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Abstract 

A multi-state system (MSS) employs more than two discrete states to indicate 

different performance rates. Methods using a universal generating function (UGF) and 

Monte Carlo (MC) simulation are primary approaches for the reliability analysis of an 

MSS. However, these approaches incur a large computational overhead because the 

number of system states increases significantly with the number of components in an 

MSS. In this paper, stochastic multi-valued (SMV) models are proposed for 

evaluating the reliability of an MSS with dependent multi-state components (MSCs).  

The performance rates and their corresponding probabilities of the MSCs are 

simultaneously encoded in multi-valued non-Bernoulli sequences using permutations 

of fixed numbers of 1s and 0s. The sequences are then processed by logic gates. The 

effectiveness of the proposed approach is demonstrated via a comparative evaluation 

of a multi-state system consisting of dependent components with steady and 

time-varying state probabilities. 
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MSS, multi-state system; MSC, multi-state component; UGF, universal generating 
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Nomenclature 

L      sequence length in number of bits 

j      component  index for a MSS, j = 1, 2, … , n 

kj      number of states for component j 

gj      performance set for component j 

pj      probability set for component j 

Gj(t)    performance rate of component j at any instant t ≥0 

𝜙      MSS structure function 

𝜔      system demand 

𝛺𝜙     general UGF composition operate 

𝑈(𝑍)    UGF for MSS 

 

1. Introduction 

In conventional reliability theory, a system usually consists of components with 

binary states: success or failure. However, for some engineering systems such as 

power generation and transmission systems, the binary assumption does not 

accurately model their reliability behavior [1]. Hence, a multi-state system (MSS) 

model has been introduced to characterize the reliability of these engineering systems 

[2].  

Markov [3, 4] and semi-Markov [5] models have been proposed for evaluating 

the reliability of an MSS. However, these stochastic models are only applicable for a 

relatively small MSS because the number of system states increases rapidly with the 

number of multi-state components (MSCs). In order to simplify the process, several 

analytical approaches, including those using multi-state binary decision diagrams 

(MBDDs) [6], multi-state multivalued decision diagrams (MMDDs) [7] and 

edge-valued multi-valued decision diagrams (EVMDDs) [8], have been introduced to 

analyze an MSS and to identify the critical components in the system. However, these 



approaches are usually applicable to an MSS with independent MSCs and a large 

computational overhead is encountered when analyzing complex systems in which 

each MSC has many states. A technique using a universal generating function (UGF) 

has been used to analyze a power system’s reliability [9]. It was then extended to 

analyze the reliability of an MSS with dependent components [10]. However, the 

computational complexity of a UGF method is exponential in the number of 

components [11]. A method using fuzzy universal generating functions (FUGFs) has 

been presented for the performance assessment of multi-state systems to reduce the 

computational complexity of the UGF method [12]. A method based on inverse 

Lz-transform has been proposed to obtain the reliability characteristics and risk 

functions of multi-state power systems [13]. However, the dependency of system 

components is not considered in these methods. 

Monte Carlo (MC) simulation has been used to evaluate the reliability of an MSS 

using multi-state minimal cut vectors. The dependencies and composition operators 

among MSCs of an MSS are simulated by MC in [14]. However, a large sample size 

and thus a long run time are needed to meet the accuracy requirement, due to the slow 

convergence typically encountered in an MC simulation. 

A theory for multiple-valued logic function is proposed to analyze an MSS in [15, 

16], however complex operation rules present major challenges. The advantages of 

stochastic computation such as computational simplicity, high speed, and 

fault-tolerance have been shown in [17]. Hence, a stochastic multi-value approach is 

proposed in [18] to model multi-valued networks. Nevertheless, the values in 

stochastic sequences only represent the states of MSCs, not describing the practical 

significance in the states.  

In this paper, stochastic multi-valued (SMV) models are proposed for the 

analysis of a multi-state system with dependent components. The practical 

significance of a component’s states (e.g., the processing speed of a component in an 

MSS) is indicated by values such as positive real numbers that are beyond the range 

[0, 1] in the unipolar representation of stochastic computation. Thus, an 

extended-stochastic logic (ESL) method [19] is utilized to expand the range of 



stochastic numbers to (0,  2𝑁 − 1) , where 𝑁 is the bit width of the binary values to 

be encoded. In the SMV models, the practical significance of a component’s states 

and their corresponding probabilities are simultaneously encoded in the stochastic 

sequences to improve the evaluation efficiency. The output sequences of an SMV 

model encode the reliability values for an MSS with dependent MSCs. The 

computational complexity of a universal generating function (UGF) method increases 

exponentially with the number of the components’ states, while the SMV models are 

not significantly affected by the number of components’ states. In contrast to the UGF 

method, hence, this approach avoids the large computational complexity in evaluating 

the reliability of multi-state systems. 

The remainder of the paper is organized as follows. Section II reviews the 

definitions of MSS and UGF. Section III presents SMV models to analyze an MSS 

with dependent MSCs. Case studies and simulation results are provided in Section IV. 

Finally, Section V presents conclusions and directions for future work. 

 

2. The multi-state systems and universal generating functions  

In this section, multi-state systems and universal generating functions are 

introduced. 

2.1. Multi-state systems(MSS) 

Many systems and components degrade and operate at reduced performance 

levels [20]. The performance of a component may vary from perfect functioning to a 

complete failure. Such a component is called a multi-state component (MSC), and a 

system consisting of MSCs is called a multi-state system (MSS). An MSS can 

perform tasks with various distinguished levels of performance (or states); the 

practical significance of a state is defined as a performance rate.  

The performance rates of an MSS are determined by the performance rates of its 

MSCs. If n is the number of MSCs in the MSS, the performance rate 𝐺𝑗(𝑡) of 

component j ( 1≤ j ≤ n) at any instant t (t ≥0) is  a random variable that takes its 

value from a set 𝑔𝑗: 𝐺𝑗(𝑡)∊ 𝑔𝑗. The probabilities associated with different states of 

component j can be denoted by a set [21]: 



𝑝𝑗 = {𝑝𝑗1, …, 𝑝𝑗𝑖, …, 𝑝𝑗𝑘𝑗
},                                           (1) 

where 𝑘𝑗  is the number of states of component j,  𝑝𝑗𝑖 = Pr{ 𝐺𝑗(𝑡) =  𝑔𝑗𝑖} 

and  ∑ 𝑝𝑗𝑖(𝑡) = 1.
𝑘𝑗

𝑖=1
 The collection of pairs 𝑔𝑗𝑖  and 𝑝𝑗𝑖 , 𝑖 ∊{1, 2, … ,  𝑘𝑗 }, 

completely determines the probability distribution  (PD) of the performance of 

component j. 

2.2. Universal generating functions (UGF) 

The technique using Universal Generating Functions (UGF) is introduced in [22] 

for evaluating the availability of a series-parallel MSS [20, 23]. 

The PD of component j can be defined by a polynomial 𝑢(𝑧): 

𝑢(𝑧) = ∑ 𝑝𝑗𝑖
𝑘𝑗

𝑖=1
. 𝑧𝑔𝑗𝑖                                                 (2) 

where 𝑔𝑗𝑖 is the performance rate  of component j in the state 𝑖, 𝑖∊{1, 2, … , 𝑘𝑗}, 

and 𝑝𝑗𝑖= Pr{𝐺𝑗(𝑡)= 𝑔𝑗𝑖}.  

In order to obtain the PD of an MSS with an arbitrary structure function 𝜙, a 

general composition operator 𝛺𝜙  is given by [10]: 

𝑈(𝑧)  = 𝛺𝜙{𝑢1(𝑧), … , 𝑢𝑛(𝑧)} 

= 𝛺𝜙{∑ 𝑝1𝑖. 𝑧𝑔1𝑖
𝑘1
𝑖=1 , … , ∑ 𝑝𝑛ℎ. 𝑧𝑔𝑛ℎ

𝑘𝑛
ℎ=1 }                            (3) 

where 𝑈(𝑧) is a function to obtain the probability and performance rate for the state 

of an MSS. 𝛺𝜙 is depending on the parallel or series connections of components. 

In an MSS for flow transmission (e.g., a power supply system or oil transmission 

system) or a task processing MSS (e.g. a control system, an information or data 

processing system), of which the performance is indicated by productivity, capacity or 

processing speed, the total performance rate of components connected in parallel is 

equal to the sum of the performance rates of the individual components.  

When the components in a flow transmission system are connected in series, the 

performance rate of the system is equal to the minimum of the performance rates of 

the components. Assuming the components in a task processing system are connected 

in series with processing speeds of the two components being 𝐺𝑎  and 𝐺𝑏 

respectively, the operation time of the system is equal to the sum of operation times of 



the two components, thus the processing speed of the system is equal to 
1

1

𝐺𝑎
+

1

𝐺𝑏

.  

An example is used to explain the UGF method and the structure of an MSS is 

shown in Fig. 1. Three MSCs constitute a series-parallel system. The transmission 

capacity or processing speed defines the component performance rate. The parameters 

of MSCs are shown in Table 1. 

 

U1(Z)

U2(Z)

U3(Z)

 

Fig. 1. The structure of an MSS. 

Table 1 

Parameters of MSCs in a series-parallel system [24], gjiand 𝑝𝑗𝑖 are the performance rate and 

probability of component j in state i respectively. 

       𝑖 

𝑔𝑗𝑖/𝑝𝑗𝑖 
1 2 3 

𝑔1𝑖/𝑝1𝑖 1.5/0.8 1/0.1 0/0.1 

𝑔2𝑖/𝑝2𝑖 2/0.7 1.5/0.2 0/0.1 

𝑔3𝑖/𝑝3𝑖 4/0.96 0/0.04  

 

The PD of three MSCs can be defined as: 

𝑢1(𝑧) = ∑ 𝑝1𝑖. 𝑧𝑔1𝑖3
𝑖=1 =0.8·𝑧1.5+0.1·𝑧1+0.1·𝑧0 

𝑢2(𝑧) = ∑ 𝑝2𝑖. 𝑧𝑔2𝑖3
𝑖=1 =0.7·𝑧2+0.2·𝑧1.5+0.1·𝑧0 

𝑢3(𝑧) = ∑ 𝑝3𝑖. 𝑧𝑔3𝑖3
𝑖=1 =0.96·𝑧4+0.04·𝑧0 

Assuming the MSS is a flow transmission system, the PD of entire MSS is 

obtained by: 

U(z) = 𝛺𝜙𝑠(𝛺𝜙𝑝(𝑢1(𝑧), 𝑢2(𝑧)), 𝑢3(𝑧)) 

=0.5376· 𝑧3.5 +0.2208· 𝑧3 +0.0192· 𝑧2.5 +0.0672· 𝑧2 +0.096· 𝑧1.5 + 0.0096 · 𝑧1 +

0.0496 · 𝑧0 

The PD of a task processing MSS is obtained by: 

U(z) = 𝛺𝜙𝑠(𝛺𝜙𝑝(𝑢1(𝑧), 𝑢2(𝑧)), 𝑢3(𝑧)) 

=0.5376·𝑧1.87+0.2208·𝑧1.71 +0.0192·𝑧1.54+0.0672·𝑧1.33 +0.096·𝑧1.09 + 0.0096 ·

𝑧0.8 + 0.0496 · 𝑧0 



The availability of an MSS is provided in section III. 

 

3. The stochastic computational model 

3.1. Extended stochastic logic 

In stochastic computation, signal probabilities are encoded into random binary 

bit streams [25]. In the binary streams, a proportional number of bits are set to “1” to 

indicate a probability [26]. A stochastic multiple-valued sequence is also used to 

indicate the probability of a multiple-valued signal. For example, the performance set 

𝑔𝑗 = {0, 1, 2.5} and probability set 𝑝𝑗 = {0.3, 0.6, 0.1} of component j can be 

encoded into a multiple-valued stochastic sequence shown as in Fig. 2. 

" 0,1,1,1,0,1,1,1,0,2.5"       
P0=0.3
P1=0.6

P2.5=0.1
 

Fig. 2. The stochastic encoding of an MSC using a 10-bit sequence. 

 

Stochastic computation in the unipolar representation is limited to values in [0, 

1]. However, the performance rates of an MSC or MSS may exceed this boundary. 

Hence, extended-stochastic logic (ESL) is used to expand the range of stochastic 

computation to (0, 2𝑁 − 1) for a binary value of 𝑁 bits [19]. In ESL, a positive real 

number is encoded as the ratio of two stochastic numbers using the unipolar 

representation. Assuming the unipolar representation of the dividend sequence is 𝑝_𝑈 

and the divisor sequence is 𝑝_𝐷, a positive real number 𝑥 is  given by: 𝑥 =
𝑝_𝑈

𝑝_𝐷
. The 

ESL multiplier, divisor, adder and MIN gate are shown in Fig. 3 [19]. 
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Fig. 3. (a) An ESL multiplier, (b) An ESL divisor, (c) An ESL adder, and (d) An ESL MIN gate. 

 

3.2. SMV models with independent components 

In the SMV models, the elements in the performance rate set 𝑔𝑗  and 

corresponding probabilities of component j are simultaneously encoded in L-bit 

multi-value non-Bernoulli sequences. The UGF composition operators  𝑝𝑎𝑟
⊗

/  𝑠𝑒𝑟
⊗

 

indicate the connection structure of independent components. 

3.2.1. The SMV model for parallel systems with independent components 

In a flow transmission MSS or task processing MSS containing independent 

parallel MSCs, the total performance of the system is the addition of the   

performance of each MSC. The ESL adder (Fig. 3(c)) is used to calculate the total 

performance of a parallel system. 
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Fig. 4.  The SMV model of the parallel system with independent MSCs (SMV_P). 

 

The performance rates and probabilities of a parallel system containing two 

MSCs can be obtained by an SMV model of the parallel system with independent 



MSCs (SMV_P) as shown in Fig. 4.  The performance rates (e.g.  (1.5, 1, 0) , (2, 

1.5, 0) ) and the corresponding probabilities (e.g.  (0.8, 0.1, 0.1) , (0.7, 0.2, 0.1) ) of 

𝑢1and 𝑢2 in Table 1 are encoded in L-bit multi-valued non-Bernoulli sequences S1 

and S2. Since the performance rate exceeds 1, the sequences S1 and S2 are converted 

into ESL sequences. A block (M2ESL) is implemented to transform the multi-values 

in sequences S1 and S2 into L0-bit (e.g. L0=100) ESL sequences.  The multiple values 

in the sequences S1 and S2 are transformed into ESL sequences S1_i and S2_i, the 

length of sequences S1_i  or S2_i is L, (i ∊ [1, L0]). A converter (ESL2M) in Fig. 4 is 

defined by transforming the output ESL sequences of ESL Adders into the 

multi-valued sequence S3, including the performance rates and probabilities of the 

parallel subsystem.   

3.2.2. SMV models for series systems with independent components 

The performance of a flow transmission MSS with two independent MSCs in 

series connection is determined by the MSC with the least performance [24]. The 

SMV model of the series flow transmission system (SMV_SF) is shown in Fig. 5.   

According to (6), an SMV model of series task processing system (SMV_ST) is 

proposed to obtain the performance of the system with two independent MSCs. The 

block diagram is shown in Fig. 6. 
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Fig. 5. The SMV model of a series flow transmission system with independent MSCs (SMV_SF). 
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Fig. 6. The SMV model of a series task processing system with independent MSCs (SMV_ST). 

 

The non-Bernoulli sequences S3 and S4 with the values (3.5, 3, 2.5, 2, 1.5, 1, 0) 

and (4, 0) carry the performance rates of the parallel subsystem and 𝑢3 in Fig. 1 

respectively. The probability sets 𝑃3 and 𝑃4 contain the probabilities with different 

performance rates of the parallel subsystems and 𝑢3. The performance rates and 

probabilities of a series MSS can be calculated by the SMV_SF or SMV_ST 

according to the type of systems. 

3.2.3. SMV models with dependent components 

Assuming an MSS consisting of components j and h, the performance 

distribution of h depends on the state of j. The states of the components are 

distinguished by the corresponding performance rates [27], thus the performance 

distribution of h is determined by the performance rates of j. The structures of 

components j and h are shown in Fig. 7. 

 

j

h

j h

(a) (b)
 

Fig. 7. (a) An MSS with two dependent parallel components, (b) An MSS with two dependent 

series components. 

The performance set 𝑔𝑗 and probability set 𝑝𝑗of component j are separated into 

M mutually disjoint subsets  𝑔𝑗
𝑙 and 𝑝𝑗

𝑙, l ∊ [1, M]. According to the dependency 

relationship between components j and h, the subsets of performance rates and 

conditional probabilities of component h are 𝑔ℎ̅̅ ̅𝑙 and 𝑝ℎ̅̅ ̅𝑙 under the condition of 𝑔𝑗
𝑙 



and 𝑝𝑗
𝑙. The function of dependent systems is described by: 

𝑢𝑗(𝑧) 

→
⊗
𝜙

___
𝑢ℎ(𝑧)=∑ 𝑝𝑗

𝑙𝑀
𝑙=1 𝑧𝑔𝑗

𝑙 

→
⊗
𝜙

∑ 𝑝ℎ̅̅ ̅𝑙𝑀
𝑙=1 𝑧𝑔ℎ̅̅ ̅̅ 𝑙

 

           =∑ 𝑝𝑗
𝑙𝑀

𝑙=1 · 𝑝ℎ̅̅ ̅𝑙 · 𝑧𝜙(𝑔𝑗
𝑙,𝑔ℎ̅̅ ̅̅

𝑙
),                                 (7) 

where  𝜙 is a composition operator determined by the MSS structure function (e.g. 

 𝑝𝑎𝑟
⊗

 or  𝑠𝑒𝑟
⊗

). 

In the SMV models, the performance rate subsets (𝑔𝑗
𝑙 /𝑔ℎ̅̅ ̅𝑙) and corresponding 

probability (𝑝𝑗
𝑙 /𝑝ℎ̅̅ ̅𝑙) of j and h are encoded in L- bit non-Bernoulli sequences 𝑆𝑗𝑙 

and 𝑆ℎ𝑙, l ∊ [1, M]. L×∑ 𝑝𝑗𝑖
𝑙𝑘𝑗

𝑙

𝑖=1
 bits are valid in the sequence 𝑆𝑗𝑙, L×(1- ∑ 𝑝𝑗𝑖

𝑙𝑘𝑗
𝑙

𝑖=1
 ) 

bits are filled with the invalid number V, where 𝑘𝑗
𝑙
 is the number of elements in the 

subset 𝑝𝑗
𝑙. 

An SMV model for the parallel system with dependent MSCs j and h is 

presented in Fig. 8. 
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Fig. 8 An SMV model for parallel system with dependent MSCs. 

 

The sequence 𝑆𝑜𝑢𝑡𝑙 indicates the SMV_P output of 𝑆𝑗𝑙 and  𝑆ℎ𝑙. The L-bit 

sequence 𝑆𝑜𝑢𝑡  represents the performance rates and probabilities of the parallel 

subsystem. The multiple-valued smaller operator (MVSO) is defined as: 

𝑀𝑉𝑆𝑂( 𝐴𝑙  < 𝑉 ) = 𝑀𝐼𝑁(𝐴𝑙, V),                                        (8)                                                              

where V is an invalid number in L-bit non-Bernoulli sequence 𝑆𝑗𝑙 and V is used to 

compensate the sequence 𝑆𝑗𝑙  to L bits. A number larger than the maximum 

performance rate of the parallel subsystem is selected as the value of V. The invalid 

numbers (i.e., the obtained results of invalid V) are filtered out by the MVSO. 

An SMV model for a series subsystem with the dependent MSC j and h is shown 



in Fig. 9.  
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Fig. 9 An SMV model for series system with dependent MSCs. 

 

The sequence  𝑆𝑜𝑢𝑡𝑙  is the output of the SMV_SF/T. L-bit sequence 𝑆𝑜𝑢𝑡 

indicates the performance rates and probabilities of the series system. The 

multiple-valued unequal operator (MVUO) is described as: 

𝑀𝑉𝑈𝑂( 𝐴𝑚  ≠ 𝑉 ) = {
𝐴𝑚      𝑖𝑓𝐴𝑚 ≠ 𝑉 

 𝑁𝑢𝑙𝑙   𝑖𝑓𝐴𝑚 = 𝑉    
, m ∊ (1, L)                     (9) 

where an invalid number V in 𝑆𝑗𝑙 is used to ensure the length of the sequence to be L 

bits, and -1 can be selected as the value of V due to the MIN operation used in the 

model ESMS_F (i.e., the output of the MIN operation is -1 when the elements in the 

sequence and -1 are the inputs). 𝐴𝑚 is an element in the sequence  𝑆𝑜𝑢𝑡𝑙.The MVUO 

operator eliminates the invalid  number V in 𝑆𝑜𝑢𝑡𝑙. 

3.2.4. SMV models with groups of dependent components 

Assuming a pair of components e and h depend on the same component j and all 

the components are mutually independent of a certain state of j. This indicates that 

components of e and h are conditionally independent given the state of j. The 

structures of components e, h and j are presented in Fig. 10. 
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Fig. 10. (a) An MSS with group dependent parallel components, (b) An MSS with group 

dependent series components. 

 

The performance set 𝑔𝑗 and probability set 𝑝𝑗of component j are separated into 

M mutually disjoint subsets  𝑔𝑗
𝑙  and 𝑝𝑗

𝑙  as the dependency condition of 



components e and h, l ∊ [1, M]. The performance distributions of components e and h 

are described by the pairs of vectors 𝑔𝑒̅̅ ̅𝑙, 𝑝𝑒̅̅ ̅𝑙and 𝑔ℎ̅̅ ̅𝑙, 𝑝ℎ̅̅ ̅𝑙. The function of a group 

dependent system can be obtained as: 

𝑢𝑗(𝑧) 

→
⊗
𝜙

___
𝑢𝑒(𝑧)

→
⊗
𝜙

___
𝑢ℎ(𝑧) 

=∑ 𝑝𝑗
𝑙𝑀

𝑙=1 𝑧𝑔𝑗
𝑙 

→
⊗
𝜙

(∑ 𝑝𝑒̅̅ ̅𝑙𝑀
𝑙=1 𝑧𝑔𝑒̅̅̅̅ 𝑙

→
⊗
𝜙

∑ 𝑝ℎ̅̅ ̅𝑙𝑀
𝑙=1 𝑧𝑔ℎ̅̅ ̅̅ 𝑙

) 

=∑ 𝑝𝑗
𝑙𝑀

𝑙=1 · (𝑝ℎ̅̅ ̅𝑙 · 𝑝ℎ̅̅ ̅𝑙) · 𝑧𝜙(𝑔𝑗
𝑙,   𝜙(𝑔𝑒̅̅̅̅ 𝑙,   𝑔ℎ̅̅ ̅̅

𝑙
)),                              (10) 

where the function  𝜙 indicates a composition operator  𝑝𝑎𝑟
⊗

or  𝑠𝑒𝑟
⊗

in accordance 

with the type of components’ connection. 

In the SMV models, the performance rate subsets ( 𝑔𝑗
𝑙  / 𝑔𝑒̅̅ ̅𝑙/𝑔ℎ̅̅ ̅𝑙 ) and 

corresponding probability ( 𝑝𝑗
𝑙  / 𝑝𝑒̅̅ ̅𝑙/𝑝ℎ̅̅ ̅𝑙 ) of j, e and h are encoded in L-bit 

non-Bernoulli sequences 𝑆𝑗𝑙, 𝑆𝑒𝑙and  𝑆ℎ𝑙, l ∊ [1, M]. L×∑ 𝑝𝑗𝑖
𝑙𝑘𝑗

𝑙

𝑖=1
 bits are valid in 𝑆𝑗𝑙, 

L×(1- ∑ 𝑝𝑗𝑖
𝑙𝑘𝑗

𝑙

𝑖=1
 ) bits are filled with the invalid number V, and 𝑘𝑗

𝑙
 is the number of 

elements in subset 𝑝𝑗
𝑙. 

An SMV model for a parallel/series system with a group of dependent MSCs j, e 

and h is presented in Fig. 11. 𝑆𝑜𝑢𝑡𝑙 is an output sequence of the stochastic logic unit 

(SLU). The SLU is an SMV_P model (Fig. 4) and the invalid value filter (IVF) is an 

MVSO operator, when the system is a parallel system. If the system is a series system, 

the SLU is an SMV_SF (Fig. 5) or SMV_ST (Fig. 6) depending on if the type of the 

system is a flow transmission system or a task processing system, the IVF is a MVUO 

operator. The performance rates and probabilities of the parallel/series system are 

obtained by the L-bit sequence 𝑆𝑜𝑢𝑡. 
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Fig. 11. An SMV model for a parallel/series system with a group of dependent MSCs. 



3.2.5. Availability assessment of an MSS 

The state of an MSS depends on the relation between the MSS performance and 

demand [24]. The relation between system performance and demand 𝜔 is determined 

by the system adequacy index (𝑟𝑖), which takes the form:  

𝑟𝑖 = 𝑔𝑖 − 𝜔,                                                       (11) 

where i denotes an acceptable state if and only if 𝑟𝑖 ≥ 0. 

The availability of an MSS is the probability of the system staying in the subset 

of acceptable states. It is defined as the probability that the MSS performance rate is 

greater than the demand 𝜔 [24]. 

𝐴(𝜔) = 𝛿𝐴(𝑈(𝑧), 𝜔) = 𝛿𝐴(∑ 𝑝𝑖𝑧
𝑔𝑖𝐾

𝑖=1  , 𝜔) = ∑ 𝑝𝑖. 𝛼𝑖
𝐾
𝑖=1                     (12) 

where 𝛼𝑖 = {
1 , 𝑟𝑖 ≥ 0 
0 , 𝑟𝑖 < 0

, and K is the number of system states. 

For the example in Fig. 1, assuming the demand is 1.5, the MSS availability is 

calculated as: 

𝐴(1.5) = 𝛿𝐴(𝑈(𝑧), 1.5) = ∑ 𝑝𝑖. 𝛼𝑖
7
𝑖=1 =0.9408 

Assume that the reliability requirement for an MSS is set to 0.9, then A(1.5) =

0.9408 > 0.9 meets the system availability. 

According to (12), the SMV model to obtain the availability of an MSS is 

presented in Fig. 12. L-bit multi-value non-Bernoulli sequence 𝑆𝑜𝑢𝑡 indicates the 

performance rates and probabilities of the system. 𝑆𝑟𝑒𝑠𝑢𝑙𝑡  is an L-bit binary 

non-Bernoulli sequence representing the availability of the MSS by the probability of 

1’s. The multiple-valued equal or larger (MVEL) operator is defined by: 

MVEL(𝐴𝑚≥𝜔)={
1    𝑖𝑓𝐴𝑚 ≥ ω 

 0    𝑖𝑓𝐴𝑚 <  ω  
,and m ∊ (1, L),                          (13) 

where 𝐴𝑚 is an element in the sequence 𝑆𝑜𝑢𝑡, 𝜔 is the demand of the system, and L 

is the length of the sequences. 
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Fig. 12. An SMV model to obtain the availability of an MSS 

3.2.6. Random fluctuations 



The simulation output values are probabilistic rather than deterministic due to the 

random fluctuation as an inherent feature of stochastic computation [28].  It follows 

approximately a Gaussian distribution. This fluctuation can be analyzed quantitatively 

by investigating the mean and variance of the output distribution. The accuracy can be 

improved by increasing the length of stochastic sequences. The detailed discussion is 

presented in the next section.  

 

4. Case studies 

In this section, several case studies are presented to validate the accuracy and 

efficiency of the SMV models. A non-repairable series-parallel MSS (Fig. 13) 

consisting of dependent MSCs with steady and time-vary probabilities is considered 

first. The structure presented is interpreted as a flow transmission MSS or a task 

processing MSS. The proposed SMV approach is compared to the UGF [10, 27] and 

MC methods [14]. Simulations are run on a computer with a 3.4-GHz Intel 

microprocessor with 16GB memory. 
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Fig. 13. The structure of a non-repairable series-parallel MSS [10]. 

 

In subsystems 1 and 2 , MSC2 and MSC4 depend on the states of MSC1 and 

MSC3  respectively; the state of MSC6  is determined by the state of MSC5  in 

subsystem 3; MSC7 and MSC9 both depend on the state of MSC8 in subsystem 4. 

The states of MSCs are distinguished by the corresponding performance rates. The 

performance distribution of an affected component is determined by the performance 

rate of the influencing component.  

4.1. Example 1 

In this example, a system of components with steady state probabilities is 



presented to validate the SMV models. The performance rates and corresponding 

probabilities of the influencing and affected components are presented in Tables 2 and 

3 respectively. 

 

Table 2 

Unconditional performance distributions of components [10], 𝑔𝑗𝑖and 𝑝𝑗𝑖 indicate the 

performance rate and probability of component j in state i. 

       i    

𝑔𝑗𝑖/𝑝𝑗𝑖 
1 2 3 4 

𝑔1𝑖/𝑝1𝑖 2/0.5 1.5/0.2 1/0.2 0/0.1 

𝑔3𝑖/𝑝3𝑖 2/0.6 1.5/0.2 1/0.1 0/0.1 

𝑔5𝑖/𝑝5𝑖 5/0.6 4/0.2 2/0.15 0/0.05 

𝑔8𝑖/𝑝8𝑖 1.5/0.7 1/0.2 0/0.1  

 

Table 3 

Conditional performance distributions of components [10], 𝑔𝑗𝑖and 𝑝𝑗𝑖 indicate the performance 

rate and probability of component j in state i. 

𝑔𝑗𝑖/𝑝𝑗𝑖 
       i      

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  
1 2 3 4 

𝑔2𝑖/𝑝2𝑖 

0≤𝑔1𝑖≤1 2.5/0.8 2/0.1   1/0.05 0/0.05 

1<𝑔1𝑖≤1. 5 2/0.7 1.5/0.1 1/0.15 0/0.05 

𝑔1𝑖>1.5 1.5/0.5 1/0.4 0/0.1  

𝑔4𝑖/𝑝4𝑖 

0≤𝑔3𝑖≤1 2/0.85 1.5/0.1 0/0.05  

1<𝑔3𝑖≤1.5 1.5/0.65 1/0.3 0/0.05  

𝑔3𝑖  >1.5 1/0.9 0/0.1   

𝑔6𝑖/𝑝6𝑖 
0≤𝑔5𝑖≤4 4/0.8 2/0.15 0/0.05  

𝑔5𝑖>4 5/0.25 2.5/0.7 0/0.05  

𝑔7𝑖/𝑝7𝑖 
0≤𝑔8𝑖≤1   2/0.8   1/0.1 0/0.1  

𝑔8𝑖 >1      1.5/0.75   1/0.2 0/0.05  

𝑔9𝑖/𝑝9𝑖 
𝑔8𝑖=0   2/0.8 1.5/0.1    1/0.05    0/0.05 

𝑔8𝑖 >0   2/0.2 1.5/0.6    1/0.1 0/0.1 

 

In Tables 2 and 3, 𝑔𝑗𝑖 is the performance rate (or level) of the component j in 

the state 𝑖, 𝑝𝑗𝑖 denotes the probability of  j  in the state 𝑖, and the condition refers 

to the dependence condition of the components. 

4.1.1. The SMV model for the system 

An SMV model of the non-repairable series-parallel MSS is presented in Fig. 14. 



The SMV_SF or SMV_ST is used to evaluate the reliability of the system in 

accordance with the type of the system. 
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Fig. 14. The SMV model of the flow transmission system. 

 

In Fig. 14, 𝑆𝑖
𝑙 (i ∊[1, 9], l ∊ {1, 2, 3}) is a non-Bernoulli sequence encoding the 

performance rates and corresponding probabilities of component i. Due to the parallel 

connection and the dependence relation between MSC1 and MSC2 in subsystem 1, 

the SMV model for a parallel system with dependent MSCs (Fig. 8) is used to 

evaluate the reliability of the subsystem. The models for subsystems 1 and 2 are the 

same owing to the same structure. The SMV_P (Fig. 4) is used to deal with the 

parallel system consisting of only subsystems 1 and 2. The SMV model for a series 

system with dependent MSCs (Fig. 9) is used to analyze the serial subsystem 3. The 

SMV model for a parallel system with a group of dependent MSCs (Fig. 11) is used to 

assess the reliability of the subsystem 4. 𝑆𝑜𝑢𝑡 is the output sequence encoding the 

performance rates and probabilities of the flow transmission system. 𝜔 is the demand 

performance of the system. 𝑃𝑜𝑢𝑡 is the availability of the system when the system 

meets the demand performance 𝜔. 

4.1.2. Simulation results  

The PD for each performance rate of a flow transmission system using the UGF 

[10, 27], MC [14] and the proposed SMV approaches are shown in Table 4, in which 

the probabilities of different states of the system are obtained. 1000-bit non-Bernoulli 



sequences are used in the SMV experiments.  The results of MC simulations were 

obtained from 1000 runs. Error is defined as the ratio of the difference between the 

simulation result by SMV or MC and the accurate result by UGF over the accurate 

one. According to the simulation result, the SMV approach produces more accurate 

results than the MC method. 

 

Table 4 

The PD of a flow transmission system with different performance rate using UGF, MC, and SMV 

methods. 

Performance 

rate 

UGF [10, 27] SMV approach MC [14] 

probability probability Error probability Error 

5 0.098 0.0978 0.2% 0.0971 0.71% 

4.5 0.0018 0.0018 0% 0.0019 5.56% 

4 0.004 0.0041 2.5% 0.0043 7.5% 

3.5 0.1819 0.1821 0.11% 0.1825 2.2% 

3 0.4173 0.4170 0.07% 0.4165 0.19% 

2.5 0.0343 0.0345 0.58% 0.0348 1.46% 

2 0.0096 0.0096 0% 0.0097 1.04% 

1.5 0.1643 0.1645 0.12% 0.1639 0.24% 

1 0.0538 0.0537 0.19% 0.0539 0.19% 

0 0.035 0.0349 0.29% 0.0354 1.14% 

 

Assuming that the required demand of the flow transmission system is defined as 

𝜔 = 2, the comparison of the simulation results for the distribution of the system 

availability is shown in Fig. 15. The results are obtained by 10,000 SMV experiments 

with a 1000-bit non-Bernoulli sequence and 10,000 MC simulations with 1000 runs in 

each simulation. According to the Central Limit Theorem, the distribution of a large 

number of samples follows a Gaussian distribution. Fig. 15 shows that a Gaussian 

distribution with the mean and variance obtained from the simulations fits the 

distribution of the data very well using MC and SMV methods. The difference 



between the mean value of MC simulation and SMV is negligible (given by the mean 

value of 0.8951 for MC and 0.8957 for SMV model). In contrast, the standard 

deviation σ of the SMV model and MC simulation results are significantly different. 

The standard deviation is 0.0058 for MC simulation (as shown in Fig. 15(a)) and 

0.0016 for the SMV model (as shown in Fig. 15(b)). This indicates that the SMV 

approach achieves more accurate evaluation results compared to MC for the same 

number of simulation runs. 

 

  

(a) 

 

(b) 

Fig. 15. Comparison of the simulation results for the distribution of the system availability 

(demand performance rate of the system: 𝜔 =2). (a)  10,000 MC [14] simulations with 1000 runs 

in each simulation of the flow transmission system; (b) 10,000 SMV experiments with a sequence 

length of 1000 bits for the availability of the flow transmission system. 

100 experiments are run using SMV and MC methods to obtain the mean value 

of the system availability and average run time. The SMV and MC simulation results 

and the computation results with the UGF method are shown in Table 5. Because the 

use of non-Bernoulli sequences reduces the random fluctuation in stochastic 

computation, the SMV approach produces more accurate results and is more efficient 

than MC simulation, as indicated by the results of system availability and run time in 



Table 5. Also shown in Table 5 is that the SMV approach using different sequence 

lengths leads to different accuracies of the system availability and different run time. 

It can be seen that the SMV approach with a reasonable sequence length (e.g. 5k bits) 

produces a very accurate result with a shorter run time compared to the UGF method. 

 

Table 5 

Run time and error of MC simulation [14] and SMV, compared to the UGF method [10, 27], for 

the availability of the flow transmission system in Fig. 13. N: the number of simulation runs for 

MC; L: the sequence length for SMV models; the definition of error is the same as in Table 4. 

UGF [10, 27] 

Availability  0.8962 

Average run 

time for UGF (s) 
0.4102 

 N/L 1k 5k 10k 100k 

MC simulation 

[14]  

Availability  0.8941 0.8947 0.8955 0.8960 

Error 0.2343% 0.1673% 0.0781% 0.0223% 

Average run 

time for MC 

method (s) 

0.2988 1.593 3.468 39.582 

SMV 

approach 

Availability  0.8956 0.8959 0.8960 0.8961 

Error 0.0669% 0.0334% 0.0223% 0.0112% 

Average run 

time for SMV 

approach (s) 

0.0354 0.1642 0.3697 3.731 

 

4.2. Example 2 

In this example, a system consisting of multi-state components with time-varying 

probabilities is presented to validate the SMV models. The structure of this system is 

the same as the system in Fig. 13. The performance rates and corresponding 

time-varying probabilities of the influencing and affected components are presented in 

Tables 6 and 7 respectively. The probabilities in each state of components 1 and 3 are 

the same as the probabilities of components 8 and 5 respectively. In Tables 6 and 7, 

𝑝𝑖𝑗(𝑡) is the performance probability of component j in state i at time t, and it meets 

the condition ∑ 𝑝𝑗𝑖(𝑡) = 1
𝑘𝑗

𝑖=1
, where kj is the number of states of component j. All 

components’ performance probabilities in the highest state at the beginning of system 

operation (t=0) are set to 1, because a system is considered to start with a perfect 

performance.  

 



Table 6 

Unconditional performance distributions of components with time-varying probabilities: 𝑔𝑗𝑖 

denotes the performance rate of component j in state i, t is the number of months, 0≤ t ≤ 100.  

   𝑔𝑗𝑖/𝑝𝑗𝑖(t)  

 

     i  

𝑔1𝑖/𝑝1𝑖(t) 𝑔3𝑖/𝑝3𝑖(t) 𝑔5𝑖 𝑔8𝑖 

1 8/ 1-0.0072t   9/1-0.0079t  8 7 

2 7/ 0.0005t   8/0.0006t 7 6 

3 6/0.0004t  7.5/ 0.0004t  6.5 5 

4 5.5/ 0.0007t  7/0.0003t  6 4.5 

5 5/ 0.0003t  6.5/ 0.0006t  5.5 4 

6 4/ 0.0003t  6/ 0.0009t  5 2.5 

7 3/ 0.0011t   4/ 0.0012t  4 1.5 

8 2/ 0.001t   3/ 0.0015t  2.5 1 

9 1/ 0.0009t  1/ 0.0007t  1 0.5 

10 0/ 0.002t   0/0.0017t  0 0 

 

Table 7 

Conditional performance distributions of components with time-varying probabilities: 𝑔𝑗𝑖 denotes 

the performance rate of component j in state i, t is the number of months, 0≤ t ≤ 100. 

𝑔𝑗𝑖/𝑝𝑗𝑖(𝑡) 

         i 

      

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

1 2 3 4 5 6 

𝑔2𝑖/𝑝2𝑖(t) 

0 ≤𝑔1𝑖≤ 2 7/1-0.0073t 6/0.0016t 5/0.0006t 4/0.0019t 2/0.0014t 0/0.0018t 

2 <𝑔1𝑖≤ 5 6/1-0.0084t  5.5/0.0006t 5/0.0006t 3/0.0018t 1/0.0022t 0/0.0032t 

𝑔1𝑖> 5 5/1-0.0087t  4.5/0.003t 4/0.0018t 0/0.0039t   

𝑔4𝑖/𝑝4𝑖(t) 

0 ≤𝑔3𝑖≤ 3 5/1-0.0077t  4/0.001t 3/0.0017t 2/ 0.0013t 1/0.0012t 0/0.0025t 

3 <𝑔3𝑖≤ 7 5/1-0.0086t  3/0.0022t 2.5/0.0003t 2/0.0023t 1/0.0011t 0/0.0027t 

𝑔3𝑖  > 7 4.5/1-0.0078t 4/0.0028t 3/0.0008t 2.5/0.0007t 0/0.0035t  

𝑔6𝑖/𝑝6𝑖(t) 
0≤𝑔5𝑖≤4 6/1-0.0094t  4/0.0013t 3/0.0015t 2.5/0.0011t 1.5/0.0014t 0/0.0041t 

𝑔5𝑖>4 5/ 1-0.0063t  3.5/0.0005t 3/ 0.001t 2.5/0.0005t 2/0.0028t 0/0.0015t 

𝑔7𝑖/𝑝7𝑖(t) 
0≤𝑔8𝑖≤ 5 7/1-0.0096t  6/0.0014t 4/0.0021t 3/0.0025t 1/ 0.002t 0/0.0016t 

𝑔8𝑖 > 5 4.5/1-0.007t 4/ 0.0026t 3/0.0014t 2.5/0.0016t 0.5/0.0012t 0/0.0002t 

𝑔9𝑖/𝑝9𝑖(𝑡) 
𝑔8𝑖= 0 5/1-0.0076t  4.5/0.0023t 4/0.0012t 3/0.0005t 1.5/0.0021t 0/0.0015t 

𝑔8𝑖 > 0 4/1-0.006t  3.5/0.0004t 3/0.0005t 2/0.0011t 0.5/0.0009t 0/0.0031t 

 

In a system consisting of MSCs with time-varying probabilities, similar to [31], 

the time T is divided into M equal time intervals, i.e., ΔT = T/M. M is determined by a 

tradeoff between accuracy and efficiency. The discretization can provide a relatively 

accurate estimate of the continuous probability of a component with a reasonable M.  



For example 2, the simulation results obtained by using the SMV, UGF and MC 

methods for the system reliability at time t are presented in Fig. 16 (with demand 

performance rate of the system: 𝜔 =1). As shown in Fig. 16, the simulation results 

using the SMV approach with a sequence length 10k bits is more accurate than the 

MC method with 10k runs. The error of simulation results in time t with a sequence 

length 10k bits is less than 0.0849% compared to the UGF method (the definition of 

error is the same as in Table 4). However, the runtime of the SMV approach is only 

0.4436s, compared to the calculation time of the UGF method, 34.1623s. Hence, the 

SMV approach is more efficient than the UGF method for evaluating the reliability of 

complex systems consisting of MSCs with time-varying probabilities, and it produces 

a very accurate simulation result of the system reliability. 

 

 

Fig. 16. The simulation results obtained by using the SMV, UGF and MC methods for the system 

reliability at time t (demand performance rate of the system: 𝜔 =1, 0≤ t ≤100).  

 

4.3.Discussion of SMV approach 

The SMV model simulations of the flow transmission system indicate that the 

result of every single experiment fluctuates around the expected mean value. The 

fluctuation can be analyzed quantitatively [17]. Assuming that experiment results x is 

a random variable with the same mean 𝑢  and variance 𝜎2 , the fluctuation is 



measured by the standard deviation [29], 

e = |x − u| ≈
𝜎

√𝑛
                                                    (14) 

where n is the number of experiments. The result indicates that the fluctuation is 

proportional to 𝜎. (14) applies to both the SMV and MC methods. Due to the faster 

convergence of SMV approach, the standard deviation σ of SMV model is smaller 

than that of the MC simulation, hence the SMV approach is more accurate than MC 

simulation for the same value of n. 

In stochastic computation, the result follows approximately a Gaussian 

distribution for a large number of runs [17, 30]. A parameter Zc determines the 

confidence interval of the simulation results with a sequence length L, and the error in 

the simulation result is given by [31]: 

𝐸 =
𝑍𝐶

𝑢
√

𝜎2

𝐿
= 

𝑍𝐶

𝑢
·

𝜎

√𝐿
                                                  (15) 

where E is defined as the ratio of the disparity between an approximate value and the 

accurate one over the accurate result, 𝑢 and σ are the accurate mean and standard 

deviation of the distribution of the results. For a confidence level of 95%, 𝑍𝐶  = 1.96. 

As per (15), the accuracy can be improved by increasing the length of the sequence 

for a given confidence level. The sequence length L can be determined by (15) for 

obtaining a desired evaluation accuracy. 

In a mission time, the simulation results with different sequence lengths for the 

flow transmission system in example 1 are presented in Fig. 17, where the difference 

is the disparity between the approximate result obtained by SMV model and the exact 

values using the UGF method. As shown in Fig. 17, the difference decreases when the 

sequence length increases. It means that the accuracy of SMV model can be further 

improved by increasing the length of stochastic sequences. 

 



 

Fig. 17. The differences in the availability of the flow transmission system obtained by using the 

SMV model at different mission times. L is the length of the non-Bernoulli sequence. The mission 

time is 200 hours and the time interval for discretization is one hour. 

 

For a parallel MSS consisting of n independent MSCs with M states, (n-1)·L ESL 

ADD operations and L MVSO operations are required; thus the computational 

complexity of the SMV approach with L-bit sequences is 𝑂(𝑛 · 𝐿). However, a 

complexity of 𝑂((𝑀 + 1)𝑛) is required for the UGF method [11]. Assuming the 

system in Fig. 13 consisting of 9 independent components with different numbers of 

states, the run times for SMV and UGF methods are shown in Fig. 18. The results 

reveal that the run time required by the SMV approach with 10k-bit sequences is 

shorter than the UGF method when the number of a component’s states is 4 or more. 

The run time by the SMV approach with 100k-bit sequences or by MC simulation 

with 10k runs is shorter than the UGF method when the number of a component’s 

states is 8 or more. Compared to MC simulation with 100k runs, a longer time is 

required by the UGF method when the number of component’s states is larger than 10. 

The results indicate that the SMV approach is more efficient than MC simulation. The 

simulation results also reveal that the computation time of MC and SMV approach is 

not influenced by the number of component states, and the computation time of UGF 

method increases with an increasing number of component’s states. As per (15), the 

reliability of the system is very accurate when the sequence length of the SMV 

models is 100k bits.  



 

 

Fig. 18. The run times for the SMV and UGF methods with an increasing number of component 

states. The number of components n = 9.  

 

 For a parallel MSS consisting of n dependent MSCs with M states, assuming 

that the performance rate set of dependent components is separated into l mutually 

disjoint subsets, the complexity of SMV model with L-bit sequences is 𝑂(𝑛 · 𝑙 ·

𝐿), according to the dependency relationship between components. For the same 

system, the complexity of the UGF method is 𝑂(𝑙(𝑀 + 1)𝑛). The complexity of a 

series MSS is the same as that of a parallel MSS for the two methods. For a complex 

system with a large number of components and states, the SMV approach is more 

efficient than the UGF method, when the exact value of system reliability is not 

necessary. 

 

5. Conclusion 

SMV models are proposed to evaluate the availability of multi-state systems with 

independent and dependent multi-state components. The performance rates and 

corresponding probabilities of MSCs are simultaneously encoded in multi-valued 

non-Bernoulli sequences. The simulation results indicate that the SMV approach 



provides a more efficient analysis compared to Monte Carlo (MC) and UGF methods. 

The SMV approach is more accurate than MC simulation due to the faster 

convergence. As shown in the simulation results, the number of component states is 

not a crucial factor to influence the run time of the SMV approach; therefore, the 

SMV approach is suitable for the analysis of complex multi-state systems. Ongoing 

work includes the stochastic modeling of other types of MSS. 
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