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Abstract—Energy efficiency presents a significant challenge
for stochastic computing (SC) due to the long random binary
bit streams required for accurate computation. In this paper, a
type of low discrepancy (LD) sequences, the Sobol sequence, is
considered for energy-efficient implementations of SC circuits.
The use of Sobol sequences improves the output accuracy of a
stochastic circuit with a reduced sequence length compared to
the use of another type of LD sequences, the Halton sequence,
and conventional linear feedback shift register (LFSR)-generated
pseudorandom sequence. The use of Sobol sequences leads to a
similar or higher accuracy than using Halton sequences for basic
arithmetic operations. Sobol sequence generators cost less energy
than the Halton counterparts when multiple random sequences
are required in a circuit, thus the use of Sobol sequences can
lead to a higher energy efficiency in an SC circuit than using
Halton sequences.

I. INTRODUCTION

Stochastic computing (SC) is an unconventional computing
technique originally proposed to reduce the size of digital
arithmetic circuits [1], [2]. It is more robust against noise and
bit flip errors than analog and conventional digital circuits by
using stochastic sequences to represent numbers. In a typical
SC system, a binary integer is converted to a real value in
the range [0, 1] for the unipolar representation or [−1, 1] for
the bipolar representation of a stochastic sequence. Let N1

denote the number of 1’s in a stochastic sequence with NL-
bit length; then, this sequence encodes N1/NL in the unipolar
representation or (2N1−NL)/NL in the bipolar representation.

An SC arithmetic unit is typically very small, which leads
to significant saving in hardware and power consumption. A
complex mathematical function such as a Bernstein polyno-
mial can be implemented by just a few logic gates in SC
[3], while it requires considerable hardware in a conventional
design.

However, the disadvantages of SC include the long latency
and a low energy efficiency. Since the stochastic sequence
behaves similarly as a Bernoulli sequence, the variance of the
computed results is proportional to 1/

√
NL [4]. It indicates

that a long sequence must be used to obtain a high accuracy.
Although the hardware implementation of basic SC arithmetic
units are simplistic, the required stochastic number generators
(SNGs) consume significant hardware and energy. It has been
shown that linear feedback shift register (LFSR)-based SNGs
and the circuits that convert stochastic numbers to binary ones
contribute to more than 80% of the total circuit cost [5].

For LFSR-based SNGs, the effect of seed selection is
exploited in [6] and various strategies are applied to enhance
the output accuracy of an SC circuit. Although the optimized
sequences achieve a higher accuracy, a subset of the sequences
suffers from large random fluctuations, thus the error can be
large when the sequence length is smaller than the maximal
length of an LFSR-generated sequence (2N − 1 for an N -bit
LFSR). In [7], the Halton sequence is introduced for use in SC.
This low discrepancy (LD) sequence significantly reduces the
sequence length for achieving the same accuracy compared to
LFSR-generated pseudorandom sequences. However, Halton
sequences rely on the use of counters with different radices
when several independent sequences are required, thus a base
conversion is indispensable for the current binary system [7].
The base conversion results in additional hardware overhead.

In this paper, another type of LD sequences, the Sobol
sequence, is introduced for an energy-efficient implementation
of SC. The generation of Sobol sequences only requires simple
binary logic operations, so it does not incur a base-conversion
overhead compared to Halton sequences. A multiplier and
a multiplexing circuit implementing Bernstein polynomials,
using Sobol and Halton sequences, are implemented for the
evaluation of hardware efficiency, compared to conventional
implementations using LFSR-generated sequences.

II. LOW-DISCREPANCY SEQUENCES

A. Theory

LD sequences were first used to accelerate the convergence
process of Monte-Carlo (MC) integration [8], [9]. MC integra-
tion requires S-dimensional random sequences to estimate the
S-dimensional numerical integration. Given random sequences
with sufficient length, the MC integration can provide a close
estimation of the numerical integration. It has been shown that
a lower discrepancy in random sequences indicates a smaller
error in an MC integration [8]. An SC circuit can be considered
as an MC problem. It is shown in [7] that a lower discrepancy
also indicates a smaller error in SC.

The discrepancy of S-dimensional sequences P of NL

values can be quantitatively measured by the star discrepancy
D∗(P ). “Dimension” here refers to the dimension of sample
space in MC integration and it is equivalent to the number of
independent random sequences in an SC circuit. The condition
for being an LD sequence is that D∗(P ) has a convergence
speed of O(log(NL)

S−1/NL). Thus a longer sequence (larger



NL) and/or fewer independent sequences (smaller S) imply a
smaller error in an SC circuit.

Several methodologies have been developed to generate
different types of LD sequences, including Halton, Sobol
and Faure sequences. Software-based generation methods have
been developed, but few have been implemented in hardware.
In this paper, Sobol and Halton sequences are considered for
their ease in hardware generation. Also, the discrepancy of
Sobol sequences is smaller than that of Halton sequences,
especially when S is large and NL is small [8].

B. Generators

The designs in [10] and [7] are adopted for Sobol and Halton
sequence generation, respectively, as shown in Fig. 1.

The Sobol sequence generator consists of an address gen-
erator that detects the position of the least significant zero,
a storage array storing the values of the direction vectors as
intermediate variables for sequence generation, and the XOR
gate and D flip-flop (DFF) pair for recursively generating
quasi-random numbers. The algorithm for it is elaborated in
[11].

Independent Halton sequences are generated by co-prime
base numbers {bi} (i = 1, 2, 3, . . . ). The n-th random number
(RN) using base b can be expressed as

RNn,b =

∞∑
i=0

aib
−i−1, (1)

where ai is the i-th digit of the b-ary expansion of n. Thus
the Halton sequence generator can be accordingly built by a
reversely mapped b-ary counter, as shown in Fig. 1(b). Each
digit of the b-ary counter is coded in the binary format. Com-
pared to the design in [7], the base conversion is performed
by converting a value to b-ary in advance instead of using
a built-in hardware converter, thus saving hardware while
creating some overhead to perform the conversion offline. The
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Fig. 1. (a) Sobol-based SNG; (b) Halton-based SNG.

S smallest prime numbers serve as the bases for S-dimensional
Halton sequences for a lower hardware cost.

Note that the simplest Sobol sequence is the same as a base-
2 Halton sequence, so the inversely mapped counter is used
for a single Sobol sequence generator to reduce hardware cost.

III. HARDWARE SIMULATION AND ANALYSIS

A. Basic Stochastic Computing Elements

To compare the efficiency of different types of sequences
used in SC, two typical SC elements, a unipolar multiplier and
a multiplexing circuit implementing a Bernstein polynomial,
are considered. The schematics are shown in Fig. 2.

A unipolar stochastic multiplier is implemented by an
AND gate with two inputs in Fig. 2(a). For a stochastic
implementation of the Bernstein polynomial, the sequences
{zn} (n = 0, 1, . . . , N) are used to encode the Bernstein
coefficients and the sum of multiple independent stochastic
sequences of the input x serves as the selection signals for the
multiplexer.

B. Metrics

The performance of SC elements are examined by energy
per operation (EPO) and throughput per area (TPA) [12]. The
root-mean-squared error (RMSE) is used to measure accuracy.

Given the sequence length NL for a stochastic arithmetic
operation, the EPO for an SC element can be calculated by

EPO = Power× Tclk ×NL, (2)

where Tclk is the clock period and power is measured at the
corresponding Tclk. Throughput is used to measure how much
information a system can process during a unit time. In this
case, the throughput is measured by how many effective bits
are output in a unit time. The effective bits are the bit width
for a binary output, and it is blog2(NL)c for an SC design.
The time factor is measured by tc×NL, where tc is the critical
path delay. For example, if an 8-bit result is produced by a
sequence of 256 bits, the throughput is calculated by 8/256/tc.
Subsequently, the TPA is given by

TPA = Number of effective bits/(tc ×NL)/area. (3)

The critical path delay, area and power consumption are first
obtained by the Synopsis Design Compiler with a 28nm STM
process. The EPO and TPA are then computed. The RMSE is
measured by using 10,000 random trials for each circuit.
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Fig. 2. Basic stochastic computing elements.



C. Simulation Results

The SC circuits using Sobol, Halton and LFSR-generated
sequences are compared with their conventional binary coun-
terparts. Since the circuits for bipolar and unipolar represen-
tations show similar behaviors, only the unipolar SC elements
are considered. Binary designs with different bit widths are
considered for comparison: the multiplier is implemented by
an array multiplier and the binary polynomial circuit is opti-
mized to use the least number of multipliers. The comparisons
are made in terms of RMSE, EPO and TPA.

1) Accuracy: The accuracy is measured with respect to the
length and dimension of stochastic sequences in a multiplier
and a Bernstein polynomial circuit. The results are shown in
Figs. 3 and 4 repectively. The computed Bernstein polynomial
is f(x) = 6/11(x+ 1/2x2 + 1/3x3) for Fig. 3(b).

As seen in Fig. 3, among SC designs, results produced by
the LD sequences are consistently more accurate than that of
LFSR-generated sequences using the maximal length.

For the multiplier, the RMSEs of the circuit using LD
sequences decrease nearly linearly with the sequence length
with the binary design as the reference line, while the output
accuracy of the circuit using LFSRs converges much slower.
To achieve a similar accuracy as an N -bit binary multiplier,
Sobol sequences need 2N+2 bits and Halton sequences need
approximately 2N+3 bits. It indicates that the Halton sequence-
based multiplier takes about twice the sequence length to
achieve a similar accuracy as the Sobol sequence-based design.

For the stochastic Bernstein polynomial circuits, the RMSE
of the Sobol-based design is only slightly better than the
Halton-based one when sequence length is smaller than 210
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Fig. 3. Accuracy comparison: (a) a 2-input multiplier; (b) a third-order
Bernstein polynomial, using different sequence lengths.
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Fig. 4. Accuracy comparison: stochastic Bernstein polynomial circuits using
different dimensions of random sequences with 256 bits.

bits. Otherwise, the performance is similar. However, both
LD sequences outperform the LFSR-generated sequences. The
accuracy of an N -bit binary design roughly matches that of a
stochastic design using LD sequences of 2N+3 bits.

When the number of inputs or the dimension of stochastic
sequences increases, as shown in Fig. 4, the output accuracy of
the stochastic Bernstein polynomial circuit slightly decreases.
This result is consistent with the theory of LD sequences.
However, the output RMSE using LFSR-generated sequences
is consistently larger than those using the LD sequences.

2) Hardware: For a fair comparison on hardware cost,
EPO and TPA are measured against the same RMSE for
two specific SC circuits: (1) a 2-input stochastic multiplier
as a low dimensional SC circuit and (2) a 4-to-1 multiplexer
along with an adder implementing the aforementioned third-
order Bernstein polynomial as a relatively high dimensional
circuit. In an SC circuit, both results for with and without the
SNGs are reported. The EPO and TPA are obtained for using
sequence lengths from 24 to 216 for the multiplier and from
24 to 28 for the Bernstein polynomials circuit. For the binary
designs, the bit width used is 4 to 16 for the multiplier, and
4 to 8 for the Bernstein polynomial circuit.

The results of EPO and TPA comparison are shown in Figs.
5 and 6 respectively. It can be seen that the SC circuits without
considering SNGs mostly have a smaller energy consumption
and a higher TPA than the binary circuits because SC arith-
metic elements consist of only a few gates. The performance
of SC elements are largely undermined by the costly SNGs.
When the SNGs are counted, the SC designs have an inferior
performance in both metrics for the same RMSE.

For the multiplier, when SNGs are considered, the higher
cost of Sobol sequence generators results in a similar EPO
and TPA compared to the use of Halton sequences, although
half of the Sobol sequence length is sufficient to achieve a
similar RMSE. Nevertheless, the performance of the Sobol-
based multiplier is better than the one using Halton sequences
due to the lower latency, without considering the SNGs.

For the polynomial circuits, the design using Halton se-
quences consumes a higher energy than the one using Sobol
sequences. This is due to the increased dimension for the
Halton sequence generator. A higher dimension means a larger
base that requires a higher hardware cost to convert a b-
ary number to the binary representation. However, the Halton



RMSE
10-5 10-4 10-3 10-2 10-1

EP
O

 (f
J)

100

102

104

106

Sobol LFSR

Binary

Sobol

LFSR

Halton

Halton

With
SNGs:

Without
SNGs:

(a) Multiplier

RMSE
0.005 0.01 0.02 0.05

EP
O

 (n
J)

102

103

104

105

Sobol

LFSR

Binary

Sobol

LFSR

Halton

Halton

With
SNGs:

Without
SNGs:

(b) Bernstein polynomial

Fig. 5. EPO comparison: (a) multiplier; (b) Bernstein polynomial.
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Fig. 6. TPA comparison: (a) multiplier; (b) Bernstein polynomial.

sequence generator has a shorter critical path, rendering a
larger TPA than the Sobol sequence-based design.

Generally, a Sobol sequence-based design consumes less
energy (with a lower TPA when the SNGs are counted) than a
Halton-based design for the same accuracy requirement, when
multiple independent random number sequences are required.
For a simple SC element such as a multiplier, the two LD
sequences show similar performance. The scaled adder using
a 2-to-1 multiplexer also shows a similar trend as the results
for the multiplier, although they are not discussed in detail due
to space limitations. For a design using LFSRs, it requires
sequences that are several times longer to achieve the same
accuracy, resulting in a larger energy consumption and a lower
TPA in most cases.

IV. CONCLUSION

In this paper, the Sobol sequence is considered for im-
proving the energy efficiency of SC circuits. For a simple
computing element such as a multiplier, the energy consump-
tions of stochastic circuits using Sobol and Halton sequences
are similar, especially when the SNGs are counted, while the
computed results obtained by using Sobol sequences are more
accurate. For circuits using multiple independent stochastic
sequences such as a Bernstein polynomial circuit, the use
of Sobol sequences provides a better energy efficiency than
using Halton sequences due to the reduced sequence length
and simpler SNGs.
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