
Dynamic Stochastic Computing for Digital Signal
Processing Applications

Siting Liu
Department of Electrical and Computer Engineering

University of Alberta, Edmonton, AB, Canada
siting2@ualberta.ca

Jie Han
Department of Electrical and Computer Engineering

University of Alberta, Edmonton, AB, Canada
jhan8@ualberta.ca

Abstract—Stochastic computing (SC) utilizes a random binary
bit stream to encode a number by counting the frequency of 1’s
in the stream (or sequence). Typically, a small circuit is used to
perform a bit-wise logic operation on the stochastic sequences,
which leads to significant hardware and power savings. Energy
efficiency, however, is a challenge for SC due to the long sequences
required for accurately encoding numbers. To overcome this
challenge, we consider to use a stochastic sequence to encode
a continuously variable signal instead of a number to achieve
higher accuracy, higher energy efficiency and greater flexibility.
Specifically, one single bit is used to encode a sample from a signal
for efficient processing. This type of sequences encodes constantly
variable values, so it is referred to as dynamic stochastic sequences
(DSS’s). The DSS enables the use of SC circuits to efficiently
perform tasks such as frequency mixing and function estimation.
It is shown that such a dynamic SC (DSC) system achieves savings
up to 98.4% in energy and up to 96.8% in time with a slightly
higher accuracy compared to conventional SC. It also achieves
energy and time savings of up to 60% compared to a fixed-width
binary implementation.

Index Terms—stochastic computing, dynamic stochastic com-
puting, dynamic stochastic sequence, frequency mixer, function
estimation.

I. INTRODUCTION

As the scaling of transistors continues, a variety of challenges
emerge for the design of computing systems. Since emerging
mobile applications such as wearable devices and self-driving
cars, require embedded, low-power and high-performance pro-
cessing units, energy efficiency has become a major concern.
As an alternative computing paradigm, stochastic computing
(SC) offers high computational density, low power and error
tolerance, which can potentially help to overcome the afore-
mentioned constraints [1].

In SC, a random binary bit stream or a stochastic sequence
is used to encode a number. The arithmetic circuits that are
used to process the sequences are area- and power-efficient
because complex functions can be implemented by simple
logic circuits to process one bit at each clock cycle. Due to
this simplicity, SC has been considered in compute-intensive
tasks such as reliability evaluation [2], [3], signal processing
[4]–[6] and machine learning [7]–[11]. However, most of the
designs rely on long stochastic bit streams to obtain a high

This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) (Project Number: RES0025211). We thank CMC
Microsystems for providing the simulation tools and technology library.

accuracy, thus resulting in an inferior performance and low
energy efficiency compared to conventional arithmetic circuits.
To reduce the sequence length while maintaining a high ac-
curacy, low-discrepancy (LD) sequences, including the Halton
[12] and Sobol [13] sequences, have been considered. Although
a relatively short LD sequence is sufficient to encode a number,
the potential of SC has not yet been fully explored.

This performance bottleneck stems from the fundamental
principle of the digital encoding of analog or continuous signals
in SC, which, by itself, is likely overly ambitious to attain
without efficient encoding techniques. In [14], [15], a ∆ − Σ
modulated bit stream is used as a stochastic sequence for
filtering, multiplication and image processing. However, the
∆ − Σ modulated bit streams may suffer from high signal
correlations and degrade the accuracy of the results [15].

In this paper, we propose a new type of SC that uses a
dynamic stochastic sequence (DSS) to encode a continuously
variable signal rather than a static number. In such a sequence,
the bit values show a dynamical pattern that constantly changes
with the signal amplitude. This new encoding technique en-
ables the use of single-bit SC circuits for low-power and
high-performance computing of many digital signal processing
(DSP) functions.

The contributions of this paper include the following.
1) A DSS is defined, based on which dynamic stochastic

computing (DSC) is proposed for the first time.
2) The generation of a DSS is proposed and the reconstruc-

tion of DSS’s is explicitly explained.
3) A stochastic multiplier is used to implement a frequency

mixer using DSC.
4) A more complex function, the function composition of

a Bernstein polynomial, is estimated by a multiplexing
circuit in DSC.

II. BACKGROUND

Typically, an SC system consists of three parts: the stochastic
number generator (SNG) that converts binary numbers into
stochastic sequences, the logic circuits processing the bit
streams, and the probability estimator (PE) that converts the
stochastic sequences back to binary numbers [16]. The SNG
is usually implemented by a random number generator (RNG)
and a comparator [1]; the logic circuits vary with the functions
to be performed; the PE is often realized by using a counter.

Random number
generator (RNG)

x

Stochastic sequence
encoding x

0101100…

Comparator

B

A
A<B

N

N

LFSR

x3 x2 x1 x0

Stochastic sequence
encoding x

(a) (b)Fig. 1: A stochastic number generator (SNG).

1010110001010011

0011010111001010
0010010001000010

1001000001001000

0010100001000100
0100011111110011

(a)

(b)

0011000111001010 7
16

0011000111001010 7
16 ×2-1= - 1

8

The unipolar
representation

The bipolar
representation

1
2

- :
1
2

- :

1
4

:

1
4

:
1
2 :
1
2

:

Fig. 2: (a) A unipolar and (b) a bipolar stochastic multiplier.

The circuit diagram of the SNG is shown in Fig. 1. A ‘1’
is generated when a random number (RN) generated by the
RNG is smaller than the number to be encoded, x, which is
represented by an N -bit fixed-point fractional number. Since
the RNs are uniformly distributed, the probability of obtaining
a ‘1’ is approximately the value of the number to be encoded,
x ∈ [0, 1]. This encoding method is called the unipolar
representation in SC. For a number, x ∈ [−1, 1], the bipolar
representation uses a linear mapping, p = (x + 1)/2, to scale
the number to p ∈ [0, 1] and then p is encoded by a stochastic
sequence. To obtain a higher resolution and accuracy, a longer
stochastic sequence is usually required.

The RNG in Fig. 1 can be implemented by a linear feedback
shift register (LFSR) that generates pseudorandom numbers.
Despite the inevitable bit correlation, the stochastic sequence
generated by an LFSR is considered as approximately a
Bernoulli sequence. Although the randomness in a Bernoulli
sequence minimizes signal correlation, it leads to a rather
wide distribution of the value encoded in the output stochastic
sequence. A non-Bernoulli sequence is used to reduce the
randomness in SC for reliability evaluation [2]. Recently,
Halton and Sobol sequence generators are used to produce
quasirandom numbers as the RNGs [12], [13]. The use of the
LD sequences leads to a faster convergence of the results, thus
achieving higher computation accuracy with shorter sequences.

The stochastic circuit can be combinational or sequential;
a simple logic circuit can be used to implement a complex
function. For example, an AND gate (or an XNOR gate) im-
plements a unipolar (or bipolar) multiplier, as shown in Fig. 2.
A multiplexing circuit has been used to implement Bernstein
polynomials [17] and spectral transformation has been applied
to generate a stochastic circuit that calculates a multi-linear
polynomial [18]. There also exist sequential stochastic circuits
including stochastic integrator-based and finite state machine
(FSM)-based circuits [13].

The PE can be implemented by a counter to obtain the
number of 1’s in a sequence. This number is then divided by the
sequence length. For ease of the division, the sequence length
is usually selected to be a power of 2.

Analog-to-digital
converters (ADCs)

Analog
signals

Digital signals
(from ADCs or

storage)

DSNGs Signal
reconstruction To be stored or

converted back to
analog signals

Stochastic
logicDynamic

stochastic
sequences

Dynamic
stochastic
sequences

Fig. 3: A dynamic stochastic computing (DSC) system.

RNG

B

A
A<B

f(t)

0 T 2T …… …… 10T

Dynamic stochastic
sequence encoding f(t)

110100000101

A discrete-time signal, supplied to the
comparator one sample per clock cycle

Fig. 4: A dynamic stochastic number generator (DSNG).

III. DYNAMIC STOCHASTIC COMPUTING (DSC) SYSTEMS

In a DSC system, a digital signal is first converted to a
DSS by a dynamic stochastic number generator (DSNG). Then
the bit sequence is processed by the stochastic circuits and
converted back to a digital signal by a signal reconstruction
unit, as shown in Fig. 3. The storage of a DSS is not required.

In this section, the generation of the DSS, the reconstruction
of the output signal and the general aspects of DSC circuits are
discussed.

A. Generation of the DSS

It is generally assumed that a digital signal is available from
an analog-to-digital converter (ADC) or storage. If an analog
signal is directly used as an input, the DSNG can be replaced
with an analog design such as the SNG in [19].

Definition 1. Let 0 ≤ f(t) ≤ 1 be a continuous signal. After
a sampling with a clock period of T , it can be converted to
a sequence of {f(kT)}, k = 0, 1, A DSS {Ak} encoding
f(t) satisfies that the kth bit in the random binary sequence
has the expectation,

E[Ak] = f(kT), (1)

where T 1 is the sampling period and 1/T is the sampling
rate. It is found in our experiments that a higher sampling rate
generally leads to a higher encoding quality.

A DSS can be generated by comparing each element in the
sequence ({f(kT)}) with a uniformly distributed RN within
[0, 1]. Therefore, the expectation of the kth bit in a DSS is
f(kT). Also, DSS can also be generated by a ∆−Σ modulator.
In this case, a ∆ − Σ modulated signal can be considered to
form approximately a Bernoulli sequence satisfying (1) [20].
Similar to a conventional SNG, the diagram of a DSNG is
shown in Fig. 4. If the signal value is within [−1, 1], a linear
mapping can be applied for the bipolar representation.

B. Reconstruction of the DSS

The outputs of combinational stochastic circuits are still
stochastic sequences. To convert a DSS back into a multi-
bit digital signal, a reconstruction unit is required. The DSS

1T will be used as the notation for sampling period throughout this paper.

+

-

ykˆ

Shift
register

…

…

 Up/down
 Counter

Up

Down

x(t)ˆ

 Up/down
 Counter

Up

Down

Random number
generator (RNG)

Comparator

B

A
A<B

X

x(t)ˆ

Xk+2 -1N-1

Xk-2 -1N-1

 Up/down
 Counter

Up

Down

Random number
generator (RNG)

Comparator

B

A
A<B

X

x(t)ˆ

Shift
register

 Up/down
 Counter

Up

Down

x(t)ˆ Xk+2 -1N-1

Xk-2 -1N-1

 Up/down
 Counter

Up

Down

Random number
generator (RNG)

Comparator

B

A
A<B

Xi

Zi

Yi

Fig. 5: An adaptive digital element (ADDIE).

0 0.5 1 1.5
t (s)

0

0.5

1

Original signal
Reconstructed signal

Fig. 6: Original and the reconstructed signals.

can be reconstructed to a multi-bit digital signal by using
an exponential smoothing circuit [21]. Note that there exist
other methodologies that can recover a 1-bit signal with better
quality; however, this method is considered due to their ease
of implementation in hardware and a relatively low hardware
cost.

The exponential smoothing is implemented by an adaptive
digital element (ADDIE) for a signal reconstruction [21], as
shown in Fig. 5. Following [21], the exponential smoothing
function is formulated as follows. Let the output of the com-
parator be Zi (0 or 1) at clock cycle i, the input bit be Xi

(0 or 1), and the multi-bit integer value stored in the counter
be Yi. The RNG and the comparator work as an SNG, so the
probability of generating a ‘1’ is Yi/2N , where N is the bit-
width of the counter, i.e., yi = E[Zi] = Yi/2

N . As per the
function of the up/down counter, Yi+1 = Yi + Xi − Zi [14].
Therefore, given Yi, the expectation of Yi+1 is

E[Yi+1] = (2N − 1)Yi/2
N + E[Xi] (2)

by taking expectations of Xi and Zi. Assume Y0 is 0, and let
Yi+1 ≈ E[Yi+1] for i = 0, 1, . . . , (2) can be rewritten as

yi+1 =
1

2N
Yi+1 ≈

1

2N

i∑
k=0

[(
2N − 1

2N

)k

E[Xi−k]

]
, (3)

where the coefficients of {E[Xi−k]} form a geometric se-
quence. It indicates an exponential smoothing. Then, {yi} is
an estimate of the encoded signal. However, to reconstruct the
signal instead of filtering it, the width of the counter N needs to
be carefully selected because the same circuit can be used as
a low-pass IIR filter [14], which may attenuate the encoded
signal. An optimal width N can be obtained regarding the
sampling rate and the frequency of the signal. A sinusoidal
signal reconstructed by an ADDIE is shown in Fig. 6. At the
start of the signal, a warm-up phase is required to allow the
integrator to follow the signal if it is initialized with a random
value other than the actual initial value.

C. DSC circuits

DSC circuits are efficient and flexible to implement a series
of function compositions. For example, a combinational SC
circuit implementing the function f(x) can be used to im-
plement the function composition f [χ(t)] with the input DSS
encoding the signal χ(t). This principle also applies to multi-
input combinational circuits.

For a finite-state machine (FSM)-based sequential circuit
[22], however, the output does not accurately encode f [χ(t)]
because an FSM-based circuit requires temporal independency
within a sequence. The adjacent bits in a DSS are correlated
and violate this condition [13]. On the other hand, a stochastic
integrator does not require temporal independency due to the
accumulation of bit values, so it works well with the DSS’s.

IV. DSC-BASED DIGITAL SIGNAL PROCESSING (DSP)

As first examples, two DSP functions, frequency mixing and
function estimation, are considered as applications of DSC.
These applications can be extended to include other functions
that involve various arithmetic operations.

A. Frequency Mixer

Conventionally, a frequency mixer is implemented by an
analog multiplier consisting of nonlinear components. New
signals at the summation and difference of the original fre-
quencies are then produced. Using the DSS’s, a stochastic
multiplier is proposed to implement a frequency mixer, as
shown in Fig. 7(a). As per (1), if the input sequences X and
Y are statistically independent and Xk, Yk and Zk are the
kth bits in the sequences X , Y and Z, respectively, we obtain
E[Zk] = E[Xk]E[Yk] = x(kT)y(kT) at clock cycle k for the
output sequence. Therefore, the output sequence Z encodes
z(t) = x(t)y(t), which is the product of the two input signals.

Fig. 7(b) shows the output results for multiplying two sinu-
soidal signals with frequencies of 1 Hz and 6 Hz, both sampled
at a rate of 214 Hz. The DSS is reconstructed to a multi-bit
digital signal by a 5-bit ADDIE.

As shown in Fig. 7(b), the results produced by the stochastic
circuit are very close to the results produced by using dou-
ble precision numbers with a signal-to-noise ratio2 (SNR) of
22.6 dB. It also shows that there are more 1’s (or 0’s) in the
DSS’s when the original signal is closer to 1 (or 0). The DSS’s
are decimated for a clear view.

B. Approximation of functions

Bernstein or multilinear polynomials have been implemented
in SC either by a multiplexing circuit or a Boolean function
with auxiliary inputs [17], [18]. By using the DSS’s, more
complex functions can be implemented with the same circuit.
The multiplexing circuit consisting of an accumulator and a
multiplexer is discussed as an example. Fig. 8(a) shows a mul-
tiplexing circuit that computes a Bernstein polynomial, f(x) =
1/11(2x3 + 3x2 + 6x), where all the input sequences, i.e.,

2SNR=10 log10(E[z2n]/E[e2n]), where {zn} is the target signal while {en}
is the difference between the estimated signal and the target signal.

DSNG
reconstruction

(PE)
Y

y(t)
Z

DSNG

DSNG

Signal
reconstruction

(PE)

X

Y

x(t)

y(t)

Multi-bit
digital signal

z(kT)

Z z(t)

(a)

0 0.5 1 1.5
0

0.5

1

x(
t)

Original signal
DSS

0 0.5 1 1.5
0

0.5

1

y(
t)

0 0.5 1 1.5
t (s)

0

0.5

1

x(
t)

y(
t) Double precision

DSC

(b)

Fig. 7: A frequency mixer by using a stochastic multiplier with
DSS’s as the inputs, (a) circuit and (b) results.

X1, X2, X3, to the accumulator independently encode a fixed
value x. However, the same circuit can be used to compute the
function composition, f [x(t)], when DSS’s encoding x(t) serve
as the inputs to the accumulator, i.e., E[X1,k] = E[X2,k] =
E[X3,k] = x(kT). The expectation of the kth bit in the output
sequence Y is then E[Yk] =

∑n
i=0 bi

(
n
i

)
xi(kT)(1−x(kT))n−i,

where {bi} are the Bernstein coefficients ({1, 2/11, 5/11, 0}
in Fig. 8(a)) encoded by the inputs of the multiplexer and n
is the order of the Bernstein polynomial [17]. The value of
the function, f [x(kT)], is then equal to E[Yk], so the output
sequence Y encodes f [x(t)].

When x(t) = e−2t, the output sequence of the multiplexer
encodes f [x(t)] = 1/11(2e−6t + 3e−4t + 6e−2t). Fig. 8(b)
shows the reconstructed result by using a 6-bit ADDIE and a
sampling rate of 212 Hz for the input DSS. The reconstructed
signal has an SNR of 23.6 dB. The sequences for the co-
efficients of the Bernstein polynomial (i.e., the inputs to the
multiplexer) are generated by an SNG as in a conventional SC
(CSC) circuit.

V. HARDWARE EFFICIENCY ASSESSMENT

In this section, the hardware efficiency is evaluated for
the frequency mixer and the function estimator. The area,
power and critical path delay of all considered circuits are
measured using the Synopsys Design Compiler with a 28-nm
STM process by the default high-effort optimization for overall
performance. The temperature is set to 25◦C and the supply
voltage is 1.0 V. Sobol sequences are used to generate the
DSS’s for a better accuracy. For the stochastic designs, the
RNG (Sobol sequence generator) can be shared to generate

MUX

+DSNG
Array

X2

E[Yk]=f[x(kT)]

X=∑Xi
X1

X3

x(t)

‘0’

‘1’
Stochastic sequence encoding 2/11
Stochastic sequence encoding 5/11

Y

(a)

0 1 2 3 4
t (s)

0

0.5

1

f[
x(
t)

] Double precision
DSC

(b)

Fig. 8: A summation of several exponential functions computed
by (a) a multiplexing circuit and (b) the output results.

multiple stochastic sequences, so the cost is negligible when
considering a large SC system and it is not included in the
hardware evaluation (as an example, only two independent
RNGs are required to generate the stochastic sequences for
performing many multiplications in parallel in [23]). However,
the hardware cost of comparators are counted as the DSNG
since every signal requires a comparator to generate a DSS and
they cannot be shared. The signal reconstruction units/PEs are
also counted for the dynamic/conventional stochastic designs.

A. Frequency mixer

Two sinusoidal signals with frequencies of 1 Hz and 6 Hz
are multiplied to measure the SNR of the results produced by
circuits as shown in Fig. 7(a). With a sampling rate of 216 Hz
(resulting in a dynamic sequence length of k · 216 bits for a
k-second signal) and a 5-bit ADDIE, the DSC circuit produces
an SNR of 24.20 dB, as shown in Figure 9(a).

For the CSC circuit, the same sampling rate and the same
LD sequences are applied. With a sequence of 25 bits encoding
each sample, the CSC circuit produces an SNR of 23.3 dB, as
shown in Fig. 9(b). A binary implementation using a 5-bit fixed-
width multiplier is also considered and the result is shown in
Fig. 9(c).

As shown in Fig. 9, the results produced by the DSC circuit
show stronger variations because the signal reconstructor con-
sistently tracks the input signal, which makes it very sensitive
to the change in the input sequence. The DSC frequency mixer
produces a similar or a slightly higher SNR than the CSC
circuit. However, due to the effect of limited precision, the
fixed-width multiplication by a binary circuit produces the
lowest quality.

The hardware evaluation results are shown in Table I. As
can be seen, the DSC circuits have a slightly higher area
and power consumption than the conventional stochastic circuit
due to the use of ADDIE-based signal reconstructor, while
the SNG (comparator) and the multiplier are the same for
those two circuits. However, this disadvantage is negligible

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
(a) DSC frequency mixer

0

0.5

1
SNR: 24.2 dB

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
(b) CSC frequency mixer

0

0.5

1

x(
t)

 y
(t

)

SNR: 23.3 dB

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
(c) Frequency mixer by using a fixed-width multiplier

t (s)

0

0.5

1
SNR: 20.8 dB

Fig. 9: Frequency mixer: dynamic SC (DSC) vs. conventional
SC (CSC) vs. fixed-width binary implementation.

TABLE I: Hardware efficiency evaluation of DSC, CSC and
binary frequency mixers producing one result at one sampling
point.

Area Power No. of clk Minimum Energy SNR
(µm2) (µW) cycles time (ns) (fJ) (dB)

DSC 82 13 1 0.7 51 24.2
CSC 67 10 32 9.3 1315 23.3
Binary 80 14 1 0.7 55 20.8
Ratioa 0.82 0.77 32 13.29 25.78 –
aThe ratio of CSC:DSC.

when considering the dominating factor, the sequence length
or the number of clock cycles for producing one result: it
is 25 for CSC, whereas it is only 1 for DSC. Due to the
significant reduction in sequence length, the DSC frequency
mixer consumes only 3.9% of the energy and 7.5% of the time
required by the CSC design with a similar accuracy.

Compared to the fixed-width binary design, the DSC circuit
has a slightly larger hardware cost, while it requires a lower
energy and the same time to produce the result. Also, the SNR
of the results produced by the proposed method exceeds that of
the binary design by 3.4 dB. However, when a signal is sampled
at a lower rate (e.g., at the Nyquist frequency of (1+6)×2 = 14
Hz in this case), the binary circuit would achieve a much lower
latency and lower energy cost with a higher accuracy, while
DSC is less effective at a relatively low sampling rate3.

B. Function estimator using multiplexing circuits

The function y(t) = 1/11(2e−6t + 3e−4t + 6e−2t) is used
for the accuracy evaluation of the dynamic and conventional
SC systems. For the DSC system, the multiplexing circuit in
Fig. 8(a) is used to perform the function estimation with DSS’s
encoding x(t) = e−2t as the inputs. With a sampling rate of

3Our experiments indicate that the oversampling rate needs to be at least
approximately 100 times of the Nyquist frequency to obtain a reconstructed
signal with an SNR over 20 dB using a moving average filter.

0 0.2 0.4 0.6 0.8 1
(a) DSC function estimation

0

0.5

1
SNR: 26.6 dB

0 0.2 0.4 0.6 0.8 1
(b) CSC function estimation

0

0.5

1

f[
x(
t)

] SNR: 25.9 dB

0 0.2 0.4 0.6 0.8 1
(c) Fixed-width binary implementation

t (s)

0

0.5

1
SNR: 27.8 dB

Fig. 10: Function estimator: dynamic SC (DSC) vs. conven-
tional SC (CSC) vs. fixed-width binary implementation.

TABLE II: Hardware efficiency evaluation of DSC, CSC and
binary function estimators producing one result at one sampling
point.

Area Power No. of clk Minimum Energy SNR
(µm2) (µW) cycles time (ns) (fJ) (dB)

DSC 176 21 1 0.7 82 26.6
CSC 159 20 64 21.8 5125 25.9
Binary 302 51 1 1.8 203 27.8
Ratiob 0.90 0.95 64 31.14 62.50 –
bThe ratio of CSC:DSC.

216 Hz and a 6-bit ADDIE as the signal reconstructor, the SNR
produced by the DSC system is 26.6 dB, as shown in Fig. 10(a).

For the CSC system, a multiplexing circuit proposed in [17]
is used to approximate the function with a minimum-order
Bernstein polynomial to reduce the hardware cost of the SNGs
(comparators), which constitutes a major part of the SC sys-
tem [24]. The Bernstein polynomial that is used to approximate
y(t) is optimized as y(t) = 17/256t3 + 159/256t2(1 − t) +
66/256t(1 − t)2 + 249/256(1 − t)3. Using a sequence length
of 64, the SNR is 25.9 dB, as shown in Fig. 10(b).

A fixed-width binary circuit is also considered to implement
the polynomial using binary adders and multipliers. The binary
circuit is optimized to use the least number of multipliers to
reduce the hardware cost. The resulting 6-bit binary design
produces an SNR of 27.8 dB, as shown in Fig. 10(c), which is
slightly higher than that of the result produced by DSC.

The hardware evaluation of the two SC and the binary
circuits is reported in Table II. As can be seen, the DSC circuit
has a slightly higher hardware cost but with a similar power
consumption compared to the CSC circuit. However, for the
CSC circuit, the long sequence undermines the performance
and energy efficiency. The DSC takes only about 3.2% of the
time and 1.6% of the energy of the CSC to achieve a higher
accuracy and attains about 60% savings in energy and time
compared to the binary circuit.

0 1 2 3 4 5 6 7 8
(a) Results produced by multiplying two - modulated bit streams

-1

0

1

SNR: 23 dB

0 1 2 3 4 5 6 7 8
(b) Results produced by multiplying two dynamic stochastic sequences

t (s)

-1

0

1

SNR: 31 dB

Fig. 11: ∆ − Σ modulated vs. dynamic stochastic sequences
for a frequency mixer multiplying signals at 0.5 Hz and 3 Hz.
The sequences are generated by using the same sampling rate.

VI. DISCUSSION

DSS’s and ∆−Σ modulated (DSM) bit streams are similar
in the sense that the generation of the streams can both be
considered as Bernoulli processes [25]. However, the DSC
can avoid correlation issues by using independent random
sequences, whereas correlation exists in the DSM signals,
which can seriously degrade the accuracy [15]. For example,
for multiplying two signals with different frequencies, the DSC
produces a much higher accuracy than using the DSM signals,
as shown in Fig. 11. The DSC can also compute the product
of two identical signals with the same frequency. However,
multiplying two DSM signals encoding identical values can
result in the original signal instead of their product [15]. Finally,
DSC can be used to encode a stochastic signal such as the
gradient in the training of a neural network [26], while it is
not feasible to use ∆ − Σ modulation to encode such signals
because the input of a ∆ − Σ modulator is usually an analog
signal or an up-sampled digital signal [27].

VII. CONCLUSION

In this paper, dynamic stochastic computing (DSC) is pro-
posed that leverages an efficient encoding technique using
dynamic stochastic sequences (DSS’s) and simplistic digital
circuits to implement complex DSP functions. Frequency mix-
ing and function approximation are implemented by using a
stochastic multiplier and a multiplexing circuit, respectively.
The generation and reconstruction of the DSS’s are discussed.
Compared to CSC, the proposed DSC can achieve a speedup
and an energy efficiency improvement by more than 13× and
25×, respectively, with a better accuracy for signal multi-
plication. For function estimation, the improvement is even
larger, which are 31× and 62×, respectively. With a similar
accuracy, DSC also achieves a saving in energy and time by
60% compared to conventional binary circuits, when dealing
with complex tasks such as function estimation. Theories of
DSC will further be investigated in future work.

REFERENCES

[1] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” IEEE Trans. on CAD, vol. 37, no. 8, pp. 1515–
1531, Aug 2018.

[2] J. Han, H. Chen, J. Liang, P. Zhu, Z. Yang, and F. Lombardi, “A stochastic
computational approach for accurate and efficient reliability evaluation,”
IEEE Trans. on Computers, vol. 63, no. 6, pp. 1336–1350, June 2014.

[3] P. Zhu, J. Han, L. Liu, and M. J. Zuo, “A stochastic approach for
the analysis of fault trees with priority AND gates,” IEEE Trans. on
Reliability, vol. 63, no. 2, pp. 480–494, June 2014.

[4] N. Onizawa, D. Katagiri, K. Matsumiya, W. J. Gross, and T. Hanyu,
“Gabor filter based on stochastic computation,” IEEE Signal Processing
Letters, vol. 22, no. 9, pp. 1224–1228, Sept 2015.

[5] Y. Liu and K. K. Parhi, “Architectures for recursive digital filters using
stochastic computing,” IEEE Trans. on Signal Processing, vol. 64, no. 14,
pp. 3705–3718, July 2016.

[6] B. Yuan, Y. Wang, and Z. Wang, “Area-efficient scaling-free DFT/FFT
design using stochastic computing,” IEEE Trans. on Circuits and Systems
II: Express Briefs, vol. 63, no. 12, pp. 1131–1135, Dec 2016.

[7] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
“VLSI implementation of deep neural network using integral stochastic
computing,” IEEE Trans. on VLSI Systems, vol. 25, no. 10, pp. 2688–
2699, Oct 2017.

[8] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and B. Yuan,
“SC-DCNN: Highly-scalable deep convolutional neural network using
stochastic computing,” in ASPLOS, 2017.

[9] H. Sim and J. Lee, “A new stochastic computing multiplier with appli-
cation to deep convolutional neural networks,” in DAC, 2017.

[10] B. D. Brown and H. C. Card, “Stochastic neural computation. I. computa-
tional elements,” IEEE Trans. on Computers, vol. 50, no. 9, pp. 891–905,
Sept 2001.

[11] J. S. Friedman, L. E. Calvet, P. Bessire, J. Droulez, and D. Querlioz,
“Bayesian inference with Muller C-Elements,” IEEE Trans. on Circuits
and Systems I: Regular Papers, vol. 63, no. 6, pp. 895–904, June 2016.

[12] A. Alaghi and J. P. Hayes, “Fast and accurate computation using stochas-
tic circuits,” in DATE, 2014.

[13] S. Liu and J. Han, “Toward energy-efficient stochastic circuits using
parallel Sobol sequences,” IEEE Trans. on VLSI Systems, vol. 26, no. 7,
pp. 1326–1339, July 2018.

[14] N. Saraf, K. Bazargan, D. J. Lilja, and M. D. Riedel, “IIR filters using
stochastic arithmetic,” in DATE, 2014.

[15] P. Gonzalez-Guerrero, X. Guo, and M. Stan, “SC-SD: Towards low power
stochastic computing using sigma delta streams,” in ICRC, 2018.

[16] R. Wang, J. Han, B. F. Cockburn, and D. G. Elliott, “Design, evaluation
and fault-tolerance analysis of stochastic FIR filters,” Microelectronics
Reliability, vol. 57, pp. 111 – 127, 2016.

[17] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Trans. on Computers, vol. 60, no. 1, pp. 93–105, Jan 2011.

[18] A. Alaghi and J. P. Hayes, “STRAUSS: Spectral transform use in
stochastic circuit synthesis,” IEEE Trans. on CAD, vol. 34, no. 11, pp.
1770–1783, Nov 2015.

[19] A. Alaghi and J. P. Hayes, “Stochastic circuits for real-time image-
processing applications,” in DAC, 2013.

[20] V. da Fonte Dias, “Sigma-delta signal processing,” in ISCAS, 1994.
[21] P. Mars and W. J. Poppelbaum, Stochastic and deterministic averaging

processors. Peter Peregrinus Press, 1981, no. 1.
[22] P. Li, W. Qian, M. D. Riedel, K. Bazargan, and D. J. Lilja, “The synthesis

of linear finite state machine-based stochastic computational elements,”
in ASP-DAC, 2012.

[23] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A stochastic
computational multi-layer perceptron with backward propagation,” IEEE
Trans. on Computers, vol. 67, no. 9, pp. 1273–1286, Sept 2018.

[24] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Trans.
on Embedded computing systems, vol. 12, no. 2s, p. 92, 2013.

[25] F. Maloberti, “Non conventional signal processing by the use of sigma
delta technique: a tutorial introduction,” in ISCAS, 1992.

[26] S. Liu, H. Jiang, L. Liu, and J. Han, “Gradient descent using stochastic
circuits for efficient training of learning machines,” IEEE Trans. on CAD,
vol. 37, no. 11, pp. 2530–2541, Nov 2018.

[27] E. Janssen and A. van Roermund, Look-Ahead Based Sigma-Delta
Modulation, 1st ed. Springer Publishing Company, Incorporated, 2011.

