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Achieving Flexible Global Reconfiguration in
NoCs using Reconfigurable Rings
Liang Wang, Leibo Liu, Jie Han, Xiaohang Wang, Shouyi Yin, Shaojun Wei

Abstract—The communication behaviors in NoCs of chip-multiprocessors exhibit great spatial and temporal variations, which introduce
significant challenges for the reconfiguration in NoCs. Existing reconfigurable NoCs are still far from ideal reconfiguration scenarios, in
which globally reconfigurable interconnects can be immediately reconfigured to provide bandwidths on demand for varying traffic flows.
In this paper, we propose a hybrid NoC architecture that globally reconfigures the ring-based interconnect to adapt to the varying traffic
flows with a high flexibility. The ring-based interconnect has the following advantages. First, it includes horizontal rings and vertical
rings, which can be dynamically combined or split to provide low-latency channels for heavy traffic flows. Second, each combined ring
connects a number of nodes, thereby improving both the utilization of each ring and the probability to reuse previous reconfigurable
interconnects. Finally, the reconfiguration algorithm has a linear-time complexity and can be implemented using a low-overhead
hardware design, making it possible to achieve a fast reconfiguration in NoCs. The experimental results show that compared to recent
reconfigurable NoCs, the proposed NoC architecture can greatly improve the saturation throughput for synthetic traffic patterns, and
reduce the packet latency over 40 percent for realistic benchmarks without incurring significant area and power overhead.

Index Terms—reconfiguration, NoCs, rings, traffic flows
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1 INTRODUCTION

With an increasing number of cores integrated in chips,
on-chip communication is becoming critically important to
the system performance [1], [2]. Network-on-chip (NoC) is
a widely used on-chip communication subsystem, provid-
ing higher bandwidth and lower latency than bus-based
communication [3]. However, traditional router-based NoCs
are statically provisioned without knowledge of application
demands, leading to both poor communication performance
and low utilization. In addition, the complex pipelines
(e.g. 2∼5 cycles per hop) of routers also limit the scal-
ability of NoCs. Therefore, future NoCs are expected to
be dynamically reconfigured according to communication
demands [4].

The time-varying traffic behaviors in chip-
multiprocessors (CMPs) bring new challenges for design
of reconfigurable NoCs. Modern CMPs adopt NoCs as
communication fabrics for cache-coherent messages (e.g.,
requests, invalidations, response data, etc.) in the shared
last-level cache (LLC) [1]. Without sophisticated traffic
characterization techniques [5], [6], the traffic behaviors
in CMPs exhibit less-predictable pattern to the NoC.
In other words, the traffic pattern is almost impossible
to be predicted in a fine time granularity, although the
traffic distribution can possibly be characterized on a
long-term scale using machine learning algorithms and
the distribution varies from phase to phase [5], [7], [8].
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The less-predictable and quickly varying traffic patterns
necessitate flexible reconfigurable NoC architectures that
can provide fast and fine-grained adaptivity [9].

Prior reconfigurable NoCs are either locally reconfigured
or globally reconfigured. Local reconfiguration approaches
perform the reconfiguration on each router from microarchi-
tecture level [2], [10], [11]. Router designs such as EVC [10]
and SMART [2] set up multi-hop bypassing paths with
cycle-by-cycle reconfiguration. However, they are agnos-
tic of global traffic information, thereby achieving limited
performance improvement. Global reconfiguration reconfig-
ures the network topology by analyzing traffic behaviors,
and allocates additional channels to heavy traffic flows [6],
[12]–[14]. These approaches either assume constant traffic
flows within each application [12], [13] or capture long-term
communication distribution of chip-multiprocessors using
machine learning algorithms [6], [14]. Because most of the
reconfigurable architectures rely on software-based sophis-
ticated algorithms for reconfiguration, they are not flexi-
ble enough to provide fast global reconfiguration for fine-
grained adaptivity. In other words, they are not applicable
for fine time granularity, in which the time-varying traffic
patterns are less-predictable for reconfiguration. Therefore,
both local reconfigurable NoCs and global reconfigurable
NoCs are still far from ideal reconfiguration scenarios, in
which globally reconfigurable interconnects can be flexibly
reconfigured to provide bandwidths on demand for varying
traffic flows in the network.

This paper presents a novel ring-based reconfigurable
NoC that augments a router-based mesh network with a
set of reconfigurable rings. A reconfiguration mechanism
is proposed that dynamically combines or splits the rings
such that any two nodes with high communication de-
mands can be allocated a low-latency channel. Compared
to traditionally augmented point-to-point channels, because
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each reconfigured ring connects a number of nodes, both
the utilization of each ring and the probability to reuse
previous interconnects are improved. Thus, it has a higher
reconfiguration efficiency than point-to-point interconnects.
Due to the simplicity of the proposed architecture, the recon-
figuration algorithm has a linear-time complexity and is im-
plemented using a low-overhead allocator in a distributed
manner. For a 8×8 NoC, the reconfiguration algorithm takes
at most 32 cycles. Compared to a router-based mesh NoC,
the reconfigurable NoC greatly improves both the saturation
throughput and zero-load latency with an additional 6.5%
area overhead.

The novel contributions of this paper include:
(1) A reconfigurable NoC architecture is proposed that

augments a router-based mesh network with a set of recon-
figurable rings. The NoC architecture can be dynamically
reconfigured to adapt traffic variation.

(2) A novel ring-based reconfigurable architecture is
designed to utilize a set of horizontal rings and vertical rings
as the interconnect, which can be dynamically combined or
split according to current traffic demands. Since the recon-
figuration architecture can both allocate additional band-
width for heavy traffic flows on demand and improve the
probability to reuse previous interconnects, the efficiency of
the reconfiguration is maximized.

(3) A linear-time complexity reconfiguration algorithm
and a low-overhead hardware implementation for the re-
configuration algorithm are proposed. The fast and flexible
reconfiguration makes fine-time-granularity reconfiguration
possible.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the related work. Section 3
discusses the characterization of realistic traffic. Section 4
presents the proposed hybrid architecture. Section 5 de-
scribes the reconfiguration algorithms and implementations.
Section 6 presents the integration with the router-based
network and deadlock avoidance. Section 7 analyzes the
experimental results, and Section 8 concludes this paper.

2 RELATED WORK

2.1 Local Reconfiguration

Previous studies have explored various microarchitecture
approaches for reconfigurable NoCs. Circuit-switched fab-
rics have been proposed in [15], [16]. Compared to packet-
switched networks, circuit-switched networks can greatly
lower the packet latency. Hybrid-switched NoCs that inter-
mingle packet-switched flits with circuit-switched flits are
proposed in [11], [17]. However, circuit-switched reconfig-
uration techniques face high setup and tear-down latency,
thereby they are more effective for those high-predictable
traffic. In [18], Hesse et al. propose to replace traditional
unidirectional channels with narrow bidirectional channels,
which can dynamically change direction according to cur-
rent bandwidth demands. Other researchers have proposed
microarchitecture techniques to virtually bypass the router
pipelines [2], [10]. In [2], the researchers present a single-
cycle multi-hop asynchronous repeated traversal (SMART)
flow-control mechanism that can reconfigure the multi-hop
paths according to current requests from packets. Once the

multi-hop path is set up, the packets can traverse the multi-
hop path within one cycle. Although the zero-load latency
can be effectively reduced, the length of the bypassing paths
is usually limited at high traffic load because the bypassing
paths are locally reconfigured without global knowledge of
traffic. Runahead [19] is a multi-noc design that augments a
buffered NoC with a bufferless NoC. The bufferless NoC is
intrinsically locally reconfigurable and achieves a very low
zero-load latency.

2.2 Global Reconfiguration
To insert global channels to bypass the intermediate routers,
small-world NoCs have been proposed to insert long-range
wired or wireless links to provide low-latency communica-
tion channels for distant nodes in mesh NoCs [20], [21]. The
long-range insertion is formulated as optimization problems
to minimize packet latency. However, those long-range links
are statically inserted.

To dynamically adapt to the traffic variations, global
reconfiguration approaches have been extensively studied.
In [12], Modarressi et al. propose an application-aware NoC
that achieves the reconfiguration by inserting several simple
switches. A branch and bound algorithm is developed to
choose bypassing paths for heavy traffic flows with the aim
to reduce the communication latency. In [13], Xue et al. pro-
pose a mathematical framework for reconfiguration of NoC.
To solve the problem, an optimization problem is formu-
lated based on reconfiguration using circuit-switching, and
a greedy algorithm is proposed to solve this problem. In [6],
[14], the researchers discover that the communications are
dominated by some traffic flows. By analyzing the commu-
nication behaviors using machine learning algorithms, the
researchers propose to augment the mesh network with dif-
ferent reconfigurable interconnects, which provide globally
reconfigurable channels for a few dominant traffic flows.
Three reconfiguration algorithms named Flow-Greedy (FG),
No-Split (NS) and Latency-Optimized (LO) in [6] are pre-
sented. Although No-Split (NS) has the lowest complexity,
it achieves the poorest reconfiguration efficiency. The other
two reconfiguration algorithms have much higher complex-
ities, thereby they are not feasible for fine-time-granularity
reconfiguration. Moreover, the augmented channels in [6]
only connect nodes in the same row or the same column.
Therefore, it cannot provide global channels for any source-
destination pairs on demand. The reconfiguration algorithm
in [14] is more complicated, which first sort all traffic flows
and then allocate the channels according to a search tree-
based heuristic. It is reported that the running time of the
reconfiguration algorithm in a 8 × 8 NoC is in the order of
105 cycles. Moreover, the reconfigured channels are point-
to-point, i.e., they are only dedicated for a few pairs of
nodes, achieving limited reconfiguration efficiency for less-
predictable traffic patterns.

2.3 Ring Interconnects
Ring interconnects [22]–[25] that only adopt rings to connect
all processing nodes suffer from scalability issues. In [22],
[25], researchers have proposed hierarchical ring NoCs, in
which locals rings are connected by global rings. However,
the switching between the local rings and the global rings
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limits the scalability. In [23], [24], researchers have proposed
multiple overlapped rings. The basic idea is to select a set
of smartly placed loops such that any pairs of cores are
connected via at least one isolated ring, and each packet
can reach the destination without transferring from one
ring to another. Although the multi-ring NoCs show better
performance and scalability than hierarchical rings [22],
there would be a large number of overlapped rings for a
large network. The maximum size of the network is also
limited by the overlap cap (which is 16 in [24]). Therefore,
the multi-ring NoCs still have limited scalability.

The proposed hybrid NoC architecture in this paper
is based on two observations. First, since a ring interface
has a much lower complexity than a router, it is easier to
reconfigure the ring-based interconnects to accommodate
to traffic variations. Second, ring-based interconnects can
provide low latency (e.g., 1 cycle per hop) and they have
very low area and power overhead. However, the disadvan-
tages of ring-based architectures are that (1) it still has poor
scalability if only rings are used and that (2) it has lower
bandwidth than the router-based NoCs with many virtual
channels. Therefore, a hybrid NoC that combines rings and
a router-based mesh network is presented.

3 CHARACTERIZATION OF REALISTIC TRAFFIC

To design a reconfigurable interconnect for CMPs, we first
conduct a case study to analyze the communication behav-
iors of realistic benchmarks blackscholes and bodytrack in a
4 × 4 CMP. The communication traces are extracted from
gem5 using simdev set by simulating the Region-of-Interest
(ROI) for 100M cycles (1M=1 million). Figure 1 presents
scatter plots for the distributions of dominant traffic flows
for benchmarks blackscholes and bodytrack. The most dom-
inant traffic flow within each time interval is extracted.
The time intervals are set 1000 cycles and 100000 cycles
respectively. There are 256 source-destination pairs, i.e., 256
traffic flows in total. In the figure, the numbers for the
traffic flow represent source-destination pairs. For example,
the numbers 16-31 represent all traffic flows originate from
node 1, and the numbers 240-255 represent all traffic follows
originate from node 15.

Figure 1 shows that the communication behaviors ex-
hibit great spatial and temporal variations. From Figure 1(a)
and Figure 1(c), it can be seen that the dominant traffic flow
varies significantly when the time interval is 1000 cycles. In
contrast, when the time interval is 100000 cycles, Figure 1(b)
and Figure 1(d) show that the dominant flows are relatively
stable, which also proves that the communication behaviors
can be characterized on a long-term scale. However, the
fine-grained traffic variation cannot be captured. In a finer
time granularity, the traffic behaviors show less-predictable,
bringing significant challenges for the design of reconfig-
urable NoCs.

Motivated by the less-predictable communication behav-
iors, we design a globally reconfigurable NoC, which can
achieve quick reconfiguration for the less-predictable traffic
patterns. Our design methodology is orthogonal to those
methods with complicated traffic prediction techniques. In-
stead, we try to design a reconfigurable architecture that is
more appropriate for the less-predictable traffic.

(a) blackscholes, 1000 cycles each
interval

(b) blackscholes, 100000 cycles
each interval

(c) bodytrack, 1000 cycles each in-
terval

(d) bodytrack, 100000 cycles each
interval

Fig. 1. Temporal distributions of dominant traffic flows with each time
interval for benchmarks blackscholes and bodytrack. The time intervals
are chosen 1000 and 100000 cycles respectively.
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Fig. 2. The ring network includes two set of rings: horizontal rings and
vertical rings.

4 RING-BASED RECONFIGURABLE ARCHITEC-
TURE

4.1 Basic Architecture of the Rings

In this paper, a hybrid network-on-chip is proposed, which
augments a router-based mesh network with a ring-based
network. The architecture of the ring-based network is
presented in Figure 2. The ring-based network, integrated
with a N × N router-based mesh network, is composed
of two sets of rings, which include horizontal rings and
vertical rings. The nodes located at the 2i-th and the
(2i + 1)-th columns (or rows) are connected by a single
ring (i ∈ [0, N/2 − 1], i ∈ Z). Therefore, for 6 × 6 nodes
as the example in Figure 2, there are 3 horizontal rings and
3 vertical rings. Each node can use either the vertical ring
or the horizontal ring to transmit packets. Because there is
no buffer for packet stalling in the rings, the ring-based
network provides single-cycle per hop transmission due
to the simplicity of the ring interface. The nodes can still
use the router-based mesh network for packet transmission.
The integration with router-based network is detailed in
Section 6. It is assumed that only NoCs with even and equal
numbers of rows and columns are supported.
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(a) The rings are com-
bined by reconfiguration.
Each horizontal ring and
each vertical ring are ex-
clusively combined.

1st point 2nd point

3rd point
 

(b) An example of the
reconfiguration points
that determine how the
rings are combined.

Fig. 3. Reconfiguration of the rings

For a globally reconfigurable NoC, an important feature
is that any two nodes can be provided with additional low-
latency channels when needed. To support this feature, the
proposed NoC can perform reconfiguration by combining
or splitting the rings according to current communication
demands of the on-chip traffic. As shown in Figure 3(a),
when two rings are combined into a single ring, the nodes
on the combined ring can directly communicate through
the low-latency ring. If there is no available ring between
two nodes, the packets can still be transmitted through
the router-based NoC. To determine how the rings are
combined, reconfiguration points are defined as shown in
Figure 3(b). In the example, the second point indicates that
the first vertical ring and the second horizontal ring are
combined into a single ring. Through reconfiguration, the
reconfiguration points can dynamically change according
to the runtime communication requirements. For each set
of reconfiguration points, each horizontal ring and each
vertical ring are exclusively combined. This proposed ring-
based architecture mainly has the following 3 advantages,
• The ring-based reconfigurable network can accom-

modate to the communication demands because any two
processing nodes with heavy traffic flows can be possibly
allocated a combined ring by determining a specific set of
reconfiguration points.
• The allocation of the reconfiguration points is similar

as an allocation problem in a network switch (e.g., switch
allocation in a router), which results in a low-overhead
hardware-based design for the reconfiguration algorithm as
presented in Section 5. The low-complexity reconfiguration
algorithm makes it possible to achieve flexible reconfigura-
tions.
• In contrast to point-to-point channels, each combined

ring connects a number of nodes (e.g. 20 nodes in a 6×6 net-
work) instead of a pair, improving the probability to reuse
previous reconfigurable interconnects, which is detailed in
Section 4.2.

4.2 Reconfiguration Efficiency Analysis of the Pro-
posed Architecture

To analyze the reconfiguration efficiency, we first adopt 3
feature vectors named Per-node Flow (PFlow), Row-column
Flow (RCFlow) and Double Row-column Flow (DRCFlow),
which are presented in Table 1. PFlow [5], widely exploited

TABLE 1
Descriptions of the feature vectors

Feature vector # of features Description
PFlow N2 ×N2 Packet injected between each

source-destination pair
RCFlow N ×N Packet injected between rows

and columns of the network
DRCFlow N

2
× N

2
Packet injected between the 2i-
th, (2i + 1)-th rows and the 2j-
th, (2j + 1)-th columns

by the point-to-point reconfigured channels in existing re-
configuration mechanisms, denotes the distribution of the
flows between each source-destination pair. RCFlow [5],
aggregating nodes into rows and columns, denotes distribu-
tion of the flows between rows and columns of the network.
DRCFlow, extracted based on the proposed ring architec-
ture, denotes the distribution of the flows that originate
from the 2i-th and the (2i + 1)-th rows to the 2j-th and
the (2j + 1)-th columns.

Generally, a reconfiguration mechanism collects traffic
flow information from previous time intervals and reconfig-
ures the network in the following interval accordingly. If the
reconfigured interconnect in the previous time interval can
be reused in the following time interval, the performance
can be effectively improved. The proposed reconfigurable
architecture, corresponding to DRCFlow, has a higher prob-
ability to reuse reconfigurable interconnects in the previous
time interval because there are fewer possible features of
DRCFlow. More specifically, if the destination of a traffic
flow varies randomly from interval to interval, the source
node has a probability of 2/N to reuse previously recon-
figured combined rings as there are N/2 rings to combine.
In contrast, for point-to-point interconnects, the source node
only has a probability of 1/N2 to reuse previous intercon-
nects. Since the proposed reconfigurable architecture has
more chances to reuse the previous interconnects, it reduces
the probability to reconfigure the network.

Moreover, each ring connects 2N nodes, i.e., any pairs
of the 2N nodes can communicate through the ring. Thus,
the utilization of each ring is also improved. As a result, a
larger ring connects a larger set of nodes and has a higher
utilization, but for each node the probability to reuse the
previous interconnects is lower.

On the other hand, the proposed architecture narrows
down the search space of the reconfiguration problem. The
maximum search space of the reconfiguration problem for
the proposed reconfigurable rings is N2/4, while the maxi-
mum search search space for point-to-point interconnects is
N4. The much smaller search space makes it easier to design
a low-complexity reconfiguration algorithm.

In summary, since each ring connects a number of nodes,
the proposed reconfigurable rings improve the reconfigu-
ration efficiency by (1) improving the probability to reuse
previous interconnects, (2) improving the utilization of each
ring, and (3) narrowing down the search space of the recon-
figuration problem.
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5 RECONFIGURATION

5.1 Problem Definition
The reconfiguration points can be used as knobs for the
reconfiguration. Therefore, the problem is to determine the
reconfiguration points according to the traffic demands at
runtime with the objective to minimize the average packet
latency. fi,j is used to denote the volume of the traffic flows
that originate from the nodes in the i-th horizontal ring to
the nodes in the j-th vertical ring. Obviously, the number
of horizontal rings or vertical rings augmented on a N ×N
mesh network is N/2, which is denoted as R. The problem
can be formulated as follows,

maximize
R∑
i=1

R∑
j=1

αi,jfi,j

subject to
R∑
i=1

αi,j = 1,
R∑

j=1

αi,j = 1, αi,j ∈ {0, 1}
(1)

where αi,j indicates whether the reconfiguration point (i, j)
is granted. If the i-th horizontal ring and the j-th vertical
ring are combined, αi,j = 1. Otherwise, αi,j = 0. The
constraints guarantee that each horizontal ring and each
vertical ring are exclusively combined. The basic idea of
the formulation is to improve the utilization of the rings by
allocating more low-latency channels to the heavier traffic
flows, which have higher fi,j .

5.2 Reconfiguration Algorithm
As seen in Figure 3(b), the allocation of the reconfiguration
points is similar to the allocation problems of switch alloca-
tion in a router or a network switch. We propose to solve
the reconfiguration problem using a modified allocation
algorithm with two differences from [26]: (1) each point1 has
a fixed priority instead of a random priority, and the priority
depends on fi,j ; (2) multiple iterations of a separable alloca-
tion are performed, which is also similar as Parallel iterative
matching (PIM) [3]. The proposed allocation algorithm is
presented in Algorithm 1. The algorithm takes fi,j as the in-
put, and outputs the allocation of the reconfiguration points.
In each iteration, the allocation includes two-stage arbitra-
tions. The first stage selects the unmatched reconfiguration
point with the maximum fi,j in each row. The arbitration
results of the first stage are sent to the second stage as
requests. The second stage performs the arbitration in each
column, where the grant is set to the reconfiguration point
that wins the arbitration. Finally, the rows and columns
of the granted reconfiguration points are set matched and
will not be considered in the following iterations. After R
iterations, all rows and all columns can guarantee to be
matched. Figure 4 presents an example of the allocation for
the reconfiguration points. In each iteration, the arbitrations
are first performed in each row, and then performed in
each column. After 2 iterations, all the rows and columns
are matched. The allocation of the reconfiguration points is
like a traditional allocation problem that multiple agents are
contending for multiple resources simultaneously. The main
difference is that the allocation is determined by fi,j .

1. The point in this section indicates the candidate reconfiguration
point.

Algorithm 1 Iterative allocation for the reconfiguration
points
Definitions R: number of horizontal rings or vertical rings.
Input fi,j : the number of communication requests from row

i to column j;
Output gi,j : the allocation of the reconfiguration points.

1: for R iterations do
2: for each unmatched row i do . first stage, in parallel
3: Select the unmatched column q with the maxi-

mum fi,j
4: Set ri,q = 1
5: end for
6: for each column j do . second stage, in parallel
7: Select the row p that is with the maximum fi,j

and with ri,j = 1
8: Set gp,j = 1
9: Set row i and column j matched

10: end for
11: end for

1 8 9
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6 7 4

1 8 9

3 2 5

6 7 4

1 8 9

3 2 5
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Fig. 4. An example of allocation of reconfiguration points.

Analytically, the time complexity of Algorithm 1 is
O(2R3). However, the arbitrations in each column or each
row can be performed in parallel as annotated in Algo-
rithm 1. Therefore, the time complexity of the algorithm
can be reduced to O(2R2), which is a linear function with
the total number of processing nodes 4R2. Because the
algorithm is a greedy heuristic, the result of the algorithm is
a suboptimal solution of the problem defined in Equation 1.

5.3 Distributed Reconfiguration Implementation
The algorithm can be implemented using a modified two-
stage allocator that supports multi-iteration allocations. Fig-
ure 5 presents the architecture of the two-stage allocator.
Each stage has R R:1 arbiters. In contrast to traditional
round-robin arbiters, a modified arbiter named F arbiter
is designed, which selects the point with the maximum
fi,j in each row or column. The design of the F arbiter is
shown in Figure 6. In each arbiter, to select the point with
the maximum fi, F arbiter integrates multiple comparators.
The point with a higher fi sets di = 1 and unsets gi of
the previous points. eni is used to enable this comparator,
i.e., if this row or column has been matched in the previous
iterations, the corresponding comparators are disabled.
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Fig. 5. The architecture of the allocator, which is composed of two-stage
F arbiters. The first stage perform arbitrations among rows of the rings.
The second stage perform arbitrations among columns of the rings.
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Fig. 6. The architecture of the proposed F arbiter. Each F arbiter is
composed a set of comparators, which are distributed in each row or
each column of the rings.

The comparators of each arbiter can be distributed to
each point in this row or column. Therefore, the allocator
can be implemented in a distributed manner. Assuming that
the propagation delays of the signals within the arbiters are
1 cycle per row or per column, the delay per iteration is 2R.
Therefore, the maximum delay to obtain the solution is 2R2

or N2/2, achieving a linear time complexity with the total
number of processing nodes.

5.4 Routing Table Update
Each ring interface integrates a routing table that determines
if a node can be reached by a ring and which path is the
shortest. Each index of the routing table includes 3 bits
(1) if a node can be reached by the reconfigured rings; (2)
for which ring (horizontal or vertical) to select to reach
a node; and (3) for which direction to use (clockwise or
anticlockwise). Therefore, for a network with M processing
nodes, the size of each routing table is 3M bits.

After allocating the reconfiguration points, each ring in-
terface must update the routing table. To update the routing
table using hardware, the routing table is initially set to
000 for all indices. Each node sends probe messages to 2
available directions (clockwise or anticlockwise direction in
horizontal or vertical rings) via the connected rings. The
probe message contains its sender and the hops it has
traversed. If the probe message is received by its sender,
then it is dropped. Otherwise, it continues to traverse along
the same direction in the current ring. If node a and node

b are connected by a combined ring, b can receive at least
two probe messages from a, and updates the routing table
using the message whose hop count is smaller than half the
length of the combined ring. Due to traversal of the probe
messages, the routing table update requires an additional
4(N − 1) cycles because the length of the combined ring is
4(N − 1).

5.5 Analysis of Reconfiguration Time

The reconfiguration process includes 2 steps: reconfigura-
tion algorithm and network reconfiguration.

Step 1: reconfiguration algorithm. This step takes at
most N2/2 cycles as detailed in Section 5.3. The running of
the reconfiguration algorithm can be performed in parallel
with the packet transmission in the rings.

Step 2: network reconfiguration. During this period,
packets are not allowed to be injected through the rings.
This step includes packet draining, routing table update
and reconfiguration of ring interface. In the packet draining,
all the packets in ring interconnects are drained to avoid
the cases that some packets would never reach their des-
tinations after reconfiguration. The packet draining takes
4(N − 1) cycles. Since the packet draining is related to
the ejection process, the packet draining time is further
analyzed in Section 6.2. The routing table update also takes
4(N − 1) cycles as presented in Section 5.4. Including 1
cycle for reconfiguration of ring interfaces, the total number
of cycles for the network reconfiguration requires at most
(8N − 7) cycles.

6 INTEGRATION WITH ROUTER-BASED NETWORK

Each node is connected to a horizontal ring, a vertical ring
and a router. A packet can either be injected to a ring or a
router. The ring interface determines if the destination can
be directly reached by a ring based on its routing table. If
there is no direct ring to the destination or the specified
output port of the ring is not available, then the packet
chooses to use the router-based interconnect. Once a packet
is injected to a ring or the router-based interconnect, it will
reach the destination without switching between the two
interconnects or switching between rings. This avoids both
the bottleneck and high overhead of switching between the
interconnects as the hierarchical rings [22].

6.1 Packet Injection

To minimize the average packet latency in the NoC, the
packet injection process needs to select an appropriate inter-
connect for injection of each packet such that the packets can
arrive at their destinations with a low latency. We propose
a simple scheme for packet injection, which is presented as
follows,

• If (1) the destination can be reached by a combined
ring according to the routing table; and (2) in current
cycle the designated port of the ring is available, i.e.,
there is no other packet passing by, then the packet
is sent through the ring-based network.

• Otherwise, the packet is sent by the router-based
mesh network.
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For injection of multi-flit packets through the ring inter-
face, a possible case is that a long packet is taking several
cycles for injection while another packet arrives, and they
are contending for the same output port. Because there is no
flow control in the ring interface, we adopt a packet-size
buffer (maximal packet size) to store the arriving packet
temporarily which is also similar as the Extension Buffer
Technique in [24].

6.2 Arbitration for Ejection

When a packet from the router-based interconnect or a ring
arrives at its destination node, it is ejected by a router or
a ring interface. However, a potential problem is that there
are multiple flits from different interconnects to be ejected
simultaneously but only one flit is allowed to be ejected
at each cycle. Because multiple ejection links incur a high
hardware overhead and the possibility of actual conflict is
very low, we only adopt one ejection link and design an
arbitration scheme for the ejection.

For the ejection, each node has 3 packet-size buffers to
store the arrived packets. One is for the router, and the other
2 are for the 2 rings. Similar as that in [23], we adopt the
Oldest-First mechanism [27] for the arbitration of the pack-
ets in the ejection buffers. In the Oldest-First mechanism,
a time stamp is stored in the header of a packet to record
the packet generation time. Thus, a packet with an older
generation time has a higher priority. If the packets from the
routers cannot be proceeded to their ejection buffers, they
will be stalled in the input buffers of routers. If the packets
from the rings cannot proceed to their ejection buffers, they
will be deflected to the next node. The deflected packets
will continue on their current rings and circle back to the
destination later. The Oldest-First mechanism guarantees
that a packet can finally arrive its destination, i.e., there is
no livelock concern if there is no reconfiguration.

Packet draining: As previously mentioned, before re-
configuring the rings all the packets in ring interconnects
are drained to avoid the cases that some packets would
never reach their destinations after reconfiguration. To avoid
possibly too long packet draining time in the reconfigura-
tion due to the deflected packets, the arbitration scheme
switches to a fixed-priority arbitration during packet drain-
ing. The packets from the rings are always prioritized over
the packets from the router-based interconnect. This can
minimize the number of deflections during packet draining.
Moreover, the reconfiguration points are not allowed to be
reconfigured if packet deflections happen within the packet
draining time. Therefore, the maximum packet draining
time is 4(N − 1) cycles. The reason is that the maximum
possible length of queue to be ejected is equal to the length
of the combined ring.

Another advantage of the arbitration scheme is that the
router-based network can still adopt 5-port routers instead
of 6-port routers in [6], [14]. And a 6-port router would incur
around 20% more area than a 5-port router. Therefore, by
the proposed arbitration scheme for ejection, the additional
rings does not incur too much area overhead for the router-
based interconnect.

6.3 Deadlock Avoidance

Routing-induced deadlock will not happen because the
router-based network adopts XY routing algorithm and the
packets will not be stalled in the ring-based network.

Another possible deadlock is protocol-level deadlock in
which the reply packets cannot be injected because the
request packets are waiting to be ejected. Traditional router-
based mesh network adopts separate virtual networks to
avoid protocol deadlock. Since the proposed NoC archi-
tecture integrates rings with a router-based network, the
protocol deadlock can be avoided by using 2 separate virtual
networks in the router-based network. And the ring-based
network can be used by all packets. Therefore, the cycle
dependency of the protocol deadlock can be broken.

6.4 Hardware Implementations

The packets are injected to rings or ejected from rings
through the ring interfaces. The design of the ring interface
is shown in Figure 7. Most parts of the rings interface are
similar as the rings interfaces in [23], [24] except the routing
table, the ejection arbitration and the 2× 2 switch.

To support reconfiguration, a 2 × 2 switch in each ring
interface is integrated. As shown in Figure 7, each ring
interface is connected to a bidirectional vertical ring and
a horizontal ring. For simplicity, only clockwise rings are
shown. If the current node is in a granted reconfiguration
point, then the reconfiguration switch is enabled, i.e., the
output ports of the horizontal ring and the vertical ring are
exchanged. Each reconfiguration point corresponds to 4 ring
interfaces with enabled switches.

Figure 8 shows that the pathways of the combined
rings can be correctly set up by simply enabling the 4
reconfiguration switches in the reconfiguration point. If the
reconfiguration point is granted, the reconfiguration switch
is enabled. Then the two rings can be combined into one
by exchanging the output ports of the vertical ring and
the horizontal ring. The figure gives examples for different
locations of the reconfiguration points. It can be seen from
the figure that even the reconfiguration point located at the
corner or the border of the network, the pathway can be
correctly reconfigured just by simply enabling the switches
of the corresponding 4 ring interfaces. Similarly, if the recon-
figuration point located at the central part of the network,
the pathway of the combined ring can also be correctly set
up, which is not depicted in the figure. This nice feature
also indicates that ring interconnects can be easily reconfig-
ured without introducing complicated hardware logics for
reconfiguration of the pathways.

7 EXPERIMENTAL RESULTS

7.1 Experimental Setup

The evaluations are performed in the cycle-accurate GAR-
NET NoC simulator [28]. The proposed NoC architecture
is evaluated against the following 4 architectures: Baseline,
SMART [2], Runahead [19], and S-channel [6].

Baseline is the basic 2D mesh NoC without any recon-
figurations. The configurations of Baseline are presented in
Table 2.
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Fig. 7. Architecture of the ring interface. If the reconfiguration switch is
enabled, the output ports of the horizontal ring and the vertical ring are
exchanged.
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Fig. 8. The pathways within reconfiguration points that are in different
locations of a mesh network. If a reconfiguration point is granted, the
pathway can be correctly reconfigured by simply exchanging the output
ports of the vertical ring and horizontal ring in each ring interface.

SMART [2] is a recent microarchitecture method that
can adapt traffic variation by cycle-by-cycle reconfigura-
tion. Once a bypass link is established, the packet can
traverse multiple hops within one cycle. In the comparisons,
SMART-8 1D is adopted.

Runahead [19] is a multi-NoC architecture that aug-
ments a buffered network with a bufferless network. A
packet can be sent by both the buffered network and the
bufferless network.

S-channel [6] is a hybrid NoC that augments a mesh
NoC with reconfigurable spanning channels. Although this
is a software-based approach, it is still compared in the
experiments because the complexity of the Non-Split (NS)
algorithm is even as low as the proposed reconfiguration
algorithm in this paper. The reconfigurable architectures
in [12]–[14] are not compared because they rely on sophisti-
cated reconfiguration algorithms, the running time of which
is much longer than the time interval in this paper.

The basic configurations (without reconfiguration) for
the routers in SMART, Runahead and S-channel are also
the same as the Baseline router.

7.2 Packet Latency for Synthetic Traffic Patterns
The average packet latency of the network is evaluated
using 4 synthetic traffic patterns: uniform, shuffle, transpose
and hotspot. In the hotspot traffic pattern, there are 6 ran-
domly inserted hotspots on a uniform traffic pattern. The
time interval for reconfiguration is 1000. The results are pre-
sented in Figure 9. It shows that the proposed reconfigurable
architecture, RR-Net can have obvious advantages in terms

TABLE 2
Configurations of the router-based mesh NoC

Network topology 8× 8 or 16× 16 2D mesh
Channel width 64
Router latency 3 cycles
Link latency 1 cycle
Number of VCs 8 (for synthetic traffic) or 2 (for bench-

marks)
Input buffer 4-flit depth
Routing XY routing algorithm
Benchmarks PARSEC and SPLASH2 from Synful [5]

of saturation throughput for all the 4 synthetic traffic pat-
terns. Especially for transpose and hotspot traffic patterns,
the saturation throughput improvements over Baseline are
over 85% and 100%, respectively. This result is because the
proposed RR-Net adds additional channels for the traffic
flows. And each combined ring in RR-Net connects at most
28 nodes in 8 × 8 network, the traffic flows have more
chances to traverse in the low-latency ring interconnects.

S-channel has a very limited throughput improvement
because only a few pairs of nodes are connected by the
augmented interconnects. Although the reconfiguration al-
gorithm Non-Split (NS) also has a low complexity, S-channel
only provides global reconfigurable interconnects for the
nodes in the same row or the same column. It cannot
provide global channels for any source-destination pairs on
demand. Moreover, the point-to-point channels also make
it not applicable to the less predictable traffic. Runahead
achieves the best zero-load latency for all traffic patterns
but almost no improvement on the saturation throughput.
This result is because a packet can be sent by both buffered
and bufferless network and the latency is calculated by
the bufferless network. SMART achieves both a low zero-
load latency and a high saturation throughput because it
allows the packets to traverse multiple hops within a cycle.
However, compared to RR-Net, SMART are agnostic to the
global information of traffic flows, making it less effective in
the high load for some traffic patterns.

Similar results can be observed Figure 10, which depicts
the latency comparison in 16 × 16 NoC. The proposed
RR-Net also results in around 116% and 100% saturation
throughput improvement over Baseline for transpose and
bit-reverse traffic patterns in 16 × 16 NoC. For other traffic
patterns, RR-Net also leads to obvious improvement over
other reconfigurable architectures in terms of saturation
throughput. Figure 10 also shows that RR-Net is still ef-
fective for a larger NoC size. Therefore, RR-Net has a high
scalability.

Although RR-Net achieves a high saturation throughput,
the zero-load latency is not as low as SMART and Runahead
for most of the synthetic traffic patterns. The reason is that
the combined rings incur non-minimal paths on the rings
for some packets. However, the negative effect of the non-
minimal paths is limited because packet latency on the rings
is 1 cycle per hop. In most cases the total latency of the non-
minimal path is still lower than the latency in the router-
based network which is 4 cycles per hop.
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(f) Hotspot traffic. Hotspot nodes: (1, 19,
26, 31, 42, 44), percentage: 5%

Fig. 9. Average packet latency for synthetic traffic patterns a 8× 8 NoC
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(f) Hotspot traffic. Hotspot nodes: (18,
43, 102, 177, 189, 231), percentage: 2%

Fig. 10. Average packet latency for synthetic traffic patterns in a 16× 16 NoC

7.3 Analysis of Zero-Load Packet Latency

To further analyze the zero-load latency, we give a
mathematical analysis for the zero-load latency of RR-Net.
It is assumed that the communication pattern is uniform
random.

The length of a combined ring is L = 4(N − 1), which
is also equal to the number of nodes in each combined ring.
The total distance (minimal distance) between node 0 and
all other nodes can be calculated as follows,

L/2 · (L/2 + 1)

2
+
L/2 · (L/2− 1)

2
=
L2

4
(2)

which is the total distance of (L − 1) pairs of nodes. The
average distance of all the nodes in the combined ring can
be calculated as

L2

4(L− 1)
≈ L

4
= N − 1 (if L is large enough) (3)

Since each hop in the ring takes 1 cycle, the average
packet latency in the combined ring is around N cycles
(there are N ring interfaces or routers between two nodes
with distance (N − 1)). In contrast, the average distance for
a N × N mesh network is approaching 2N/3 if N is very
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Fig. 11. Normalized packet latency for realistic benchmarks
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Fig. 12. Power Comparison

large2. If per-hop latency in the mesh network is 4 cycles,
the average latency is around 8(N + 1)/3 cycles. It can be
concluded that the average latency in the rings can also scale
linearly with N as a mesh network.

The average zero-load latency of RR-Net can be esti-
mated as follows,

δN + (1− δ)8(N + 1)

3
(4)

where δ is the probability that two nodes are connected
by a combined ring. δ is also approximately equal to the
percentage of nodes that a combined ring can connect, i.e.,
δ ≈ 4(N − 1)/N2. In other words, in a larger topology
each combined ring connects a lower percentage of nodes,
and more packets are transmitted through the router-based
network. As a result, the zero-load latency of RR-Net is
closer to that of Baseline in a larger network.

It should be noted that this analysis is more applicable to
uniform traffic pattern. The results in Figure 9 and Figure 10
show that for other traffic patterns such as transpose and
bit reverse, the zero-load latency of RR-Net can get close to
the lowest zero-load latency even in the 16× 16 mesh NoC.
7.4 Packet Latency for Realistic Benchmarks
The proposed RR-Net is also evaluated using realistic bench-
mark traces, which are obtained from Synful [5]. To support
8 × 8 network, we adopt a similar approach as [19], which
assumes 4 identical instances of 4 × 4 nodes are arranged
in the network and the directories are located at the left and
right edge nodes of the 8×8 mesh. Figure 11 shows the com-
parisons of the packet latency, which is normalized to the
Baseline. RR-net 1000 and RR-net 10000 are corresponding
to the configuration intervals that are set 1000 and 10000, re-
spectively. The figure shows that compared to Runahead, S-

2. This can be derived statistically or mathematically.

channel and SMART, RR-Net 1000 can achieve over 57.6%,
47.3%, 47.5% and 36.1% latency reduction, respectively.
Especially for barnes, bodytrack, lu cb, water spatial, etc., RR-
Net shows greater advantages due to relatively high traffic
loads of these benchmarks. Moreover, a finer-grained time
interval for RR-net also results in a 7.7% improvement on
the packet latency.

The main reason for the low latency of RR-Net is that
it has a higher saturation point than others. Different from
synthetic traffic patterns that are with stable injection rates,
the traffic behaviors of realistic benchmarks show high
temporal variations. The average packet latency is related
to the latencies at different traffic loads. When the traffic
load is high, the networks are more easily saturated for
Baseline, Runahead, S-channel and SMART. The saturated
networks lead to much higher packet latency than that of
RR-Net. In contrast, the traffic loads have fewer chances to
saturate the network of RR-Net. Therefore, although RR-Net
does not show obvious advantages on the zero-load latency
over SMART and S-channel, it can still incur a lower packet
latency on average.

7.5 Hardware Overhead

The allocator and the ring interface are implemented with
Verilog HDL and synthesized using Synopsys Design Com-
piler with 45nm TSMC library. The implementations target
8×8 processing nodes. In other words, there are 4 horizontal
rings and 4 vertical rings in the ring network. The number of
interfaces is 64. For comparison, we synthesize a baseline 5-
port router [26] with 8 virtual channels per port. The power
results of the ring interface and the allocator are obtained
from PrimeTime given 0.1 flits/cycle/node packet injection
rate. The power of the baseline router is evaluated using
DSENT [29]. The results are presented in Table 3. From
the table, it can be observed that both a ring interface and
an allocator have much lower area and power overhead
than a baseline router. Compared to a baseline router, the
proposed architecture incurs additional 6.5% area and 9.8%
power consumption. In contrast, SMART, Runahead and S-
channel incur approximately 1%, 3% and 20% additional
area overhead respectively as reported in the literatures.

7.6 Power Consumption for Realistic Benchmarks

Since the ring interface has much lower power consumption
than a router, the packet transmission through the rings can
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TABLE 3
Comparison of area and power

Type Baseline Router Allocator Ring interface
Area (per node) 166204.4 µm2 204.7 µm2 10812.1 µm2

Power (per node) 21.5mW 0.151mW 2.12 mW

lead to a lower power consumption for the network. Fig-
ure 12 presents the comparison of the power consumption
between RR-Net and a baseline NoC using realistic bench-
mark traces. It can be seen that RR-Net results in a 15.7%
improvement on average in terms of power consumption.
The reason is that a ring interface has much lower power
consumption than a router. With the ring interconnect, the
router-based interconnect has fewer packets to transmit,
leading to power saving of NoC. As a conclusion, the
proposed RR-Net achieves a significant improvement on the
power efficiency.

8 CONCLUSIONS

In this paper, we present a hybrid NoC that augments a
router-based mesh network with a set of reconfigurable
rings. The rings can be reconfigured to accommodate to traf-
fic variations to achieve high communication performance.
Due to simplicity of the reconfiguration point, we propose a
reconfiguration algorithm with a linear-time complexity and
implement it using a distributed hardware-based allocator.
The experimental results show that the proposed NoC archi-
tecture can greatly improve both the saturation throughput
and the zero-load latency.

Future work on reconfigurable NoCs can target how
to design extremely low-latency reconfigurable NoCs for
future large many-core systems, how to better adapt to the
realistic traffic behaviors, etc.

(1) To design extremely low-latency reconfigurable
NoCs, one possible future work is to combine the proposed
reconfigurable architecture with the single-cycle multi-hop
traversal [2], which can greatly reduce the zero-load latency.
However, the complexity of the reconfiguration algorithm
would be much higher because of more decision variables.
Another possible future work is to adopt other interconnects
(e.g. more complex ring shapes, wireless fabrics, etc.) for the
design of reconfigurable NoCs. One of the main difficulties
is to consider both the performance of the reconfigurable
architecture and the complexity of the reconfiguration algo-
rithm.

(2) The future work on reconfigurable NoCs should bet-
ter adapt to realistic traffic variations for higher performance
or lower power consumption. As we analyzed in this pa-
per, the realistic traffic variations can be possibly predicted
using machine learning algorithms on a long-term scale
but exhibit less predictable pattern on a short-term scale.
Reconfigurable interconnects targeting different scales can
be designed separately to better exploit the characteristics
of the traffic behaviors. New machine learning algorithms
can also be developed to predict realistic traffic behaviors in
a finer time granularity.
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