
QUQ:Quadruplet UniformQuantization for Efficient Vision
Transformer Inference

Xinkuang Geng
1
, Siting Liu

2
, Leibo Liu

3
, Jie Han

4
, Honglan Jiang

1

1
Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China

2
School of Information Science and Technology, ShanghaiTech University, Shanghai, China

3
School of Integrated Circuits, Tsinghua University, Beijing, China

4
Department of Electrical and Computer Engineering, University of Alberta, Alberta, Canada

xinkuang@sjtu.edu.cn, liust@shanghaitech.edu.cn, liulb@tsinghua.edu.cn, jhan8@ualberta.ca, honglan@sjtu.edu.cn

ABSTRACT
While exhibiting superior performance in many tasks, vision transform-

ers (ViTs) face challenges in quantization. Some existing low-bit-width

quantization techniques cannot effectively cover the whole inference

process of ViTs, leading to an additional memory overhead (22.3%-

172.6%) compared with corresponding fully quantized models. To ad-

dress this issue, we propose quadruplet uniform quantization (QUQ) to

deal with data of various distributions in ViT. QUQ divides the entire

data range into at most four subranges that are uniformly quantized

with different scale factors. To determine the partition scheme and

quantization parameters, an efficient relaxation algorithm is proposed

accordingly. Moreover, dedicated encoding and decoding strategies are

devised to facilitate the design of an efficient accelerator. Experimental

results show that QUQ surpasses state-of-the-art quantization tech-

niques; it is the first viable scheme that can fully quantize ViTs to 6-bit

with acceptable accuracy. Compared with conventional uniform quanti-

zation, QUQ leads to not only a higher accuracy but also an accelerator

with lower area and power.

1 INTRODUCTION
With the development of deep learning techniques, neural networks

(NNs) of an increasingly large scale have been applied to a wide range

of domains. However, severe challenges arise when deploying these

models onto edge devices with limited storage and computational capac-

ity. Making on-device inference feasible for large models, quantization

effectively compresses the models and reduces resource requirements

without modifying the NN structure. Concerning data privacy and re-

training costs, post-training quantization (PTQ) is receiving increasing

attention.

Taking advantage of the attention mechanism [11], vision transform-

ers (ViTs) achieve superior performance in various image processing

tasks [3]. However, compared to convolutional neural networks (CNNs),

the diverse computing modes in ViT introduce data with significantly

different distribution characteristics, leading to great challenges in

quantization.

When quantizing a ViT, many existing works [2, 12] focus only on

the input of compute-intensive operations that can be implemented by

general matrix multiplication (GEMM). However, other activations that

are difficult to be uniformly quantized remain untouched, which results

in a significant resource overhead for inference, including extra floating-

point operations and increased memory. Additionally, some works

Permission to make digital or hard copies of all or part of this work for personal or classroom

use is granted without fee provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0601-1/24/06

https://doi.org/10.1145/3649329.3656516

adopt special encoding for specific data in ViT [4, 7, 12], which requires

diverse computing hardware; thus, they are infeasible for hardware

with a single type of arithmetic units or a common architecture. To

support these quantization strategies, additional hardware is necessary.

To guarantee an efficient hardware implementation, ViT is expected

to be fully quantized. Thus, a quantization technique that can be adapt-

able to diverse data distribution characteristics is needed. We observe

that data in ViT shows certain common traits: 1○Most elements cluster

around zero, and outliers exhibit a wide range; 2○ positive and nega-

tive data show different distribution characteristics. Thus, we propose

quadruplet uniform quantization (QUQ) to leverage these traits. Specifi-

cally, the entire data range is divided into at most four subranges based

on the proposed progressive relaxation algorithm. The data belong-

ing to each subrange are then uniformly quantized with a particular

scale factor. Also, for certain data, QUQ allows the merging of encod-

ing spaces between subranges with different signs, enabling dynamic

adjustments of different data distribution characteristics.

Our major contributions are summarized as follows.

• We characterize the data distribution in ViT and propose QUQ ac-

cordingly to enable full quantization.

• A progressive relaxation algorithm is introduced to determine the

quantization parameters of QUQ.

• The quadruplet uniform byte (QUB) is proposed to facilitate the

encoding and decoding of QUQ, which is then utilized for the design

of a QUQ-compatible accelerator.

• The performance of QUQ is evaluated in three ViT models for image

classification. Experimental results show that QUQ results in higher

accuracy than state-of-the-art quantization methods.

• Compared with the accelerator for uniform quantization, our design

demonstrates superior efficiency in area and power while maintain-

ing accuracy at a lower bit-width.

2 BACKGROUND
As shown in Figure 1, a typical ViT mainly consists of cascaded multi-

head self-attention (MSA) modules and multi-layer perceptron (MLP)

modules. In addition, layer normalization (LayerNorm) and residual

connection (element-wise addition) are commonly performed before

and after each module, respectively.

GELU

Linear

VQ K
Linear

MatMul

Softmax

MatMul

Linear 32-bit

8-bit

LayerNorm

MSA

LayerNorm

Add

MLP

Add

Linear

Figure 1: Data flow of a partially quantized ViT block.

https://doi.org/10.1145/3649329.3656516

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Xinkuang Geng et al.

In general, GEMM operations (Linear and MatMul) are quantized

(shown in the green components in Figure 1), ensuring that most com-

putations operate on low-bit-width integers [2, 12]. However, the inputs

of residual connection, LayerNorm, Softmax, and GELU are not effec-

tively quantized (shown in the red components); thus, high-bit-width

activations exist in the data flow. This necessitates high-precision com-

putation units and large intermediate storage for hardware deployment.

We simulate and count the required sizes of the on-chip memory for

the ViT blocks (shown in Figure 1) of different scales during inference.

In this simulation, we assume that only the weights required for the

current operations are loaded during inference, as it is impractical to

load the entiremodel into on-chipmemory in edge devices. Additionally,

considering the dynamic generation and usage of activations, it is

assumed that they are always stored on-chip to avoid extra accesses to

off-chip memory.

Figure 2 illustrates that, compared to the partially quantized ViT

models (PQ), the fully quantized models (FQ) exhibit much lower peak

memory demands. The predominance becomes more evident in small

models, which is of particular concern for edge devices. Moreover, in-

creasing the batch size, which enables an improved throughput, further

enhances the superiority of the full quantization method. This occurs

because a higher ratio of activations would occur when a larger batch

size is utilized.

ViT-T ViT-S ViT-B ViT-L0

2

4

6

Pe
ak

 M
em

or
y

(M
B)

0.70
1.43

3.98

6.31

0.36
1.00

3.12

5.16

Batch Size = 1

PQ FQ

ViT-T ViT-S ViT-B ViT-L0

20

40

60

Pe
ak

 M
em

or
y

(M
B)

11.15
22.29

44.58

59.45

4.09 8.17
16.34

22.47

Batch Size = 16

PQ FQ

Figure 2: Peak memory usage in ViT blocks.

However, a low quantization bit-width leads to a significant accuracy

drop in fully quantized ViT models. Therefore, to obtain the hardware

benefits from full quantization, a technique that can effectively quantize

data with various characteristics in ViT is urgently needed.

3 QUADRUPLET UNIFORM QUANTIZATION
3.1 Preliminaries
As the most commonly used data discretization method, symmetric

uniform quantization [9] can be expressed as

𝑥 = 𝑈𝑏 (𝑥 ;𝛥) = clip(⌊ 𝑥
𝛥
⌉;−2𝑏−1, 2𝑏−1 − 1), (1)

where𝑏 is the quantization bit-width,𝛥 represents the interval between

adjacent discrete points and is also known as the scale factor. ⌊·⌉ denotes
the nearest rounding operation and clip(·) constraints the quantized
data within the range of 𝑏-bit integer. A smaller 𝛥 results in a higher

quantization resolution but it causes more outliers to be clipped.

After quantization, a dot product 𝑦𝑘 =
∑
𝑥𝑖𝑤𝑖 that is commonly

performed in GEMM can be approximated as

𝑦𝑘 ≈
1

𝛥𝑦

∑︁
𝛥𝑥𝑥𝑖 𝛥𝑤�̂�𝑖 =

𝛥𝑥𝛥𝑤

𝛥𝑦

∑︁
𝑥𝑖�̂�𝑖 ≈

𝑀

2
𝑁

∑︁
𝑥𝑖�̂�𝑖 , (2)

which indicates that all multiplications occur exclusively between the

quantized values, as the scale factor𝛥𝑥 or𝛥𝑤 is shared by every element

in the corresponding matrix. In some integer-only implementations

[5, 6], the floating-point operations for the scale of an accumulation

result are often replaced with multiplication and shift of integers, i.e.,∑
𝑥𝑖�̂�𝑖 is multiplied by an integer𝑀 and then shifted right by 𝑁 bits.

3.2 Quantization Scheme
Figure 3 shows the distributions of the weights for the query matrix in

MSA, and the activations after Softmax, before element-wise addition,

and after GELU, respectively. As per Figure 3, two observations are

obtained. 1○ Data in ViT commonly follows a long-tailed distribution,

i.e., most elements concentrate around zero and outliers lie within a

broad range. In this case, determining an appropriate scale factor be-

comes challenging. A large 𝛥 results in sparse resolution around zero,

while a small 𝛥 clips too many outliers to small values. 2○ Some data

are not symmetrically distributed in the positive and negative parts,

e.g., the output of GELU shows significant differences between the

positive and negative parts, and the output of Softmax contains only

non-negative values. Consequently, some discrete points of symmetric

uniform quantization may not represent any elements, resulting in

a waste of encoding space. To sum up, symmetric uniform quantiza-

tion is not suitable for the quantization of ViT due to its various data

distributions.

0.6 0.4 0.2 0.0 0.2 0.4
101

103

105

Co
un

t

Overlap of F / C

(a) Query Weights

0.0 0.2 0.4 0.6 0.8 1.0
101
103
105

Co
un

t

(b) Post-Softmax Activations

30 20 10 0 10
101

103

105

Co
un

t

(c) Pre-Addition Activations

0 1 2 3 4 5 6 7
101

103

105

Co
un

t

(d) Post-GELU Activations

F F + C C +

Figure 3: The distributions ofweights and activations fromdiffer-
ent modules in ViT and the corresponding quantization points
(vertical lines) generated by QUQ.

To effectively discretize these diverse data, we propose quadruplet

uniform quantization (QUQ). For the cases where outliers appear on

both sides of zero, as shown in Figures 3 (a) and (c), QUQ first divides the

entire quantization range into the negative part 𝑅𝐶− and the positive

part 𝑅𝐶+ that are assigned coarse quantization intervals (scale factors),

ensuring that outliers are not clipped. Subsequently, considering that

most elements concentrate around zero, we further isolate two smaller

ranges, 𝑅𝐹 − and 𝑅𝐹 + , also with zero as the boundary and being assigned

fine intervals to reduce quantization error. Finally, uniform quantization

is applied to each subrange based on its scale factor. Therefore, QUQ

requires up to four different scale factors, namely 𝛥𝐹 − , 𝛥𝐹 + , 𝛥𝐶− , and

𝛥𝐶+ , as shown in Mode A in Figure 4. 𝑏-bit QUQ can be implemented

by four symmetric uniform quantizers as

𝑥 = 𝑄𝑏 (𝑥 ;𝛥𝐹 −,𝐹 + ,𝐶− ,𝐶+) =

𝑈𝑏−1 (𝑥 ;𝛥𝐶−) 𝑥 ∈ 𝑅𝐶− − 𝑅𝐹 −
𝑈𝑏−1 (𝑥 ;𝛥𝐹 −) 𝑥 ∈ 𝑅𝐹 −
𝑈𝑏−1 (𝑥 ;𝛥𝐹 +) 𝑥 ∈ 𝑅𝐹 +
𝑈𝑏−1 (𝑥 ;𝛥𝐶+) 𝑥 ∈ 𝑅𝐶+ − 𝑅𝐹 +

. (3)

Since each symmetric uniform quantizer𝑈𝑏−1 receives inputs from only

one side of zero, it produces up to 2
𝑏−2

different quantization results.

This means that we assign a quarter of the encoding space to each

QUQ:Quadruplet UniformQuantization for Efficient Vision Transformer Inference DAC ’24, June 23–27, 2024, San Francisco, CA, USA

RC+RC-

∆C-=4∆ ∆C+=8∆

∆F-=2∆ ∆F+=∆
F7-0=1x-001-000
C7-0=1x-010-011

sF-=21 sF+=20

sC-=22 sC+=23

0

∆F+=∆

0

F7-0=00-xxx-000
C7-0=00-xxx-010

sF-=2x sF+=20

sC-=2x sC+=22

∆F-=∆ ∆F+=2∆

∆C+=4∆

F7-0=1x-000-001
C7-0=00-xxx-010

sF-=20 sF+=21

sC-=2x sC+=22

0 0
∆C-=4∆

∆F+=∆
F7-0=00-xxx-000
C7-0=01-010-xxx

sF-=2x sF+=20

sC-=22 sC+=2x

∆C+=4∆

BA

DC RF+ (merged)

RF+ (merged)

RC+ (merged)

RC- (merged)RC+ (merged)

RF+RF-

RF- RF+

Figure 4: Quantization points of QUQ and the corresponding FC Registers in four different modes.

subrange, e.g., for 𝑥 ∈ 𝑅𝐹 + , 𝑥 is a (𝑏−2)-bit unsigned integer. As shown
in Figure 4, the overlap of different quantization points may occur

because a coarse range may include a fine range. Although this results

in potential encoding inefficiency, it is important that each subrange is

bounded by zero. This ensures that the encoding of each quantization

point is proportional to the original value, eliminating the need to store

and process additional zero points.

So far, a dot product cannot be implemented solely through integer

multiplications between quantized values as shown in (2), because the

scale factor of each element can take four different values depending

on the subrange it falls into. To reduce the hardware complexity, we

enforce the relationship among the four scale factors as

𝛥𝐹 −

𝑠𝐹 −
=
𝛥𝐹 +

𝑠𝐹 +
=
𝛥𝐶−

𝑠𝐶−
=
𝛥𝐶+

𝑠𝐶+
= 𝛥, 𝑠 = 2

0, 21, 22, · · · (4)

Consequently, when performing a dot product, the shared 𝛥 for the

same vector can be extracted. In this way, the multiplication occurs

only between quantized results scaled by integer powers of two that

can be simplified into a shift operation on the product as

𝑦𝑘 =
1

𝑠𝑦𝑘𝛥𝑦

∑︁
𝑠𝑥𝑖𝛥𝑥𝑥𝑖 𝑠𝑤𝑖

𝛥𝑤�̂�𝑖

=
1

𝑠𝑦𝑘

𝛥𝑥𝛥𝑤

𝛥𝑦

∑︁
𝑥𝑖�̂�𝑖 ≪ (log2 𝑠𝑥𝑖 + log2 𝑠𝑤𝑖

).
(5)

As discussed above, QUQ divides the entire range into four subranges,

with each subrange being assigned a quarter of the encoding space. To

better accommodate the diverse data distributions in ViT, QUQ enables

the merging of two subranges with the same granularity.For instance,

as shown in Figure 3 (d), as the negative part does not have outliers,

𝑅𝐶− becomes unnecessary, allowing the corresponding encoding space

to be utilized for finer quantization of 𝑅𝐶+ . Following this idea, the

quantization points of QUQ can differentiate into several modes, as

shown in Figure 4.

In Mode A, as the general form of QUQ, no merging occurs. In Mode

B, merging occurs at both fine and coarse quantization subranges. Mode

C is designed for the data without outliers on either side of zero, where

the encoding spaces for the coarse subranges are merged. In Mode D,

the fine and coarse subranges are merged separately, and their encoding

spaces are assigned to the different sides of zero. As a result, both the

positive and negative parts degenerate into uniform quantization.

Furthermore, setting 𝛥𝐶− = 𝛥𝐹 + in Mode D generates uniform quan-

tization points throughout the entire range. Thus, symmetric uniform

quantization can be considered as a special case of QUQ. This indicates

that, with appropriate quantization settings, the performance of QUQ

for any type of data will not be inferior to that of symmetric uniform

quantization.

3.3 Progressive Relaxation Algorithm
As the quantization target of QUQ contains multiple modes, a cus-

tomized strategy is needed to determine the quantization parameters

based on the calibration data and ensure that the scale factors satisfy

(4). To this end, we propose a progressive relaxation algorithm, which

is formulated based on the following two guiding principles.

1○ The ratio between coarse and fine quantization subranges should

be as large as possible, which reduces the encoding space wastage

caused by the overlap of subranges.

2○ The fine quantization subrange should cover as many elements as

possible, as it allows quantization with higher resolution.

First, we propose Algorithm 1 to relax two scale factors 𝛥1 and 𝛥2,

one of which will be modified to satisfy (4), based on the rounding

direction of 𝐿, which is the ratio of the two scale factors in the loga-

rithmic domain. This ensures that the larger scale factor is not reduced

and avoids clipping for the original data.

Algorithm 1 Relax Two Scale Factors.

Require: 𝛥1 > 0 and 𝛥2 > 0

Ensure: 𝛥1

𝛥2

= 2
𝑘 , 𝑘 = · · · , −2, −1, 0, 1, 2, · · ·

1 function Relax(𝛥1, 𝛥2)

2 𝐿 ← log
2

𝛥2

𝛥1

3 if ⌊𝐿⌉ > 𝐿 then 𝛥1, 𝛥2 ← 𝛥1, 2
⌊𝐿⌉𝛥1 ⊲ make 𝛥2 larger

4 else 𝛥1, 𝛥2 ← 2
−⌊𝐿⌉𝛥2, 𝛥2 ⊲ make 𝛥1 larger

5 return 𝛥1, 𝛥2

Based on Algorithm 1, the quantization parameters are determined

by Algorithm 2. In this step, the coarse scale factors are obtained by

using the maximum and minimum values of the calibration data as the

boundaries for coarse uniform quantization. The boundaries for the

fine subranges are set as the 𝑞-th quantile points, where the initial 𝑞

is a hyperparameter. We apply three rounds of Algorithm 1 to ensure

that these four scale factors satisfy (4), as shown in Lines 4 to 8.

Once the four scale factors are obtained under the assumption of

Mode A, further relaxing or mode switching is performed by using four

branches, as shown in Lines 10 to 17.

In the first branch, the ratios between the coarse and fine scale

factors for both positive and negative parts fall below 𝜆𝐴 , indicating

unacceptable wastage of encoding space. In this case, the current coarse-

fine range partition scheme is considered unsuitable under the quantile

point 𝑞; thus, Algorithm 2 is restarted with a smaller 𝑞, i.e., relaxing

Principle 2○ to satisfy Principle 1○. As the endpoint of the recursion,

𝑞𝐴 also limits the minimum proportion of the data covered by fine

subranges.

In the second and third branches, either the positive or negative

part processes an unsuitable coarse-fine range partition scheme and

has a sufficiently small boundary. In this case, uniform quantization

is performed for the corresponding part with the initial coarse scale

factor; the encoding space of the subrange is merged into that of the

coarse subrange in the other side of zero, enhancing its quantization

resolution. Note that, in the pseudo-code, setting the scale factor of

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Xinkuang Geng et al.

Algorithm 2 Progressive Relaxation Algorithm.

Input: Tensor x, Quantization Bit-Width 𝑏, Acceptable Ratio 𝜆𝐴 of
𝛥𝐶
𝛥𝐹

, Initial

Quantile 𝑞, Acceptable Quantile 𝑞𝐴

Output: Quantization Parameters 𝛥𝐹 − , 𝛥𝐹+ , 𝛥𝐶− , 𝛥𝐶+

1 function PRA(x, 𝑏, 𝜆𝐴, 𝑞, 𝑞𝐴)
2 ⊲ determine parameters for Mode A ⊳

3 x−, x+ ← −x[x < 0], x[x > 0]
4 𝛥𝐶− , 𝛥𝐶+ ← Relax(Max(x−)

2
𝑏−2 ,

Max(x+)
2
𝑏−2−1) ⊲ relaxation round 1

5 𝛥𝐹 − , 𝛥𝐹+ ← Relax(Quantile(x− ,𝑞)
2
𝑏−2 ,

Quantile(x+,𝑞)
2
𝑏−2−1) ⊲ relaxation round 2

6 𝑠𝐹 , 𝑠𝐶 ← 𝛥𝐹−
𝛥𝐹+

,
𝛥𝐶−
𝛥𝐶+

⊲ record the ratios before relaxing 𝐹 and𝐶

7 𝛥𝐹+ , 𝛥𝐶+ ← Relax(𝛥𝐹+ , 𝛥𝐶+) ⊲ relaxation round 3
8 𝛥𝐹 − , 𝛥𝐶− ← 𝑠𝐹𝛥𝐹+ , 𝑠𝐶𝛥𝐶+ ⊲ Mode A
9 ⊲ further relax or switch the mode ⊳

10 if 𝛥𝐶−
𝛥𝐹−

< 𝜆𝐴 and

𝛥𝐶+
𝛥𝐹+

< 𝜆𝐴 and 𝑞 > 𝑞𝐴 then

11 return PRA(x, 𝑏, 𝜆𝐴, 𝑞 − 0.01, 𝑞𝐴) ⊲ recursively relax

12 if 𝛥𝐶−
𝛥𝐹−

< 𝜆𝐴 and 𝛥𝐶− ≤ 𝛥𝐹+ then
13 𝛥𝐹 − , 𝛥𝐶− , 𝛥𝐶+ ← 𝛥𝐶− ,∅,

𝛥𝐶+
2

⊲ Mode C

14 if 𝛥𝐶+
𝛥𝐹+

< 𝜆𝐴 and 𝛥𝐶+ ≤ 𝛥𝐹 − then
15 𝛥𝐹+ , 𝛥𝐶− , 𝛥𝐶+ ← 𝛥𝐶+ ,

𝛥𝐶−
2

,∅ ⊲ Mode C

16 if 𝛥𝐶−
𝛥𝐹−

< 𝜆𝐴 or

𝛥𝐶+
𝛥𝐹+

< 𝜆𝐴 then
17 𝛥𝐹 − , 𝛥𝐹+ , 𝛥𝐶− , 𝛥𝐶+ ←

𝛥𝐶−
2

,∅,∅, 𝛥𝐶+
2

⊲ Mode D

18 return 𝛥𝐹 − , 𝛥𝐹+ , 𝛥𝐶− , 𝛥𝐶+

the subrange to ∅ indicates that the subrange is merged. These two

cases are mapped to Mode C, where the data on either side of zero lacks

significant long-tailed distribution characteristics.

In the last branch, as a fallback, uniform quantization is applied to

the positive and negative parts, respectively, aligning with Mode D.

Additionally, for a non-positive or non-negative tensor x̃, it is first
concatenated with −x̃ to form a new tensor. Subsequently, the progres-

sive relaxation algorithm is applied to obtain quantization parameters.

Finally, the two scale factors corresponding to the parts of −x̃ are set

to ∅. This implements Mode B.

Figure 3 shows the 4-bit quantization points generated for data in

different modules of ViT using the proposed algorithm. It can be seen

that the obtained quantization points adequately match the correspond-

ing data distributions. Additionally, we evaluate the quantization errors

of uniform quantization (BaseQ) and QUQ for the four types of data

in Figure 3, based on the mean squared error (MSE). The results for

various quantization bit-widths are presented in Table 1. It shows that

QUQ introduces smaller quantization errors than conventional uniform

quantization.

Table 1: MSEs of Different Quantization Methods.

Method Bit Query W Post-Softmax A Pre-Addition A Post-GELU A

BaseQ 4 2.14 × 10
−4

3.55 × 10
−5

3.19 × 10
−1

9.40 × 10
−3

QUQ 4 8.71 × 10
−5

2.34 × 10
−5

8.53 × 10
−2

1.78 × 10
−3

BaseQ 6 1.93 × 10
−5

8.80 × 10
−6

4.58 × 10
−2

2.97 × 10
−3

QUQ 6 5.59 × 10
−6

9.39 × 10
−7

5.31 × 10
−3

1.01 × 10
−4

BaseQ 8 1.23 × 10
−6

8.13 × 10
−7

4.11 × 10
−3

1.83 × 10
−4

QUQ 8 3.41 × 10
−7

6.13 × 10
−8

3.29 × 10
−4

6.00 × 10
−6

4 HARDWARE DESIGN
4.1 Encoding and Decoding Methods
To achieve efficient inference on hardware, we propose using quadruplet

uniform bytes (QUBs) to encode the QUQ results. As shown in Figure 5,

in addition to the base scale factor 𝛥, additional registers (denoted as

FC Registers) are required for each tensor to store the QUQ mode and

the ratios of the four scale factors to 𝛥.

f5-3 f2-0f7 f6

c5-3 c2-0c7 c6

E6-0,00

E6-0,11

E6-0,N

⋯

Use Reg C

0

Use Reg F

E6-0,21

⋯

Reg F

Reg C

Use Reg F

Use Reg C

nsh for C+

nsh for C-

is signed

is negetive part

Figure 5: (Left) FC Registers. (Right) QUBs.

Two 8-bit registers are utilized to encode the parameters for coarse

or fine subranges, denoted as FC Registers. For example, 𝑐7 indicates

whether the coarse subrange contains both positive and negative parts,

to support the modes where the encoding spaces of different subranges

are merged. If it contains only one part (𝑐7 = 0), then 𝑐6 indicates

whether the merged part is negative. 𝑐5−3 and 𝑐2−0 encode log
2
𝑠𝐶−

and log
2
𝑠𝐶+ , respectively, representing the number of shifted bits 𝑛𝑠ℎ

when performing the multiplication as shown in (5).

For each QUB, taking 8-bit QUQ as an example, 𝐸7−0 is utilized

to represent the encoded result, where 𝐸7 indicates whether the QUB

belongs to the fine or coarse subranges. If it belongs to coarse subranges

(𝐸7 = 0), 𝑐7 determines whether 𝐸6−0 represents a signed integer. 1○
If so, it means that 𝑅𝐶− and 𝑅𝐶+ are not merged, and the sign bit 𝐸6
determines which subrange the QUB falls into. 2○ If not, it means that

𝑅𝐶− and 𝑅𝐶+ are merged, and 𝑐6 indicates the reserved subrange, which

only contains values on one side of zero. Therefore, in this case, the

encoding for the sign bit is unnecessary, and 𝐸6−0 represents an 8-bit

two’s complement encoding without the sign bit. Based on the encoding

rules, a straightforward decoding scheme is devised as

𝑑 =

{1, 𝐸6−0} ≪ 𝑓5−3 if 𝐸7 (𝑓7 𝑓6 + 𝑓7 𝐸6)

{0, 𝐸6−0} ≪ 𝑓2−0 if 𝐸7 (𝑓7 𝑓6 + 𝑓7 𝐸6)

{1, 𝐸6−0} ≪ 𝑐5−3 if 𝐸7 (𝑐7 𝑐6 + 𝑐7 𝐸6)

{0, 𝐸6−0} ≪ 𝑐2−0 if 𝐸7 (𝑐7 𝑐6 + 𝑐7 𝐸6)

, (6)

where the sign extension and the shift count 𝑛𝑠ℎ are determined based

on the subrange that the QUB falls into. After decoding, the output 𝑑

can be represented by an 8-bit signed number 𝐷7−0 and a 3-bit 𝑛𝑠ℎ as

𝑑 = {𝑠𝑖𝑔𝑛, 𝐸6−0} ≪ 𝑛𝑠ℎ = 𝐷7−0 ≪ 𝑛𝑠ℎ . (7)

lt is noteworthy that the decoding result of an 8-bit unsigned QUB

corresponding to Mode B is also expressed as an 8-bit signed number

(with sign extension). This means that an 8-bit signed multiplier can

accommodate QUB in any mode. In contrast, unsigned 8-bit integers

cannot be processed by an 8-bit signed multiplier. Therefore, in uniform

quantization, a signed multiplier of a higher bit-width is necessary to

support unsigned integers.

4.2 Accelerator Design
We design a quadruplet uniform accelerator (QUA), as shown in Figure 6.

As per the representation methods and arithmetic rules of QUB, the

accelerator for QUQ can be supported by adding additional circuits to

existing designs, shown as the red components in Figure 6.

Decoding unit (DU). DU is devised based on (6) and (7). It takes

a QUB as the input and converts it into a signed integer 𝐷 and an

unsigned integer 𝑛𝑠ℎ .

Processing element (PE) array. Each PE performs a multiply-

accumulate operation and stores the intermediate results. Once the

final result is generated, it is output to the quantization unit (QU)

in turn. To support QUQ, the main change is that the inputs of the

multiply-accumulate operation are no longer individual integers but

QUQ:Quadruplet UniformQuantization for Efficient Vision Transformer Inference DAC ’24, June 23–27, 2024, San Francisco, CA, USA

Mux

MultiplierAdder

Adder

Acc Reg

Shifter

w Reg

x
R

eg
n s

h

nsh

Acc Reg

x
R

eg
n s

h

w Regnsh

PE

DU DU DU

QU QU QU

Sc
ra

tc
hp

ad

DU

Shifter

LayerNorm

GELU

Add

Softmax

FC Regs

DU

DU
Multiply by M

Shift by N

Shift by nsh,y

Round & Clip

LZDs / LODs

MuxComb

D7 nsh

f5-3 f2-0 c5-3 c2-0f7-6 c7-6 E7-6E6-0

D6-0

Mux

f5-3 f2-0 c5-3 c2-0

DU

QU

PE

QUA

QU

PE

PE

PE PE

PE

PEPE

PEDU

Acc In

Quant Out

... ...

...

...

...

......

...

...

Figure 6: (Left) Quadruplet Uniform Accelerator. (Middle) Processing Element. (Right) Decoding Unit and Quantization Unit.

rather 𝐷 and 𝑛𝑠ℎ generated by DUs. As per (5), the hardware overhead

of the arithmetic circuit is limited to a low-bit-width addition and a

shift operation.

Quantization unit (QU). A traditional QU for uniform quantization

scales the accumulated result followed by clipping and rounding oper-

ations [9]. Comparing (2) and (5), an additional right-shift operation

is necessary to perform the scaling by 𝑠𝑦𝑘 . Since the scale factor for

𝑦𝑘 is dynamically determined based on the dot product result and FC

Registers, it is necessary to compare it with the boundaries of the four

subranges. These operations can be optimized by detecting the number

of leading zeros or ones, as the boundary for comparison is either −2𝑏
or 2

𝑏 − 1, where 𝑏 ∈ N.
Special function unit (SFU). The inference process of a ViT re-

quires more than just GEMM. Special functions are also needed to

implement LayerNorm, element-wise addition, Softmax and GELU. We

introduce a QUB decoder and a shifter in the data loading path of SFUs

to convert the encoded QUB into an integer 𝑑 = 𝐷 ≪ 𝑛𝑠ℎ . Conse-

quently, we can streamline the SFUs to perform the same functions as

the accelerator designed for uniform quantization in [5, 6].

It can be seen that we only insert some conversion circuits with-

out altering the original data flow. QUA can be considered more as an

integration method rather than an architecture itself. Therefore, exist-

ing techniques for NN accelerators can also be employed to enhance

hardware efficiency.

5 RELATEDWORKS
PTQ4ViT [12] and APQ-ViT [2] focus on partially quantized ViT mod-

els, i.e., they do not consider input activations of some operations such

as residual connection and LayerNorm. Notably, PTQ4ViT uses twin

uniform quantization for specific activation values, which can be con-

sidered as a subset of QUQ.

BiScaled-FxP [4] records an index table to identify outliers for each

tensor and applies an additional scale factor to quantize them. While

BiScaled-FxP is effective in handling non-negative activations and sym-

metrically distributed weights in CNNs, it is unsatisfactory when deal-

ing with data exhibiting diverse distribution patterns in ViT. Further-

more, the index table introduces unpredictable overhead when there

are numerous outliers to be indexed.

FQ-ViT [7] enables a full quantization for ViT. However, it employs

row-wise quantization for weights and specific activations, leading

to distinct quantization parameters for different row vectors within a

matrix. Row-wise scheme incurs additional memory overhead and com-

plexity to the computation and quantization, and may not be supported

by existing architectures [9].

I-Bert [5] and I-ViT [6] investigate integer-only inference for trans-

formers. It is noteworthy that, although they avoid floating-point opera-

tions at all stages in Figure 1, 32-bit integer activations are still required

to maintain accuracy. Consequently, there is no actual reduction in

memory overhead.

6 EXPERIMENTS
6.1 Accuracy Evaluation
To evaluate the performance of the proposed QUQ, PTQ experiments

are conducted for image classification on ImageNet [1]. Three models

are considered, including ViT [3], DeiT [10], and Swin [8].

Experimental details. We randomly select 32 images from the

training dataset of ImageNet as the input for calibration to obtain quan-

tization parameters. After obtaining the four scale factors following

the steps of our proposed algorithm, we employ a grid search similar

to [12] to conduct a layer-wise Hessian-based optimization. For the

hyperparameters in Algorithm 2, in all experiments, the acceptable

ratio 𝑠𝐴 , initial quantile 𝑞, and acceptable quantile 𝑞𝐴 are set to 4, 0.99,

and 0.95, respectively.

For partial quantization, our method is compared with PTQ4ViT

[12] and APQ-ViT [2] under 6-bit quantization. For a fair comparison,

only operations that can be implemented by GEMM are quantized to

6-bit, while the remaining parts are retained in floating-point format.

Additionally, to further evaluate the effectiveness of QUQ, we substitute

QUQ with uniform quantization while maintaining the rest of the PTQ

process unchanged, denoted as BaseQ. Table 2 shows the Top-1 accuracy

of different quantization methods across various models.

Table 2: Accuracy Comparison of Partially Quantized ViTs.

Method W/A ViT-S ViT-L DeiT-S DeiT-B Swin-T Swin-S

Original 32/32 81.39 85.84 79.80 81.80 81.39 83.23

BaseQ 6/6 69.73 80.96 72.55 78.94 78.44 82.04

PTQ4ViT
∗

6/6 78.63 85.05 76.28 80.25 80.47 82.38

APQ-ViT
†

6/6 79.10 - 77.76 80.42 - 82.76

QUQ 6/6 79.65 85.57 78.73 81.60 80.95 83.06
∗
Some activations are not uniformly quantized.

†
Block-wise Hessian information is considered to optimize the parameters instead of the

layer-wise counterpart in others.

It can be seen that QUQ surpasses state-of-the-art quantization meth-

ods for partial quantization of ViTs. Compared to the full precision

models, 6-bit QUQ results in less than 0.3% accuracy drop for ViT-L,

DeiT-B, and Swin-S, yet a larger drop for models with the same archi-

tecture of a smaller scale (ViT-S, DeiT-S, and Swin-T).

For full quantization, our method is compared with FQ-ViT [7] and

BiScaled-FxP [4] under 6-bit and 8-bit quantization, as shown in Table 3.

Since BiScaled-FxP conducts experiments only on CNNs, the relevant

experimental results are reproduced based on the method described in

[4]. Note that the optimization techniques used in QUQ are also applied

to BiScaled-FxP.

Table 3 shows that QUQ exhibits a more pronounced advantage than

state-of-the-art works for fully quantized models. Although a more

significant accuracy drop can be observed in 6-bit quantization, QUQ is,

to the best of our knowledge, the first method that can produce usable

results in this case.

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Xinkuang Geng et al.

Table 3: Accuracy Comparison of Fully Quantized ViTs.

Method W/A ViT-S ViT-L DeiT-S DeiT-B Swin-T Swin-S

Original 32/32 81.39 85.84 79.80 81.80 81.39 83.23

BaseQ 6/6 0.10 0.10 0.09 0.17 0.10 00.41

BiScaled-FxP 6/6 0.30 5.94 0.64 7.89 0.16 00.39

FQ-ViT
†

6/6 9.92 6.86 60.14 68.84 36.25 70.17

QUQ 6/6 69.43 78.51 69.96 76.17 76.05 79.14

BaseQ 8/8 1.00 2.44 66.26 31.37 55.90 40.06

BiScaled-FxP 8/8 72.37 70.70 78.40 73.73 80.04 77.41

FQ-ViT
†

8/8 79.49 85.03 79.17 81.20 80.51 82.71

QUQ 8/8 80.49 85.73 79.40 81.40 81.24 83.25
†
Weights and certain activations are quantized row-wise.

To evaluate the impact of QUQ on the attention mechanism in fully

quantized ViT, we select some images from the validation dataset of

ImageNet and visualize the attention maps, as shown in Figure 7. For

the 8-bit case, the attention of uniform quantization in crucial regions

begins to decrease, while the attention of QUQ remains relatively con-

stant, compared to the original. For the 6-bit case, the attention of

uniform quantization is no longer activated, while QUQ still effectively

maintains attention in crucial regions.

Original 8-bit BaseQ 8-bit QUQ 6-bit BaseQ 6-bit QUQ

Figure 7: Attention map visualization for ViT-S.

6.2 Hardware Evaluation
We evaluate the hardware overhead of QUQ by comparing the proposed

QUA with the one for uniform quantization. The evaluation model is

implemented based on the architecture depicted in Figure 6. Since

QUQ can utilize the same SFUs and scratchpad memory as uniform

quantization, they are not taken into consideration. All designs are

synthesized under a consistent constraint, leveraging Synopsys Design

Compiler on a 28 nm CMOS technology, with power reported through

PrimeTime PX under a 500MHz clock. The evaluation results are shown

in Table 4.

Table 4: Area and Power of Various NN Accelerators.

Method W/A 16 × 16 PE Array 64 × 64 PE Array

Area(mm
2
) Power(mW) Area(mm

2
) Power(mW)

BaseQ 6/6 0.148 52.4 2.205 701.3

QUQ 6/6 0.153 57.2 2.247 767.5

BaseQ 8/8 0.175 60.6 2.702 796.7

QUQ 8/8 0.182 65.1 2.714 851.6

It shows that QUQ incurs marginal hardware overhead compared

to uniform quantization, exhibiting less than 5% and 10% overheads in

area and power, respectively, for the considered cases. Increasing the

size of the PE array reduces the relative area overhead of the accelerator.

This phenomenon can be attributed to the decreasing proportion of

additional circuits required to support DUs and QUs, compared to the

quadratic growth of PEs. Additionally, the increase in power mainly

stems from the additional registers required to pipeline 𝑛𝑠ℎ , which

further increases the clock load.

It is noteworthy that 6-bit QUQ achieves significantly higher accu-

racy than 8-bit BaseQ across all models (see Table 3), yet results in

12.6%-16.8% and 3.7%-5.6% reductions in area and power consumption,

respectively. Moreover, reducing the quantization bit-width further

decreases the memory overhead.

7 CONCLUSION
To support efficient quantization for data with various distribution

characteristics, we propose quadruplet uniform quantization (QUQ). A

progressive relaxation algorithm is devised for QUQ to select suitable

quantization parameters. Furthermore, we encode the quantization

results as quadruplet uniform bytes (QUBs) and design a quadruplet

uniform accelerator (QUA). The experimental results show that QUQ

results in higher accuracy than state-of-the-art PTQ methods for ViT,

especially for fully quantized models. While achieving higher accu-

racy, QUQ requires lower area, power, and memory than conventional

uniform quantization.

It is noteworthy that, besides ViTs, QUQ is inherently capable of

effectively quantizing the other NN models. Given its compatibility

with uniform quantization and ease of deployment, QUQ can serve as

a versatile extension for any NN accelerator, which offers an additional

option for software and hardware co-optimization.

8 ACKNOWLEDGEMENTS
This work was supported in part by the National Key Research and

Development Program of China under grant 2022YFB4500200 and in

part by the National Natural Science Foundation of China under grant

number 62374108.

REFERENCES
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition. Ieee, 248–255.

[2] Yifu Ding, Haotong Qin, Qinghua Yan, Zhenhua Chai, Junjie Liu, XiaolinWei, and Xian-

glong Liu. 2022. Towards Accurate Post-Training Quantization for Vision Transformer.

In Proceedings of the 30th ACM International Conference on Multimedia. 5380–5388.
[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers for image

recognition at scale. arXiv preprint arXiv:2010.11929 (2020).
[4] Shubham Jain, Swagath Venkataramani, Vijayalakshmi Srinivasan, Jungwook Choi,

Kailash Gopalakrishnan, and Leland Chang. 2019. BiScaled-DNN: Quantizing long-

tailed datastructures with two scale factors for deep neural networks. In Proceedings
of the 56th Annual Design Automation Conference 2019. 1–6.

[5] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael WMahoney, and Kurt Keutzer. 2021.

I-bert: Integer-only bert quantization. In International conference on machine learning.
PMLR, 5506–5518.

[6] Zhikai Li and Qingyi Gu. 2023. I-vit: Integer-only quantization for efficient vision

transformer inference. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 17065–17075.

[7] Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. 2021. Fq-vit:

Post-training quantization for fully quantized vision transformer. arXiv preprint
arXiv:2111.13824 (2021).

[8] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and

Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using shifted

windows. In Proceedings of the IEEE/CVF international conference on computer vision.
10012–10022.

[9] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart

Van Baalen, and Tijmen Blankevoort. 2021. A white paper on neural network quanti-

zation. arXiv preprint arXiv:2106.08295 (2021).
[10] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-

rolles, and Hervé Jégou. 2021. Training data-efficient image transformers & dis-

tillation through attention. In International conference on machine learning. PMLR,

10347–10357.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances
in neural information processing systems 30 (2017).

[12] Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. 2022. Ptq4vit:

Post-training quantization for vision transformers with twin uniform quantization. In

European Conference on Computer Vision. Springer, 191–207.

	Abstract
	1 Introduction
	2 Background
	3 Quadruplet Uniform Quantization
	3.1 Preliminaries
	3.2 Quantization Scheme
	3.3 Progressive Relaxation Algorithm

	4 Hardware Design
	4.1 Encoding and Decoding Methods
	4.2 Accelerator Design

	5 Related Works
	6 Experiments
	6.1 Accuracy Evaluation
	6.2 Hardware Evaluation

	7 Conclusion
	8 Acknowledgements
	References

