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Abstract: Approximate computing provides a promising way to achieve low power design at the cost of acceptable error. As a core
component in a processor, the performance of the multiplier is important. This paper presents designs of approximate-truncated
Booth multipliers (ATBMs) using proposed approximate modified radix-4 Booth encoders (AMBEs), approximate 4:2 compressors
(ACs) and gradually truncated partial products. The accuracy of the ATBMs is adjustable with the so-called approximation factors
that indicate the number of AMBEs and ACs used. The normalized mean error distance (NMED) and the product of the power and
delay (PDP) are used to evaluate the error and the hardware performance of the multipliers. The results show that the proposed
ATBMs outperform previous approximate Booth multipliers. Their validity is also shown with case studies of image processing,
K-means clustering and handwritten digit recognition.

1 Introduction

With the continuous development of integrated circuits, power con-
sumption has become a key issue that restricts the performance of
digital integrated circuits [1]. It is very difficult to further improve
the power consumption under the constraint of perfect accuracy.
However, for a number of applications related to human perception,
such as multimedia signal processing, wireless sensor networks,
machine learning and pattern recognition, errors can be tolerated
to a rather large extent. On the premise of not affecting the usabil-
ity of the results, approximate computing [2, 3] has been proposed
to reduce the power consumption and improve the performance of
computing at the cost of acceptable errors. In those error toler-
ant applications, the approximate design can effectively reduce the
power consumption and still produce reasonable results [4].

As important arithmetic units both approximate adders and multi-
pliers have been studied quite extensively [5]. New metrics including
error distance (ED), mean error distance (MED) and normalized
error distance (NED) have been proposed for evaluating the approx-
imate designs [6].

The variable latency speculative adder in [8] is an early design
of approximate adders. The main idea is to generate each bit in an
n-bit adder by k lower significant bits (k < n), so the delay of the
adder is log(k) in a carry lookahead adder. Different approximate
segmenting adders are proposed in [9–11], where a n-bit adder is
truncated into k-bit blocks so that the critical path is reduced. As the
carry bit is calculated in parallel, the speed is improved significantly.
Several approximate carry-select adders are designed in [12–16].

The structure of multipliers is more complex than that of adders.
However, the design of multipliers can be regarded as the process of
generating the final product by repeated summation of partial prod-
ucts (PPs). In this process, the operation of multipliers can be divided
into three steps: PP generation, PP compression and final product
summation.

Design of an approximate multiplier directly using approximate
adders does not significantly improve the performance because the
main computations in the multiplier are determined by the PP gen-
eration and the PP compression, which are commonly performed by
encoders and compressors. Several designs of approximate multipli-
ers are proposed in [17–19]. The main idea is that the module with a

lower weight is made into a constant, and the truncated part is com-
pensated. In [17], an approximate array multiplier is designed for
neural networks. The multiplier ignores the PPs of the less signif-
icant bits and reduces the number of coding units and compressor
units. [18] proposes a new high-speed and floating-point approx-
imate multiplier. A 2×2 multiplier module is simplified in [19],
which is used to build larger multipliers. [20] proposes approxi-
mate radix-8 Booth multipliers by approximately computing PPs.
[23] proposes two efficient 4:2 approximate compressors. [22] pro-
poses two approximate Booth encoders. [24] and [30] propose the
design of approximate redundant binary multiplier. [7] proposes two
4× 4 multipliers designed with different accuracies, which are used
as building blocks for scaling up to 16× 16 and 32× 32 multipliers.

In this paper, we propose improved designs of approximate Booth
multipliers, which use two approximate Booth encoders and two
approximate 4:2 compressors with truncated parts. The proposed
approximate-truncated multipliers are also applied to image process-
ing and K-means clustering. The main contributions are summarized
as follows:

• Two new approximate Booth encoders with low complexity are
proposed;
• Two new 4:2 compressors with high accuracy are proposed;
• The proposed approximate modules are combined with truncated
PP arrays for a better performance;
• Circuit-level designs for the proposed ATBMs are provided to
evaluate the NMED and PDP;
• Comprehensive comparisons in case studies for three applications
i.e., image processing, K-means clustering and handwritten digit
recognition are provided.

The rest of the paper is organized as follows: Section 2 reviews
conventional Booth multipliers. Section 3 presents the design of
approximate-truncated Booth multipliers (ATBMs), including the
approximate Booth encoders and approximate 4:2 compressors. It
also provides the error analysis and hardware evaluation of the pro-
posed approximate multipliers. Section 4 presents the comparisons
of the proposed multipliers with the state-of-the-art designs. Section
5 presents the case studies of image processing, K-means clustering
and handwritten digit recognition. Section 6 concludes the paper.
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Fig. 1: MBE scheme: encoder and decoder [21].

Table 1 K-Map of MBE

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 0 0 0 0 1 0 1 1
01 0 0 1 0 1 0 1 0
11 0 1 1 1 0 0 0 0
10 0 1 0 1 0 0 0 1

2 Review of Conventional Booth Multipliers

This section reviews the conventional radix-4 Booth multiplier.
The design of Booth multipliers mainly includes Booth encoder to
generate the PPs, PP compression module and the final fast adder.

2.1 Modified Booth Encoding

In the designs of high-speed multiplier, modified Booth encoding
(MBE) can reduce the number of partial products by half [21]. Sup-
pose that the inputs of the multiplier are multiplicand A, where
A=aNaN−1...a0, and multiplier B, where B=bN bN−1...b0. The
multiplicand and multiplier are signed numbers and aN , bN are the
signed bit. The original output is the product P with 2N bits. By
dividing the multiplier into group {b2i+1, b2i, b2i−1}, the Booth
decoder selects 2A, A, 0, -A, -2A to generate PP rows. MBE reduces
the number of PP rows from N to N/2 + 1.

Radix-4 Booth encoding is the logic circuit for PP selection. The
circuit diagrams of the radix-4 Booth encoder and decoder are shown
in Fig. 1 [21]. The encoder uses a 3-bit group to generate the Neg,
X1, X2 and Z signals, which can be expressed as:

Neg = b2i+1 (1)

X1 = b2i−1 ⊕ b2i (2)

X2 = b2i−1 ⊕ b2i (3)

Z = b2i+1 ⊕ b2i (4)

Neg, X1, X2 and Z are encoded by three adjacent multiplier bits
{b2i+1, b2i, b2i−1}. Neg is a compensation bit. When the encoding
result is -2A, -A and -0, the multiplicand needs to be complemented;
so the compensation bit Neg is required for the complement of the
negative multiplicand. When the encoding result is +2A, +A and +0,
the complement of the multiplicand is the same as the original rep-
resentation, and the Neg is 0. The Z signal is to prevent the left shift
of the multiplicand when PP is selected as 0 and -0.

ppij is a PP in ith line and jth column, which is logically com-
posed of multiplicand {aj , aj} and multiplier {b2i+1, b2i, b2i−1}.
The logical expression of ppij is given by:

ppij =(b2i ⊕ b2i−1)(b2i+1 ⊕ aj)+

(b2i ⊕ b2i−1)(b2i+1 ⊕ b2i)(b2i+1 ⊕ aj−1)
(5)

The Karnaugh-map (K-map) of PP is shown in Table 1 and the PP
array of a conventional 8× 8 radix-4 Booth multiplier is shown in
Fig. 2.

2.2 Regular Partial Product Array

The regular PP array is based on the PP array encoded by the mod-
ified Radix-4 Booth. The number of PP rows of modified Radix-4
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Fig. 2: PP array of an 8× 8 Booth multiplier.

0 0 0 0 07 06 05 04 03 02 01 00

1 1 17 16 15 14 13 12 11 10 0

2 2 27 26 25 24 23 22 21 20 1

3 3 37 36 35 34 33 32 31 30 2

_ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

1

1

b p

PP s s s p p p p p p p p

PP s p p p p p p p p Neg

PP s p p p p p p p p Neg

PP s p p p p p p p p Neg

Fig. 3: Approximate regular PP array of an 8× 8 Booth multiplier
[22].
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Fig. 4: Block diagram of 4-2 compressor [23].

Booth has N/2− 1 fewer than that of the non-Booth multiplier. The
compensation bit Neg in the last row makes the PP arrays irregular.
To ensure a precise final product, the design of the exact multiplier
requires an extra compression level for the bit, which means that
more compressors and longer critical paths are required [22].

In order to design a more regular PP array, the design of the
approximate radix-4 Booth multiplier can directly truncate the com-
pensation bit Neg in line (N/2 + 1) (Fig. 3). The 8-bit multiplier,
for example, ignoring the compensation of fifth lines, saves 16
compressors, which improves area and delay of the approximate
multiplier significantly.

2.3 4-2 Compressor

As a basic unit of multiplier design, the compressor is directly related
to the overall performance of the multiplier. The commonly used
compressor structure is the Wallace structure composed of 4-2 com-
pressors. The principle of the 4-2 compressor is to use two full adders
in series [23], and its block diagram is shown in Fig. 4.

An 4-2 compressor has five inputs (P1, P2, P3, P4, Carry and
Cin) and three outputs (Sum, Carry and Cout). The compressor
compresses the four rows of PP, i.e., P1, P2, P3, P4 into the two
rows of PP, i.e., Sum and Cout. The outputs of the 4-2 compressor
can be expressed as:

Sum = P1 ⊕ P2 ⊕ P3 ⊕ P4 ⊕ Cin (6)

Cout = (P1 ⊕ P2)P3 + (P1 ⊕ P2)P4 (7)

Carry = P1 ⊕ P2 ⊕ P3 ⊕ P4 ⊕ Cin + P1 ⊕ P2 ⊕ P3 ⊕ P4P4
(8)
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Table 2 K-Map of AMBE-a

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 0 0 0 0 1 0 1 1
01 0 0 0⃝ 0 1 0 1 1⃝
11 1⃝ 1 0⃝ 1 0 0 0 0
10 1⃝ 1 0 1 0 0 0 0⃝

2.4 Error Metrics

For approximate designs, several metrics have been proposed to
measure the error of approximate adders and multipliers includ-
ing the maximum absolute error (MAE), the relative error distance
(RED), and the mean error distance (MED) [6]. Three main error
metrics, (i.e., NMED, MAE and MRED) are used in this work to
compare the design of approximate multipliers.

• NMED is defined as the normalized MED by the maximum output
of the accurate design.
• MAE is the maximum absolute error of an approximate multiplier,
which is used to measure error magnitude.
• MRED is the mean value of RED, which is used to evaluate the
error distribution of approximate multipliers.

3 Design of Approximate Truncated Booth
Multipliers (ATBMs)

In this section, the ATBMs along with two approximate Booth
encoders, two approximate 4-2 compressors, an approximate regular
PP array and combined with truncated units are proposed. The exact
fast adder is used to obtain the final product.

3.1 Approximate Modified Booth Encoders (AMBEs)

The elements in the K-map are sorted by the Gray code. When
the elements in the K-map are symmetrical, the complexity will be
reduced.

3.1.1 Proposed Approximate Modified Booth Encoding-a
(AMBE-a): The approximate Booth coding is designed based on
the accurate MBE. Four elements are replaced in the K-map of accu-
rate MBE by changing ‘1’ to ‘0’, thus the K-map of AMBE becomes
symmetric.

Table 2 is the K-map for the first proposed approximate modi-
fied Booth encoding (AMBE-a), where 1⃝ denotes an entry in which
a ‘0’ is replaced by a ‘1’ and 0⃝ denotes an entry in which a ‘1’
is replaced by a ‘0’. There are six entries modified to simplify the
encoding. The approximate encoding uses one XOR and NAND
function; therefore, the output of AMBE-a is given as follows:

appij1 =(ajb2i+1)b2ib2i−1 + ajb2i+1b2ib2i−1

= (b2i+1 ⊕ aj)b2ib2i−1

(9)

Compared with the accurate MBE (5), AMBE-a can significantly
reduce both the complexity and the critical path delay of Booth
encoding. The error rate is defined as the probability of incorrect out-
puts when different inputs are provided. It is denoted by Pe, given
by:

Pe = 6/32 = 18.75% (10)

The gate level structure of ABME-a is shown in Fig. 5, which
only requires one XOR-2 gate, one NAND-2 gate and one AND-2
gate.

3.1.2 Proposed Approximate Modified Booth Encoding-b
(AMBE-b): Table 3 is the K-map for the second proposed approx-
imate modified Booth encoding (AMBE-b) after replacing the ele-
ments, where ten entries of 1⃝ and six entries of 0⃝ are flipped. There

aj b2i+1

appij1

b2i-1b2i

Fig. 5: The gate level circuit of AMBE-a.

Table 3 K-Map of AMBE-b

aj aj−1

b2i+1 b2i b2i−1 000 001 011 010 110 111 101 100

00 0 0 0 0 0⃝ 0 0⃝ 0⃝
01 0 0 0⃝ 0 0⃝ 0 0⃝ 0
11 1⃝ 1 1 1 1⃝ 1⃝ 1⃝ 1⃝
10 1⃝ 1 1⃝ 1 1⃝ 1⃝ 1⃝ 1

P1 P2 P3 P4

Carry'

Sum'

Fig. 6: The gate level circuit of AC-a.

are sixteen entries modified to simplify the encoding. The approxi-
mate encoding shows the output of Booth encoding is aj ; therefore,
the output of AMBE-b is given as follows:

appij2 = aj (11)

AMBE-b further reduce both the complexity and the critical path
delay of Booth encoding; the error rate is given by:

Pe = 16/32 = 50% (12)

Although the error rate of AMBE-b is larger than AMBE-a, it is
much more efficient in terms of hardware consumption.

3.2 Approximate 4-2 Compressors (ACs)

The compressor is usually designed by two full adders. The carry
input Cin and the carry output Cout are ignored in the approximate
compressors (ACs) in this work. The results of the proposed ACs are
Sum’ and Carry’.

3.2.1 Proposed Approximate Compressor-a (AC-a): The
first proposed design of AC (AC-a) contains three OR-2 gates, two
AND-2 gates and one NXOR-2 gate (Fig. 6). The logical expressions
of AC-a are given as:

Sum′ = (P1 ⊕ P2)(P3 · P4) + (P3 + P4) (13)

Carry′ = P1 · P2 (14)

Table 4 shows the K-map of AC-a. The difference between an
approximate compressor and an accurate compressor under the same
input is recorded as Diff. in the table. For example, if {P1, P2,
P3, P4}=1111, the value in Table 4 is (Carry’Sum’/Diff.)=11/-1. In
other words, the output of approximate compressor is (1× 21 + 1×
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Table 4 K-Map of AC-a

p4 p3

p2 p1 00 01 11 10
(Carry’Sum’/Diff.)

00 00/0 10/+1 10/0 10/+1
01 01/0 10/0 11/0 10/0
11 01/-1 11/0 11/-1 11/0
10 01/0 10/0 11/0 10/0

P1 P2 P3 P4

Carry'

Sum'

Fig. 7: The gate level circuit of AC-b.

Table 5 K-Map of AC-b

p4 p3

p2 p1 00 01 11 10
(Carry’Sum’/Diff.)

00 01/+1 01/0 11/+1 01/0
01 01/0 10/0 11/0 10/0
11 01/-1 11/0 11/-1 11/0
10 01/0 10/0 11/0 10/0

20=3), while the accurate output should be 4 and the Diff. value is
(3-4=-1).

The AC has an independent carry and it is possible to perform
compression in parallel, which reduces the critical path and improves
the performance. The error rate is given by:

Pe = 4/16 = 25% (15)

3.2.2 Proposed Approximate Compressor-b (AC-b): The
second proposed design of AC (AC-b), contains four OR-2 gates,
two AND-2 gates and two NXOR-2 gate (Fig. 7). The logical
expressions of AC-b are given as:

Sum′ = (P1 ⊕ P2) + (P3 ⊕ P4) (16)

Carry′ = P1 + P2 + P1 + P2 + P3 + P4 (17)

Table 5 shows the K-map of AC-b. The error rate is given by:

Pe = 4/16 = 25% (18)

3.3 Proposed Approximate Truncated Booth Multipliers
(ATBMs)

In an approximate Booth multiplier, the proposed approximate
Booth encodings, i.e., AMBE-a and AMBE-b are used for generat-
ing the approximate PPs; the proposed AC are used for compressing
the approximate PPs generated by the AMBEs and the approximate
regular PP array is be used. An approximation factor p (p=1, 2, ...,
2N) has been proposed in [22] and is also used in this work. This
is defined as the number of least significant PP columns that are
generated by the approximate Booth encoders.

According to the approximation factor p, the number of truncated
units i.e. d, is introduced (p > d), which can be seen in Fig. 8.
The units in the truncated parts are ignored, which do not consume
any hardware resources. Fig. 8 presents the structure of ATBM-8-
8-3. The first number, 8, represents the number of bit width of the
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Stage 3

0123456789101112131415

ApproximateExact

Use exact compressor

Approximate results 

Use exact Booth 

encoding

Use approximate 

Booth encoding

Use approximate  

compressor

Truncated uni ts

Fig. 8: Structure of ATBM-8-8-3.

Table 6 Four Designs of ATBMs (� Denotes a Used Unit, while ⋄ Denotes
an Unused Unit)

Multiplier AMBE-a AMBE-b AC-a AC-b
ATBM1 � ⋄ � ⋄
ATBM2 ⋄ � � ⋄
ATBM3 � ⋄ ⋄ �
ATBM4 ⋄ � ⋄ �

input, the second represents the approximate bit width p and the last
number, 3, represents the bit width of truncated parts d.

In the truncated part of ATBM, the lower bits are truncated one
by one. The range of d is from 1 to p− 1.

Four types of ATBMs are proposed as follows and the differ-
ent approximate modules of each design can be seen in Table 6.
The first and third ATBMs (ATBM1 and ATBM3) use AMBE-a to
produce the approximate PPs for lower p bits; however, they use
AC-a and AC-b, respectively, to compress the approximate PPs. The
second and fourth OABTMs (ATBM2 and ATBM4) use AMBE-b
to produce the approximate PPs for lower p bits, which use AC-a
and AC-b, respectively, to compress the approximate PPs. The most
significant (2N-p) bits of all the four designs are processed with
accurate Booth encoder and the exact compressor.

3.4 Hardware and Error Evaluation of ATBMs

Since some PPs of ATBMs are truncated, the consumption of hard-
ware resources is less than most multipliers, relatively. In this
section, the error and hardware evaluation of ATBMs will be dis-
cussed. At first, 8-bit ATBMs are evaluated to find the regular pattern
of ATBMs. which will be applied to 16-bit ATBMS.

All designs are described at gate-level in Verilog HDL and veri-
fied by Synopsys VCS and then synthesized by the Synopsys Design
Compiler using the NanGate 45 nm Open Cell Library. In the simula-
tion of each design, a supply voltage of 1.25 V and room temperature
are assumed. The average power consumption is found using the
Synopsys Power Compiler with a back annotated switching activ-
ity file generated from the random input vectors. During synthesis,
the maximum area and delay are set to 0 µm2 and 0.2 ns, respec-
tively. The simulation setting for the time scale is 1 ns/100 ps in the
Design Compiler script.

In Table 7, power-delay product (PDP) and NMED of 8-bit
ATBMs are presented. The ranges of p are from 2 to 14 and the
numbers of d increase one by one. We can find that PDPs decrease
as the d increases due to the truncated part. The change of NMED
is different. When p > 6 (ATBM2 and ATBM4) or p > 8 (ATBM1
and ATBM3), NMEDs reduce to the least value and increase again.
Compared with non-truncated ones, the PDP of ATBMs is reduced
by about 80% and the NMED is reduced by about 11% when p = 14
and d = 11.

In order to visualize the characteristics of ATBMs, Figs. 9-12
show the NMEDs depending on p (larger than 6) for ATBMs and
compare with the multipliers (non-truncated) that use the same
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Table 7 NMEDs and PDPs of 8-bit ATBMs at Different Approximation Factors

ATBM1 ATBM2 ATBM3 ATBM4

p d
NMED PDP NMED PDP NMED PDP NMED PDP
(10−2) (pJ) (10−2) (pJ) (10−2) (pJ) (10−2) (pJ)

2 1 0.0765 0.0994 0.0767 0.0934 0.0764 0.0993 0.0767 0.0934

4
1 0.0809 0.0956 0.0866 0.0956 0.0811 0.0962 0.0865 0.0955
2 0.0829 0.0920 0.0868 0.0968 0.0828 0.0922 0.0867 0.0967
3 0.0931 0.0913 0.0938 0.0873 0.0931 0.091 0.0937 0.0873

6

1 0.113 0.0841 0.145 0.0726 0.111 0.0844 0.145 0.0742
2 0.114 0.0829 0.145 0.0719 0.112 0.0823 0.145 0.0733
3 0.116 0.0751 0.143 0.0723 0.113 0.0763 0.143 0.0721
4 0.121 0.0746 0.139 0.0718 0.118 0.0756 0.140 0.0720
5 0.165 0.0696 0.164 0.0676 0.163 0.0698 0.167 0.0673

8

1 0.397 0.0642 0.621 0.0527 0.391 0.0653 0.619 0.0528
2 0.396 0.0629 0.619 0.0519 0.390 0.0643 0.617 0.0521
3 0.393 0.0591 0.613 0.0520 0.387 0.0594 0.611 0.0503
4 0.389 0.0571 0.602 0.0503 0.383 0.0566 0.600 0.0503
5 0.383 0.0546 0.571 0.0489 0.376 0.0562 0.571 0.0429
6 0.408 0.0511 0.525 0.0466 0.401 0.0508 0.527 0.0489
7 0.582 0.0458 0.585 0.0458 0.576 0.0461 0.592 0.0463

10

1 1.347 0.0542 2.214 0.0392 1.325 0.0539 2.166 0.0408
2 1.346 0.0530 2.212 0.0389 1.324 0.0514 2.165 0.0402
3 1.343 0.0492 2.206 0.0390 1.321 0.0467 2.159 0.0357
4 1.338 0.0455 2.194 0.0324 1.316 0.0483 2.147 0.0354
5 1.325 0.0414 2.154 0.0302 1.304 0.0385 2.111 0.0361
6 1.308 0.0352 2.077 0.0301 1.288 0.0385 2.038 0.0304
7 1.312 0.0320 1.946 0.0277 1.294 0.0329 1.923 0.0284
8 1.502 0.0288 1.177 0.0266 1.504 0.0291 1.773 0.0268
9 1.984 0.0233 1.980 0.0228 1.844 0.0242 1.916 0.0222

12

1 4.668 0.0419 6.726 0.0290 4.457 0.0454 6.611 0.0290
2 4.668 0.0402 6.725 0.0285 4.456 0.0437 6.610 0.0285
3 4.664 0.0366 6.718 0.0265 4.453 0.0390 6.604 0.0276
4 4.658 0.0356 6.707 0.0236 4.448 0.0372 6.594 0.0251
5 4.638 0.0302 6.666 0.0239 4.435 0.0315 6.559 0.0215
6 4.605 0.0270 6.587 0.0194 4.412 0.0275 6.487 0.0203
7 4.553 0.0235 6.418 0.0188 4.386 0.0241 6.343 0.0197
8 4.506 0.0204 6.093 0.0172 4.411 0.0205 6.046 0.0171
9 4.484 0.0158 5.743 0.0142 4.746 0.0149 5.533 0.0133

10 4.874 0.0136 5.529 0.0125 5.263 0.0138 5.312 0.0122
11 6.289 0.0106 6.315 0.0102 5.359 0.0106 5.359 0.0103

14

1 13.175 0.0404 21.678 0.0266 9.807 0.0441 19.686 0.0298
2 13.174 0.0398 21.677 0.0261 9.806 0.0428 19.685 0.0291
3 13.168 0.0359 21.670 0.0228 9.804 0.0393 19.680 0.0263
4 13.160 0.0337 21.660 0.0227 9.800 0.0371 19.673 0.0241
5 13.130 0.0311 21.625 0.0215 9.792 0.0314 19.646 0.0241
6 13.077 0.0241 21.559 0.0190 9.778 0.0289 19.595 0.0208
7 12.969 0.0210 21.404 0.0163 9.764 0.0246 19.474 0.0193
8 12.782 0.0194 21.033 0.0152 9.805 0.0233 19.177 0.0188
9 12.446 0.0114 20.752 0.0105 10.178 0.0136 18.592 0.0111

10 12.178 0.0094 19.586 0.0080 10.631 0.0136 17.871 0.0089
11 12.103 0.0071 19.083 0.0062 10.743 0.0082 17.094 0.0073
12 19.280 0.0058 20.689 0.0055 23.498 0.0070 22.875 0.0063
13 34.757 0.0033 31.632 0.0030 34.757 0.0033 31.632 0.0030

approximation modules except the truncated units. ATBM1 and
ATBM3 have similar characteristics and ATBM2 is similar as
ATBM4 due to that the same Booth encoding is applied, which
indicate that the Booth encoding plays an important role in the
design of Booth multiplier. For ATBM1, the sharp changing point
is at d = p− 3; for ATBM3, the sharp changing point is at d =
p− 3 (p ̸= 12) and d = p− 4 (p = 12); for ATBM2 and ATBM4,
the sharp changing point is at d = p− 2 (p ̸= 14) and d = p− 3
(p = 14). Overall, the ATBMs show a better performance in error
evaluation.

From the above graphs, it can be found that the sharp change
always happens when p ≃ d− 3. If the truncated bits are larger than
p− 3, the error of ATBMs will increase immediately. As shown in
Fig. 13, the more significant bits larger than p− 3 have larger effect
on the accuracy of the multiplier.
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Fig. 9: NMEDs for ATBM1-8: (a) ATBM1-8-8, (b) ATBM1-8-10,
(c) ATBM1-8-12, (d) ATBM1-8-14.
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Fig. 10: NMEDs for ATBM2-8: (a) ATBM2-8-8, (b) ATBM2-8-10,
(c) ATBM2-8-12, (d) ATBM2-8-14.

3.5 Top Designs of ATBMs

Following the evaluation of 8-bit ATBMs, the best designs of 8-
bit ATBMs are found for constructing 16-bit designs. PDP versus
NMED for 8-bit ATBMs (ATBM1, ATBM2, ATBM3, ATBM4) are
plotted in Figs. 14-17 for p = 8 to p = 14. From Figs. 14 and 16,
the distribution of ATBM1 and ATBM3 with different p is similar.
The NMEDs of ATBM1 and ATBM3 decrease slowly and have a
sharp changing point when PDPs decrease. ATBM2 and ATBM4 are
similar. The changing trend of them is different from the ATBM1
and ATBM3. The reason is that the NMEDs of ATBM2 and ATBM4
decrease faster, which makes scatter plots sparse.

For ATBM1, the efficient designs are obtained at d = 5 and d = 6
for p = 8; at d = 6 and d = 7 for p = 10; at d = 8 and d = 9 for
p = 12;at d = 10 and d = 11 for p = 14. For ATBM2, the efficient
design is obtained at d = 6 for p = 8; at d = 8 for p = 10; at d = 10
for p = 12; at d = 10, d = 11 and d = 12 for p = 14. For ATBM3,
the efficient design is obtained at d = 6 for p = 8; at d = 7 for p =
10; at d = 7 and d = 8 for p = 12; at d = 9, d = 10 and d = 11
for p = 14. For ATBM4, the efficient design is obtained at d = 6 for
p = 8; at d = 8 for p = 10; at d = 10 and d = 11 for p = 12; at
d = 9, d = 10 and d = 11 for p = 14. The efficient ATBM designs
for different p and corresponding d are shown in Figs. 18-21 (red

IET Circuits Devices Syst., pp. 1–10
© The Institution of Engineering and Technology 2019 5



0 1 2 3 4 5 6 7

d

3.5

4

4.5

5

5.5

6

N
M
E
D

10
-3

truncated

non-truncated

0 1 2 3 4 5 6 7 8 9

d

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

N
M
E
D

truncated

non-truncated

(a) (b)

0 1 2 3 4 5 6 7 8 9 10 11

d

0.042

0.044

0.046

0.048

0.05

0.052

0.054

N
M
E
D

truncated

non-truncated

0 1 2 3 4 5 6 7 8 9 10 11 12 13

d

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N
M
E
D

truncated

non-truncated

(c) (d)

Fig. 11: NMEDs for ATBM3-8: (a) ATBM3-8-8, (b) ATBM3-8-10,
(c) ATBM3-8-12, (d) ATBM3-8-14.
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Fig. 12: NMEDs for ATBM4-8: (a) ATBM4-8-8, (b) ATBM4-8-10,
(c) ATBM4-8-12, (d) ATBM4-8-14.
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Fig. 13: The PP array of ATBM-8-10-7.

circles). The PDP versus NMED for 8-bit ATBMs are shown in Fig.
22.

In Figs. 18-21, the numbers represent the truncated modules and
approximate units. For example, when p = 8, ‘1-7’ means d = 1
(the truncated units) and p− d = 7 (the approximate units). Mean-
while, red circles indicate the best designs for ATBMs. Orange ones
indicate that the ATBM designs with NMEDs less than the non-
truncated multipliers and blue ones indicate the opposite. Generally,
the best design of ATBMs can be achieved when d > p
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Fig. 14: PDP versus NMED for ATBM1-8: (a) ATBM1-8-8, (b)
ATBM1-8-10, (c) ATBM1-8-12, (d) ATBM1-8-14.
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Fig. 15: PDP versus NMED for ATBM2-8: (a) ATBM2-8-8, (b)
ATBM2-8-10, (c) ATBM2-8-12, (d) ATBM2-8-14.

Fig. 22 shows the comparisons of 8-bit ATBMs with better perfor-
mance, including ATBM2 and ATBM4 with p = 6 and d = 4. The
best designs of 8-bit ATBMs are ATBM2-8-12-10, ATBM4-8-12-10
and ATBM4-8-12-11 when considering both PDP and NMED.

As shown in the evaluation of 8-bit ATBMs above, the best
designs are achieved around d = p− 3 when p is larger than 6.
Hence, the performance of 16-bit ATBMs are presented in Table
8. The PDPs keep decreasing when d increases and NMEDs have
a sharp change when d = 3 (ATBM1 and ATBM3) and d = 2
(ATBM2 and ATBM4). Compared with 16-bit approximate multipli-
ers which use the same approximation modules except the truncated
units, the PDP of ATBMs is reduced by about 85% and the NMED
is reduced by about 48% when p = 28 and d = 25.

4 Comparison with the State-of-the-Art Designs

The proposed designs at large p values have large NMEDs, but small
PDPs; moreover, the proposed 16 bit ATBM1 and ATBM2 with
p<20 show a good tradeoff between PDP and NMED. Therefore,the
proposed 16-bit designs with p=12, 14, and 16, are compared with
previous approximate 16-bit Booth multipliers proposed in [25]
(R4ABM04), [26] (R4ABM11), [27] (R4ABM12), [20] (R8ABM1,
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Fig. 16: PDP versus NMED for ATBM3-8: (a) ATBM3-8-8, (b)
ATBM3-8-10, (c) ATBM3-8-12, (d) ATBM3-8-14.

5.2 5.4 5.6 5.8 6 6.2 6.4

NMED 10
-3

46

47

48

49

50

51

52

53

54

55

P
D
P
(p
J)
×
1
0
-3

non-truncated

ATBM4-8-8-1

ATBM4-8-8-2

ATBM4-8-8-3

ATBM4-8-8-4

ATBM4-8-8-5

ATBM4-8-8-6

ATBM4-8-8-7

0.017 0.018 0.019 0.02 0.021 0.022

NMED

20

25

30

35

40

45

P
D
P
(p
J)
×
1
0
-3

non-truncated

ATBM4-8-10-1

ATBM4-8-10-2

ATBM4-8-10-3

ATBM4-8-10-4

ATBM4-8-10-5

ATBM4-8-10-6

ATBM4-8-10-7

ATBM4-8-10-8

ATBM4-8-10-9

(a) (b)

0.052 0.054 0.056 0.058 0.06 0.062 0.064 0.066 0.068

NMED

10

15

20

25

30

35

P
D
P
(p
J)
×
1
0
-3

non-truncated

ATBM4-8-12-1

ATBM4-8-12-2

ATBM4-8-12-3

ATBM4-8-12-4

ATBM4-8-12-5

ATBM4-8-12-6

ATBM4-8-12-7

ATBM4-8-12-8

ATBM4-8-12-9

ATBM4-8-12-10

ATBM4-8-12-11

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

NMED

0

5

10

15

20

25

30

35

P
D
P
(p
J)
×
1
0
-3

non-truncated

ATBM4-8-14-1

ATBM4-8-14-2

ATBM4-8-14-3

ATBM4-8-14-4

ATBM4-8-14-5

ATBM4-8-14-6

ATBM4-8-14-7

ATBM4-8-14-8

ATBM4-8-14-9

ATBM4-8-14-10

ATBM4-8-14-11

ATBM4-8-14-12

ATBM4-8-14-13

(c) (d)

Fig. 17: PDP versus NMED for ATBM4-8: (a) ATBM4-8-8, (b)
ATBM4-8-10, (c) ATBM4-8-12, (d) ATBM4-8-14.
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Fig. 18: The top designs of ATBM1.

R8ABM2-C9 and R8ABM2-C15), [22] (R4ABM1 and R4ABM2),
[24] (ARBM) and [30] (R4ARBM1, R4ARBM2, R4ARBM3 and
R4ARBM4).

R4ABM1, R4ABM2, ARBM, R4ARBM1, R4ARBM2, R4ARBM3
and R4ARBM4 are compared with ATBMs when p=12, 14, and 16.
R8ABM1, R8ABM2-C9 and R8ABM2-C15 are all radix-8 approx-
imate Booth multipliers with no truncation, 9-bit truncation and
15-bit truncation, respectively. All these designs are also synthesized
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Fig. 19: The top designs of ATBM2.
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Fig. 20: The top designs of ATBM3.
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Fig. 21: The top designs of ATBM4.
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Fig. 22: PDP versus NMED for 8-bit ATBMs.

by the Synopsys Design Compiler using the NanGate 45 nm Open
Cell Library.

The power consumption, critical path delay, area, PDP
and NMED are presented in Table 9. R4ABM04, R4ABM11,
R4ABM12, R8ABM1, R8ABM2-C9 and R8ABM2-C15 perform
well in PDPs but have large NMEDs. The proposed multipliers are
significantly more efficient and faster than R4ABMs. The PDP is
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Table 8 NMEDs and PDPs of 16bit ATBMs at Different Approximation Factors

ATBM1 ATBM3 ATBM2 ATBM4

p d
NMED PDP NMED PDP

p d
NMED PDP NMED PDP

(10−5) (pJ) (10−5) (pJ) (10−5) (pJ) (10−5) (pJ)

8 5 0.254 0.505 0.254 0.505 8 5 0.254 0.519 0.254 0.519
6 0.254 0.518 0.254 0.522 6 0.254 0.505 0.254 0.506

12
8 0.267 0.428 0.266 0.445

12
9 0.291 0.415 0.292 0.420

9 0.266 0.430 0.266 0.436 10 0.290 0.411 0.290 0.413
10 0.273 0.424 0.275 0.422 11 0.339 0.412 0.339 0.412

14
10 0.626 0.371 0.613 0.389

14
11 0.751 0.351 0.733 0.353

11 0.618 0.368 0.615 0.369 12 0.704 0.326 0.705 0.345
12 0.6529 0.364 0.678 0.354 13 0.859 0.328 0.914 0.334

16
12 2.419 0.308 2.341 0.310

16
13 3.170 0.277 3.050 0.279

13 2.287 0.301 2.259 0.301 14 2.757 0.276 2.756 0.279
14 2.393 0.284 2.407 0.283 15 2.825 0.271 3.008 0.267

18
14 8.962 0.232 8.824 0.238

18
15 11.21 0.209 11.23 0.212

15 8.597 0.225 8.680 0.221 16 10.28 0.206 10.45 0.205
16 9.353 0.215 9.749 0.210 17 10.51 0.197 11.64 0.199

20
16 34.14 0.180 33.51 0.180

20
17 43.32 0.150 42.59 0.156

17 32.28 0.164 32.54 0.172 18 37.33 0.151 37.80 0.155
18 33.54 0.166 34.88 0.163 19 39.19 0.151 44.12 0.152

24
20 460.8 0.0876 447.6 0.0874

24
21 462.9 0.0707 485.7 0.0740

21 422.7 0.0778 441.57 0.0811 22 414.9 0.0682 477.1 0.0688
22 481.9 0.0729 512.6 0.0746 23 511.1 0.0656 740.6 0.0657

28
24 7419 0.0314 6842 0.0309

28
25 6090 0.0228 7222 0.0243

25 7326 0.0260 7089 0.0275 26 5555 0.0220 5555 0.0217
26 6208 0.0232 5637 0.0231 27 5619 0.0178 5619 0.0179

reduced by about 21% (p = 16) and the NMED is reduced by about
4% (p = 12). Compared with R4ARBMs, ATBMs have smaller PDP
values (reduced by about 27%) while the values of NMED are close.
Fig. 23 shows that the proposed ATBM2 (p = 14) and ATBM4 (p =
14) are the best designs when considering both PDP and NMED,
while ATBM2 (p = 12) and ATBM4 (p = 12) are the second best
designs. These results confirm that the proposed designs with p = 12
and p = 14 are better than previous approximate Booth multipliers
when considering both PDP and NMED. Table 10 shows a qualita-
tive comparison between the above approximate booth multipliers
(using 3 qualitative measures: low, medium, high). All proposed
ATBMs have low or medium power, delay, area, PDP and NMED.

5 Case Studies

The proposed approximate multipliers are applied to image pro-
cessing, K-mean clustering and handwritten digit recognition and
compared with R4ABM2 [22] in this section, since R4ABM2 has a
similar structure and a good tradeoff between NMED and PDP.

5.1 Image Processing

The 8-bit approximate multiplier proposed in this paper is applied
to image processing to verify its function. The two images are mul-
tiplied pixel by pixel to mix into a single output image. As Booth
multipliers perform signed multiplication, the pixel values have been
shifted from 0 ∼ 255 to −128 ∼ 127. For ATBMs, ATBM2-8-12-
10, ATBM4-8-12-10 and ATBM4-8-12-11 perform better. They are
applied to digital image multiplication as shown in the Fig. 24.

The quality of the processed image deteriorates with an increase
of p. The output image is still viable when p is smaller than 12, thus
confirming the error analysis presented previously.

The Mean Structural Similarity Measure (MSSIM) [29] shows
that the image segmentation result is similar to the average local
structure of the reference image, and the value is between 0 and
1. The greater the value, the better the quality of the segmenta-
tion. The corresponding MSSIM and PSNR values are provided
in Table 11, using the percentage of PDP (an approximate design
over its exact counterpart). The quality of processed images does

Table 9 Comparative Evaluation of 16-bit Approximate Booth Multipliers

Approximate Booth Power Delay Area PDP NMED
Multipliers (uW ) (ns) (um2) (pJ) (10−5)

R4ABM04 [25] 427.3 0.95 1939 0.406 5.31
R4ABM11 [26] 404.4 0.94 1859 0.380 2.18
R4ABM12 [27] 394.6 0.95 1808 0.374 2.26
R8ABM1 [20] 376.7 1.23 1516 0.463 1.92

R8ABM2-C9 [20] 332.6 1.22 1332 0.406 4.43
R8ABM2-C15 [20] 217.3 1.18 912 0.256 5.73

R4ABM1 (p=12) [22] 525.6 0.94 2127 0.508 0.31
R4ABM1 (p=14) [22] 516.6 0.95 2169 0.490 0.93
R4ABM1 (p=16) [22] 452.9 0.87 1923 0.451 3.10
R4ABM2 (p=12) [22] 515.4 0.92 2086 0.484 0.27
R4ABM2 (p=14) [22] 479.7 0.92 2004 0.441 0.62
R4ABM2 (p=16) [22] 424.0 0.86 1764 0.412 3.02

ARBM (p=12) [24] 656.6 0.90 2641 0.590 0.33
ARBM (p=14) [24] 619.7 0.91 2512 0.564 0.74
ARBM (p=16) [24] 596.8 0.88 2412 0.525 2.72

R4ARBM1 (p=12) [30] 607.3 0.94 2430 0.571 0.17
R4ARBM1 (p=14) [30] 590.9 0.89 2349 0.526 1.16
R4ARBM1 (p=16) [30] 551.9 0.87 2223 0.48 3.62
R4ARBM2 (p=12) [30] 588.4 0.95 2358 0.559 0.15
R4ARBM2 (p=14) [30] 580.1 0.89 2294 0.516 0.76
R4ARBM2 (p=16) [30] 518.9 0.88 2101 0.457 3.21
R4ARBM3 (p=12) [30] 602 0.94 2405 0.566 0.27
R4ARBM3 (p=14) [30] 592 0.89 2346 0.527 0.71
R4ARBM3 (p=16) [30] 559.4 0.88 2214 0.492 2.93
R4ARBM4 (p=12) [30] 587.7 0.94 2362 0.552 0.17
R4ARBM4 (p=14) [30] 570.2 0.89 2278 0.507 0.7
R4ARBM4 (p=16) [30] 511.4 0.88 2092 0.45 3.18

ATBM1 (p=12 d=9) 462.4 0.93 1882.7 0.430 0.26
ATBM1 (p=14 d=11) 423.1 0.87 1717.5 0.368 0.61
ATBM1 (p=16 d=13) 358.4 0.84 1486.6 0.301 2.28
ATBM2 (p=12 d=10) 456.7 0.90 1847.1 0.415 0.29
ATBM2 (p=14 d=12) 408.5 0.80 1675.0 0.326 0.70
ATBM2 (p=16 d=14) 333.6 0.83 1398.6 0.276 2.75
ATBM3 (p=12 d=9) 490.9 0.89 1972.6 0.436 0.26
ATBM3 (p=14 d=11) 429.1 0.86 1747.3 0.369 0.61
ATBM3 (p=16 d=13) 358.5 0.84 1480.8 0.301 2.25
ATBM4 (p=12 d=10) 459.8 0.90 1857.7 0.413 0.29
ATBM4 (p=14 d=12) 401.5 0.86 1638.5 0.345 0.70
ATBM4 (p=16 d=14) 336.4 0.83 1409.2 0.279 2.75

not decrease much when p ≤ 10 (with MSSIM>0.95). ATBM2-8-
12-10, ATBM4-8-12-10 and ATBM4-8-12-11 are compared with
R4ABM2 [22], under the same value of p. ATBM4-8-12-10 achieves
a similar MSSIM and a higher PSNR than R4ABM2(p=12) with a
significantly smaller PDP value.

5.2 K-Means Clustering

K-means clustering is a method for cluster analysis in data mining. It
partitions n observations into K clusters with the nearest mean [31].
The proposed 16-bit ATBM4 (ATBM4-16-12-10, ATBM4-16-14-12
and ATBM4-16-16-14) are applied to calculate the squared deviation
between points belonging to different clusters. The F-measure value
[32] is used as the metric to evaluate the clustering results. It con-
siders both the precision and the recall of the test. So, the F-measure
score can be interpreted as a weighted average of the precision and
recall. The best value of the F-measure score is 1 and its worst value
is 0. Each F-measure value is the average of 50 experiments for each
data set. In this work, several University of California Irvine (UCI)
benchmark datasets [34] are selected to test the K-means clustering
using ATBMs. The F-measure results are listed in Table 12.

The performance of data sets except Customers do not have obvi-
ous change because the data of them are very close. The effect
of K-means clustering is very stable using the proposed multipli-
ers and the values of F-measure are the same. On the contrary, the
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Fig. 23: PDP versus NMED for 16-bit Approximate Booth Multi-
pliers.

Table 10 Qualitative Comparison between 16-bit Approximate Booth Multipliers

Approxiamte Multipliers Power Delay Area PDP NMED

R4ABM04 [25] medium medium medium medium high
R4ABM11 [26] medium low medium medium medium
R4ABM12 [27] medium medium medium medium medium
R8ABM1 [20] medium high medium medium low

R8ABM2-C9 [20] low high low medium high
R8ABM2-C15 [20] low high low low high

R4ABM1 (p=12) [22] high low high high low
R4ABM1 (p=14) [22] high medium high high low
R4ABM1 (p=16) [22] medium low medium medium medium
R4ABM2 (p=12) [22] high low high high low
R4ABM2 (p=14) [22] medium low medium medium low
R4ABM2 (p=16) [22] medium low medium medium medium

ARBM (p=12) [24] high low high high low
ARBM (p=14) [24] high low high high low
ARBM (p=16) [24] high low high high medium

R4ARBM1 (p=12) [30] high low high high low
R4ARBM1 (p=14) [30] high low high high low
R4ARBM1 (p=16) [30] high low high high medium
R4ARBM2 (p=12) [30] high medium high high low
R4ARBM2 (p=14) [30] high low high high low
R4ARBM2 (p=16) [30] high low high medium medium
R4ARBM3 (p=12) [30] high low high high low
R4ARBM3 (p=14) [30]) high low high high low
R4ARBM3 (p=16) [30] high low high high medium
R4ARBM4 (p=12) [30] high low high high low
R4ARBM4 (p=14) [30] high low high high low
R4ARBM4 (p=16) [30] high low high medium medium

ATBM1 (p=12 d=9) medium low medium medium low
ATBM1 (p=14 d=11) medium low medium medium low
ATBM1 (p=16 d=13) low low low low medium
ATBM2 (p=12 d=10) medium low medium medium low
ATBM2 (p=14 d=12) medium low medium low low
ATBM2 (p=16 d=14) low low low low medium
ATBM3 (p=12 d=9) medium low medium medium low
ATBM3 (p=14 d=11) medium low medium medium low
ATBM3 (p=16 d=13) low low low low medium
ATBM4 (p=12 d=10) medium low medium medium low
ATBM4 (p=14 d=12) medium low medium low low
ATBM4 (p=16 d=14) low low low low medium

data in Customers are dispersed and the F-measure values are differ-
ent. ATBM4 results in similar F-measure values as R4ABMs for the
same value of p, but using less hardware resources.

5.3 Handwritten Digit Recognition

The handwritten digit recognition utilizes a deep neural network
LeNet-5 [34] that classifies the MNIST database [35]. The LeNet-
5 consists of two convolutional layers (Layer 1 (C1) and Layer 3

(a) (b) (c)

(d) (e) (f)

Fig. 24: Image multiplication results using multipliers with different
p: (a) R4ABM2 (p=8), (b) R4ABM2 (p=10), (c) R4ABM2 (p=12),
(d) ATBM2-8-12-10, (e) ATBM4-8-12-10, (f) ATBM4-8-12-11.

Table 11 MSSIM and PSNR of Processed Images using 8-bit ATBMs with Different
Approximate Factors

Design R4ABM2 [22]
(p = 8) (p = 10) (p = 12)

PDP (%) 55.72 48.09 39.69
MSSIM 0.9977 0.9786 0.8945

PSNR (dB) 49.08 33.98 22.41

Design ATBM2- ATBM4- ATBM4-
8-12-10 8-12-10 8-12-11

PDP (%) 9.54 9.31 7.86
MSSIM 0.7791 0.8325 0.7950

PSNR (dB) 27.28 29.94 23.79

Table 12 F-measure Values of Clustering by K-mean using 16-bit ATBMs with
Different Approximate Factors (NS: No. of Samples, NC: No. of Clusters)

Datasets Iris Glass Hayes Balance Customers
-roth -scale

NS 150 214 132 625 440
NC 3 7 4 3 3

Design F-measure value
R4ABM1 [22] 0.505 0.421 0.524 0.603 0.717
R4ABM2 [22] 0.505 0.421 0.524 0.603 0.717

ATBM4-16-12-10 0.505 0.421 0.524 0.603 0.577
ATBM4-16-14-12 0.505 0.421 0.524 0.603 0.578
ATBM4-16-16-14 0.505 0.421 0.524 0.603 0.590

(C3)), each of which is followed by a max pooling layer, two fully
connected layers (Layer 5 (C5) and Layer 6 (F6)), and a softmax
layer. The activation function is tanh. The training set and the test
set include 60,000 and 10,000 images from the MNIST database,
respectively. After LeNet-5 is trained the double-precision floating-
point exact multipliers are replaced with an approximate design
in the inference phase. Note that only multiplication operations in
convolutional or fully connected layers are performed using approx-
imate 8-bit fixed-point multipliers. The recognition rate is used as a
metric to evaluate accuracy. To achieve a high recognition rate, the
approximate designs with p=6 (ATBM2-8-6-4 and ATBM4-8-6-4)
along with the previous design R4ABM2 [22] with p = 4 and 6 are
considered.

Table 13 shows the recognition rate of the handwritten digit recog-
nition application. When the multiplication operations in the F6
layer are performed approximately, the recognition rate is given as
in the 3rd row in Table 13. The other rows show the correspond-
ing recognition rates with the approximate multipliers for the layers.
Note that when recognition is based on the exact floating-point
multiplier, the recognition rate is 98.38%. When the floating-point
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Table 13 Recognition Rate (%)
Multipliers PDP (%) F6 F6/C5 F6/C5/C3 F6/C5/C3/C1
R4ABM2 [22] (p=4) 74.05 98.37 98.37 98.38 98.38
R4ABM2 [22] (p=6) 61.07 98.35 97.31 97.01 97.01
ATBM2-8-6-4 54.81 98.32 97.78 97.64 97.64
ATBM4-8-6-4 54.96 98.33 97.73 97.63 97.63

multiplier is replaced by the approximate designs, the recognition
rates are similar or slightly lower. For ATBM2-8-8-6 and ATBM4-
8-8-6, the recognition rates are similar or ever slightly higher than
for R4ABM2 with p = 6 and their PDPs are smaller. For R4ABM2
with p = 4, the recognition rate is still 98.38%, but the PDP is fairly
high. In general, the recognition rates for the proposed approximate
designs (ATBM2-8-6-4 and ATBM4-8-6-4) remain high.

6 Conclusion

Designs of approximate-truncation Booth multipliers (ATBMs) have
been studied in this paper. Two approximate Booth encoders have
been proposed to reduce the complexity of MBE by introducing
incorrect terms in the truth table. Meanwhile, two approximate com-
pressors are also designed that achieve good performance. Based on
the two proposed approximate Booth encoders, i.e., AMBE-a and
AMBE-b, and two proposed approximate compressors, i.e., AC-a
and AC-b, combined with truncated parts which truncate the partial
products, four improved approximate Booth multipliers, i.e. ATBMs,
have been designed with different approximation factors. The error
metrics of the proposed designs have been studied at different val-
ues in the approximation factor (p and d) to achieve a good tradeoff
between accuracy and complexity, i.e., PDP vs NMED. The pro-
posed designs have been compared with previous approximate Booth
multipliers. Results presented in this paper have shown that ATBM2
is the best design when considering both PDP and NMED. The pro-
posed designs have also been applied to image processing, K-mean
clustering and handwritten digit recognition, resulting in a very small
loss of accuracy.
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