity 30.28812 10822315 53248764 0.1 4.17E+05 3.46E+04 1.22E+04 2.08E+06 2.26E+05 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.77E+06 2.36E+08 2.38E+08 1.16% 98.84% radiosity
radix 4.79E+08 2.66E+09 0.284639 2.04E+07 1.69E+06 5.97E+05 5.81E+06 1.09E+07 6.25E+08 1.87E+07 1.22E+07 1.63E+03 2.04E+06 3.94E+07 6.58E+08 6.98E+08 5.65% 94.35% radix
raytrace 33.80286 1695316 9525859 0.1 7.30E+04 6.05E+03 2.14E+03 2.06E+06 3.90E+04 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.18E+06 2.33E+08 2.35E+08 0.92% 99.08% raytrace
water_nsquared 32641014 1.89E+08 0.048099 1.44E+06 1.19E+05 4.22E+04 9.81E+05 7.67E+05 1.06E+08 3.16E+06 2.07E+06 2.76E+02 3.45E+05 3.35E+06 1.11E+08 1.15E+08 2.92% 97.08% water_nsquared

PoM
flits link runtime buf dyn xbar dyn arbiter dynclk dyn link dyn buf sta xbar sta arbiter sta clk sta link sta dyn sta total

blackscholes 16814377 99765432 0.03794 7.59E+05 6.29E+04 2.22E+04 7.74E+05 4.03E+05 8.34E+07 2.49E+06 1.63E+06 2.18E+02 2.72E+05 2.02E+06 8.78E+07 8.98E+07 2.25% 97.75% blackscholes
bodytrack 2.75E+08 1.61E+09 0.276738 1.22E+07 1.01E+06 3.58E+05 5.64E+06 6.51E+06 6.08E+08 1.82E+07 1.19E+07 1.59E+03 1.99E+06 2.58E+07 6.40E+08 6.66E+08 3.87% 96.13% bodytrack
canneal 2.84E+08 1.61E+09 0.135979 1.23E+07 1.02E+06 3.60E+05 2.77E+06 6.56E+06 2.99E+08 8.92E+06 5.85E+06 7.81E+02 9.76E+05 2.30E+07 3.15E+08 3.38E+08 6.82% 93.18% canneal
dedup 3.88E+08 2.24E+09 0.688057 1.71E+07 1.42E+06 5.01E+05 1.40E+07 9.11E+06 1.51E+09 4.52E+07 2.96E+07 3.95E+03 4.94E+06 4.22E+07 1.59E+09 1.63E+09 2.58% 97.42% dedup
facesim 31.54326 10307023 56532007 0.1 4.35E+05 3.60E+04 1.27E+04 2.00E+06 2.33E+05 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.71E+06 2.27E+08 2.29E+08 1.18% 98.82% facesim
fluidanimate 70114295 4.03E+08 0.101752 3.08E+06 2.55E+05 9.02E+04 2.08E+06 1.64E+06 2.24E+08 6.68E+06 4.38E+06 5.84E+02 7.30E+05 7.14E+06 2.35E+08 2.42E+08 2.95% 97.05% fluidanimate
swaptions 7.95E+08 4.65E+09 0.343778 3.54E+07 2.94E+06 1.04E+06 7.01E+06 1.88E+07 7.55E+08 2.26E+07 1.48E+07 1.97E+03 2.47E+06 6.52E+07 7.95E+08 8.60E+08 7.58% 92.42% swaptions
vips 32664419 2.01E+08 0.158656 1.52E+06 1.26E+05 4.45E+04 3.24E+06 8.03E+05 3.49E+08 1.04E+07 6.82E+06 9.11E+02 1.14E+06 5.73E+06 3.67E+08 3.73E+08 1.54% 98.46% vips
barnes 28.59836 4260235 19427814 0.1 1.54E+05 1.28E+04 4.51E+03 1.97E+06 8.44E+04 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.23E+06 2.24E+08 2.26E+08 0.99% 99.01% barnes
cholesky 31.34605 4871885 27114370 0.1 2.08E+05 1.72E+04 6.09E+03 1.96E+06 1.11E+05 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.31E+06 2.23E+08 2.25E+08 1.03% 98.97% cholesky
fft 3.98E+08 2.19E+09 0.091967 1.69E+07 1.40E+06 4.94E+05 1.88E+06 9.03E+06 2.02E+08 6.04E+06 3.95E+06 5.28E+02 6.60E+05 2.97E+07 2.13E+08 2.42E+08 12.24% 87.76% fft
lu_cb 1.24E+08 7.32E+08 0.171782 5.57E+06 4.62E+05 1.63E+05 3.50E+06 2.96E+06 3.77E+08 1.13E+07 7.39E+06 9.86E+02 1.23E+06 1.27E+07 3.97E+08 4.10E+08 3.09% 96.91% lu_cb
lu_ncb 1.88E+08 1.05E+09 0.119653 8.03E+06 6.65E+05 2.35E+05 2.44E+06 4.29E+06 2.63E+08 7.85E+06 5.15E+06 6.87E+02 8.59E+05 1.57E+07 2.77E+08 2.92E+08 5.36% 94.64% lu_ncb
radiosity 28.82306 10822530 53251573 0.1 4.17E+05 3.46E+04 1.22E+04 1.98E+06 2.26E+05 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.67E+06 2.24E+08 2.27E+08 1.18% 98.82% radiosity
radix 4.84E+08 2.68E+09 0.270546 2.06E+07 1.71E+06 6.03E+05 5.52E+06 1.10E+07 5.94E+08 1.78E+07 1.16E+07 1.55E+03 1.94E+06 3.94E+07 6.26E+08 6.65E+08 5.93% 94.07% radix
raytrace 31.95507 1695568 9527161 0.1 7.30E+04 6.05E+03 2.14E+03 1.94E+06 3.90E+04 2.20E+08 6.56E+06 4.30E+06 5.74E+02 7.18E+05 2.06E+06 2.20E+08 2.22E+08 0.93% 99.07% raytrace
water_nsquared 32927635 1.9E+08 0.046267 1.45E+06 1.20E+05 4.24E+04 9.44E+05 7.71E+05 1.02E+08 3.04E+06 1.99E+06 2.66E+02 3.32E+05 3.33E+06 1.07E+08 1.10E+08 3.01% 96.99% water_nsquared

composable remote control PoM
blackschol 9.23E+07 1 9.12E+07 0.989 8.98E+07 0.973
bodytrack 6.94E+08 1 6.82E+08 0.983 6.66E+08 0.959

composable remote control PoM canneal 4.15E+08 1 3.47E+08 0.836 3.38E+08 0.813
Buffer blackschol 9.23E+07 1 9.12E+07 0.989 8.98E+07 0.973 dedup 1.68E+09 1 1.67E+09 0.995 1.63E+09 0.971
 Dynami 6.51E-12 6.51E-03 bodytrack 6.94E+08 1 6.82E+08 0.983 6.66E+08 0.959 facesim 2.34E+08 1 2.29E+08 0.978 2.29E+08 0.979
 Leakage 2.75E-02 2.75E+07 canneal 4.15E+08 1 3.47E+08 0.836 3.38E+08 0.813 fluidanima 2.54E+08 1 2.52E+08 0.989 2.42E+08 0.953
Crossbar dedup 1.68E+09 1 1.67E+09 0.995 1.63E+09 0.971 swaptions 8.64E+08 1 8.72E+08 1.009 8.60E+08 0.996
 Dynami 5.39E-13 5.39E-04 fluidanima 2.54E+08 1 2.52E+08 0.989 2.42E+08 0.953 vips 3.87E+08 1 3.91E+08 1.010 3.73E+08 0.964
 Leakage 8.20E-04 8.20E+05 fft 2.54E+08 1 2.44E+08 0.960 2.42E+08 0.955 barnes 2.34E+08 1 2.26E+08 0.970 2.26E+08 0.966
Switch allocator swaptions 8.64E+08 1 8.72E+08 1.009 8.60E+08 0.996 cholesky 2.34E+08 1 2.37E+08 1.015 2.25E+08 0.962
 Dynami 1.91E-13 1.91E-04 water_nsq 1.15E+08 1 1.15E+08 0.999 1.10E+08 0.961 fft 2.54E+08 1 2.44E+08 0.960 2.42E+08 0.955
 Leakage 5.38E-04 5.38E+05 lu_cb 4.24E+08 1 4.15E+08 0.979 4.10E+08 0.966 lu_cb 4.24E+08 1 4.15E+08 0.979 4.10E+08 0.966
Clock radix 6.96E+08 1 6.98E+08 1.003 6.65E+08 0.956 lu_ncb 3.21E+08 1 3.06E+08 0.955 2.92E+08 0.912
 Dynami 3.19E-04 2.04E+07 geomean 1 0.973 0.949 radiosity 2.34E+08 1 2.38E+08 1.018 2.27E+08 0.969
 Leakage 5.74E-06 5.74E+03 radix 6.96E+08 1 6.98E+08 1.003 6.65E+08 0.956
Total raytrace 2.33E+08 1 2.35E+08 1.008 2.22E+08 0.953
 Dynami 3.19E-04 3.19E+05 water_nsq 1.15E+08 1 1.15E+08 0.999 1.10E+08 0.961
 Leakage 2.88E-02 1.85E+09 geomean 1.000 0.981 0.953

Link
 Dynami 3.02E-12 3.02E-03
 Leakage 1.55E-05 7.18E+06

0
0.2
0.4
0.6
0.8

1
1.2

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

composable remote control UPP

(b)

Figure 15. Normalized energy consumption comparison of full system
simulations. (a) System with 1 VC per VNet. (b) System with 4 VCs per
VNet.

D. Hardware Overhead and Energy Consumption

Fig. 14 shows the comparison of the hardware overhead in
chiplet and interposer routers, where the network frequency
is 1 GHz. Synthesizing using the Synopsys Design Compiler
under 45nm TSMC library, the baseline router has an area
of 135,083 µm2 with 1 VC per VNet and 339,371 µm2

with 4 VCs per VNet. The hardware overhead on chiplet
routers and interposer routers are considered respectively;
the area of NI is included in chiplet routers. As shown
in Fig. 14, the composable routing consumes almost zero
additional hardware; this is because it only uses turn restric-
tions for deadlock freedom. Although UPP incurs a slightly
larger area overhead, it is worthwhile due to its benefits in
performance and flexibility.

Fig. 15 shows the energy consumption comparisons of
gem5 full system simulations, where the results are nor-
malized to those of the composable routing. The energy is
calculated by gathering the runtime statistics and using the
DSENT tool [44] for estimation under 22 nm technology. As
the average traffic load of real benchmarks is quite low, the
network power consumption is dominated by static power.
Therefore, the energy consumption results are quite similar
to the runtime results of Fig. 8. It can be seen that UPP
consumes the least energy on average due to its shorter
runtime.

VII. RELATED WORKS

A. Routing Deadlock Freedom

Dally’s theory-based approaches: Segment routing [23],
[25] divides a network into subnetworks and further divides
subnetworks into segments. Then it places one bidirectional
turn restriction in each segment for deadlock freedom. ARI-
ADNE [2], [33] traverses the whole network with breadth-
first searches and places up*/down* [40] turn restrictions.
uDIREC [32] extends ARIADNE to be applicable in faulty
networks with unidirectional faulty links. These approaches
traverse the network topology for turn restriction placement.
Besides, their turn restrictions reduce path diversity and lead
to non-minimal routing on irregular topologies [38]. VC
partitioning [11], [14] separates different traffic flows with
multiple VCs. EbDa [15] introduces three theorems that
directly lead to fully-adaptive deadlock-free routing algo-
rithms. These approaches require the topology and number
of VCs for VC usage restriction decisions. The additional
VCs increase the hardware overhead.

Duato’s theory-based approaches: Router Parking [39]
places up*/down* turn restrictions in an escape VC. Im-
munet [34] and Immucube [36] applies BFC in a ring
escape subnetwork. These approaches require to add more
VCs to construct the escape VC. Differently, DRAIN [28]
constructs a unidrectional ring escape path in time domain.
All packets are forced to move along it periodically for
deadlock freedom. The construction requires the global
topology information and violates the modularity. DISHA
[3], [45] constructs the escape path with additional buffers
at every router and Pitstop [18] utilizes the idle NI buffers.
They guarantee deadlock freedom by allowing only one
packet in the escape path at any time. Because their escape
paths can cover the whole network, when DISHA or Pitstop
are applied in chiplet-based systems, they demand that all
chiplets have to support them. In contrast, when UPP are
applied on a chiplet and its connected interposer routers,
the other chiplets are free to use the composable routing or
remote control to avoid deadlocks. Therefore, DISHA and
Pitstop lack the compatibility with other approaches. They
prevent different chiplets making individual optimizations
and violate the modularity.

Deflection-based approaches: These approaches [16],
[17], [26], [49], [50] are originally proposed to completely
remove NoC buffers and reduce the associated hardware
and power. BBR [31], BINDU [30] and SWAP [29] use
controlled deflection [29] to resolve deadlocks in irregular
topologies. These approaches achieve full path diversity
regardless of the network topology, but they incur packet
truncation if the wormhole flow control is used. Therefore,
when they are applied in chiptlet-based systems, they are not
compatible with chiplets that do not support packet trunca-
tion or reassembly, and violate the flow control modularity.

B. Protocol Deadlock Freedom

Most NoC designs use multiple VNets [19] for protocol
deadlock freedom. mDISHA [42] extends DISHA [3] to
resolve protocol deadlocks after detection. DRAIN [28] is
the first one to achieve both routing and protocol deadlock
freedom without adding buffers. However, the necessary
condition of DRAIN that the packets of one message class
cannot use up all network buffers is proved to be impractical
[18]. Pitstop [18] transmits packets of different message
classes concurrently along the escape path to achieve both
routing and protocol deadlock freedom. By utilizing the idle
NI buffers, no additional buffers is required. The proposed
UPP is a routing deadlock recovery framework that allows
individual chiplet and the interposer to use locally optimized
routing algorithms. By applying Pitstop in both chiplets and
the interposer, UPP can also ensure both routing and protocol
deadlock freedom with 1 VNet.

VIII. CONCLUSION

The integration-induced deadlock is intractable in chiplet-
based systems. To overcome the challenge of chiplet design
modularity, performance and flexibility, UPP, a deadlock
recovery framework for modular chiplet-based systems is
proposed. Compared with state-of-the-art approaches, UPP
improves the performance by up to 24% with a hardware
overhead of less than 4%.

ACKNOWLEDGMENT

This work is supported by the Beijing Superstring
Academy of Memory Technology.

REFERENCES

[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A
detailed on-chip network model inside a full-system simula-
tor,” in 2009 IEEE International Symposium on Performance
Analysis of Systems and Software, 2009, pp. 33–42.

[2] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, “Ari-
adne: Agnostic reconfiguration in a disconnected network
environment,” in 2011 International Conference on Parallel
Architectures and Compilation Techniques, 2011, pp. 298–
309.

[3] K. Anjan and T. Pinkston, “An efficient, fully adaptive dead-
lock recovery scheme: Disha,” in Proceedings 22nd Annual
International Symposium on Computer Architecture, 1995, pp.
201–210.

[4] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi,
O. Villa, A. Jaleel, C.-J. Wu, and D. Nellans, “Mcm-gpu:
Multi-chip-module gpus for continued performance scalabil-
ity,” in Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, 2017, p. 320–332.

[5] S. Bharadwaj, J. Yin, B. Beckmann, and T. Krishna, “Kite:
A family of heterogeneous interposer topologies enabled via
accurate interconnect modeling,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020, pp. 1–6.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec
benchmark suite: Characterization and architectural implica-
tions,” in 2008 International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), 2008, pp. 72–81.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood, “The gem5 simulator,” Association for Computing
Machinery, vol. 39, no. 2, p. 1–7, 2011.

[8] L. Chen and T. M. Pinkston, “Worm-bubble flow control,”
in 2013 IEEE 19th International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2013, pp. 366–377.

[9] L. Chen, R. Wang, and T. M. Pinkston, “Critical bubble
scheme: An efficient implementation of globally aware net-
work flow control,” in 2011 IEEE International Parallel &
Distributed Processing Symposium, 2011, pp. 592–603.

[10] J. Cong, M. Gill, Y. Hao, G. Reinman, and B. Yuan, “On-chip
interconnection network for accelerator-rich architectures,” in
DAC ’15: Proceedings of the 52nd Annual Design Automation
Conference, 2015, pp. 1–6.

[11] Dally and Seitz, “Deadlock-free message routing in multi-
processor interconnection networks,” IEEE Transactions on
Computers, vol. C-36, no. 5, pp. 547–553, 1987.

[12] W. Dally and B. Towles, Principles and Practices of Inter-
connection Network, 2004.

[13] J. Duato, “A new theory of deadlock-free adaptive routing
in wormhole networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 12, pp. 1320–1331, 1993.

[14] J. Duato and T. M. Pinkston, “A general theory for deadlock-
free adaptive routing using a mixed set of resources,” IEEE
Trans. Parallel Distrib. Syst., vol. 12, no. 12, p. 1219–1235,
2001.

[15] M. Ebrahimi and M. Daneshtalab, “Ebda: A new theory
on design and verification of deadlock-free interconnection
networks,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, 2017, p. 703–715.

[16] C. Fallin, C. Craik, and O. Mutlu, “Chipper: A low-
complexity bufferless deflection router,” in 2011 IEEE 17th
International Symposium on High Performance Computer
Architecture, 2011, pp. 144–155.

[17] C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun,
and O. Mutlu, “Minbd: Minimally-buffered deflection routing
for energy-efficient interconnect,” in 2012 IEEE/ACM Sixth
International Symposium on Networks-on-Chip, 2012, pp. 1–
10.

[18] H. Farrokhbakht, H. Kao, K. Hasan, P. V. Gratz, T. Krishna,
J. S. Miguel, and N. E. Jerger, “Pitstop: Enabling a vir-
tual network free network-on-chip,” in 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architec-
ture (HPCA), 2021, pp. 682–695.

[19] A. Hansson, K. Goossens, and A. Rădulescu, “Avoiding
message-dependent deadlock in network-based systems on
chip,” VLSI design, 2007.

[20] N. D. E. Jerger, L.-S. Peh, and M. H. Lipasti, “Circuit-
switched coherence,” in Second ACM/IEEE International
Symposium on Networks-on-Chip (nocs 2008), 2008, pp. 193–
202.

[21] N. E. Jerger, T. Krishna, L.-S. Peh, and M. Martonosi, On-
Chip Networks: Second Edition. Morgan & Claypool, 2017.

[22] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling interposer-
based disintegration of multi-core processors,” in 2015 48th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2015, pp. 546–558.

[23] D. Lee, R. Parikh, and V. Bertacco, “Brisk and limited-
impact noc routing reconfiguration,” in Proceedings of the
Conference on Design, Automation & Test in Europe,
2014.

[24] P. Majumder, S. Kim, J. Huang, K. H. Yum, and E. J. Kim,
“Remote control: A simple deadlock avoidance scheme for
modular systems-on-chip,” IEEE Transactions on Computers,
vol. 70, no. 11, pp. 1928–1941, 2021.

[25] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie,
“Segment-based routing: an efficient fault-tolerant routing
algorithm for meshes and tori,” in Proceedings 20th IEEE In-
ternational Parallel Distributed Processing Symposium, 2006,
pp. 10 pp.–.

[26] T. Moscibroda and O. Mutlu, “A case for bufferless routing
in on-chip networkp,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, 2009, p.
196–207.

[27] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Sub-
ramony, and S. White, “Pioneering chiplet technology and
design for the amd epyc™ and ryzen™ processor families,”
in Proceedings of the 48th Annual International Symposium
on Computer Architecture, 2021.

[28] M. Parasar, H. Farrokhbakht, N. Enright Jerger, P. V. Gratz,
T. Krishna, and J. San Miguel, “Drain: Deadlock removal
for arbitrary irregular networks,” in 2020 IEEE International
Symposium on High Performance Computer Architecture
(HPCA), 2020, pp. 447–460.

[29] M. Parasar, N. E. Jerger, P. V. Gratz, J. S. Miguel, and
T. Krishna, “Swap: Synchronized weaving of adjacent packets
for network deadlock resolution,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2019, p. 873–885.

[30] M. Parasar and T. Krishna, “Bindu: Deadlock-freedom with
one bubble in the network,” in Proceedings of the 13th
IEEE/ACM International Symposium on Networks-on-Chip,
2019.

[31] M. Parasar, A. Sinha, and T. Krishna, “Brownian bubble
router: Enabling deadlock freedom via guaranteed forward
progress,” in 2018 Twelfth IEEE/ACM International Sympo-
sium on Networks-on-Chip (NOCS), 2018, pp. 1–8.

[32] R. Parikh and V. Bertacco, “Udirec: Unified diagnosis and
reconfiguration for frugal bypass of noc faultsp,” in Proceed-
ings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, 2013, p. 148–159.

[33] R. Parikh, R. Das, and V. Bertacco, “Power-aware nocs
through routing and topology reconfiguration,” in Proceedings
of the 51st Annual Design Automation Conference, 2014, p.
1–6.

[34] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Im-
munet: A cheap and robust fault-tolerant packet routing
mechanism,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture, 2004, p. 198.

[35] V. Puente, C. Izu, R. Beivide, J. Gregorio, F. Vallejo, and
J. Prellezo, “The adaptive bubble router,” Journal of Parallel
and Distributed Computin, vol. 61, no. 9, pp. 1180–120, 2001.

[36] V. Puente and J. A. Gregorio, “Immucube: Scalable fault-
tolerant routing for k-ary n-cube networks,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 18, no. 6, pp.
776–788, 2007.

[37] A. Ramrakhyani, P. V. Gratz, and T. Krishna, “Synchronized
progress in interconnection networks (spin): A new theory
for deadlock freedom,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA),
2018, pp. 699–711.

[38] A. Ramrakhyani and T. Krishna, “Static bubble: A framework
for deadlock-free irregular on-chip topologies,” in 2017 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), 2017, pp. 253–264.

[39] A. Samih, R. Wang, A. Krishna, C. Maciocco, C. Tai, and
Y. Solihin, “Energy-efficient interconnect via router park-
ingp,” in 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), 2013, pp. 508–
519.

[40] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Need-
ham, T. Rodeheffer, E. Satterthwaite, and C. Thacker, “Au-
tonet: a high-speed, self-configuring local area network using
point-to-point links,” IEEE Journal on Selected Areas in
Communications, vol. 9, no. 8, pp. 1318–1335, 1991.

[41] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik,
N. Jiang, B. Keller, A. Klinefelter, N. Pinckney, P. Raina,
S. G. Tell, Y. Zhang, W. J. Dally, J. Emer, C. T. Gray,
B. Khailany, and S. W. Keckler, “Simba: Scaling deep-
learning inference with multi-chip-module-based architec-
ture,” in Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 2019, p. 14–27.

[42] Y. H. Song and T. Pinkston, “A progressive approach to
handling message-dependent deadlock in parallel computer
systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 14, no. 3, pp. 259–275, 2003.

[43] D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh, “Cost-effective
design of scalable high-performance systems using active
and passive interposers,” in 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2017, pp.
728–735.

[44] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller,
A. Agarwal, L.-S. Peh, and V. Stojanovic, “Dsent - a tool
connecting emerging photonics with electronics for opto-
electronic networks-on-chip modeling,” in 2012 IEEE/ACM
Sixth International Symposium on Networks-on-Chip, 2012,
pp. 201–210.

[45] A. K. Venkatramani, T. M. Pinkston, and J. Duato, “Gen-
eralized theory for deadlock-free adaptive wormhole routing
and its application to disha concurrent,” in Proceedings of the
10th International Parallel Processing Symposium, 1996, p.
815–821.

[46] T. Vijayaraghavan, Y. Eckert, G. H. Loh, M. J. Schulte, M. Ig-
natowski, B. M. Beckmann, W. C. Brantley, J. L. Greathouse,
W. Huang, A. Karunanithi, O. Kayiran, M. Meswani, I. Paul,
M. Poremba, S. Raasch, S. K. Reinhardt, G. Sadowski, and
V. Sridharan, “Design and analysis of an apu for exascale
computing,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2017, pp. 85–
96.

[47] R. Wang, L. Chen, and T. M. Pinkston, “Bubble coloring:
Avoiding routing- and protocol-induced deadlocks with min-
imal virtual channel requirement,” in Proceedings of the 27th
International ACM Conference on International Conference
on Supercomputing, 2013, p. 193–202.

[48] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta,
“The splash-2 programs: characterization and methodological
consideration,” in Proceedings 22nd Annual International
Symposium on Computer Architecture, 1995, pp. 24–36.

[49] Y. Wu, L. Liu, L. Wang, X. Wang, J. Han, C. Deng, and
S. Wei, “Aggressive fine-grained power gating of noc buffers,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 11, pp. 3177–3189, 2020.

[50] Y. Wu, L. Wang, X. Wang, J. Han, S. Yin, S. Wei, and L. Liu,
“A deflection-based deadlock recovery framework to achieve
high throughput for faulty nocs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
pp. 1–1, 2020.

[51] J. Yin, Z. Lin, O. Kayiran, M. Poremba, M. Shoaib Bin Altaf,
N. Enright Jerger, and G. H. Loh, “Modular routing design
for chiplet-based systems,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA),
2018, pp. 726–738.

