
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 1

High Performance CNN Accelerators based on
Hardware and Algorithm Co-Optimization

Tian Yuan, Weiqiang Liu, Senior Member, IEEE, Jie Han, Senior Member, IEEE,
and Fabrizio Lombardi, Fellow, IEEE

Abstract—Convolutional neural networks (CNNs) have been
widely used in image classification and recognition due to their
effectiveness; however, CNNs use a large volume of weight
data that is difficult to store in on-chip memory of embedded
designs. Pruning can compress the CNN model at a small
accuracy loss; however, a pruned CNN model operates slower
when implemented on a parallel architecture. In this paper,
a hardware-oriented CNN compression strategy is proposed; a
deep neural network (DNN) model is divided into “no-pruning
layers (NP -layers)” and “pruning layers (P -layers)”. A NP -
layer has a regular weights distribution for parallel computing
and high performance. A P -layer is irregular due to pruning, but
it generates a high compression ratio. Uniform and incremental
quantization schemes are used to achieve a tradeoff between
compression ratio and processing efficiency at a small loss in
accuracy. A distributed convolutional architecture with several
parallel finite impulse response (FIR) filters is further proposed
for the regular model in the NP -layers. A shift-accumulator
based processing element with an activation-driven data flow
(ADF) is proposed for the irregular sparse model in the P -layers.
Based on the proposed compression strategy and hardware archi-
tecture, a hardware/algorithm co-optimization (HACO) approach
is proposed for implementing a NP−P hybrid compressed CNN
model on FPGAs. For a hardware accelerator on a single FPGA
chip without the use of off-chip memory, a 27.5× compression
ratio is achieved with 0.44% top-5 accuracy loss for VGG-16.
The implementation of the compressed VGG-16 model on a Xilinx
VCU118 evaluation board processes 83.0 frames per second (FPS)
for image applications, this is 1.8× superior than the state-of-
the-art design found in the technical literature.

Index Terms—Convolutional neural network (CNN), field pro-
grammable gate array (FPGA), network compression, hardware
acceleration

I. INTRODUCTION

Convolutional neural networks (CNNs) have been exten-
sively used for image classification [1], [2] and recognition
[3]. For better accuracy, CNNs require intensive and extensive
computation. For real-time processing, CNNs are usually
accelerated by parallel processors such as graphic processing
units (GPUs) [4]. Although GPUs accelerate computation, a

Manuscript received XX, 2020; revised XX, 2020; accepted XX, 2020.
Date of publication XX, 2020; date of current version XX, 2020. This work
is supported by grants from the National Natural Science Foundation of
China (62022041 and 61871216), and the Six Talent Peaks Project in Jiangsu
Province (2018XYDXX-009).

T. Yuan and W. Liu are with College of Electronic and Information
Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing,
211106, China (email: liuweiqiang@nuaa.edu.cn).

J. Han is with Department of Electrical and Computer Engineering, Uni-
versity of Alberta, Edmonton, AB, T6G 1H9, Canada.

F. Lombardi is with Department of Electrical and Computer Engineering,
Northeastern University, Boston MA 02115, USA.

substantial increase of power limits its application to embed-
ded systems. For low power and high performance digital
systems, field programmable gate arrays (FPGA) [5], [6], [7]
and application specific integrated circuit (ASIC) [8], [9], [10]
have been used for CNN accelerators in recent years.

However, the on-chip memory resources in current FPGAs
are not sufficient to completely store a large-scale CNN model.
Therefore, off-chip memory is generally used in an FPGA
implementation of CNNs; this causes a limitation in terms of
bandwidth and speed. Therefore, model compression methods
have been studied quite extensively. Among them, network
pruning [11] is one of the most widely applied compression
methods [12], [13], [14]. As a cost of improving compression
ratio, the irregularity caused by pruning affects the perfor-
mance of parallel computing. A compressed sparse model
not only requires decoding but it also causes an imbalanced
weights load and a difficulty in activations reading. In [15], it
has been shown that processing a sparse layer takes dozens of
milliseconds and requires a large memory utilization.

To achieve a better tradeoff between model size and per-
formance of large CNNs, hardware-oriented compression and
hybrid quantization strategies are proposed in this paper by
requiring a smaller memory. By considering the processing
feature of a CNN, the size of feature maps is reduced, but the
model size expands as the layers deepen. The reduced feature
maps require less computation, and the expanded models
require a larger memory. As per the above characteristic,
all layers are divided into two categories: “no-pruning layers
(NP -layers)” and “pruning layers (P -layers)”. With a regular
weights distribution, a NP -layer utilizes parallel computing
for high performance. A P -layer is irregular due to the pruning
but it has a high compression ratio.

Leveraging the proposed compression strategy, the VGG-16
[1], one of the most useful CNN models for image classifi-
cation, is implemented on a Xilinx VCU118 evaluation board
without off-chip memory such as DRAM to store weight data.
The proposed CNN accelerators achieve high performance
because only on-chip memory in an FPGA is used. Based on
the hardware-oriented compression-based architecture, a hard-
ware/algorithm co-optimization scheme (HACO) is proposed
for implementation of the CNNs. To the best of the author’s
knowledge, this is the first work that implements VGG-16 on
a single FPGA chip without the use of off-chip memory. The
main contributions of this work are summarized as follows:
• A hardware-oriented compression method and a

uniformly-incremental hybrid quantization strategy are
proposed.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 2

• The proposed compression strategy has been applied in
the VGG-16 model and achieves a 27.5× compression
ratio with a 2.04% top-1 accuracy loss and a 0.44% top-5
accuracy loss compared to the single-precision floating-
point VGG-16 model using the ISVRC2012 test data set.

• A distributed convolutional architecture is proposed for
FPGAs with a fast pipeline data path of CNNs.

• A shift-accumulator based processing element and an
efficient activation-driven data flow are proposed for a
sparse model.

• A hardware/algorithm co-optimization approach is pro-
posed for high performance implementations on FPGAs.

• The proposed VGG-16 network is implemented on the
Xilinx VCU118 evaluation platform achieving 30.3∼83.0
frames per second (FPS) with a compression ratio of
34.5∼27.5×, so attaining the highest performance com-
pared with the state-of-the-art designs.

This paper is organized as follows. Section II provides the
background of CNNs. The proposed compression strategy is
presented in Section III. Section IV proposes a distributed
FIR based hardware architecture for the NP -layers and a
shift-accumulator based processing element for the P -layers.
Section V evaluates the computation time and the hardware
requirement. Section VI proposes a hardware/algorithm co-
optimization method. Section VII provides the experimental
results and analysis. Comparison with the state-of-the-art
designs is also provided in this section. Section VIII concludes
this paper.

II. BACKGROUND

A. CNN Basics

CNNs extract the features of images and process these
feature maps to classify images by finding and using the
weights in each layer. In a deep learning algorithm, the CNN
weights are found through training. A typical CNN has three
types of layers: convolutional (Conv) layers, pooling layers
and fully connected (FC) layers.

Convolutional layers are used to extract image features.
A convolutional layer receives a feature map XW,H,M and
generates a feature map of YW,H,N by the filter HK,K,M,N ,
which is calculated by:

Y (i, j, n) =

M∑
m=1

K∑
q=1

K∑
p=1

H(p, q,m, n)X(i×s+p, j×s+q,m)

(1)
where W and H indicate the width and the height of the
feature map; K indicates the size of convolution kernel; M
and N indicate the input channels and output channels; s is
the stride of filter.

Pooling layers compute a local field of feature map to
output a pixel, so reducing the size of feature maps. Average
and max pooling are the two typical pooling operations that
are commonly used in CNNs. Average pooling computes the
average value of the local field while max pooling selects the
largest value of the local field as the output. Max pooling is
used in this work due to its high efficiency.

FC layers are the last few layers in a CNN. All input neurons
are fully connected to every neuron in the next layer through
weights. Therefore, FC layers have many weights to be stored.
O denotes the number of multiply-accumulate (MAC) oper-

ations required in each layer (including both OFC and OConv):

OFC = Uin × Uout

OConv = (W ×H ×N)× (K ×K ×M)
(2)

where Uin and Uout denote the number of input and output
neurons, respectively.

B. Related Works

A tiling technique [16], [5] has widely been used to address
insufficient memory in embedded architectures. For image
compression, the adaptive joint photographic experts group
(JPEG) method [17] has been proposed to dynamically adjust
the compression ratio for the desired quality. For speeding
up convolution, a fast finite impulse response (FIR) algorithm
(FFA) [6] has been proposed. The Winograd algorithm has
been studied for sparse networks [18]. To achieve a high
throughput, [7] has presented a design method to fully exploit
the limited resources in FPGAs. Approximate computing has
widely been studied in recent years; its objectives are to
achieve low energy and high performance at an acceptable
accuracy loss [19]. Neural networks require a significant
large-scale computation and have high error resilience, so
suitable for approximate computing. For example, approximate
multipliers [20] can be used in CNNs with a very small loss
of accuracy [21]; however, this method has only been applied
to small-scale neural networks.

Deep compression has been proposed in [12] to reduce the
model size of CNNs. Using network pruning [11], weight
quantization and Huffman coding, a high compression ratio
has been achieved. A so-called dynamic network surgery has
been used to accelerate training and avoid unacceptable prun-
ing [13]. Binary neural networks (BNNs) have been proposed
to train deep neural networks (DNNs) with weights and activa-
tions constrained to +1 or -1 [22]. At a reduced complexity and
a small number of weights, BNNs achieve a high performance
for embedded systems [23], [24]. Activations for very low
bit-width has also been proposed, thus saving memory and
accelerating training.

Incremental Network Quantization (INQ) [25] has been pro-
posed for efficient CNN models with low precision weights.
INQ divides weights into several groups, and incrementally
quantifies each set of data. At each time of quantization
process, a network is retrained and weights that have not
been quantified are updated to compensate for the accuracy
loss. Using the INQ algorithm, weights in a network can be
quantified as ±2n with only a small accuracy loss, where n
is an integer. The MAC is the main arithmetic unit in CNNs.
With the quantized data form, multiplication can be replaced
by shift operations in a MAC; therefore, INQ has a high speed
performance on hardware.

The significant difference between INQ and the proposed
compression strategy is that the proposed strategy targets

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 3

Pruning

Floating-point number
in NP-layers

Fixed-point number in
NP-layers

Floating-point number
in P-layers

Quantify
Part of weights

Step 1

Repeat Step 1
and Step 2

 in P-layers±𝟐𝐧 in P-layers±𝟐𝐧

Uniform
Quantization

Compressed NN Model

Pruning

NP-layers

P-layers

Remove Mask

Update Mask

Retrain
Model

Step 2

Reserve

Orignal NN Model

Fig. 1. Overview of the hardware-oriented compression strategy.

sparse neural network models, whereas the original INQ
causes an unacceptable accuracy loss for sparse models. Due to
the use of non-pruning layers (NP-layers) defined in this work,
the proposed method compensates the accuracy loss from the
pruning-layers (P-layers) in sparse networks. Furthermore, the
implementation of NP-layers can increase parallel processing
performance due to its regular structure.

III. THE PROPOSED COMPRESSION STRATEGY

We propose a hardware-oriented compression strategy for
large-scale CNNs to store weights on a chip. The front layers
incur a significant level of computation but with a smaller
model size. Also, the front layers are less error-resilient: [12]
has applied pruning (albeit at a smaller rate) in the front layers
of VGG and AlexNet. [26] shows that by pruning the filters
in the front layers, the accuracy significantly decreases. In
addition, an irregular sparse model affects the performance of
parallel computation. Hence, pruning the front layers is not
efficient. The principle of the proposed strategy is to apply
different compression strategies to different layers, so making
the network to be front-regular but back-irregular.

All layers are divided into two types: NP -layers and P -
layers. In the beginning, all layers are pruned. Then INQ
is used for quantifying the P -layers. During the incremental
quantization, the error introduced by pruning and quantization
in the P -layers is compensated by the weight update of
NP -layers, in which the NP -layers are no longer sparse.
Therefore, the proposed compressed model has more error re-
silience, hence making the model easier to converge. When the
quantization in the P -layers is completed, the NP -layers are
quantified as fixed-point numbers so ready for computation.

In general, the NP -layers have a regular structure for
higher parallel performance, while the P -layers are highly
compressed for higher compression ratio. The NP -layers are
generally Conv layers, but the P -layers can include Conv
layers and FC layers. The overview of the proposed strategy
is shown in Fig. 1.

A. Hybrid Quantization Strategy

For P -layers, INQ is applied to achieve a higher compres-
sion ratio. For a layer l, the weights are stored in an array Wl.
The network sparsity is determined by Tl as a binary array
with the same size of Wl. Tl is calculated by the following
equation:

Tl(i) =

{
0 Wl(i) = 0
1 Wl(i) 6= 0

(3)

A 0 and 1 in Tl indicates that the corresponding weight is zero
or non-zero, respectively. At each time of quantization, 1s in
the array Tl are randomly divided into two groups: A1 and
A2. The data in A2 will be modified to zero which indicates
that the corresponding weight will be quantified. The weight
quantization in the P -layers is represented as:

Wl(i) =

{
+2blog2|Wl(i)|c Wl(i) > 0
−2blog2|Wl(i)|c Wl(i) ≤ 0

(4)

By using quantization, the original multiplication in a MAC is
replaced by a shift operation. Therefore, only the sign bit and
exponent need to be stored for the direction and the number
of bits to shift, respectively. After quantization, the model is
retrained to compensate for the error. Weights are updated as
per the following equation:

Wl(i)←Wl(i)− η
∂E

∂Wl(i)
Tl(i) (5)

where η is the learning rate that depends on the learning
policy; E is the objective function. Tl(i) denotes the mask
of weights, which determines whether the weight must be
updated. For zeros entries in Tl, the corresponding weight
will not be updated because it is already zero or has been
quantified. For the NP -layer l, the weights are quantified
after the quantization of the P -layers. The following uniform
quantization method is applied:

Wl(i) = round(
Wl(i)

Q
)Q (Q = 2−n) (6)

where Q indicates the quantization factor and n is the fraction
bit. For the case that most of weights are less than 1, the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 4

following quantization method is used:

Wl(i) =


1−Q Wl(i) ≥ 1
−1 Wl(i) < −1

round(Wl(i)
Q)Q Wl(i) ∈ [−1, 1)

(7)

Algorithm 1 Hybrid Sparse Network Quantization Strategy
Input: P -layers and NP -layers
Output: Quantized network model QM

1: for all layers ∈ P do
2: Compute Tl through Eq. (3)
3: end for
4: Set grouping ratio r
5: for all layers ∈ P do
6: Randomly divide index of 1 from Tl into two parts: A1,

A2 by grouping ratio r
7: Set Tl(i) (i ∈ A2) to 0
8: Quantify Wl(i) (i ∈ A2) through Eq. (4)
9: end for

10: Retrain and update weights by Eq. (5)
11: Goto 4 until all weights in P -layers have been quantified
12: for all layers ∈ NP do
13: Quantify Wl through Eq. (6) or Eq. (7)
14: end for
15: return QM = P ∪NP

In the proposed compression strategy, weights in the NP -
layers are given by fixed-point numbers, so processed without
decoding and faster compared to the compressed weights in
the P -layers. The weights in the P -layers are discrete in
±2n, so requiring less memory due to the lower bit width
and smaller quantity. Moreover, the multiplication is replaced
by shift operations in the P -layers, requiring less resources.
Overall, the compressed CNN models have a high performance
on hardware implementation. The hybrid quantization strategy
is detailed in Algorithm 1.

B. Compression Experiments and Results

We implemented the proposed compression strategy on the
Caffe [27] platform to compress the VGG-16 [1] model;
this has been trained and tested with ILSVRC2012 data set
[28]. By using the proposed strategy, 96%, 96% and 77% of
the weights are pruned in three FC layers. For quantization,
weights bit-widths are set to 8-bit and 4-bit for NP -layers
and P -layers. Moreover, 5 bits are set to store the index for
a weight in the pruned layers, which indicates the number
of zeros between two adjacent no-zero weights. Most of the
weights in the Conv layer are less than 1; therefore, we employ
Eq. (7) for the NP -layers. Overall, weights are incrementally
quantified from 50%, to 75%, to 87.25%, and to 100%. In
addition, all activations bit-widths are set to 16-bits. In these
experiments, a 20.1MB compressed model is utilized with a
33.94% top-1 error and a 12.44% top-5 error, as shown in
Table I. Compared to the single-precision floating-point VGG-
16 model, we achieve a 27.5× compression ratio with 2.04%
top-1 accuracy loss and 0.44% top-5 accuracy loss.

The standard VGG-16 model used in this work is down-
loaded from Caffe Model Zoo1 (as widely used). We tested this
model on the ImageNet dataset 2012 through the framework
Caffe; and obtained the same accuracy as in [29].

TABLE I
VGG-16 COMPRESSION RESULT

Data Type Top-1 error Top-5 error Size (MB)

Baseline 31.90% 12.00% 553MB
Ours 33.94% 12.44% 20.1MB

IV. THE PROPOSED HARDWARE ARCHITECTURE AND
IMPROVED DATA FLOW

Most state-of-the-art CNN designs on FPGAs use off-chip
memory to store weights and feature maps. A key advantage
of the proposed compression strategy is to implement VGG-16
on the latest Xilinx UltraScale FPGA using on-chip memory
only.

Based on the proposed compression strategy, a new hard-
ware architecture for FPGA implementation is developed with
a fast pipeline dataflow of the CNNs without off-chip memory.
As mentioned in Section III, the NP -layers are in front of the
P -layers. Therefore, the compressed model can be processed
in a pipelined manner.

Two hardware architectures are proposed to process these
two types of layers. Due to the regular convolution model in
NP -layers, an FIR based convolution processing element and
an improved data flow are proposed for the NP -layers. For the
irregular sparse model in P -layers, a parallel shift-accumulator
based processing element is proposed to reduce the redundant
computation in the parallel processing of the sparse models.

A. Conv Processing Element

A 1-D convolution is processed by a FIR filter, and multiple
parallel FIR filters (the number of FIR filters is denoted as
F) compute the 2-D convolution. The FIR filter is efficient
in convolution processing due to its stringent requirement on
bandwidth. Considering a 3 × 3 convolution, three inputs are
required for an output in the FIR filters, while nine inputs are
required in traditional methods.

[6] has proposed a parallel fast FIR algorithm (FFA) for
CNNs, which can save multiplications in convolution. Com-
pared with [6], the proposed FIR filter design uses cut-set
retiming for the convolution kernel; this approach requires
less resources and can be used to process larger convolution
kernels very efficiently. So, it is possible to highly parallelize
processing in higher levels with less resources. As shown in
Fig. 2, in our design, a 3-tap FIR filter is retimed to improve
the frequency, and 3 parallel retimed FIR filters constitute a
3 × 3 convolution processing element (Conv-PE) to compute
the 2-D convolution.

A complex convolution processing unit (CCPU) consists of
several Conv-PEs; the number of Conv-PEs in a CCPU is

1https://github.com/BVLC/caffe/wiki/Model-Zoo

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 5

Retimed
3-tap FIR

Retimed
3-tap FIR

Retimed
3-tap FIR

X0

X1

X2

Y

D D
X

Y

cut-set
retiming

cut-set
retiming

D D D

D

X

Y

DRetimed
3-tap FIR

Retimed
3-tap FIR

Retimed
3-tap FIR

X0

X1

X2

Y
D

D

(a) (b)

Fig. 2. Convolution processing element (Conv-PE): (a) a cut-set retimed 3-tap
FIR; (b) a cut-set retimed 3× 3 convolution processing element.

denoted by Mnp. As Fig. 3 shows, a CCPU computes Mnp

channels of a feature map in parallel. The Mnp data output
from the Conv-PEs is also accumulated. To reduce the delay,
the Mnp data are divided into Mnp/a groups, where a denotes
the number of data that is added in a group. Therefore, the en-
tire addition is divided into dloga(Mnp)e levels. Additionally,
when Mnp is less than the input channel M , the accumulated
data will be temporarily stored in the CCPU buffer; it will be
sent to the accumulator in the next iterations. After M/Mnp

iterations, the CCPU outputs a channel of the feature map.
Pooling layers may occasionally follow the Conv layers.

When pooling is required, the data output from ReLU is stored
in a pooling buffer. Several rows of data need to be stored prior
to computing.

PE Buffer ReLU

Conv-PE Conv-PE Conv-PE

Level 0 Addition

 Level 1 Addition

PM/aPM/a

PMPM
aa

PM
a

Conv-PE Conv-PE Conv-PE

Level 0 Addition

 Level 1 Addition

PM/a

PM
a

Accumulator

Pooling Buffer

Pooling PE

Pooling

M
U

X

Pooling Buffer

Pooling PE

Pooling

M
U

X

PE Buffer ReLU

Conv-PE Conv-PE Conv-PE

Level 0 Addition

 Level 1 Addition

PM/a

PM
a

Accumulator

Pooling Buffer

Pooling PE

Pooling

M
U

X

Fig. 3. Complex convolution processing unit (CCPU).

B. Improved Data Flow in Conv Layers

For a better performance of 2-D convolution by FIR filters,
an improved data flow in Conv layers is proposed; it integrates
a 2-D feature map matrix into an array. To integrate each row
of the feature map, zeros are filled between two neighbor rows,
which are of no use after convolution. These values are reset
to zero in the ReLU module.

A Conv-PE receives three parallel arrays and output one
array. To acquire an array with a length of W , the process takes
W +Cfir cycles, where Cfir denotes the latency of a FIR. To
acquire a W ×H matrix, the process costs (W + Cfir)×H

cycles. To eliminate the redundancy caused by the FIR latency
Cfir, neighbor rows of the feature map are connected by filling
K zeros. By applying the so-called integrated rows of the
feature map, the W×H matrix becomes three (W+K−2)×H
arrays that requires (W +K−2)×H+Cfir cycles, where K
is the width of the Conv kernel. As shown in Fig. 4, Row 1 to
Row H are integrated as the second input array of the Conv-
PE. In particular, the first and last arrays must be padded with
zeros before processing. When W is small and Cfir is large,
such as in the last several layers of VGG-16, performance can
be significantly improved.

It is worth mentioning that for convolution kernel of differ-
ent sizes, zero padding is also different. The processing speed
has been increased with the improved data flow by slightly
requiring more memory.

Conv-PE

Conv-PE

(W+1)H(W+1)H

Integrate

X XX XX XXX X X X

XX XX XX XXX X X X

Accumulator,
ReLU and
Pooling

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

HH

W+1W+1

0

0

0

0

0

0

0

0

0

0

0

0

H

W+1

Output Feature Map

0

0

0

0

0

0

0

0

0

0

0

0

H

W+1

Output Feature Map

Row 1

Row 2

Row H

Row 1

Row 2

Row H

WW

HH

Input Feature Map

Row 1

Row 2

Row H

W

H

Input Feature Map

(W+1)H(W+1)H

Row1 0 00 Row H-1 0Row H-1 00 0

Row1 0 Row2 0Row2 0 00 Row H 0Row H 0

Row2 0Row2 0 00 Row H 0Row H 0 0 00 0

Row1 0 0 Row H-1 00 0

Row1 0 Row2 0 0 Row H 0

Row2 0 0 Row H 0 0 0

Row1 0 0 Row H-1 00 0

Row1 0 Row2 0 0 Row H 0

Row2 0 0 Row H 0 0 0

Row1 0 00 Row H-1 0Row H-1 00 0

Row1 0 Row2 0Row2 0 00 Row H 0Row H 0

Row2 0Row2 0 00 Row H 0Row H 0 0 00 0

Row1 0 0 Row H-1 00 0

Row1 0 Row2 0 0 Row H 0

Row2 0 0 Row H 0 0 0

Row1 0 0 Row H-1 00 0

Row1 0 Row2 0 0 Row H 0

Row2 0 0 Row H 0 0 0

Fig. 4. Feature map integration for 3× 3 kernel and the data flow in Conv
layers.

C. F×F Ping-Pong Buffer for Conv-PEs

F parallel FIR filters require an F times sampling rate of
the non-parallel version. As the on-chip storage is limited, an
F × F ping-pong buffer (FPPB) is proposed.

A F parallel FIR requires F lines of input data in the
proposed hardware architecture. The data in the feature map is
stored in rows. Then the F data in different addresses must be
read to match the processing speed for parallel performance.
As shown in Figs. 5 and 6, we first integrate the F adjacent
data in the feature map. Then the integrated data (A, B, C...)
are sequentially sent to the FPPB, which consists of two F×F
blocks, namely, BLOCK0 and BLOCK1. These two blocks
are controlled to alternatively receive and output data. Once a
block is full, it outputs data in columns while the other block
receives the data.

This scheme can transform spatial relations of data in a
feature map to match the parallel FIR processing, while re-
quiring less memory compared with the conventional caching
method [6]. Through the FPPB, the bandwidth requirement is
also relaxed with a small hardware utilization.

D. Distributed Conv Architecture

With no off-chip memory, a distributed Conv architecture is
proposed for high speed processing. Each Conv-PE in the same

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 6

A
[0:15]

C
[0:15]

B
[0:15]

L
[32:47]

N
[32:47]

M
[32:47]

A
[16:31]

B
[16:31]

C
[16:31]

A
[32:47]

B
[32:47]

C
[32:47]

A
[0:15]

A
[16:31]

A
[32:47]

B
[16:31]

C
[0:15]

B
[0:15]

C
[16:31]

C
[32:47]

B
[32:47]

Block0

Input Array

Output Array

D
[0:15]

D
[16:31]

D
[32:47]

E
[16:31]

F
[0:15]

E
[0:15]

F
[16:31]

F
[32:47]

E
[32:47]

Block1

DA

EB

...C

Feature
map

𝐅 × 𝐅 Ping-Pong Buffer

Fig. 5. F×F ping-pong buffer for parallel FIRs.

Fig. 6. The timing diagram of the proposed FPPB.

CCPU has a RAM to transmit the feature map. In addition,
different CCPUs receive weights from different RAMs; so,
the speed of data transmission matches the processing speed,
hence relieving the restriction of bandwidth.

As shown in Fig. 7, there are Mnp feature map RAMs
(FMRs) to store the feature map, and each one corresponds to
a FPPB. The Mnp data in the feature map is sent to each Conv-
PE after the conversion of FPPB, so the Mnp input channels
are processed at the same time.

In the Conv architecture, each CCPU processes a 3-D
feature map to output a 2-D feature map, as briefly discussed
in Section IV-A. Nnp denotes the number of CCPUs that
process the convolution in parallel. Similarly, Nnp weight
RAMs (WRs) store the weights in a distributed fashion, such
that each WR corresponds to a CCPU. All CCPUs receive
the same data of the input feature map. Due to the different
convolution kernels, this implies that Nnp channels are output
at the same time.

The entire convolution architecture processes Mnp channels
of input feature map in parallel, and outputs Nnp channels of
the output feature map.
Nnp is generally smaller than the number of output channels

N ; therefore, a buffer is required for temporarily storing an
intermediate feature map. Using the data integration method
of Section IV-C, the serial data that is output by a CCPU, is
converted into F parallel streams and stored in the map buffer.
The map buffer receives Nnp channels of data and output Mnp

channels of data. If the input feature map data of the current
layer is of no use, then they are replaced by the data from the

map buffer for the next layer computation.

CCPU

N
np

Data
Trans

Map
Buffer

FPPBFPPBFPPB

CCPU

CCPU

Mnp

WR

WR

WR

WB

WB

WB

FMRFMRFMR
FPPB

FMR

WR

WB

Feature Map RAM

Ping-Pong Buffer

Weight RAM

Weight Buffer

𝐅 × 𝐅

Fig. 7. The distributed convolution architecture.

In the proposed distributed architecture, the feature map
storage format is determined by Mnp. As shown in Fig. 8,
the first Mnp feature maps are set as a group, stored in the
bottom of FMRs. The next groups are subsequently stored
in a stack fashion. Due to the different size of feature maps
between layers, the indexes of the next groups are hard to be
determined. To ensure the architecture work correctly, Mnp

should be a multiple of Nnp. Dual port RAMs are used in
this implementation and there is no read and write conflict.

Feature
Map

PM+1

FM
R

M
np

Feature
Map

Feature
Map PM

N
np

Feature
Map 1

Feature
Map PN

N
np

Feature
Map

PM+PN

Feature
Map

Feature
Map
2PM

Buffer

CCPU

CCPU

N
np

FM
R

FM
R

FM
R

Fig. 8. Feature map storage format in FMRs.

E. Shift-Accumulator Based Processing Architecture for P -
Layers

Based on the proposed compression strategy, the P -layers
make a highly compressed sparse model with ±2n weight
types. Multiplications are replaced by shift operations to
reduce resources. To accelerate the processing of the P -layers,
there are two levels in this parallel computing scheme:
• Unrolling the multiple shift-accumulations.
• Unrolling the different weight kernels (Conv kernel in

Conv layers or all weights connected to a output neuron
in FC layers). Due to the irregular sparse model, compu-
tations of each weight kernels are different, so decreasing
the utilization of the hardware units.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 7

Fig. 9 shows the Mp × Np shift-accumulator based pro-
cessing unit (SAC-PU). A shift-accumulator consists of Mp

shifters while a SAC-PU consists of Np shift-accumulators.
Mp shift-accumulations are executed in a shift-accumulator;
the Np shift-accumulators process different sparse weight
kernels.

To fully exploit the sparsity of the model, computations in
the shift-accumulator are selected by the non-zero weights.
Thus, activations must be read, and they require specific
indexes that depend on weights. As the sparse weight kernels
must be considered together, different indexes cause issues
when reading activations. So, an activations-driven data flow
(ADF) is proposed for the P -layers to reduce redundant
computations and improve the read speed of activations. When
an activation is not needed in a sparse weight kernel, it
may still be needed in other weight kernels; therefore, an
activation is processed at every shift-accumulator to assess
whether needed. Activations are processed in an active mode,
so this is referred to as ADF.

Weights 1

Le
ve

l 0
 A

dd
iti

on

 L
ev

el
 1

 A
dd

iti
on

M
p

D

Sh
ift

er
Sh

ift
er

Sh
ift

er

Indexes 1

Shift-AccumulatorActivations 1

If needs?

Activations

Weights SN

Le
ve

l 0
 A

dd
iti

on

 L
ev

el
 1

 A
dd

iti
on

M
p

D

Sh
ift

er
Sh

ift
er

Sh
ift

er

Indexes SN

Shift-AccumulatorActivations
SN

If needs?

Decoder

Fig. 9. The architecture of SAC-PU and activations-driven data flow (ADF).

The efficiency of ADF is determined by Np and the sparsity
of P -layers. Eq. (8) is used to evaluate the efficiency, where
Rkp denotes the pruning rate of each weight kernel. When
Eadf is larger than 1, ADF is faster than traditional methods.
A large Np value implies that the activation is likely to be
accepted by other weight kernels, so increasing the efficiency
of ADF. However, Np cannot take a very large value because
it would require a substantial increase hardware; therefore, Mp

can be reduced for a larger Np.

Eadf =
Activations×

∑Np(1−Rkp)

Activations
(8)

The pruning rate of each weight kernel’s is difficult to find
analytically; therefore, the average of the pruning rate in a
layer can be used to evaluate the efficiency, that can be used

to determine Np.
The architecture of SAC-PU has high fanouts when Np is

large. To reduce the influence of a large net delay, the output
registers of the activations and decoder can be copied for
sharing the loads.

F. Generalization of the Proposed Architecture

The proposed F ×F Conv-PE also computes smaller Conv
kernels, as determined by the input weights. For example, 4
input non-zero weights and 5 input zeros correspond to a 2×2
Conv kernel. The 3× 3 Conv kernel is widely used in CNNs,
so with good efficiency when the size of the Conv-PE is 3×3.

Some CNNs use larger Conv kernels in some layers, such
as 7×7 in the first layer of ResNet [2], but this is well beyond
the capability of a Conv-PE; however, it is not always effective
to increase the size of Conv-PE due to rare use of large Conv
kernels; therefore, a general Conv-PE is proposed for CNNs
at a high efficiency.

Consider a 3 × 3 Conv-PE and three 3-tap FIR filters
connected in series, as shown in Fig. 10, MUXs are inserted
in each connection to select the functions of the Conv-PE.

DD D

0

M
U

X
M

U
X

DD D

0

M
U

X
M

U
X

DD D

MUX

x0 x1 x2

y

Bit Splicing MUX

Fig. 10. The transformed Conv-PE for general CNN computation.

• Parallel Mode: When Conv kernels are smaller than or
equal to 3× 3, the FIR filters receive multiple data from
the feature map to compute at the same time multiple
rows. A Conv-PE computes 2-D convolution. However,
when the size of Conv kernel is 1 × 1, this Conv-PE is
only 11.1% as powerful as the 3×3 scheme; therefore, the
output bit-width must be expanded 3 times for 3 output
data when Conv kernel is 1× 1.

• Serial Mode: When the Conv kernels are larger than
3× 3, each FIR filter receives the data from the previous
filter to configure as a larger FIR filter. Each Conv-PE
loads one row of weights for 1-D convolution. If the
kernel size is smaller than 9 × 9, zeros will be filled
for the FIR filter. Thus, there may be some inefficiency
when the Conv-PE operates in serial mode; however as
large Conv kernels are a small part in most networks, the
performance will not be significantly affected. Multiple
executions of the 1-D convolution are required for a 2-
D convolution. For example, if the size of the kernel is
7×7, the feature maps should be input 7 times for a 2-D
convolution. However, in some cases, the multiple 1-D
convolutions can be unrolled; for example, if Mnp = 32
and M = 3, each seven Conv-PEs can load 49 weights

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 8

for the 7 × 7 convolution. The 7 outputs from Conv-
PEs are added in the accumulator. These seven Conv-PEs
compute a 2-D convolution; also, the 3 input channels
should be expanded to 21 for parallel computing.

The proposed general Conv-PE can switch modes between
1-D and 2-D convolution with a processing capability for a
Conv kernel smaller than 9× 9. The serial FIR filters cause a
significant delay, that must be retimed for high performance.

V. EVALUATION

Under the NP -P hybrid model, the performance of each
module is analyzed. In this section, computation time and
hardware utilization are quantitatively evaluated for the pro-
posed optimization algorithm of Section VI.

A. Time Analysis of NP -Layer

For processing the Conv layers using the proposed CCPUs,
a 2-D convolution takes (W + 1) × H + Cfir clock cycles,
so all data of the feature map is read once. Consider the input
and output channels, then the clock cycles of all NP -layers
can be computed as follows:

Cnp =

NP∑
[(W + 1)×H + Cfir]×

⌈
M

Mnp

⌉
×
⌈
N

Nnp

⌉
(9)

If Conv-PEs work in a serial mode, it will take an additional
time given by a number of clock cycles with a factor of
KH compared to the parallel mode. Consider the unrolling
of convolution, then Eq. (9) is computed as follows:

Cnp =

NP∑
[(W + 1)×H + Cfir]×

⌈
M ×K
Mnp

⌉
×
⌈
N

Nnp

⌉
(10)

As weights are loaded in the buffer prior to the next
convolution, no additional time overhead is encountered. Due
to the map buffer, the feature map can be loaded in FMRs
when the map data in the last iteration is of no use. Therefore,
the total time is given by:

Tnp = Cnp(Mnp, Nnp)× tnp (11)

For storage, the largest feature map and the number of
weights determine the size of the used memory. As per reuse,
Nnp affects the size of the map buffer. Additionally, each
CCPU requires a buffer to store at least a feature map for
accumulation. Therefore, the entire memory is given by:

MSnp =
2N −Nnp

N
×max

NP
(W ×H ×M)× ba+

Nnp max
NP

(W ×H)× ba +
NP∑

Ql × bw
(12)

where ba and bw denote the activation bit-width and weight
bit-width; Ql denotes the weight number of a layer. In general,
the largest feature map can be found in the first several layers;
thus the layer dividing method does not affect the size of the
memory in the NP -layers.

Computation hardware is determined by Mnp and Nnp,
which mostly originate from the Conv-PEs and the accumula-
tor. The number of multipliers and adders are given as follows:

Mulnp = 9Mnp ×Nnp

Addnp = (8Mnp +

dlog2(Mnp)e∑
i=1

⌈
Mnp/2

i
⌉
)×Nnp

(13)

In Eq. (13), all adders are converted into a two-input form for
evaluation.

B. P -Layers Computation Time Evaluation

The computation time in the P -layers can be divided into
three parts: weights decoding, activation reading and SAC
computing. The compressed weights are decoded into weights
and indexes, stored in caches. Then the activations are read
by ADF. After all data is cached, the SAC-PU processes such
data. Each part operates based on the previous parts. Therefore,
the time consumption in each part must be accumulated.

For weights decoding, the required number of clock cycles
depends on the number of weights after pruning:

Cw =

P∑
Ql × (1−Rlp) (14)

where Rlp denotes the pruning rate of a layer.
The P -layers may include Conv layers and FC layers, so

two cases of clock cycle utilization must be differentiated:

Ca =

PConv∑
max (L)×W ×H ×

⌈
N

Np

⌉
+

PFC∑
max (L)×

⌈
Uout

Np

⌉ (15)

where L is the length of the activations (equal to the last index
value of the weight kernels).

Similarly, the number of clock cycles required for SAC
computing is given by:

Cs =

PConv∑ ⌈
max (Qk(1−Rkp))

Mp

⌉
×W ×H ×

⌈
N

Np

⌉
+

PFC∑⌈
max (Qk(1−Rkp))

Mp

⌉
×
⌈
Uout

Np

⌉
(16)

where Qk is the weight number and Rkp is the pruning rate
of a weight kernel, different from Eq. (14).

As per the above equations, the total time execution of the
P -layers is given as follows:

Tp = Cw(Rlp)tw +Ca(L,Np)ta +Cs(Rkp,Mp, Np)ts (17)

A pipelined design can be achieved between reading activa-
tions and the SAC computation for the processing time to be
overlapped. Therefore, the time execution is given by:

Tp =

{
Cw(Rlp)tw + Ca(L,Np)ta Cata ≥ Csts

Cw(Rlp)tw + Cs(Rkp,Mp, Np)ts Cata < Csts
(18)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 9

Pointer

Sp
lit

te
r

Resources

Memory
Consumption

Computation
Time

Adjust

Evaluation

Orignal
NN Model

NP-Layers

P-Layers

NP-Layers

P-Layers

Compressed
NN Model

Compress
Compressed
NN Model

Compress

Move

Fig. 11. Overview of hardware/algorithm co-optimization (HACO).

Storage in the P -layers is function of the largest feature
map, the number of weights and the size of the weight cache.
The memory size is given by:

MSp = 2max
P

(W ×H ×M)× ba +
P∑
Ql × bw+

Np∑
Np ×max (Qk)× (bw + bi)

(19)

where bi denotes the index bit-width.
Computational resources are determined by the number of

shifters and accumulators, which is the same as the NP -layers:

Shtp =Mp ×Np

Addp =

dlog2(Mp)e∑
i=1

⌈
Mp/2

i
⌉
×Np

(20)

In Eq. (20), all adders are also converted into a two-input form
for evaluation.

VI. HARDWARE/ALGORITHM CO-OPTIMIZATION

In this section, HACO is proposed to find the best design
by dividing the layers into NP -layers and P -layers and
by proper sizing the CCPUs and SAC-PU, hence reducing
the computation time while retaining a high efficiency. The
overview of HACO is shown in Fig. 11.

A. Optimization Objective

For pipeline processing, NP -layers and P -layers are pro-
cessed by CCPUs and SAC-PU, respectively. As Fig. 12
shows, the NP -layers are processed by the CCPUs first. After
the computation of the NP -layers has been completed, the
feature maps as output of the CCPUs are sent to the SAC-PU.
Meanwhile, the CCPUs execute the next computation. Thus,
the entire computation time is determined by the slower step
in the entire process.

Consider the limited resources on FPGA, then this problem
can be formulated as:

min Tnp(Mnp, Nnp)

s.t. Tnp(Mnp, Nnp) ≥ TP (L,Rlp, Rkp,Mp, Np)

Resources Utilization(Mnp, Nnp,Mp, Np) ≤ Vr
Accuracy(L,Rlp, Rkp) ≥ Ar

(21)

NP-Layers

Conv -PE

Conv -PE

Conv -PE

Conv -PE

Conv -PE

Conv -PE

Map
Buffer

FMR

FMR

FMR Conv -PE

Conv -PE

Conv -PE

Map
Buffer

FMR

FMR

FMR

P-LayersP-Layers
Input

Activations

SAC-PE
Output

Activations

P-Layers
Input

Activations

SAC-PE
Output

Activations

Computing
NP-layers

SC
MarginWD

ARComputing
NP-layers

Total time Total time

AR

SC
WD

AR

SC

AR

SC

WD

AR

SC

Weights Decoding

Activations Reading

SAC Computing

WD

AR

SC

Weights Decoding

Activations Reading

SAC Computing

Computing
NP-layers

SC
MarginWD

ARComputing
NP-layers

Total time

AR

SC
WD

AR

SC

AR

SC

WD

AR

SC

Weights Decoding

Activations Reading

SAC Computing

Fig. 12. Time consumption of the pipelined hybrid system.

where Ar and Vr are constant, that are determined by user
requirements.
Tnp and Tp are affected by multiple factors; among them,

the frequency is the most difficult to be evaluated quan-
titatively. However, it can be assessed after synthesis. By
utilizing more hardware, frequency could decrease, so a loss
in performance, which is often unavoidable. Therefore, only
parameters such as Mnp, Nnp, L,Rlp, Rkp,Mp, Np and layer
divisions need to be considered.

B. Goal Simplification

For efficiency of the hardware, the considered parameters
are analyzed under a few sampling assumptions. As mentioned
in Section IV-D, Mnp is a multiple of Nnp. Therefore, Tnp
is denoted as Tnp(k,Nnp), where k is a positive integer.
However, to fully reuse the memory, Nnp must be increased
as much as possible; due to hardware limitation, it can be
achieved when k is equal to 1.
L and Rkp are related to each weight kernel (that must be

considered when implementing pruning). To ensure correct-
ness, L is given by the largest amount such that all activations
are read once per shift-accumulator. Therefore, there is a
difference in values between the actual Tnp and Tp.
Rkp is difficult to determined prior to training due to the

irregular pruning. Provided that SAC computing is faster than
the process of activation reading, the proposed architecture
operates correctly. In the case that the same frequencies are
used for them, Mp should be less than or equal to the number

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 10

of activations read out in a clock cycle. Due to the above
simplification, the process is now given by:

min Tnp(Nnp)

s.t. Tnp(Nnp)− Tp(Rlp,Mp, Np) ≥Margin

Resources Utilization(k,Nnp,Mp, Np) ≤ Vr
Accuracy(Rlp) ≥ Ar

(22)

The actual accuracy is hard to determine unless training and
an implementation are pursued. However, the least value of the
accuracy can be acquired before retraining. For example, the
requirement of accuracy is given by Ar. A network (all layers
are sparse), whose accuracy is A and A ≥ Ar, can be selected
as a baseline sparse network. Assume the actual accuracy is
A∗, and A∗ is always larger than A because some layers are
NP -layers. Therefore, it can be ensured that A∗ is larger than
Ar (A∗ ≥ A ≥ Ar).

C. Hardware/Algorithm Co-Optimization

The utilization of CCPUs and the number of NP -layers are
two important parameters that determine the performance, but
it is difficult to consider them together. Therefore, the proposed
approach considers them separately.

A spliter pointer is used to determine whether the layers
belong to either the NP -layers or the P -layers. At the begin-
ning, the pointer must be initialized. As the Conv layers incur
in significantly more computation than the FC layers, and the
number of weights is large in the FC layers, the spliter initially
indicates that NP -layers are Conv layers and FC layers are
P -layers.

Then available hardware is allocated for CCPUs by a RA.
RA is defined as follows:

RA =
Resourcesnp
Resourcesp

(23)

In FPGA, the Resources can be evaluated by the number of
DSPs and LUTs, and the number of DSPs should be converted
into the equivalent number of LUTs.

A higher RA means that more NP -layers can be processed
with the restrictions of Tnp > Tp, which is faster due to higher
efficiency in NP -layers. A smaller RA means more P -layers,
which have a smaller model size.

After initialization, the spliter pointer moves to the front
layers with a fixed RA, so reducing Tnp. Moreover, Tp is
calculated by using the prior value of Rlp which is evaluated
by the pruning rate of a full sparse model. When the pointer
is fixed, the model must be retrained. Due to the NP -layers,
the final Rlp is larger than the previous value. Then, RA is
finely tuned for the final result.

During the pointer adjustment process, the activation mem-
ory increases, but the weight memory decreases. If the total
memory increases, the pointer returns to the back layers,
finding the least size for the memory. Therefore, the farthest
distance the spliter pointer can be adjusted, is rather limited, so
RA cannot be too small. Similarly, if Tnp−Tp < Margin at
the beginning, the pointer is not adjusted but more hardware is
allocated to SAC-PE for satisfying this condition. This process
is described in Algorithm 2.

A Larger Nnp may improve performance. However, the
efficiency may decline due to the ceils in Eq. (9), which means
a waste in computation. The best scenario is that there are no
remainders of M

Nnp
and N

Nnp
in every NP -layers. Computation

is different between layers due to the different values for W
and H . If the efficiency needs to be taken into account to
determine Nnp, it can be evaluated by:

EConv =

∑NP
[(W + 1)×H + C]× M

Nnp
× N

Nnp∑NP
[(W + 1)×H + C]×

⌈
M
Nnp

⌉
×
⌈

N
Nnp

⌉
(24)

Algorithm 2 Hardware/Algorithm Co-Optimization Algorithm
Input: spliter pointer, RA, prior Rlp

Output: Nnp,Mp, Np and new Rlp

1: Allocate available hardware to CCPUs and SAC-PU by
RA.

2: for all Mp, Np and Nnp do
3: Find the largest value under the restriction of each

available hardware.
4: end for
5: for all layers do
6: Compute the required memory and find the minimal

value (the furthest spliter pointer can move).
7: end for
8: Compute TNP , TP .
9: if TNP − TP ≥Margin then

10: while TNP − TP ≥ Margin and the pointer is under
the valid range do

11: Move the spliter pointer to the front layer.
12: Compute TNP , TP .
13: end while
14: Retrain the model through the spliter, acquiring new

Rlp.
15: Compute TNP , TP .
16: if TNP − TP < Margin then
17: repeat
18: Reduce Nnp and enlarge Mp, Np.
19: until Minimal TNP − TP
20: else
21: repeat
22: Enlarge Nnp and reduce Mp, Np.
23: until Minimal TNP − TP
24: end if
25: else
26: while TNP − TP < Margin do
27: Reduce Nnp and enlarge Mp, Np.
28: Compute TNP , TP .
29: end while
30: end if
31: return Nnp,Mp, Np and new Rlp

VII. EXPERIMENT AND RESULTS

A. Experiment Set
The proposed processing architecture is scalable with differ-

ent numbers of Nnp and Mnp, so affecting performance and

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 11

TABLE II
COMPARISON WITH OTHER VGG-16 DESIGNS WITH THE SAME LEVEL ACCURACY (66.06% TOP-1)

Approaches FPGA’16 [29] TCAS-I’17 [6] TCAD’18 [7] Max RA Min RA

Platform Zynq ZC706 Virtex VC707 Virtex VC709 Virtex VCU118

LUTs 182616 215556 337152 695320 249432

FFs 127653 66792 606307 243802 127105

DSPs 780 2296 2877 4096 1024

BRAMs 486 - 882.5 1779 2045

URAMs - - - 779 661

DRAM used Yes Yes Yes No

FPS 8.9 33.8 45.5 83.0 30.3

the utilization of the DSP units. Memory depends on the size
of the network model and the input image; so, the number of
on-chip memory resources of an FPGA determines whether
the network can be implemented on the FPGA without off-
chip DRAM.

HACO is implemented on VGG-16 with the Xilinx VCU118
platform. Performance varies as function of RA.The largest
value of RA has the best performance and the largest model
size (i.e., 21.1MB as mentioned in Section III-B). The least
value of RA has a slower speed but also the smallest model
size. Initially, the NP -layers include Conv layers only, and
P -layers are FC layers. With the decrease of RA, the spliter
pointer moves to the front layers. When the pointer moves
to layer Conv 3-3, the needed memory increases due to the
large feature map. Therefore, the layer Conv 3-3 is the farthest
distance that the pointer can move in VGG-16.

For the largest model, VCU118 requires significant on-
chip memory. URAMs and BRAMs are utilized for VCU118.
Due to the large model size, the memory for the weights is
given by URAMs. To fully use the RAMs resources, 8 9-bit
weights are utilized. The remaining memories are allocated
for activations. 3 parallel activations are utilized for a bit-
width of 48-bit. Therefore, every 3 FMRs with a bit-width of
144-bit are synthesized as two groups of URAMs or BRAMs.
This allocation is adjusted by balancing URAMs and BRAMs.
Computation in VCU118 is performed by mostly DSPs and
LUTs. For high performance in multiplication, DSPs are
allocated for NP -layers, and LUTs are allocated for P -layers
for shift operation. The available hardware are given by 60% of
the VCU118. As DSPs cannot be used in P -layers, a decrease
of RA is possible. For the highest efficiency in convolution,
Nnp, Mp and Np should be given by 2n, where n is a positive
integer. Np is limited to a range of 32∼512 due to the ADF
efficiency and the largest number of output channels. In the
P -layers, activations and weights are required to be cached
before computing but accounting for large memory. When the
available BRAMs are insufficient, distributed RAMs can be
used as alternatives.

To improve the speed of weight decoding and activation
reading, data must be integrated in RAMs for parallel com-

puting, as the improvement in frequency is not effective. If
activations are needed to be integrated, weights should be
decoded in the same form. However, the weights in a sparse
model are not serial; this causes the number of useful weights
to be difficult to calculate. Therefore, parallel decoding cannot
be achieved when multiple activations are integrated. Since
the feature map shrinks during pooling, the integration of
activations results in less efficiency in the P -layers. Therefore,
only the parallel weight decoding is used in our experiment.

B. Performance Analysis and Comparison

In HACO, the largest and least values of RA are utilized
as shown in Table IV. For the largest value of RA, Tnp is
larger than Tp initially. Therefore, the spliter pointer does not
move, so staying at the end of the Conv layers. In this case,
Nnp = 33 and Np = 51 are obtained by HACO. For the least
value of RA, Np = 256 and Nnp = 16 are obtained, and
finally the pointer moves to the layer Conv 4-3. To achieve
the highest efficiency, Nnp and Np are mapped to 2n in our
experiments. For the P -layers, the caches are synthesized as
BRAMs and distributed RAMs. The results are shown in Table
IV.

The FMRs and CCPUs use the same frequency (200 MHz
for Nnp = 16; 150 MHz for Nnp = 32). Weights are loaded in
the buffer during convolution. As weight loading is faster than
convolution computation and requires a large area and longer
delay in the design, the weight RAM uses a slower frequency
(100 MHz in this work). All frequencies are shown in Table
V.

Table II shows the hardware resources and performance
of previous VGG-16 FPGA designs and the proposed design
with the largest and least values of RA. The proposed design
achieves the highest FPS of 83.0 at 150MHz; this is 1.8×
faster than [7]. 4,096 DSPs are used due to a large number
of CCPUs. All other three state-of-the-art designs use off-
chip DDR3 DRAM so limiting the processing speed due to
bandwidth; the proposed design uses only on-chip BRAMs
and URAMs for storing the feature map and weights.
RA is reduced at a smaller model size. As shown is Table

II, the design with the least RA has a smaller memory (URAM

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 12

TABLE III
COMPARISON BETWEEN PROPOSED GENERAL CCPUS AND OTHER DESIGNS

Approaches [30] [31] [31] [31] Ours

Platform Stratix V
GSMD5

Arria 10
GX 1150

Arria 10
GX 1150

Arria 10
GX 1150 Virtex VCU118

Network
(# of Operations (GOP))

ResNet-152
(22.62)

VGG-16
(30.70)

ResNet-50
(7.74)

ResNet-152
(22.62)

VGG-16
(30.70)

ResNet-50
(7.74)

ResNet-152
(22.62)

Frequency (MHz) 150 200 200 200 150

Logic Elementsa 45.7K 138K 221K 235K 781K

DSPsb
(# of MAC Units)

1044
(2088)

1518
(3036)

1518
(3036)

1518
(3036)

4096
(4096)

Latency (ms) - 29.8 11.5 29.7 12.0 9.1 20.3

Throughput (GOPS)c 226.5 1030.2 672.0 761.6 2558.3 850.5 1114.3
aXilinx FPGA in LUTs and Intel FPGA in ALMs.
bOne DSP block in Intel FPGA can be configured as two independent 18-bit×19-bit multipliers.
cThroughput(GOPS) = Operations(GOP) / Latency(s)

TABLE IV
RESULTS ON VGG-16 BY HACO WITH LARGEST AND LEAST RA

Max RA Min RA

NP -layer P -layer NP -layer P -layer

LUTs 668079
27241

(86978) 144032
105400

(342286)

FFs 225570
18232

(68176) 55637
71468

(271143)

DSPs 4096 - 1024 -

BRAMs 1587
192
(37) 1280

765
(125)

URAMs 604 175 414 247

Model Size 20.1MB/ 27.5× 16.0MB/ 37.5×

FPS 83.0 30.3
The results, of which caches are synthesized as distributed RAM, are
shown in parentheses.

TABLE V
FREQUENCIES OF NP -LAYERS AND P -LAYERS

NP Frequency (MHz) P Frequency (MHz)

fW fConv fW fA fSAC

Max RA 100 150 170 300 300

Min RA 100 200 150 250 250

is 8 times larger than a BRAM, so the least RA saves 728
BRAMs). Using HACO, redundancy in NP -layers is removed
to attain a higher efficiency; therefore, the number of DSPs is
reduced to 1,024. Compared with [6], the least RA achieves
90% performance with only a 46% usage of DSPs. Compared

with [7], the least RA achieves 67% performance with a 36%
usage of DSPs and, a 20% usage of FFs.

Although there are some designs of embedded BNNs which
could achieve even higher FPS, the accuracy loss is higher than
the designs in Table II. For example, [24] can only achieve
55.8% top-1 accuracy for VGG-16. Therefore, these designs
are not considered; only the designs with the same level of
accuracy are compared in Table II.

CCPUs are also applied to ResNet. In the first layer of
ResNet, the size of the Conv kernels is 7 × 7, therefore, the
CCPUs will operate in a serial mode. Seven copies of the input
image are loaded into the FMRs, and each image is processed
by 1-D convolution. Then, the output channels is added to
obtain an output feature map. For ResNet, an extra RAM is
utilized to store the feature map of the shortcut connection.
The FMRs must store up to 224 × 224 × 32 data for input
feature maps; map buffer and shortcut buffer must store up to
112 × 112 × 64 data, separately. The required total memory
is 67% of that used by VGG-16. As per the time evaluation
mentioned in Section V, computation in all the Conv layers
only requires 4.0 ms for ResNet-34, 9.1 ms for ResNet-50
and 20.3ms for ResNet-152 when Nnp = 32 (largest RA).
The proposed general CCPUs are compared to other state-of-
the-art FPGA designs in Table III.

VIII. CONCLUSION

A hardware-oriented compression strategy has been ini-
tially proposed in this paper. This strategy achieves high
performance and 27.5× compression ratio for VGG-16. It has
been shown that the proposed strategy incurs in a very small
accuracy loss compared to the single-precision floating-point
implementation as tested on the ILSVRC2012 data set through
the Caffe framework.

As a case study, the architecture of the proposed compressed
VGG-16 has been designed with no off-chip memory on
the Xilinx FPGA VCU118 platform. It has been shown that

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 13

the design achieved using the proposed tool HACO achieves
the highest performance of 83.0 FPS for the same level of
accuracy in image processing. The proposed general Conv-
PE structure has a high efficiency in processing large Conv
kernels; therefore, the entire architecture can process a wide
range of CNN models with small additional hardware. The
proposed hardware design can be applied to several real-time
resource constrained image processing applications.

The proposed compression method is applicable to other
CNN models; new quantization and pruning methods can be
also used in the proposed HACO framework to obtain designs
with even higher performance levels.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556,
2014.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 770–778.

[3] R. Girshick, “Fast R-CNN,” in Proc. IEEE International Conference on
Computer Vision, 2015, pp. 1440–1448.

[4] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cuDNN: Efficient Primitives for Deep Learning,”
arXiv preprint arXiv:1410.0759, 2014.

[5] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.
127–138, 2016.

[6] J. Wang, J. Lin, and Z. Wang, “Efficient Hardware Architectures for
Deep Convolutional Neural Network,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 65, no. 6, pp. 1941–1953, 2017.

[7] S. Yin, S. Tang, X. Lin, P. Ouyang, F. Tu, L. Liu, and S. Wei, “A High
Throughput Acceleration for Hybrid Neural Networks with Efficient
Resource Management on FPGA,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 38, no. 4, pp.
678–691, 2018.

[8] D. Han, J. Lee, J. Lee, and H. Yoo, “A Low-Power Deep Neural Network
Online Learning Processor for Real-Time Object Tracking Application,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66,
no. 5, pp. 1794–1804, 2019.

[9] Y. Wang, J. Lin, and Z. Wang, “FPAP: A Folded Architecture for Energy-
Quality Scalable Convolutional Neural Networks,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp. 288–301,
2019.

[10] Y. Lin and T. S. Chang, “Data and Hardware Efficient Design for
Convolutional Neural Network,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 65, no. 5, pp. 1642–1651, 2018.

[11] B. Hassibi and D. G. Stork, “Second Order Derivatives for Network
Pruning: Optimal Brain Surgeon,” in Advances in neural information
processing systems, 1993, pp. 164–171.

[12] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding,” arXiv preprint arXiv:1510.00149, 2015.

[13] Y. Guo, A. Yao, and Y. Chen, “Dynamic Network Surgery for Efficient
DNNs,” in Advances In Neural Information Processing Systems, 2016,
pp. 1379–1387.

[14] S. Ye, X. Feng, T. Zhang, X. Ma, S. Lin, Z. Li, K. Xu, W. Wen, S. Liu,
J. Tang et al., “Progressive DNN Compression: A Key to Achieve Ultra-
High Weight Pruning and Quantization Rates using ADMM,” arXiv
preprint arXiv:1903.09769, 2019.

[15] L. Lu and Y. Liang, “SpWA: An Efficient Sparse Winograd Con-
volutional Neural Networks Accelerator on FPGAs,” in Proc. 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018,
pp. 1–6.

[16] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A small-footprint high-throughput accelerator for ubiqui-
tous machine-learning,” ACM SIGARCH Computer Architecture News,
vol. 42, no. 1, pp. 269–284, 2014.

[17] J. H. Ko, D. Kim, T. Na, and S. Mukhopadhyay, “Design and Analysis
of a Neural Network Inference Engine Based on Adaptive Weight Com-
pression,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 1, pp. 109–121, 2018.

[18] S. Li, J. Park, and P. T. P. Tang, “Enabling Sparse Winograd Convolution
by Native Pruning,” arXiv preprint arXiv:1702.08597, 2017.

[19] W. Liu, F. Lombardi, and M. Shulte, “A Retrospective and Prospective
View of Approximate Computing,” Proceedings of the IEEE, vol. 108,
no. 3, pp. 394–399, 2020.

[20] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design of
Approximate Radix-4 Booth Multipliers for Error-Tolerant Computing,”
IEEE Transactions on Computers, vol. 66, no. 8, pp. 1435–1441, 2017.

[21] Z. Liu, K. Jia, W. Liu, Q. Wei, F. Qiao, and H. Yang, “INA: Incremental
Network Approximation Algorithm for Limited Precision Deep Neural
Networks,” in Proc. IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2019, pp. 1–7.

[22] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to + 1 or -1,” arXiv preprint
arXiv:1602.02830, 2016.

[23] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
Imagenet Classification Using Binary Convolutional Neural Networks,”
in European Conference on Computer Vision (ECCV). Springer, 2016,
pp. 525–542.

[24] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, and D. Chen, “Design
Flow of Accelerating Hybrid Extremely Low Bit-Width Neural Network
in Embedded FPGA,” in Proc. 28th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 2018, pp. 163–
1636.

[25] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental Network
Quantization: Towards Lossless CNNs with Low-Precision Weights,”
arXiv preprint arXiv:1702.03044, 2017.

[26] M. A. Hanif, R. Hafiz, and M. Shafique, “Error Resilience Analysis
for Systematically Employing Approximate Computing in Convolutional
Neural Networks,” in Proc. 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 913–916.

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” in Proc. 22nd ACM international conference
on Multimedia, 2014, pp. 675–678.

[28] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in Proc. 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 248–255.

[29] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going Deeper with Embedded FPGA Platform
for Convolutional Neural Network,” in Proc. ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2016, pp.
26–35.

[30] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs with RTL-HLS hybrid templates,” in Proc.
IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 2017, pp. 152–159.

[31] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing the Convolution
Operation to Accelerate Deep Neural Networks on FPGA,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 7, pp. 1354–1367, 2018.

Tian Yuan received the B.S. degree in Information
Engineering from Nanjing University of Aeronautics
and Astronautics (NUAA), Nanjing, China, in 2018,
where he is currently working toward the M.S.
degree in circuits and systems. His research interests
include hardware architectures design for deep learn-
ing, neural network compression and quantization
and approximate computing.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, 2020 14

Weiqiang Liu is currently a Professor and the
Vice Dean of College of Electronic and Information
Engineering, Nanjing University of Aeronautics and
Astronautics (NUAA), Nanjing, China. He received
the B.S. degree in Information Engineering from
NUAA and the Ph.D. degree in Electronic Engineer-
ing from Queen’s University Belfast (QUB), Belfast,
United Kingdom, in 2006 and 2012, respectively.
In Dec. 2013, he joined the College of Electronic
and Information Engineering, NUAA. He has served
as a Guest Editor of Proceedings of the IEEE and

Associate Editors for IEEE Transactions on Circuits and Systems I: Regular
Paper, IEEE Transactions on Computers, IEEE Transactions on Emerging
Topic in Computing and Computers and IEEE Open Journal of Computer
Society, and a Steering Committee Member of IEEE Transactions on Multi-
Scale Computing Systems. He is the Program Co-Chair of IEEE Symposium
on Computer Arithmetic (ARITH), and program members for a number of
international conferences. He is a member of both Circuits & Systems for
Communications (CASCOM) Technical Committee and VLSI Systems and
Applications (VSA) Technical Committee, IEEE Circuits and Systems Society.
His research interests include emerging technologies in computing systems,
computer arithmetic, hardware security and VLSI design for digital signal
processing and cryptography. He has published one research book by Artech
House and over 100 leading journal and conference papers. One of his papers
was selected as the Feature Paper of IEEE TC in the 2017 December issue.
He received the prestigious Outstanding Young Scholar Award by National
Natural Science Foundation China (NSFC) in 2020. He is a Senior Member
of the IEEE and the Chinese Institute of Electronics.

Jie Han received the B.S. degree in electronic engi-
neering from Tsinghua University, Beijing, China, in
1999 and the Ph.D. degree from the Delft University
of Technology, The Netherlands, in 2004. He is
currently a Professor in the Department of Electrical
and Computer Engineering at the University of Al-
berta, Edmonton, AB, Canada. His research interests
include approximate computing, stochastic comput-
ing, reliability and fault tolerance, nanoelectronic
circuits and systems, novel computational models
for nanoscale and biological applications. Dr. Han

was a recipient of the Best Paper Award at the International Symposium
on Nanoscale Architectures (NanoArch) 2015 and Best Paper Nominations
at the 25th Great Lakes Symposium on VLSI (GLSVLSI) 2015, NanoArch
2016 and the 19th International Symposium on Quality Electronic Design
(ISQED) 2018. He was nominated for the 2006 Christiaan Huygens Prize of
Science by the Royal Dutch Academy of Science. His work was recognized
by Science, for developing a theory of fault-tolerant nanocircuits (2005). He is
currently an Associate Editor for the IEEE Transactions on Emerging Topics
in Computing (TETC), the IEEE Transactions on Nanotechnology, the IEEE
Circuits and Systems Magazine, the IEEE Open Journal of the Computer
Society and Microelectronics Reliability (Elsevier Journal). He served as a
General Chair for GLSVLSI 2017 and the IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)
2013, and a Technical Program Committee Chair for GLSVLSI 2016, DFT
2012 and the Symposium on Stochastic & Approximate Computing for Signal
Processing and Machine Learning, 2017.

Fabrizio Lombardi (M’81-SM’02-F’09) received
the B.S. degree (Hons.) in electronic engineering
from the University of Essex, U.K., in 1977, the
master’s degree in microwaves and modern optics
and the Diploma degree in microwave engineering
from the Microwave Research Unit, University Col-
lege London, in 1978, and the Ph.D. degree from
the University of London in 1982. He is currently
the International Test Conference (ITC) Endowed
Chair Professorship with Northeastern University,
Boston, USA. His research interests are bio-inspired

and nano manufacturing/computing, VLSI design, testing, and fault/defect
tolerance of digital systems. He has extensively published in these areas
and coauthored/edited seven books. He was the Editor-In-Chief of the IEEE
Transaction on Computers from 2007 to 2010, the IEEE Transactions on
Emerging Topics in Computing from 2013 to 2017, the IEEE Transactionson
Nanotechnology from 2014 to 2019. He is currently the Vice President
for Publications of both the IEEE Computer Society and a member of the
executive committee of the IEEE Nanotechnology Council.

