
Design and Evaluation of an FPGA-based Hardware
Accelerator for Deflate Data Decompression

Morgan Ledwon
Electrical and Computer Engineering

University of Alberta
Edmonton, Canada
ledwon@ualberta.ca

Bruce F. Cockburn
Electrical and Computer Engineering

University of Alberta
Edmonton, Canada

cockburn@ualberta.ca

Jie Han
Electrical and Computer Engineering

University of Alberta
Edmonton, Canada
jhan8@ualberta.ca

Abstract—Data compression is an important technique for
coping with the rapidly increasing volumes of data being trans-
mitted over the Internet. The Deflate lossless data compression
standard is used in several popular compressed file formats
including the PNG image format and the ZIP and GZIP file
formats. Consequently, several implementations of hardware
accelerators for Deflate have been proposed. The recent avail-
ability of distributed field-programmable gate arrays (FPGAs) in
the Internet cloud and the growing demand for decompressing
compressed data that is streamed from remote servers make
FPGA-based decompression accelerators commercially attractive.
This paper describes an efficient implementation of the Deflate
decompression algorithm using high-level synthesis from designs,
specified in C++, down to optimized implementations for a
Xilinx Virtex UltraScale+ class FPGA. When decompressing the
Calgary corpus benchmark, our decompressor has average input
(output) data throughputs of 70.7 (246.4) and 130.6 (386.6) MB/s
for dynamically and statically encoded files, respectively. This
performance is comparable to the 375 MB/s output throughput of
Xilinx’s state-of-the-art proprietary Deflate decompressor design.

Index Terms—Deflate algorithm, lossless compression, hard-
ware accelerator, FPGA-based accelerator

I. INTRODUCTION

Due to the increasing popularity of cloud computing, the
Internet must handle the ever growing volumes of data traf-
fic being transmitted. Lossless data compression is used to
effectively increase the Internet’s communication bandwidth
and storage capacity. While it is desirable to optimize both
compression and decompression, there are many applications
(e.g., multimedia streaming from a server) where decompres-
sion is performed much more frequently than compression as
data is downloaded repeatedly by many users. This creates the
demand for quick and efficient solutions to decompression.

Deflate [1] is one of the most widely used lossless com-
pression algorithms. It underlies the .zip, .gz, and .png file
formats, as well as the Hypertext Transfer Protocol (HTTP)
[2]. Zlib [3] is an open-source library containing a reference
implementation of Deflate, which is based on the unpatented
utility gzip [4]. Deflate is generally very good at maximizing

This work was supported financially by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) under projects RES0018685
and RES0038166. Design tools were provided through CMC Microsystems.
The authors also gratefully acknowledge the technical advice and support of
Eidetic Communications Inc., Calgary, AB, Canada.

the compression ratio (i.e., the ratio of the size of the uncom-
pressed data to the size of the compressed data) for typical data
sources. Unfortunately, the output format used in Deflate was
not designed to facilitate parallel decompression, which makes
decompression difficult to accelerate. Specifically, Deflate de-
compression is inherently difficult to parallelize because of the
serial process used during compression, which is reflected in
the compressed data format. Compression can be accelerated
by splitting the data stream into multiple chunks that can then
be compressed in parallel (for example, in pigz [5], the parallel
version of gzip), but parallelization of decompression is not
easily done. A simple approach is to alter the Deflate format: if
an index of the block locations is included in the compressed
file and if back-references between blocks are prohibited, then
the blocks within a file could be decompressed in parallel.
Another strategy is to structure the data to suit the decom-
pressor, such as by using a constant block size. However, to
be Deflate-compliant, a decompressor must handle all of the
standard Deflate formats [1].

Internet servers are commonly provided with parallel com-
puting resources that can significantly speed up computation-
ally demanding operations [6], [7]. Graphics processing units
(GPUs) are used to accelerate computations that have suit-
able inherent parallelism. The single-instruction, multiple-data
(SIMD) stream architecture of GPUs supplements the SIMD
features that are provided in server central processing units
(CPUs). Field-programmable gate arrays (FPGAs) provide
flexible hardware reconfigurability, which allows accelerators
to be designed and tailored to specific algorithms. Unlike
GPUs, FPGAs can implement arbitrary algorithms that do
not necessarily suit the SIMD model. Application-specific
integrated circuits (ASICs) allow the design of customized
accelerators that offer the greatest possible performance boost
for given algorithms. Unlike ASICs though, FPGAs can be
reconfigured, multiple times if necessary, to support a wide
variety of algorithms.

In this paper we propose an FPGA-based hardware ac-
celerator for Deflate decompression. Our design, which was
developed using high-level synthesis, exploits the capabilities
of FPGAs to speed up the decompression process. The main
contributions of this paper are the following:

• We describe a Deflate-compliant decompressor design

Before:
This_sentence_contains_an_example_of_an_LZ77_back_reference.

This_sentence_contains_an_example_of(L4,D14)LZ77_back_refer(L4,D46).
After:

Fig. 1. An example of LZ77 compression where repeating strings of
characters are replaced with length-distance pairs.

that processes both static and dynamic blocks without
making any assumptions about the compressed data.

• We take advantage of the steps of decompression that can
be exploited using FPGA technology, for example, when
decoding the Huffman codes and by copying multiple
bytes of a length-distance pair at a time.

• We demonstrate the capabilities of using high-level syn-
thesis to create a design that is efficient in both speed
and area. Our design is able to achieve throughputs
comparable to Xilinx’s proprietary design [8].

The paper is structured as follows: Section II describes the
Deflate file format and reviews related work on accelerating
Deflate decompression. Section III describes our pipelined De-
flate decompressor core for FPGAs. Section IV evaluates the
performance of the decompressor. Lastly, Section V provides
conclusions and directions for future work.

II. BACKGROUND INFORMATION AND RELATED WORK

Deflate compression takes two steps: LZ77 encoding [9]
followed by Huffman encoding [10]. A file to be compressed
is first split into blocks of finite size which are then compressed
using LZ77 encoding [1]. Strings of repeated characters in the
data are replaced with LZ77 codewords in the form of length-
distance pairs. These pairs indicate the length of a string and
the distance it appeared earlier within the file (see Fig. 1). The
Deflate format allows string matches of up to 258 bytes long
and distances going back up to 32768 bytes. Note that these
distances may cross block boundaries. After LZ77 encoding,
the file is a series of data blocks containing literals (unmatched
ASCII bytes) and LZ77 codewords, which together are called
symbols. The symbols within each block are encoded using
a Huffman code to compress the file further. The Huffman
codewords are commonly called codes. One special code,
called the end-of-block (EOB) marker, indicates the end of
each block. Two code tables are used: one for lengths, literals,
and the EOB marker, and the other for distances.

Deflate uses two different methods for Huffman encoding,
static and dynamic. In static encoding the symbols are encoded
using constant pre-defined code tables. In dynamic encoding

TABLE I
DEFLATE LITERAL/LENGTH SYMBOL LIBRARY AND STATIC CODES

Symbol Type Symbol Values Static Code Lengths Static Codes
Literal 0 - 143 8 bits 00110000 - 10111111

144 - 255 9 bits 110010000 - 111111111
End-of-block 256 7 bits 0000000

Length 257 - 279 7 bits 0000001 - 0010111
280 - 287 8 bits 11000000 - 11000111

the code tables are created during compression: they assign
codes to the symbols based on the frequency that they appear
in the data block, with the most frequently occurring symbols
having the shortest codes. The Huffman code lengths are
variable, with dynamic literal/length and distance codes being
from 1 to 15 bits long. For static blocks, the literal/length codes
are 7 to 9 bits long while the distance codes are 5 bits long.
Table I shows the literal/length symbol library and their static
codes. The length and distance symbol codes may then be
followed by a number of extra bits, from 0 to 5 for lengths and
0 to 13 for distances. The dynamic code tables are not included
in the compressed file itself, but the code length sequences that
are used to recreate the tables are included. At the beginning
of each block is a 3-bit header that specifies the type of block
and also if it is the last block in the file (see Fig. 2). In
a dynamic block, the header is followed by the compressed
code length sequences for that block. Each dynamic block may
be encoded differently. A third type of block, called a stored
block, contains only uncompressed literals. Stored blocks are
useful for encoding incompressible data, for example, already
compressed data.

To perform decompression, the two stages of encoding
are reversed. First the Huffman codes within each block are
decoded and then the LZ77 length-distance pairs are replaced
with the original literals. Since the Deflate format does not
include indexes that locate the compressed blocks, each block
must be decoded serially; the boundary where one block ends
and the next begins is unknown until the end of a block
has been reached. By altering the Deflate format, the block
boundaries could be indexed at the start of the compressed file,
allowing each block to be identified and decoded in parallel.
Since the length of Huffman codes is variable, each code
needs to be decoded one at a time. It is possible, however, to
search ahead for the next EOB code. Once a block boundary
is found, the next block could begin decoding in parallel.
This strategy is called speculative parallelization and it has
been used to accelerate Huffman decoding [11], [12]. It is
speculative because a false boundary can be found if the length
and distance codes are followed by extra bits that mimic the
EOB code.

The problem of accelerating LZ77 decoding remains. While
each data block can be Huffman decoded independently if the
block boundaries are known, the same cannot be done with
LZ77 decoding because back-references can exist between
blocks. An LZ77 distance can point to a string of literals
in another block up to 32768 bytes away. A back-reference

Compressed Data EOB
Static Block

of Codes Code Length Sequence Compressed Data EOB
Dynamic Block

Stored Block
LEN NLEN LEN Bytes of Uncompressed Data

Header

Header

Header

Fig. 2. Deflate block types and their contents (not to scale). A block does
not always begin or end on a byte boundary (unless it is Stored).

may also point to another back-reference that has not yet
been decoded. This hampers the ability to process each block
independently. The authors of [7] solve this problem with
an altered algorithm that compresses each block separately
(removing inter-block dependencies) and that includes the op-
tion of disallowing nested back-references during compression
(removing intra-block dependencies). Using this strategy with
non-standard fixed-length Huffman encoding, they achieved
impressive decompression speeds of over 13 GB/s.

The authors of [12] employed speculative parallelization
on a cluster-computing platform. Using six nodes in parallel
they achieved decompression throughputs ranging from 18 to
24 MB/s. Although they use speculative parallelization in the
Huffman decoder, it is not described how they parallelize the
LZ77 decoder. The authors of [11], who also utilize speculative
parallelization in the Huffman decoder, rely on the presence of
stored (uncompressed) blocks in the data stream to parallelize
the LZ77 decoding. Zlib has the tendency to release stored
blocks in sizes of at least 16 kB, meaning that two consecutive
stored blocks in a stream can be used to fill the 32 kB
history buffer of an LZ77 decoder. This allows multiple LZ77
decoders to operate in parallel without encountering back-
references to blocks held in other decoders. They discovered,
however, that the presence and distribution of stored blocks in
a Deflate stream is not so regular and so they were only able
to achieve speedups ranging from 1.24 to 1.80 times faster
than standard sequential decompression using software.

Accelerating decompression using FPGAs has been re-
ported, but not nearly to the same extent as compression.
A variety of FPGA compression accelerators have been de-
veloped [13]–[16]. Commercial FPGA decompressor designs,
like the one sold by Xilinx [8], report average decompression
speeds of 375 MB/s (at the output), but these designs are
proprietary. Reference [17] describes a two-core decompressor
design for FPGAs similar to ours but their design is limited
to static compressed files only. It uses a 512-index lookup
table (LUT) to decode the 7 to 9-bit long static Huffman
literal/length codes. They falsely assume that the decompressor
speed would be the same if the dynamic code tables were
created beforehand and given to the accelerator. This would in
fact require not just one, but two 32768-index LUTs to be able
to decode all possible 1 to 15-bit-long literal/length codes as
well as all possible 1 to 15-bit-long distance codes. A solution
to this problem is proposed in [18]. Since the Huffman codes
of a particular length have consecutive values, their symbols
can be stored in one continuous space in memory. If the base
address of each code length is recorded (15 base addresses,
one for each length from 1 to 15), a code can be located
relative to its base address given its length. Thus a dynamic
Huffman code can be decoded using a 286-index table for
literals/lengths and a 32-index table for distances. We used
the same approach, as explained in Section III-A.

The authors of [18] report a maximum decompression speed
of about 300 MB/s but they do not give average speeds or
specify if the results are for single-file decompression or multi-
file decompression using multiple cores. The authors of [19]

report a maximum decompression speed of 125 MB/s, how-
ever, they do not specify average speeds. The input files being
decompressed are not given in [8], [18], or [19]. The closest
comparable design to our own is in [17]; however, only results
for static compressed files are given. When decompressing the
Calgary corpus benchmark files [20], [17] reports a maximum
output throughput of 206 MB/s with an average throughput
of 159 MB/s. These numbers are thus inflated by about 2 or
3 times (i.e. by the compression ratio) compared to the input
throughput.

III. DECOMPRESSOR DESIGN

Fig. 3 shows a block diagram of the proposed Deflate
decompressor. The design comprises a Huffman Decoder, an
LZ77 Decoder, and two byte-reordering modules: a literal
stacker and a byte packer. All four modules were synthesized
from a C++ specification using Vivado HLS [21] for a 250
MHz clock. Vivado HLS is a high-level synthesis tool capable
of synthesizing designs that are expressed in C, C++, or
SystemC. The first-in first-out (FIFO) memory was synthe-
sized from a configurable block in the Vivado library. All five
modules are interconnected with AXI-Stream interfaces [22],
which provide unidirectional data flow through the modules.
Each AXI-Stream interface comprises a 32-bit TDATA data
bus, a 4-bit TKEEP bus, and a 1-bit TLAST signal. The
TKEEP signals specify the valid data bytes and the TLAST
signal identifies the last transfer. Our TUSER signal flags data
packets containing length-distance pairs. The data FIFO can
store up to 4096 literal stacks or length-distance pairs before
stalling. A compressed file is streamed into the decompressor
4 bytes at a time and the decompressed file can be streamed
out 4 bytes at a time.

A. Huffman Decoder

The Huffman decoder reads the next bytes from the com-
pressed file and examines the block header. For a stored block,
the decoder reads the block length and streams that many
bytes from the input to the output. For a static block, the
9-bit literal/length codes are read and decoded using a 512-
index static code table stored in a read-only memory (ROM).
The 5-bit distance codes that follow address into a 32-index
table. The Huffman decoder decodes a static literal in 3 clock
cycles and a length-distance pair in 4 cycles. The decoder
processes a dynamic block in two phases: first the dynamic
code tables are assembled, then the block is decoded using
those tables. To assemble the code tables in a dynamic block,
the decoder reads the sequence of code lengths, calculates base
values and addresses for each length, and assigns consecutive
addresses to each code for each length. Code table assembly
adds a significant delay when decompressing dynamic blocks
compared to static blocks.

As mentioned above, instead of decoding by directly ad-
dressing every possible variable-length code, we use the de-
coder and code table architecture from [18]. Thus we use a
286-index table for literal/length codes and a 32-index table
for distance codes. These two tables are implemented using

[31:0]TDATA

[3:0]TKEEP

[0]TLAST

[0]TUSER

Huffman
Decoder

Literal
Stacker

[31:0]TDATA

[3:0]TKEEP

[0]TLAST
Data
FIFO

[31:0]TDATA

[3:0]TKEEP

[0]TLAST

[0]TUSER

LZ77
Decoder

[31:0]TDATA

[3:0]TKEEP

[0]TLAST

[0]TUSER

[31:0]TDATA

[3:0]TKEEP

[0]TLAST
Byte
Packer

[31:0]TDATA

[3:0]TKEEP

[0]TLAST

Input
AXIStream

Output
AXIStream

Fig. 3. Pipelined Decompressor Block Diagram.

block random-access memories (BRAMs) in the FPGA. The
decoding process has two steps: first the number of bits in
the code is determined, then the code address is calculated
and the corresponding symbol is looked up. To decipher the
code length, which can be from 1 to 15 bits long, the next 15
bits from the input stream are compared in parallel to the 15
different code length base values that were calculated during
table construction. A leading-one detector returns the resulting
bit length of the code.

Once the code length is known, the address for its symbol
in the code table is the base address plus an offset, which is
calculated by subtracting the code’s base value from the code
bits. The code table for literals/lengths is shown in Fig. 4.
With the code address calculated, the corresponding symbol
can be looked up in the table. If the symbol is a literal, the
decoder writes it to the data stream. If the symbol is the EOB,
the decoder returns to its initial state and begins decoding
another block, if one is available. If the symbol is a length,
the corresponding extra bits and base length value are looked
up in a symbol table ROM. Any extra bits following the length
are read from the stream and added to the base length to get
the final length value. The distance code that follows, which
can also be 1 to 15 bits long, is decoded in the same way
as literals/lengths. Any extra distance bits are read and the
actual distance value is calculated. When the final length and
distance are known, they are written out to the data stream. The
Huffman decoder decodes a dynamic literal in 4 clock cycles
and a length-distance pair in 7 cycles. This is the minimum
cycle latency that Vivado HLS synthesizes at 250 MHz.

B. Literal Stacker

The LZ77 decoder stops reading from its input stream while
it is copying the bytes of a length-distance pair. During this

2bit Code Base Address

1bit Codes

2bit Codes
Length/Literal
Symbol

1bit Code Base Address

15bit Code Base Address
15bit Codes

286 Index BRAM

Offset

Fig. 4. Literal/Length Code Table.

time data will pile up in the data FIFO. Since the data stream
is 4 bytes wide and since the LZ77 decoder can write 4 bytes
to its memory in a cycle, we can more rapidly clear out the
FIFO by grouping consecutive literals into stacks of 4. As data
packets are written out from the Huffman decoder, the literal
stacker will examine them and collect any literals into a stack.
The presence of a length-distance pair in the stream forces
the literal stacker to release any held literals in an incomplete
stack. Thus a released literal data packet can contain 1 to 4
literals. TKEEP identifies the number of literals in the stack.

C. LZ77 Decoder

The LZ77 decoder uses the length-distance pairs from the
Huffman decoder to recover the original stream of literals. It
contains a circular buffer BRAM capable of storing 32768
literal bytes, the maximum distance in the Deflate format.
The circular buffer is cyclically partitioned into 4 dual-port
BRAMs, so 4 bytes can be read from and written to the
buffer every clock cycle. The LZ77 decoder reads in a data
packet from the FIFO and uses TUSER to identify literals or
length-distance pairs. If the packet contains literals, TKEEP is
analyzed and the corresponding number of literals, from 1 to
4, are recorded in the buffer and written to the output stream. If
the packet is a length-distance pair, the decoder stops reading
from the FIFO and begins copying bytes from the buffer back
to the head of the buffer as well as the output stream. The
distance specifies how far back in the buffer to read from, and
the length specifies how many bytes are to be copied.

A 4-byte wide sliding window is used when reading and
writing to the circular buffer, but any number of bytes from
1 to 4 may be read or written. The decoder is designed so
that no addressing conflicts can occur, i.e. the same address
will never be read and written in the same cycle. There are
three possible scenarios that are handled to avoid addressing
conflicts. If the distance is from 1 to 4, only a single read is
performed on the buffer. The 1 to 4 read literals are stored in
4 registers which are then copied to the buffer head and the
output stream. For example, if the distance is 1, only 1 literal
is read from the buffer and a copy is stored in all 4 registers.
This allows us to write back 4 copies of the same literal every
clock cycle until the length is reached. The second scenario
occurs when the distance is 5, 6, or 7 as the reading window
will collide with the writing window during buffer access. To
prevent this, the decoder keeps track of the number of bytes
it is allowed to read before the reading window is reset back
to its starting position. Any bytes past the distance are not

read. For example, if the length is 10 and the distance is 5
and the string to be copied is “ABCDE”, on the first iteration
“ABCD” will be copied. On the next iteration only “E” is
copied. On the next iteration, the sliding window is reset and
“ABCD” is copied again. On the final iteration, “E” is written
again. The third scenario occurs when the distance is 32768,
the size of the circular buffer. In this scenario the read and
write pointers will hold the same address. In this case, no
writes are performed on the buffer and the literals are just
copied from the buffer to the output stream. TKEEP identifies
the valid bytes in the 32-bit TDATA output.

D. Byte Packer

The byte packer filters out null bytes from the LZ77 decoder
output so that a continuous aligned stream of bytes is output
from the decompressor. When a number of bytes less than
the sliding window width is written, null bytes are output.
The byte packer analyzes the received TKEEP signals and
reorganizes the bytes as necessary. The data bytes are aligned
in order and held back until four bytes can be output.

IV. PERFORMANCE RESULTS

The pipelined decompressor design was synthesized for a
Xilinx xcvu3p-ffvc1517 Virtex UltraScale+ FPGA for a clock
frequency of 250 MHz. The resource utilization of the de-
compressor is given in Table II. The decompressor was tested
using files from the standard Calgary corpus [20] that were
compressed using zlib. Using the default zlib compression
settings, all of the files were compressed using only dynamic
blocks. The corpus files were also compressed using the zlib
static block option. For simplicity, the two-byte zlib header and
the four-byte Adler-32 checksum footer were removed from
the files before decompression. The compressed file sizes,
compression ratios, and decompression results appear in Table
III. The throughput (at the input) is defined as the compressed
file size divided by the total time it took to decompress the
file. The decompressor output throughput is the product of the
input throughput and the compression ratio.

The file size, compression ratio, and the type of data being
decompressed are all factors affecting the throughput. For
dynamic files, the throughput has a maximum of 76.12 MB/s
on file “book2”, a minimum of 62.74 MB/s on “obj1”, and
an average of 70.73 MB/s. For static files, the throughput
has a maximum of 151.64 MB/s on “book1”, a minimum
of 101.16 MB/s on “pic”, and an average of 130.58 MB/s.
The average output throughputs are 246.35 and 386.56 MB/s
for dynamic and static files, respectively. Compared to the
static decompression results in [17], our design is about 2 to
3 times faster. The throughput for the static files is roughly

TABLE II
FPGA UTILIZATION

Resource Used Total Percent
LUTs 10,736 394,080 2.72%
Registers 6,334 788,160 0.80%
BRAM Tiles 14 720 1.94%

double that of the dynamic files because the Huffman decoder
takes about half the time to decode a static code as it does
a dynamic code. Also, when processing dynamic blocks,
significant time is spent reading the code length sequences and
building the dynamic code tables. This impacts the throughput
of smaller files more as the fraction of time spent building
the tables vs. decoding the codes is greater compared to
larger files. The speed-up obtained when decompressing static
files suggests that using static compression and sacrificing
some compression ratio may often be a good trade-off. This
speed-up extends to compression as well; the compression
accelerators in [15] and [16] only perform static Huffman
encoding in order to speed up compression. As shown in Table
II, the resource utilization of the decompressor design is quite
modest. Multiple decompressors could be employed in parallel
in a multi-file decompressor system on the same FPGA to
achieve even greater throughputs. A cluster of 32 decompres-
sors would provide average input (output) throughputs of 2.24
(7.88) and 4.16 (12.37) GB/s for dynamic and static files, while
using about 87% of the LUTs in the FPGA.

The current bottleneck is the Huffman decoder. During
decompression, the data count in the FIFO rarely went above
20 for most files indicating that the LZ77 decoder was able to
efficiently handle any backlog that started to form. The only
exception to this is the file “pic”, where the dynamic version
caused the FIFO count to reach 1441 and the static version
caused the FIFO to max out at 4096. The performance of
the Huffman decoder might be improved by implementing it
using a hardware description language like VHDL or Verilog.
Higher clock frequencies may also be achievable. The LZ77
decoder could be improved by partitioning the circular buffer
further and increasing the sliding window width. By reading
and writing 8 or 16 bytes per cycle, the LZ77 decoder could
copy longer length-distance pairs much faster. However, the
benefits would only be seen with highly compressed files that
actually have very large length-distance pairs, like “pic”.

A speculatively parallelized design could be created to boost
the speed of Huffman decoding using multiple decoders in
parallel. The speed-ups obtained this way would be statistical,
however, and might not be much in the average case. A parallel
arrangement of multiple LZ77 decoders is also feasible but
would be complex. The LZ77 decoders working in parallel
would need to be tightly coupled and aware of the data held
in other decoders. When a back-reference to another block is
encountered by one decoder, it would need to stop and signal
the decoder holding those bytes. That decoder would then need
to stop and fetch the needed bytes (assuming it had decoded up
to that point already) and send them back to the first decoder.
Further work will consider this approach.

V. CONCLUSION

We used high-level synthesis to create, from a C++ speci-
fication, a compact FPGA-based hardware accelerator for the
widely used Deflate data compression standard. Unlike most
reported Deflate accelerators, our design can decompress any
Deflate-compliant compressed file composed of statically or

TABLE III
CALGARY CORPUS BENCHMARK DECOMPRESSION RESULTS

Dynamic Compressed Files Static Compressed Files
Compressed Compressed Compression Decompression Throughput Compressed Compression Decompression Throughput
File Size (bytes) Ratio Time (µs) (MB/s) Size (bytes) Ratio Time (µs) (MB/s)
bib 35,222 3.16 471.948 74.63 40,931 2.72 292.220 140.07
book1 313,576 2.45 4197.576 74.70 384,953 2.00 2538.596 151.64
book2 206,658 2.96 2714.984 76.12 243,843 2.51 1643.424 148.37
geo 68,427 1.50 1040.708 65.75 80,949 1.26 668.172 121.15
news 144,794 2.60 2017.096 71.78 168,375 2.24 1266.768 132.92
obj1 10,311 2.09 164.356 62.74 11,138 1.93 109.392 101.82
obj2 81,499 3.03 1155.584 70.53 88,949 2.77 733.724 121.23
paper1 18,552 2.87 255.952 72.48 21,670 2.45 157.276 137.78
paper2 29,754 2.76 402.156 73.99 35,499 2.32 241.500 146.99
pic 56,459 9.09 896.580 62.97 67,529 7.60 667.552 101.16
progc 13,337 2.97 191.152 69.77 15,365 2.58 117.756 130.48
progl 16,249 4.41 224.060 72.52 18,603 3.85 138.320 134.49
progp 11,222 4.40 160.564 69.89 12,771 3.87 97.792 130.59
trans 19,039 4.92 262.912 72.42 21,424 4.37 165.472 129.47

dynamically encoded blocks. As shown in Table III, our design
decompresses the 14 dynamically encoded files from the Cal-
gary corpus with a maximum input throughput of 76.1 MB/s
(“book2”) and with average input (output) throughputs of 70.7
(246.4) MB/s. For statically encoded files the maximum input
throughput increases to 151.6 MB/s (“book1”) with average
input (output) throughputs of 130.6 (386.6) MB/s. The expertly
optimized, proprietary design from Xilinx outputs on average 3
bytes per clock cycle for an output throughput of 375 MB/s on
most Xilinx FPGAs [8]. Unfortunately the design details, the
design methodology, and the target FPGAs are not disclosed.
However, our data throughputs are comparable even though
we restricted ourselves to using high-level synthesis. Few
other decompressor designs are available for comparison. The
older design in [17] produced average output throughputs of
159 MB/s for statically compressed Calgary corpus files. Our
compact design (see Table II) would allow many decompressor
cores to be fit onto one FPGA. The mid-range UltraScale+
FPGA that we assumed could easily fit 32 decompressors
producing average output throughputs of 7.88 and 12.37 GB/s
for dynamically and statically encoded Calgary corpus files,
respectively. These projected numbers would likely be reduced
in practice because of data bandwidth limitations elsewhere in
the server. Future work will focus on investigating speculative
parallel decompressors, on hand-optimizing the designs of the
Huffman and LZ77 decoder modules, and on implementing a
Deflate compressor using high-level synthesis.

REFERENCES

[1] L. P. Deutsch. (1996) “DEFLATE compressed data
format specification version 1.3”. [Online]. Available:
https://www.w3.org/Graphics/PNG/RFC-1951

[2] D. Salomon, Data Compression: The Complete Reference, 4th ed.
Springer Science & Business Media, 2006.

[3] J.-l. Gailly and M. Adler. “zlib”. [Online]. Available:
https://zlib.net/zlib.html

[4] ——. “gzip”. [Online]. Available: https://www.gzip.org/
[5] M. Adler. “pigz”. [Online]. Available: https://zlib.net/pigz/
[6] J. Cong, Z. Fang, M. Huang, L. Wang, and D. Wu, “CPU-FPGA

Coscheduling for big data applications,” IEEE Design & Test, vol. 35,
no. 1, pp. 16–22, 2018.

[7] E. Sitaridi, R. Mueller, T. Kaldewey, G. Lohman, and K. A. Ross,
“Massively-parallel lossless data decompression,” in the 45th Int. Conf.
Parallel Processing (ICPP), 2016, pp. 242–247.

[8] Xilinx and CAST Inc. GUNZIP/ZLIB/Inflate Data Decompression
Core. [Online]. Available: https://www.xilinx.com/products/intellectual-
property/1-79drsh.html\#overview

[9] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Info. Theory, vol. 23, no. 3, pp. 337–343,
1977.

[10] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[11] H. Jang, C. Kim, and J. W. Lee, “Practical speculative parallelization
of variable-length decompression algorithms,” SIGPLAN Not., vol. 48,
no. 5, pp. 55–64, June 2013.

[12] Z. Wang, Y. Zhao, Y. Liu, Z. Chen, C. Lv, and Y. Li, “A speculative
parallel decompression algorithm on Apache Spark,” Journal of Super-
computing, vol. 73, no. 9, pp. 4082–4111, 2017.

[13] A. Martin, D. Jamsek, and K. Agarawal, “FPGA-based application ac-
celeration: Case study with gzip compression/decompression streaming
engine,” ICCAD Special Session C, vol. 7, p. 2013, 2013.

[14] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a chip: High
performance lossless data compression on FPGAs using OpenCL,” in
Proc. Int. Workshop on OpenCL 2013 & 2014, ser. IWOCL ’14. New
York, NY, USA: ACM, 2014, p. 4:9.

[15] J. Fowers, J. Y. Kim, D. Burger, and S. Hauck, “A scalable high-
bandwidth architecture for lossless compression on FPGAs,” in IEEE
23rd Annu. Int. Symp. Field-Programmable Custom Computing Ma-
chines (FCCM), 2015, pp. 52–59.

[16] W. Qiao, J. Du, Z. Fang, M. Lo, M.-C. F. Chang, and J. Cong,
“High-throughput lossless compression on tightly coupled CPU-FPGA
platforms,” in IEEE 26th Annu. Int. Symp. Field-Programmable Custom
Computing Machines (FCCM), 2018, pp. 37–44.

[17] J. Lazaro, J. Arias, A. Astarloa, U. Bidarte, and A. Zuloaga, “De-
compression dual core for SoPC applications in high speed FPGA,”
in IECON 2007 - 33rd Annu. Conf. IEEE Industrial Electronics Society,
2007, pp. 738–743.

[18] J. Ouyang, H. Luo, Z. Wang, J. Tian, C. Liu, and K. Sheng, “FPGA
implementation of GZIP compression and decompression for IDC
services,” in IEEE Int. Conf. Field-Programmable Technology (FPT).
IEEE, 2010, pp. 265–268.

[19] D. C. Zaretsky, G. Mittal, and P. Banerjee, “Streaming implementation
of the ZLIB decoder algorithm on an FPGA,” in IEEE Int. Symp. Circuits
and Systems, 2009, pp. 2329–2332.

[20] T. Bell, I. H. Witten, and J. G. Cleary, “Modeling for text compression,”
ACM Computing Surveys (CSUR), vol. 21, no. 4, pp. 557–591, 1989.

[21] Xilinx Inc. (2019) “Vivado High-Level Synthe-
sis”. [Online]. Available: https://www.xilinx.com/products/design-
tools/vivado/integration/esl-design.html

[22] ARM, “AMBA 4 AXI4-Stream Protocol,” 2010.

