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Abstract—Compared to integer quantization, logarithmic quan-
tization aligns more effectively with the long-tailed distribution
of data in large language models (LLMs), resulting in lower
quantization errors. Moreover, the logarithmic number system
(LNS) employs a fixed-point adder to perform multiplication,
indicating a potential reduction in computational complexity
for LLM accelerators that require extensive multiply-accumulate
(MAC) operations. However, a key bottleneck is that LNS addition
requires complex nonlinear functions, which are typically approx-
imated using lookup tables (LUTs). This study aims to reduce
the hardware resources needed for LUTs in LNS addition while
maintaining high precision. Specifically, we investigate the specific
nature of addition operations within LLMs; the relationship
between the hardware parameters of the LUT and the computing
errors is then mathematically derived. Based on these insights,
we propose LUT refactoring to optimize the LUT for enhanced
efficiency in LNS addition. With 10.93% and 19.78% reductions
in area-delay product (ADP) and power-delay product (PDP),
respectively, LUT refactoring results in an accuracy improvement
of up to 33.5% in LLM benchmarks compared to the naive design.
When compared to integer quantization, our method achieves
higher accuracy while reducing area by 18.27% and power by
42.61%.

Index Terms—logarithmic number system, lookup table, large
language model, approximate computing, error analysis

I. INTRODUCTION

With the continuous development of machine learning, large
language models (LLMs) are applied to various tasks and
show excellent performance [1]–[3]. Whether in servers or
edge devices, optimizing the computation of large volumes
of data is of great significance. Quantization is an effective
technique for compressing and approximating LLMs by map-
ping data and computations from the floating-point domain
into a number system containing fewer discrete values. A
common quantization target is the integer [4]. In this case, the
multiply-accumulate (MAC) operations required in LLMs can
be efficiently implemented using integer MAC units. Since data
in LLMs often follow a long-tailed distribution, the logarithmic
number system (LNS) [5] effectively represents values around
zero and is thus a better choice [6]–[8].

In the LNS, data are represented by their logarithm values
(commonly base two). Thus, LNS multiplication is simplified
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into fixed-point addition, making it hardware-efficient. On the
contrary, the logarithmic addition involves complex nonlinear
functions, which are usually implemented using lookup tables
(LUTs) [9].

In [10], the original LUT in LNS addition is split for
fitting the nonlinear function into multiple smaller sub-LUTs.
By inserting registers, only one of the sub-LUTs is activated
for each operation, thereby reducing the power. However, it
requires sequential logic in a single adder, which not only incurs
additional area costs but also complicates the integration with
existing accelerator architectures.

[11] employs Mitchell’s algorithm [12] to approximate two
addends as fixed-point numbers, which are then converted back
to LNS format after addition and normalization. Compared
to the LUT-based LNS adder, [11] offers greater hardware
efficiency but introduces larger errors. [13] improves upon
[11] by employing compact piecewise linear approximation to
reduce the conversion error, though this inevitably results in
greater hardware overhead.

The accumulation of LNS values in [8] is achieved by first
converting the numbers in LNS format to their fixed-point rep-
resentations and then performing accumulation in fixed-point
format. Although this method is error-free in accumulation,
it entails higher hardware costs. [7], [14] also employed this
method to deploy logarithmic quantization for convolutional
neural networks. As a more precise alternative to avoid the
approximation error in LNS addition, this method presents
some drawbacks: 1. Additional logic is required to facilitate
the conversion between LNS and fixed-point formats. 2. High-
bit-width accumulation registers are necessary, which may
counteract the advantages of using LNS for representing a wide
dynamic range with a reduced bit width.

In prior works, optimizations for LNS addition have focused
solely on individual computations without taking into account
the characteristics of the applications. Notably, in LLMs,
addition operations exhibit a significant bias in their inputs.
Specifically, an adder is often used as an accumulator in MAC
operations, where different additions are not independent. As
the accumulation progresses, the error characteristics of the
addition would change from a statistical perspective. Thus,
conventional metrics for evaluating the performance of adders
may no longer be applicable and may lead to suboptimal



designs for LNS addition in LLMs.
This paper aims to design an efficient LNS adder for the

inference of quantized LLMs. Our major contributions are
summarized as follows.
• Based on the statistical characteristics of the addition oper-

ations in LLMs, we point out that the disparity between the
two addends is significant in most cases.

• The relationship between the parameters of the LUT in LNS
addition and the accumulation error is derived.

• According to the formula of the error, LUT refactoring is
proposed to optimize the LNS addition, which consists of
three techniques: precision enhancement, entry pruning, and
progressive precision reduction.

• The proposed LNS addition is evaluated on a MAC unit for
various LLM benchmarks. Our method enhances the average
accuracy of the LNS adder in LLAMA-2-7B by 19.2% while
also reducing hardware overhead.

II. PRELIMINARIES

A. LLM Quantization

To reduce memory usage and computational complexity,
quantization is commonly performed in LLMs by discretizing
the high-precision floating-point data into a lower bit width. The
quantization process can be regarded as approximating a real
number using its nearest alternative in a given set of discrete
values.

Data in LLMs often follow a long-tailed distribution. As
shown in Fig. 1, we visualize the data in the first transformer
block of LLAMA-2-7B [2]. It can be seen that a large number of
the data are concentrated around zero. As shown by the vertical
bars in Fig. 1, logarithmic quantization naturally satisfies this
characteristic, enabling a more precise representation of smaller
data. Prior works [6], [7] also demonstrate that LNS is more
appropriate in neural network quantization.
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Fig. 1: Quantization for data in LLMs. The blue curve rep-
resents the distribution of the weights in the first transformer
block in LLAMA-2-7B. The vertical bars represent the fre-
quency of the corresponding logarithmic quantization results.

B. Logarithmic Number System

In LNS, a real number X is represented in signed magnitude
form (xsign, x), where xsign is a 1-bit sign and x is the logarithm
of |X|. x is a fixed-point number consisting of an integer part
with bi bits and a fractional part with bf bits. We represent
the format of LNS as (1, bi, bf ), which indicates the bit width
of each part. The mapping relationship between a real number
and its LNS encoding can be expressed as X = (−1)xsign · 2x.
Typically, an additional zero flag is necessary because zero

does not have a logarithm result. However, in low-bit-width
quantization, each bit is precious, and a zero-flag bit would
waste half of the encoding space. Therefore, in the LNS
discussed in this paper, we identify X = 0 by setting x = 0.
This means that the element X = ±20 cannot be represented.
This does not affect the quantization resolution as scaling
is already included in the quantization process, and 2x can
naturally be replaced with 2x+ulp by changing the scaling factor,
where ulp = 2−bf . In this case, the representation range of LNS
is defined as

RLNS = [−22
bi−ulp,−2ulp] ∪ {0} ∪ [2ulp, 22

bi−ulp]. (1)

When performing LNS multiplication, the cases in which
either operand is zero are bypassed, and the absolute value of
the logarithm of the product can be obtained simply by fixed-
point addition as p = log2(2

x · 2y) = x + y. The sign of the
product can be calculated by using the XOR operation.

Similarly, the addition operation in LNS can be expressed as

s = log2(2
x ± 2y) = max(x, y) + log2(1± 2−|d|)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
κ±(|d|)

, (2)

where d = y − x. The choice of ± is determined by the sign
of the original inputs X and Y , and the sign of the sum is set
to be aligned with the operand with the larger absolute value.
The core of implementing LNS addition is to approximate the
nonlinear functions κ±, as shown in Fig. 2.
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Fig. 2: Nonlinear functions required in LNS addition.

In the naive implementation of LNS addition [9], two LUTs
are used to approximate κ+ and κ−, respectively. Fig. 3 shows
the circuit for the implementation of (2).

Compare & Swap

Fig. 3: LNS addition using LUTs to approximate κ+ and κ−.

III. ERROR ANALYSIS

A. Characteristics of the Additions in LLMs

In LLMs, the dominating computations can be characterized
as matrix multiplication. Each element in the output matrix
is produced by a vector inner product as Y =

∑
i AiBi. For



the commonly used systolic array architecture [15], each inner
product is continuously completed within a single processing
element, avoiding extra memory accesses required for storing
and loading the partial sums that have a high bit width. In this
case, the vector inner product can be considered as a continuous
MAC operation as

Yn+1 = Yn +AnBn = Yn +Xn. (3)

Since Xn is the product of the inputs An and Bn, it is indepen-
dent of the accumulation process. However, the other addend,
Yn, is strongly correlated with the accumulation process. We
consider that Yn is obtained by summing n independent and
identically distributed random variables (X1 to Xn), which has
a distribution with expected value µ and variance σ2. As per
the central limit theorem, when n is large, Yn approximately
follows the normal distribution, i.e.,

Yn ∼ N(nµ, nσ2). (4)

Based on the characteristics of the folded normal distribution
derived in [16], the expectation of |Yn| can be represented as

E(|Yn|) =
√

2n

π
σe−

n
2

µ2

σ2 + nµ erf(
√

n

2

µ

σ
), (5)

which increases continuously with the increase of n. Note that
Xn is the product of quantized inputs and also a bounded
number, so |Yn| has a greater expected value than |Xn| when
the number of the accumulation operations n is large enough.

When considering the accumulation process in LNS, d in
(2) can naturally be used as the relative magnitude between the
two addends as

d = y − x = log2 |Y | − log2 |X| = log2
|Y |
|X|

. (6)

Vectors extracted from OPT-125M [1] and LLAMA-2-7B [2]
are used to conduct a statistical analysis of the distributions
of d in vector inner products of different lengths. As can be
seen in Fig. 4, the proportion of the addition operations with
large d increases as the vector length grows, consistent with
the aforementioned theoretical analysis.
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Fig. 4: The distributions of the difference between the two
addends in the accumulation of the inner product vary for input
vectors of different lengths L. The right of each vertical line
accounts for 75% of the frequency.

Following the principle of prioritizing optimization for more
frequent scenarios, in LLMs, we believe that the LNS additions

with large d should be given priority consideration. Therefore,
in the subsequent error analysis process, we assume

d = y − x ≥ dinf , (7)

where dinf represents the lower bound of d we consider in
LNS addition. A reasonable choice for dinf would be based on
the 75% quantile from the statistical data, as indicated by the
vertical lines in Fig. 4. Consequently, when studying the inner
product of long vectors, dinf can be considered positive and
sufficiently large. Hence, (2) can be simplified as

s = y + κ(d). (8)

B. Formulation of the Error for LNS Addition

When LUTs are employed to implement κ in (8), the
error would inevitably arise. Ideally, the LUT can index the
corresponding κ(d) based on arbitrary d. However, since a LUT
has finite capacity, it can only accommodate discretized values
of d. Furthermore, each entry in the LUT has finite precision,
which poses a requirement for the discretization of the function
values of κ. Considering these two discretization processes, the
approximation of (8) using LUTs can be expressed as

s̃ = y + qb1(κ(qb2(d))), (9)

where qb1 rounds the function value κ to a fixed-point number
containing only b1 fractional bits and qb2 discretizes the index
d to a fixed-point number containing only b2 fractional bits.
As shown in Fig. 2, κ goes to zero when d is large enough.
Hence, the LUT only needs to handle d with finite magnitudes
that make the rounded function value qb1(κ) non-zero as

2 · |κ(qb2(d))| ≥ 2−b1 . (10)

The rounding function qb is expressed as

qb(x) = ⌊x · 2b⌉ · 2−b, (11)

where ⌊·⌉ denotes the nearest rounding operation, producing
an absolute error between 0 and 0.5. Since a continuous
distribution can be considered uniform in a small range (i.e.,
on the scale of 2−b for x), we can make an approximation
as |⌊t⌉ − t| ∼ U(0, 0.5), where U(a, b) denotes the uniform
distribution over interval from a to b with a mean of (a+b)/2.
Consequently, the expectation of the absolute rounding error
introduced by qb can be calculated as

E(|qb(x)− x|) = E(|⌊x · 2b⌉ − x · 2b|) · 2−b = 2−2−b. (12)

The absolute error between the approximate sum and the
exact one in LNS encoding can be represented as

ϵ = |s̃− s| = |qb1(κ(qb2(d)))− κ(d)|. (13)

Here we further scale ϵ by adding and subtracting the same
term κ(qb2(d)) as

ϵ = |qb1(κ(qb2(d)))− κ(d) + κ(qb2(d))− κ(qb2(d))|
≤ |qb1(κ(qb2(d)))− κ(qb2(d))|´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ϵ1

+ |κ(qb2(d))− κ(d)|
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ϵ2

, (14)

where ϵ1 describes the absolute rounding error of qb1 , and its
expectation can be calculated as

E(ϵ1) = 2−b1−2. (15)



ϵ2 is the absolute error incurred by using the rounded value
of d to obtain the function value of κ. Subsequently, some
approximations are applied to analyze the impact of qb2 on ϵ2.
Suppose ∆ is the rounding error of qb2 , i.e.,

∆ = qb2(d)− d. (16)

Then ϵ2 can be expressed as

ϵ2 = |κ(d+∆)− κ(d)|. (17)

Obviously, the rounding error ∆ must be much smaller than d
itself, so it is reasonable to retain only the first-order term in
the Taylor expansion of κ(d+∆), which can be approximated
as κ(d) + κ′(d) ·∆. Hence, ϵ2 can be approximated as

ϵ2 ≈ |κ′(d) ·∆| = |(1± 2−d)−1 − 1| · |∆|. (18)

Since we focus on the case where d is large, 2−d can be
considered sufficiently small. Given that (1 + x)α − 1 and
α · x are equivalent infinitesimals as x approaches 0, then by
substituting x = 2−d and α = −1, we can obtain

ϵ2 ≈ |2−d| · |∆|. (19)

According to the inequality in (7), ϵ2 can be scaled as

ϵ2 ≤ 2−dinf · |∆|. (20)

As per (16), |∆| indicates the absolute rounding error of d, so
its expectation is given by E(|∆|) = 2−b2−2. Therefore, the
expectation of ϵ2 satisfies

E(ϵ2) ≤ 2−dinf · 2−b2−2. (21)

Based on the above analysis, the upper bound of the expectation
of the absolute error ϵ in LNS addition is given by

E(ϵ) ≤ E(ϵ1) + E(ϵ2) ≤ 2−b1−2 + 2−dinf · 2−b2−2. (22)

Finally, by eliminating the common constant coefficients, we
obtain the upper bound of the expectation of the absolute error
as

UE(ϵ) ∝ 2−b1 + 2−dinf · 2−b2 . (23)

IV. LOOKUP TABLE REFACTORING

As per the analysis of the error in LNS addition, the error
is determined jointly by the precision of the LUT entry (b1)
and the granularity of the LUT index (b2). However, in prior
works [9], [10], when using the LNS adder for accumulation,
it is implicitly assumed that the current accumulation result is
entirely used to obtain the index d in the next cycle. That is
to say, in the naive implementation, the LUT is designed with
b1 = b2 by default. As shown in Fig. 5 (a), we visualize the
LUT with b1 = b2 = 2, where a column corresponds to an
entry. Since the entries in the LUT are all zero when d ≥ 3.50,
the LUT index d requires only 2 integer bits. Notably, only the
LUT used for κ+ is displayed as an example, i.e., the entries
in Fig. 5 (a) are obtained based on (2) with ± selected as +.

As observed in (23), the first term introduced by qb1 consti-
tutes the dominant portion of UE(E) given that 2−dinf is small.
Therefore, we propose to reduce this error by increasing b1,
i.e., the fractional bit width of each entry. We term this strategy
precision enhancement. Fig. 5 (b) shows the contents of the
LUT with b1 = 4 and b2 = 2. It can be seen that increasing
b1 not only enhances the precision of each entry in the LUT
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(a) Naive LUT. b1 = 2, b2 = 2.
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(b) LUT with precision enhancement. b1 = 4, b2 = 2.
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(c) LUT with entry pruning based on (b). b1 = 4, b2 = 1.
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(d) LUT with progressive precision reduction based on (c).

Fig. 5: Bit-level perspectives of the LUTs utilizing various
optimization techniques.

but also increases the number of required entries due to the
improved minimum resolution. In this case, the entries in the
LUT are all zero when d ≥ 7.75, the LUT index d requires 3
integer bits.

Additionally, it is noteworthy that the entries at higher LUT
indices have smaller values, leading to consecutive zeros, as
seen in the gray bits at the upper right corner in Fig. 5 (b). For
the LUTs implemented using combinational logic, these zero
bits consume minimal resources; hence, we ignore their impact
on hardware overhead in our analysis.

We further simplify the hardware by lowering b2 to reduce
the number of the entries stored in the LUT, which we refer
to as entry pruning. According to (23), lowering b2 increases
the error introduced by qb2 . However, given that this error is
scaled by the factor 2−dinf and the dominant error has already
been significantly mitigated by increasing b1, the overall error
is still reduced compared to the naive design. Fig. 5 (c) shows
the contents of the LUT with b1 = 4 and b2 = 1. The index
granularity changes from 2−2 to 2−1, meaning that half of the
entries are pruned in Fig. 5 (b).

By applying these two techniques, the hardware overhead of
the LUT first increases and then decreases, ultimately leading
to minimal overall variation; however, the error has indeed been
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Fig. 6: Zero-shot accuracy of 5 common sense reasoning tasks using 7 computing schemes on 2 LLMs.

reduced. Specifically, given that dinf > 1, increasing b1 by 2
and decreasing b2 by 1 result in a reduction of UE(ϵ), as defined
in (23). Moreover, the error reduction becomes pronounced
when dinf is large, and this condition can be easily satisfied
in continuous accumulation processes.

As shown in Fig. 4, in the accumulation of long sequences,
the frequency of addition operations with smaller d is signifi-
cantly lower than those with larger d. We argue that providing
high precision for these less frequent cases is inefficient.
Therefore, we propose to reduce the precision for the entries
with small indices (d is small) in the LUT to further lower
the hardware overhead, which is termed progressive precision
reduction. Specifically, the first half of the LUT entries retain
at most b1 − 1 fractional bits, the first quarter retains at most
b1 − 2 fractional bits, and so on. Following this strategy, the
gray bits at the bottom left of the LUT are truncated, as
shown in Fig. 5 (d). This technique further simplifies the LUTs
implemented based on combinational logic.

These three techniques all involve adjusting the entries of the
LUT in LNS addition, which we collectively refer to as LUT
refactoring. Precision enhancement reduces the primary error in
(23), although it increases the hardware overhead. In contrast,
entry pruning and progressive precision reduction relax the
secondary error in (23) and the minor error in the initial stage
of accumulation, respectively. However, they effectively reduce
the hardware overhead.

V. EXPERIMENTS

The LNS MAC unit employing the proposed LUT refactoring
technique to implement the adder (referred to as LA-LUT-R),
is modeled using Verilog and C++ to evaluate its hardware
costs and accuracy in the context of 8-bit quantized LLMs.

Three approximate LNS adders are considered for compar-
ison: LA-FN, based on Mitchell’s algorithm and fractional
normalization [11]; LA-CPLA, based on a compact piecewise
linear approximation [13]; LA-LUT-N, based on the naive
LUTs [5], [9]. For these LNS MAC units, the LNS formats
(1, bi, bf ) are all set to (1, 4, 3) for quantized inputs and (1, 6, 5)
for the intermediate accumulation results.

As references, two computing methods that introduce no
error in accumulation are also considered: Integer, based on
the 8 / 32 MAC designed for integer quantization; Kulisch,
based on the MAC unit performing accumulation by converting
LNS products to their corresponding fixed-point representations
[7], [8], [14], following the configurations in [8].

A. LLM Evaluation

To evaluate the accuracy of the considered MAC designs
in LLMs, we replace the matrix multiplications (after 8-bit
quantization) in all transformer blocks with the simulation
code consistent with the hardware behavior, and then test the
performance of the models with approximations on 5 common
sense reasoning tasks. Two LLMs with different architectures
and sizes are evaluated, including OPT-350M [1] and LLAMA-
2-7B [2]. Tensor-wise quantization is adopted to ensure the
efficiency of hardware deployment, i.e., all the elements within
activation or a weight tensor share the same quantization scale
factor.

Fig. 6 shows the accuracy of the two LLMs on 5 benchmarks
using the aforementioned MAC designs. For Integer, we
also tried to use SmoothQuant [17], which makes quantized
LLMs perform better in token-wise and channel-wise quanti-
zation. However, SmoothQuant does not improve the accuracy
for LLAMA-2-7B under 8-bit tensor-wise quantization.

For LA-FN and LA-CPLA, due to the high-level approx-
imation, their accuracy is unacceptable in most of the tasks.
Although LA-LUT-N exhibits low accuracy degradation com-
pared to the original model (FP-16) on OPT-350M, it results
in unacceptable performance in the larger model LLAMA-2-7B.
In contrast, our design demonstrates a significant advantage
over LA-LUT-N, offering an average accuracy improvement
of 21.0% in LLAMA-2-7B. The accuracy of LA-LUT-R is
comparable to that of the original model and Kulisch, which
can be considered to have no accumulation error. Furthermore,
our design outperforms Integer, benefiting from the reduced
quantization error from logarithmic quantization and the re-
duced addition error from LUT refactoring.



To further assess the effectiveness of LA-LUT-R, the lan-
guage modeling benchmark (perplexity) using the considered
MAC designs are evaluated for OPT-125M, OPT-350M [1],
LLAMA-2-7B [2] and MISTRAL-7B [3], as shown in Table I.

TABLE I: Comparison of the perplexity scores (lower is better)
on WikiText-2 using 7 computing schemes.

Method OPT-125M OPT-350M LLAMA-2-7B MISTRAL-7B

FP-16 27.7 22.0 5.5 5.3

Kulisch 28.0 22.1 5.6 5.4
Integer 30.5 22.4 10.0 84.3

LA-FN 71.6 111.0 1,326,346.3 7,324.0
LA-CPLA 35.0 46.5 77,180.8 114,803.5
LA-LUT-N 30.1 24.3 192.9 25.6
LA-LUT-R 28.7 22.7 6.2 5.9

It can be seen that LA-LUT-R achieves the lowest perplexity
compared to the other three MAC designs using approximate
LNS adders. Although Kulisch with accurate accumulation
has slightly lower perplexity, our design offers a greater advan-
tage in hardware overhead. Compared to Integer method,
our design exhibits comparable perplexity in small models
(with 125M and 350M parameters); when considering large
models (with 7B parameters), LA-LUT-R demonstrates a more
pronounced advantage.

B. Hardware Evaluation

All the considered MAC designs are synthesized using
Design Compiler based on a 28 nm CMOS technology to
obtain their area and delay results. The power is measured
using PrimeTime PX by the time-based analysis; the vectors
randomly extracted from LLAMA-2-7B are used as inputs.
All circuits are evaluated based on the same constraints with
a 500 MHz clock and a 0.9 V supply voltage. The integer
multiplier and adder are implemented directly by the IPs in De-
signWare to ensure a fair comparison. The circuit measurement
results of the considered MAC designs are shown Table II.

TABLE II: Circuit measurements of 6 MAC designs.

Method
Area Power Delay ADP PDP

µm2 µW ns µm2·ns fJ

Kulisch 386.2 363.1 1.524 588.5 553.3
Integer 355.2 327.4 1.161 412.5 380.2

LA-FN 220.9 168.0 1.145 252.9 192.4
LA-CPLA 311.2 262.0 1.568 488.1 410.9
LA-LUT-N 303.0 217.8 1.395 422.7 303.8
LA-LUT-R 290.3 187.9 1.297 376.5 243.7

It can be seen that the proposed LA-LUT-R shows much
lower hardware overhead than the two accurate MAC designs,
Integer and Kulisch. Although LA-FN consistently ex-
hibits the lowest hardware overhead, it yields the worst perfor-
mance in our accuracy evaluation experiments, making it un-
acceptable for practical applications. Compared to LA-LUT-N,
our design achieves reductions of 10.93% in area-delay product
(ADP) and 19.78% in power-delay product (PDP), while de-
livering average accuracy improvements of 1.3% and 21.0% in

OPT-350M and LLAMA-2-7B, respectively. Specifically, com-
pared to the commonly used Integer, which is designed for
integer quantization, LA-LUT-R achieves an average accuracy
improvement of 2.6% and a perplexity reduction of 4.8 in
LLAMA-2-7B, while reducing area by 18.27% and power by
42.61%.

C. Ablation Study
The proposed LNS adder is enhanced by using three tech-

niques, precision enhancement, entry pruning, and progressive
precision reduction. To further analyze the impact of these tech-
niques on the performance of LNS addition, ablation studies
are conducted on each of the three technologies. Specifically,
starting from a naive LNS adder, we incrementally add each
technique and evaluate the perplexity of LLAMA-2-7B and the
hardware cost of the MAC unit. The experimental results are
presented in Table III.

TABLE III: The perplexity scores (PPL ) and circuit measure-
ments of the MAC units with the LNS adder applied different
techniques. PE, EP, and PPR represent precision enhancement,
entry pruning, and progressive precision reduction, respectively.

PE EP PPR PPL
Area Power Delay

µm2 µW ns

× × × 192.87 303.0 217.8 1.395
√ × × 5.97 429.4 299.9 1.412
√ √ × 6.00 347.8 228.1 1.345
√ √ √

6.19 290.3 187.9 1.297

It can be observed that precision enhancement significantly
decreases the perplexity, resulting in a very close performance
to that of the original model. However, this improvement comes
at the cost of increased hardware, due to the higher entry
precision and increased number of entries in the LUTs. After
applying entry pruning, the perplexity is increased by only 0.03,
because only the secondary error in (23) is affected. At the
same time, ADP and PDP are reduced by 22.89% and 27.58%,
respectively, due to the pruning of the half LUT entries. Al-
though progressive precision reduction leads to a slight increase
(less than 0.2) in perplexity, it effectively simplifies the LUT,
resulting in reductions of 19.48% and 20.54% in ADP and PDP,
respectively.

VI. CONCLUSION

In this paper, we initially analyze the characteristics of
the addition operations in LLMs. Consequently, based on the
observation that the difference between the two addends is
large in most cases, we mathematically derive the relationship
between the hardware parameters and the error of LUT-based
LNS addition. To simultaneously optimize the hardware and
the accuracy, we propose LUT refactoring, involving three
optimization techniques, i.e., precision enhancement, entry
pruning, and progressive precision reduction. The experimental
results show that, compared to existing approximate logarithmic
adders, our design demonstrates significantly better perfor-
mance in quantized LLMs. Compared to integer quantization,
Applying LUT refactoring to the LUT-based LNS addition
yields an improved average accuracy of 2.6% and a reduced
perplexity of 4.8 in LLAMA-2-7B, with significant reductions
in area (18.27%) and power (42.61%).
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