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Abstract—Stochastic computing (SC) features a unique num-
ber representation, where real values are encoded by the prob-
ability of “1”s in a random binary bit stream or a stochastic
sequence. It enables hardware-efficient arithmetic circuit designs
with simple logic gates. However, stochastic number generators
(SNGs) are required to produce stochastic sequences. The high
hardware cost of an SNG offsets the advantage of SC. To reduce
the hardware cost of an SNG, we propose an SRAM-based
SNG using voltage under-scaling. It generates random bits by
leveraging the access instability of selected SRAM cells, induced
by a reduced supply voltage. It is suitable for energy-efficient
SC. We implemented the SRAM-based SNG on a Xilinx ZC702
FPGA using block RAMs and evaluated its performance across
multiple SC applications, including finite-state machine-based
tanh function generation and an Ising machine that solves max-
cut problems (MCPs). For the tanh function, our design achieves
a comparable mean-squared error (MSE) (8.7 x 1073) compared
to the use of traditional SNGs, such as Sobol- (4.67 x 10~?) and
linear feedback shift register (LFSR)-based (1.53 x 10~2) ones.
For MCPs, a maximum cut value comparable to that of a cutting-
edge design is achieved. Compared with LFSR- and Sobol-based
designs, the proposed design consumes 84.3% and 92.5% less
energy, respectively.

Index Terms—stochastic computing (SC), random number
generator (RNG), voltage under-scaling, low-power design.

I. INTRODUCTION

Stochastic computing (SC) systems have re-emerged as a
low-power design alternative to conventional binary computing
systems [1]. Unlike conventional computing, SC performs
computation on stochastic bit streams or sequences. For
example, “11001010” contains four 1’s out of eight bits,
so it represents the value of 4/8. A prominent feature of
SC is its low hardware complexity in implementing arith-
metic circuits. Fig. 1 shows that an AND gate implements
multiplication in SC. The two input stochastic sequences
encode 0.25 and 0.5, respectively. A bitwise AND of the
two sequences yields “00000010”. The probability of the
resulting stochastic sequence then approximates the product
of the probabilities encoded in the two input sequences when
they are independent. Due to the low hardware cost, SC has
been employed in low-power compute-intensive tasks such as
image processing [2], neural networks [3], [4], [26], [30], [31],
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[33], [34], as well as complex computations such as function
generation [14]-[16], [21], [22], [25]. However, a stochastic
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Fig. 1. An AND gate implements SC multiplication.
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number generator (SNG) is necessary to convert the input data
into stochastic sequences in an SC circuit. Fig. 2 illustrates an
SNG, consisting of a random number generator (RNG) and a
comparator. During each clock cycle, a random number (RN)
is compared with the binary number. The SNG produces a 1
when the input value is lager than the RN, otherwise 0.

A pseudo-random number generator based on a linear feed-
back shift register (LFSR) is commonly used as the RNG in an
SNG due to its simplicity and reliable random behavior [6].
However, to ensure a high accuracy, uncorrelated stochastic
sequences, and thus multiple independent SNGs, are often
required [7]. This results in SNGs consuming the majority of
the circuit area [8]. Low-discrepancy (LD) or quasi-random

Stochastic sequence

Fig. 2. A stochastic number generator (SNG).

sequences, such as Sobol sequence generators [5], have been
shown to be effective for RNGs; they offer better accuracy
and higher energy efficiency due to their regular generation
pattern and even distribution. However, in order to implement
a Sobol sequence generator, a large hardware cost is required,
which in turn negates the advantages of SC. In recent years,
SRAM-based true random number generators have become
interesting to investigate [9], [10]. Compared to the former
RNG designs, SRAM-based RNGs do not require dedicated
circuits to generate RNs, and thus provide high throughput
with low energy [13].

In this work, we propose an SRAM-based SNG for stochas-
tic sequence generation. It is applied to synthesize functions
and implement SC Ising machines. Experimental results on
an FPGA show that the proposed SRAM-based SNG pro-



duces high accuracy in approximating a tanh function and
implementing Ising machines. The proposed design consumes
84.3% and 92.5% less energy compared with LFSR- and
Sobol-based designs, respectively. The main contributions of
this paper are as follows.

e An SRAM-based SNG is devised by employing the
access failure of SRAM bit cells when the voltage is
under-scaled.

« Stochastic sequences are generated by the proposed de-
sign on an FPGA. They are used in tanh function syn-
thesis and solving a max-cut problem with high accuracy
and reduced energy consumption.

II. BACKGROUND
A. SRAM-based RNGs

Previous SRAM-based RNGs have leveraged different en-
tropy sources to generate random numbers, such as physical
fingerprinting [11] and intrinsic bit instability [10]. Holcomb et
al. [11] found that power-up of SRAM produces randomness.
Chen et al. [13] proposed an SRAM-based method relying on
access failure. Access failures occur when the supply voltage
of the SRAM cell is decreased below the manufacturer’s
recommended value. While the data are not destroyed dur-
ing voltage under-scaling reads, the sense amplifier cannot
distinguish the stored data and can behave randomly. Ismail
et al. have confirmed that access failures are a key factor in
producing randomness [12].

B. Applications of stochastic computing

1) Function synthesis using SC-FSMs: Unlike conventional
function units, SC can realize special functions using a finite-
state machine (FSM). For example, the FSM in Fig. 3 imple-
ments a tanh function for neural networks [14]. The N-state

Fig. 3. An FSM with N states that generates the tanh function. X; denotes
the t*" input of stochastic sequence X [14].

FSM takes one bit in the stochastic sequence at each clock
cycle. If the bit is 1, the FSM moves to the state on the right
or stays if it is at the rightmost state; otherwise, the FSM
moves to the state on the left or stays if it is at the leftmost
state. The FSM produces an output bit 1 if it is at one of the
states on the right, and produces a O if it is at one of the states
on the left. As per the theory of Markov chain, the probability
of the output stochastic sequence is obtained approximately
as tanh(4 z) [14], where z is the value encoded by the input
stochastic sequence. To satisfy the working conditions of a
Markov chain model, a true RNG can be used to generate
the stochastic sequence encoding z. The FSM itself can be
implemented by a saturated counter.

Ardakani et al. proposed a weighted FSM [16]. Its states
are associated with real-valued output weights instead of
just Os and 1s, while the FSM state transition rules remain
unchanged. The weights are then obtained by a regression.
The weighted FSM achieves superior accuracy compared with
the previous SC designs. To ensure a high accuracy, we employ
this regression-based method to perform the generation of a
tanh function.

2) Max-cut problems with the Ising model: An Ising model
is an emerging method for solving combinatorial optimization
problems (COPs). It can be implemented by either physical
models such as oscillators [23] or heuristic algorithms such
as simulated bifurcation [24]. Heuristic algorithms are able
to achieve higher precision and scalability, yet they usually
require complex hardware to implement. To mitigate this
disadvantage, Zhang et al. [17] proposed SC-based and binary-
SC-mixed simulated bifurcation cell (SC-SBC and BSC-SBC)
circuits. Fig. 4 shows the two implementations of one Ising
spin cell in an Ising machine. They can implement the sim-
ulated bifurcation model described by the following partial
differential equations (PDEs),
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By encoding the signals g(z;), yi;: and z;, as stochastic
sequences, (1) and (2) can be solved by either the signed
stochastic integrators (SSIs) or the binary Euler integrator
(BEI) for each cell. =; and y, denote the position and
momentum vectors of the spin cells at time ¢, respectively;
aop and ¢y are constants; a(t) is a linear function. {J;;} is
a matrix describing the connection strength between spin @
and j. The optimization results or the positions of the spin
cells are provided by the registers in the second stage of the
SSI in the two designs. Experimental results demonstrate that
randomness facilitates the algorithm escaping local minima
and reaching global minima. This can be achieved by using
true RNGs in the signed SNGs (SSNGs). Note that dynamic
stochastic computing [35] is employed in this design, the
sequence length can be as low as 1 bit for solving the PDEs.
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Fig. 4. Circuit design of the simulated bifurcation cells [17]. (a) stochastic
computing simulated bifurcation cell (SC-SBC); (b) binary-stochastic com-
puting simulated bifurcation cell (BSC-SBC). Since signed SC is used, the
subscript s represents the sign bit, and m denotes the stochastic bit encoding
the magnitude of the corresponding signal.



III. PROPOSED DESIGN

We propose an SRAM-based SNG using voltage under-
scaling as shown in Fig. 5. The SRAM block is first profiled
to identify suitable SRAM cells for random bit generation
with a reduced supply voltage each time when it is powered
on. Each row is read 1,000 times, and the entropy of each
bit is calculated. Shannon Entropy is used to evaluate the
randomness of each bit, given as

1
H=-=Y pilog,pi, 3)
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where py represents the probability of reading a 0 from the
SRAM cell, and p; the probability of reading a 1 in 1,000
read trials. A higher value indicates a larger randomness.
The SRAM bit(s) with the highest Shannon entropy are then
recorded by their addresses and bit positions in the n-bit data.
The probabilities of these bits are around 0.5 and they are then
selected as the entropy sources.

During the operation of the SC system, each entropy source
is accessed through its recorded address and bit position using
an SRAM read and a multiplexer. The random bit is then
loaded into the w-bit shift register one by one. The w-bit
number in the shift register then approximates a uniformly
distributed random number within [0,1] (normalized by 2%).
It is then compared with the binary fractional number to be
encoded as in a conventional SNG.
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Fig. 5. Proposed SRAM-based SNG.

IV. EXPERIMENTS AND RESULTS

The experiments are conducted on a Xilinx Zynq ZC702
FPGA board [19]. Fig. 6 depicts the setup of the experiments.
This board provides an independent voltage rail called VC-
CBRAM. It can be used to control the supply voltage of
the SRAM blocks or block RAM (BRAM) in the FPGA.
To control the BRAM supply voltage, the TI USB interface
adapter is connected to the voltage connection port on the
back of the board via PMBus [32] through a PC. To profile the
BRAM, the TI Fusion digital power designer on the PC is used
to send commands to the adapter to reduce the VCCBRAM
from nominal 1 V to 560 mV (the minimum voltage for
the FPGA to function properly) on a PC. A 512-KB BRAM
is used for the profiling. After the profiling, the processing
system (PS) on the FPGA is used to access the SRAM cell
with the largest entropy. The generated random bits are then
used for the two aforementioned SC applications.
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Fig. 6. Overall experiment setup on a ZC702 FPGA board.
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Fig. 7. Tanh(8x) function generation using LFSR-based, Sobol-based and
the proposed SRAM-based 8-bit SNGs.

Fig. 7 shows the simulation results using different RNGs
to synthesize the function of tanh(8x) with a sequence length
of 256 bits. As shown in Fig. 7, Sobol-based tanh(8z) imple-
mentation produces a hard threshold function and exhibits the
largest error among the considered designs [36]. The MSE is
about 4.67 x 102, The designs using LFSR- and the proposed
SRAM-based RNG leads to similar MSEs of 1.53 x 10~2 and
1.35 x 1072, respectively. The other functions, such as a 2-
dimensional Gaussian distribution function and a sinusoidal
function, are also tested. They show similar trends: the design
using Sobol-based RNGs produces the largest MSE, while the
proposed SRAM-based designs slightly outperform the LFSR-
based designs. The results are summarized in Table L.

TABLE I
THE MSES OF THE SC-BASED FUNCTION GENERATORS USING DIFFERENT
RNGS WITH A SEQUENCE LENGTH OF 256 BITS.

RNG tanh(8x) 2D Gaussian  cos € [—, 7]
This work 8.7 x 1073 9.38x10~% 1.84x 102
LFSR [6] 1.53x 1072 1.03x 103 2.0 x 1072
Sobol [5]  4.67 x 1072  6.33x 103 6.47 x 102
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Fig. 8. Average (Avg), maximum (Max) and minimum (Min) cut values found
by various simulated bifurcation implementations. (a) Experimental results
when the number of steps is Ts = 1000; (b) experimental results with Ts =
10000.

B. Max-cut problems with Ising model

The SC-based Ising machine is used to solve a max-cut
problem (MCP), which is the Ksg99 benchmark [20] with
2000 fully connected spins. The goal is to partition the spins
into two sets in such a way that the weighted connections
between these sets are maximized. While the maximum cut
value found for this problem is 33,337, the solutions produced
by the SC-based Ising machines are close to this value, as
shown in Fig. 8. The average, maximum and minimum of the
cut values are obtained through 100 trials, marked as “Avg”,
“Max” and “Min”. “SC-RNG” and “BSC-RNG” denote the
stochastic designs using SRAM-based SNGs in Fig. 4(a) and
(b), respectively. The results using SRAM-based SNGs are
compared to a baseline implementation using conventional
binary arithmetic, referred to as “bSBM” in Fig. 8. Figs.
8(a) and (b) show the results when the simulated bifurcation
is run for 7,=1,000 and 75, = 10,000 steps, respectively.
Three different values 0.125, 0.25, and 0.5 are considered for
manually tunable step sizes (7, not shown in (1) and (2)) when
solving the PDEs of (1) and (2) using the Euler method.

When T is 1,000, “bSBM” attains larger max cut values
because the solution converges in fewer steps due to the
accurate multi-bit computations. When T increases to 10,000,

“SC-RNG” and “BSC-RNG” generally exhibit an increase in
the max cut values, even exceeding those of the “bSBM”
designs. This may be due to the true randomness of the
SRAM-based SNGs, and its randomness assists the algorithm
escaping from the local minima in a long run. Due to the
hybrid use of SC and conventional binary computing, BSC
designs outperform the pure SC circuits in a short run when
T, is 1,000, while they perform similarly in a long run
(T's = 10,000) due to the same reason. It can also be seen
from the results that the proposed designs using SRAM-based
SNGs obtain larger cut values when the step size 7 is larger.

C. Hardware efficiency evaluation

Since the comparator and the register that stores the number
to be encoded are the common components of these SNGs,
they are excluded from the evaluation of hardware efficiency,
i.e. only the RNGs are evaluated. The SRAM-based RNG is
tested at a supply voltage of 560 mV and a working frequency
of 200 MHz. The power is monitored over PMbus and the
energy generating one RN is calculated. Since it requires no
additional logic gates or registers, the utilization of LUTs and
FFs is 0. Moreover, only the SRAM cell with the highest
entropy is used for random number generation; therefore, one
BRAM block that contains the SRAM cell is sufficient in
our work. Conventional RNGs based on Sobol and LFSR are
also tested at the same working frequency but with a nominal
supply voltage of 1 V. The power is estimated by the Xilinx
Vivado Design Suite on the same FPGA after implementation,
and the energy that generates one RN is also calculated.
Table II shows the utilization and energy consumption of
different RNGs. For an 8-bit RNG design, the SRAM-based
one consumes about 0.11 nJ per RN. In contrast, an 8-bit
LFSR and Sobol sequence generator require 0.70 nJ and 1.47
nJ, respectively. It indicates an energy reduction of 84.3% and
92.5%, respectively.

TABLE 11
UTILIZATION AND ENERGY EFFICIENCY OF THE PROPOSED SRAM-BASED
RNG GENERATING 1 RN vs. THE OTHER RNGS.

RNG #LUTs #FFs # BRAM Energy
This work 0 0 1 0.11 nJ
LFSR [6] 5 8 0 0.70 nJ
Sobol [5] 20 19 0 1.47 nJ

V. CONCLUSION

In this paper, we propose an SRAM-based SNG that lever-
ages voltage under-scaling for SC. The design aims to enhance
the energy efficiency of SC without compromising accuracy.
The performance is evaluated on two SC applications: function
generation using FSMs and solving MCPs with the Ising
model. Compared with traditional SNGs, such as Sobol- and
LFSR-based ones, the SRAM-based SNG achieves similar
accuracy while significantly reducing the energy consumption.
These findings suggest that the SRAM-based SNG could be a
potential solution for energy-efficient SC systems.
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