
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

A Novel Heuristic Search Method for Two-level
Approximate Logic Synthesis

Sanbao Su, Chen Zou, Weijiang Kong, Jie Han, Senior Member, IEEE, and Weikang Qian, Member, IEEE

Abstract—Recently, much attention has been paid to approx-
imate computing, a novel design paradigm for error-tolerant
applications. It can significantly reduce area, power, and delay
of circuits by introducing an acceptable amount of error. In
this paper, we propose a new heuristic method for two-level
approximate logic synthesis. The problem is to identify an
approximate sum-of-product (SOP) expression under a given
error rate constraint so that it has the fewest literals. The basic
idea of our method is to find an optimal set of input combinations
for 0-to-1 output complement (SICC). For this purpose, we first
identify all prime SICCs, which are fundamental SICCs in the
sense that the optimal SICC is very likely to be a union of a
subset of the prime SICCs. Then, we search among all subsets of
the prime SICCs the optimal subset, which leads to a final good
approximate SOP. We further propose four speed-up techniques.
The experiments on benchmarks showed that our method is
better than the previous state-of-the-art method and our speed-
up techniques are effective. For an error rate threshold of 0.8%,
our method can reduce 15.8% literals on average.

Index Terms—Approximate computing, two-level logic synthe-
sis, approximate logic synthesis, literal reduction

I. INTRODUCTION

Approximate computing is an emerging design
paradigm [1]–[3]. It targets at error-tolerant applications
such as digital signal processing, multimedia, and machine
learning. Its basic idea is to deliberately introduce a small
amount of error into the circuits. If the error is introduced
properly, significant reduction in area, delay, and power
consumption [4] can be achieved.

The research on approximate computing circuits can be
divided into two sub-areas: manual approximate circuit design
and approximate synthesis. The former manually designs
approximate circuits for common arithmetic units such as
adders [5]–[7] and multipliers [8]–[10]. The latter designs
algorithms to automatically synthesize a good approximate
version for an arbitrarily given circuit. It is known as ap-
proximate logic synthesis (ALS). Several works on ALS pro-
posed techniques to synthesize multi-level circuits, including
combinational circuits [11]–[22] and sequential circuits [23].
There are also a few works on ALS targeting at two-level
designs [24]–[26]. Given that two-level design usually plays
an important role in synthesizing multi-level circuits [27], this
work focuses on ALS for two-level designs.

To measure the error of approximate circuits, several error
metrics are proposed, such as error rate (ER), worst case
error (WCE), mean absolute error (MAE), and Hamming
distance (HD) [1], [28]. Among them, two widely used are
ER, which is defined as the ratio of input combinations that
produce wrong outputs, and WCE, which is defined as the

Sanbao Su, Weijiang Kong, and Weikang Qian are with the Univer-
sity of Michigan-Shanghai Jiao Tong University Joint Institute, Shang-
hai Jiao Tong University, Shanghai, China; email: gawaine@sjtu.edu.cn,
5143709071@sjtu.edu.cn, qianwk@sjtu.edu.cn.

Chen Zou is with the Department of Computer Science, the University of
Chicago, Chicago, IL, USA; email: chenzou@uchicago.edu.

Jie Han is with the Department of Electrical and Computer Engineering,
the University of Alberta, Edmonton, AB, Canada; email: jhan8@ualberta.ca.

maximal numerical deviation of an incorrect output from a
correct one. For this reason, some previous works consider
two forms of the ALS problem [24], [25]. One takes ER as
the constraint and the other takes WCE as the constraint. It is
shown in [25] that the ALS problem under the WCE constraint
can be transformed into a Boolean relation minimization prob-
lem [29], an extensively studied problem in traditional logic
synthesis. However, it is not easy to convert the ALS problem
under the ER constraint into a well-solved traditional logic
synthesis problem. Thus, we believe this problem requires
more intensive study. Hence, it is the target of this work.

In summary, we consider the following fundamental ALS
problem here: synthesizing an optimal approximate two-level
circuit under an ER constraint. A two-level design is essen-
tially a sum-of-product (SOP) representation of a Boolean
function. A quality measure of it is the number of literals
of the SOP. Thus, our target is to synthesize an approximate
SOP with the fewest literals and the ER no larger than a given
threshold.

Although there are a few previous works tackling the same
problem [24], [26], they can only effectively handle single-
output designs. In this work, we propose a novel method to
solve the problem. It can effectively handle general multiple-
output designs. The fundamental operation that we use to
introduce errors is to complement the outputs of some input
combinations from 0 to 1. With this, we can form larger
cubes that replace some existing ones and hence, reduce the
literals. Then, our task becomes identifying an optimal set of
input combinations for 0-to-1 output complement (SICC). To
solve this problem, we propose the concept of prime SICCs,
which are fundamental SICCs in the sense that the optimal
SICC is very likely to be a union of some prime SICCs.
Our proposed method begins by identifying all prime SICCs.
Then, it searches among all subsets of the prime SICCs for
the optimal subset, which leads to a final good approximate
SOP. To accelerate our method, we further propose four speed-
up techniques. The experiments on benchmarks showed that
our method can produce approximate SOPs with fewer literals
than the state-of-the-art method. It can reduce 15.8% literals
on average for an ER of 0.8%.

In summary, the contributions of our work are as follows.
1) We advance the theory of solving the ALS problem under

the ER constraint by proposing the concept of prime
SICCs. It is fundamental to the problem.

2) Exploiting the concept of prime SICCs, we propose a
heuristic search method to identify the approximate SOP
with fewer literals under the given ER constraint.

3) We propose four speed-up techniques that can significantly
accelerate the basic method.

4) We compare our method to the state-of-the-art method.
The experimental results show that our method can achieve
much better results, especially for multiple-output circuits.

The rest of the paper is organized as follows. Section II dis-
cusses the related works. Section III introduces some prelimi-
naries, including the terminology used in this work. Section IV



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

presents the basic heuristic search method. Section V presents
the speed-up techniques. Section VI shows the experimental
results. Finally, Section VII concludes the paper.

II. RELATED WORKS

In [24], Shin and Gupta designed a two-level ALS method to
identify an approximate SOP with fewer literals. The problem
they considered is the same as ours. Their basic idea is to
complement the output values of some minterms from 0 to 1
to decrease literals in the final SOP under the ER constraint.
Their method first obtains a set of candidate minterms for
complement. Then, it traverses all combinations of candidate
minterms for complement and identifies the one with the
largest reduction in estimated literals.

In [26], Zou et al. proposed a dynamic programming-based
solution for the same problem. They introduced a quality
metric called performance vector (PV) for a set of cubes. PV
has a weak correlation to the literal reduction when the set
of cubes is added into the original SOP. Their basic idea is
to identify the set of cubes with the largest PV under the ER
constraint and add the set into the SOP. However, PV is not
always proportional to the literal reduction.

In [25], Miao et al. proposed a two-phase greedy method
for two-level ALS. Their work considers both the ER and the
WCE constraints. Their method first ignores the ER constraint
and minimizes the SOP under the WCE constraint only. This
problem is isomorphic to the Boolean relation minimization
problem [29] and can be solved using an existing heuristic
algorithm [30]. Then, their method iteratively refines the
solution to reach a solution also satisfying the ER constraint.
However, this method cannot achieve the optimal result for
ER constraint since it prioritizes on the WCE constraint.

A common drawback of the previous methods is that they
are mainly designed for single-output circuits. For a multiple-
output circuit, they separate the circuit into several single-
output ones and then handle them individually. Thus, they
are not optimal for multiple-output circuits. Our method can
handle multiple-output circuits better.

III. PRELIMINARIES

A. Terminology of Two-level Logic Synthesis

Figure 1: The Karnaugh map of a 4-input 2-output function. The
1s give the on-set of the original function. A solid-line rectangle
corresponds to a cube in the original SOP expression. The c’s denote
some erroneous input combinations (EICs), which will be used in
some examples in the paper.

In this section, we introduce some definitions related to two-
level logic synthesis, which are used in this paper. We assume
that the Boolean function is completely specified without any
don’t cares. We will study how to extend the proposed method
to handle functions with don’t cares in the future. Unless
otherwise specified, these definitions are defined over general
m-input n-output Boolean functions.

1) Variable: A symbol used to represent an input or an
output signal. In what follows, we use xi and yi to
represent the i-th input and output signals, respectively.

2) Input literal: An input variable with or without negation.
For example, both x1 and x1 are input literals.

3) Output literal: An output variable without negation.
4) Literal: An input literal or an output literal.
5) Input cube: A product of input literals, where for each

input variable x, x and x do not appear simultaneously.
For example, the product x1x2 is an input cube. An input
cube defines a single-output function, which is 1 for all
input combinations that let the product be 1, and 0 for
the remaining input combinations.

6) Cube: A product of an input cube and k output literals,
where k ≥ 1. Here, we essentially call a product of
literals cube. Note that to efficiently handle multiple-
output functions, our definition of cubes also includes
the output signals. A cube is a special multiple-output
function: if the output yi is not in the cube, then the
i-th output of the function is always 0; otherwise, the
i-th output is just the input cube. For example, assume
m = 4 and n = 3. Then, a cube x1x2y1y2 is a 3-output
function such that the first and the second outputs are
equal to x1x2 and the third output is a constant 0. Given
this definition of a cube, we can represent a multiple-
output Boolean function as a sum of cubes. For example,
the multiple-output Boolean function of Fig. 1 is

f = x1 x2 x3y1 + x1 x2 x4y1 + x1x2x4y1y2
+ x2x3x4y1y2 + x1x2x3y1
+ x2x3 x4y2 + x1x3x4y2.

(1)

A widely-used quality measure for an SOP is its number
of literals. For example, the number of literals of the SOP
in Eq. (1) is 30.

7) Input minterm: A special input cube where each input
variable appears exactly once, in either complemented
or uncomplemented form. For example, for m = 4,
x1x2x3x4 is an input minterm. Since an input minterm
uniquely corresponds to an input combination that lets
the minterm be 1, we will use the terms input minterm
and input combination interchangeably.

8) Minterm: A special cube as the product of an input
minterm and exactly one output variable. For example,
for m = 4, the cubes x1x2x3x4y1 and x1x2 x3x4y2 are
minterms. Given m inputs and n outputs, the total number
of minterms is 2mn. Given a function f , the entire set
of minterms can be partitioned into 2 subsets, on-set and
off-set of f . For an arbitrary minterm, suppose its output
variable is yi. It is in the on-set/off-set of f if for the
input combination that lets the input minterm be 1, the
i-th output of f is 1/0. We say the minterm is covered
by f if it is in the on-set of f .

9) Size of a cube: the number of minterms covered by the
cube. For example, assume m = 4 and n = 3. Then, the
size of the cube x1x2y1y2 is 8.

10) Erroneous input combination (EIC) of an approximate
function: An input combination for which the approxi-
mate function is different from the original function in
at least one output. Complementing some outputs of an
input combination of the original function makes that
input combination an EIC of the approximate function.

11) Covered-once minterm (COM) of an SOP: a minterm
that is only covered by one cube in the SOP expression.
For example, for the SOP in Eq. (1), which corresponds



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

to the set of solid-line rectangles in Fig. 1, the minterm
x1x2x3x4y1 is a COM, since it is only covered by the
cube x2x3x4y1y2, as shown in Fig. 1. If a COM is
covered by a cube c in the SOP, we will also refer to
it as a covered-once minterm (COM) of the cube c.

B. Hasse Diagram on Cubes

Hasse diagram is a directed acyclic graph used to represent
a finite partially ordered set [31]. Here, we introduce a Hasse
diagram defined on cubes of m inputs and n outputs, which
will be used in our work. Fig. 2 is a Hasse diagram on cubes of
2 inputs and 2 outputs. Each node in the diagram corresponds
to a cube. The diagram contains all possible cubes of m inputs
and n outputs and organizes them into multiple levels. There
is only one node at the first level. The node is a cube including
all output variables, but no input variables. It corresponds to
an m-input n-output Boolean function that covers all possible
minterms. The last level has 2mn nodes, each corresponding
to one of the minterms. Each cube at a level other than the last
level is connected to multiple cubes at the next level, forming
a parent-child relation. A child cube is formed from a parent
cube by adding an input literal of a non-existing input variable
or removing an output literal of the parent cube. Therefore, a
child cube only has one different literal than its parent cube.
For example, as shown in Fig. 2, the child cubes of the cube
x1y1y2 are x1x2y1y2, x1x2y1y2, x1y1, and x1y2. A parent
cube covers all minterms of a child cube of it. It is easy to
see that a Hasse diagram defined on cubes of m inputs and n
outputs has 3m(2n − 1) nodes.

IV. METHODOLOGY

As stated in Section I, the problem we consider is to identify
an approximate SOP expression with the fewest literals for
a given original expression F and an ER threshold TE .
The given SOP expression is an optimized one processed by
Espresso [32], an off-the-shelf two-level logic synthesis tool.
By the definition of ER in Section I, the ER threshold TE
means that the number of input combinations that produce
wrong outputs should be no larger than TE · 2m, where m
is the number of inputs of F . By the definition of EIC
in Section III-A, an input combination that produces wrong
outputs is just an EIC. Thus, the ER constraint means that
the number of EICs of the approximate expression must be
no larger than TE · 2m. Note that this bound, TE · 2m, is
independent of the number of outputs of the function. We
define e = TE · 2m and call it number of errors (NoE)
threshold. Next, we first present the basic strategy and then
elaborate our solution.

A. Basic Strategy

There are two ways to introduce errors: flipping one output
of an input combination from 0 to 1 (hereafter referred to as
0-to-1 complement) and flipping that from 1 to 0 (hereafter re-
ferred to as 1-to-0 complement). In [24], an experiment showed
that 0-to-1 complements are typically more beneficial than 1-
to-0 complements. The reason is that a 1-to-0 complement can
only remove at most one existing cube due to the removal of
a minterm from the on-set. In contrast, a 0-to-1 complement
adds a new minterm to the on-set. Thus, it may form new and
larger cubes to make some existing cubes redundant.

Example 1
An example for 0-to-1 complement is shown in Fig. 3. Fig. 3a
shows the Karnaugh map of the original function, which
is single-output. If we complement the output of the input
minterm x1x2x3x4 in the original function from 0 to 1, we
derive an approximate function shown in Fig. 3b. In this case, a
new and larger cube x2x4y1 is formed, which makes two orig-
inal cubes x1x2x4y1 and x2x3x4y1 redundant. Consequently,
the number of literals is reduced by 5. 2

In summary, 0-to-1 complement has the potential of remov-
ing more literals than 1-to-0 complement. Thus, in this work,
we only consider 0-to-1 complement as the changes to the
original function. In what follows, when we say complement-
ing an input minterm/combination, we mean changing some
outputs of that input minterm/combination from 0 to 1.

In order to produce an approximate function, we only need
to find a set of input combinations, each with some outputs
in the original function evaluated to 0, and complement some
of these outputs from 0 to 1 for each input combination. We
call such a set a set of input combinations for 0-to-1 output
complement (SICC). First, we have the following claim.

Theorem 1
If we produce an approximate function by complementing each
input combination in an SICC, then each element in the SICC
is an EIC for the approximate function. 2

Proof: Consider an input combination v in the SICC. By
the way to construct the approximate function, it is different
from the original function in at least one output for v. Thus,
by the definition of EIC in Section III-A, v is an EIC.

In order to find an optimal approximate SOP under the ER
constraint, our task is to find an SICC satisfying the following
properties. First, by Theorem 1, each element in the SICC
is an EIC. Since we require the number of EICs to be no
larger than e, therefore, the size of the SICC should be no
larger than e. Second, complementing the input combinations
in the SICC should cause the largest literal reduction. This is
because we produce an approximate SOP by complementing
the input combinations in the SICC and we want to synthesize
an optimal approximate SOP with the fewest literals.

B. Overview of Our Heuristic Method
A straightforward way to find the optimal SICC is to

enumerate all possible SICCs and choose the best. However,
due to the existence of an exponential number of SICCs, this
method is impractical. Instead, we propose a heuristic search
method to find a good solution. The basic idea is to first
identify a set of prime SICCs. They are fundamental SICCs in
the sense that any promising SICC can be built as a union of
some prime SICCs. Once the set of prime SICCs is identified,
we will find an optimal subset of it so that the union of the
SICCs in the subset gives the maximal literal reduction.

The entire flow is shown in Alg. 1. The first step is to
build a set of SICC-cube trees (see Line 3). Their roots give
the prime SICCs. We will describe the details of this step in
Section IV-C. The second step is to update the SICC-cube trees
to build augmented SICC-cube trees (see Line 4). The root of
an augmented SICC-cube tree is the same prime SICC as the
root of the corresponding SICC-cube tree. We will describe
the details of this step in Section IV-D. The third step is to
synthesize the final optimal approximate SOP expression by
identifying an optimal subset of the prime SICCs (see Line 5).
It is based on the set of augmented SICC-cube trees obtained



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

Figure 2: The Hasse diagram on cubes of 2 inputs and 2 outputs.

(a) (b)
Figure 3: An example of 0-to-1 complement. (a) The Karnaugh
map of the original function f = x1x2x4y1 + x2x3x4y1; (b) The
Karnaugh map of the approximate function f = x2x4y1.

in the second step. We will describe the details of this step in
Section IV-E.

Algorithm 1: The proposed heuristic search method.
Input : a simplified SOP expression F and an error rate

threshold TE .
Output : an approximate SOP expression F ′.

1 m← number of inputs of F ;
2 NoE threshold e← TE · 2m;
3 the set of SICC-cube trees S ← SICCCubeTree (F, e);
4 the set of augmented SICC-cube trees T ← AugTree (S);
5 return SynthOpt(T, F, e);

C. First Step: Building SICC-Cube Trees
The first step is to build a set of SICC-cube trees for the

given SOP F and the NoE threshold e. To introduce the SICC-
cube trees, we first give the following definition.

Definition 1
An erroneous input combination (EIC) of a cube is an input
combination for which there exists an output for which the cube
evaluates to 1, while the original function evaluates to 0. 2

For example, for the Boolean function shown in Fig. 1, input
combination x1 x2x3x4 (denoted by two c’s in the figure) is an
EIC of cube x1 x2y1, because for this input combination and
output y1, the cube evaluates to 1, while the original function
evaluates to 0.

Now, we introduce the definition of an SICC-cube tree.

Definition 2
An SICC-cube tree is a two-level tree. Its root is an SICC
of size no larger than the NoE threshold e. Its second level is
composed of cubes satisfying that

1) the set of EICs of the cube equals the SICC at the root;

2) adding the cube into the original SOP expression removes
at least one existing cube and the total number of literals
in the SOP does not increase.

The root of an SICC-cube tree is called a prime SICC. 2

Example 2
Fig. 4a shows an example of an SICC-cube tree for the SOP
indicated in Fig. 1 (see Eq. (1)) and the NoE threshold e = 2.
The root is an SICC of a single input minterm x1 x2x3x4. Its
second level is composed of three cubes. For each cube, its set
of EICs equals the SICC at the root. Furthermore, adding the
cube into the given SOP removes at least one existing cube and
the total number of literals in the SOP does not increase. For
example, the cube x1 x2x4y1 has its set of EICs same as the
SICC at the root, i.e., the set {x1 x2x3x4}. By adding it into
the original SOP, we can remove the original cube x1 x2 x3y1
and the total number of literals does not change.

By Definition 2, the set {x1 x2x3x4}, which is the root of the
SICC-cube tree, is a prime SICC. 2

(a)

(b)

(c)
Figure 4: Three SICC-cube trees for the SOP indicated in Fig. 1
(see Eq. (1)) and the NoE threshold e = 2. Their root SICCs are: (a)
{x1 x2x3x4}; (b) {x1x2x3x4}; and (c) {x1 x2x3x4, x1x2x3x4}.

It should be noted that by Definition 2, a prime SICC is an
SICC of size no larger than the NoE threshold e. However,
the reverse is not true. This is because for an SICC of size no
larger than e, we may not find any cube such that the set of



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

EICs of the cube equals the SICC. Thus, we cannot construct
an SICC-cube tree with the SICC as the root. Therefore, the
SICC may not be a prime SICC.

The concept of prime SICC is important because the SICC
that gives the final optimal approximate SOP expression is
very likely to be formed as a union of some prime SICCs. We
argue the reason as follows. The final optimal approximate
SOP expression is constructed by adding some new cubes
into the original SOP and removing some existing cubes. The
number of EICs of each new cube should be no more than the
NoE threshold e. Furthermore, although not guaranteed, it is
very likely that each new cube added should satisfy that after
it is added into the original SOP and the redundant cubes are
removed, the literal count does not increase. By Definition 2,
such a cube belongs to an SICC-cube tree. Correspondingly,
the set of EICs introduced due to the addition of the new cube
is the prime SICC at the root of the SICC-cube tree. Therefore,
the final optimal SICC is very likely to be formed as a union
of some prime SICCs.

Given the important relation between prime SICCs and the
final optimal SICC, in this step, we try to identify all prime
SICCs by finding the set of SICC-cube trees. To directly
identify the prime SICCs at the roots of the SICC-cube trees
could be challenging. Instead, we try to identify the possible
cubes in the second level of the SICC-cube trees. These cubes
should satisfy the following criteria.

1) The number of EICs of the cube should be at least 1
and at most e. This is because the cube belongs to the
SICC-cube tree of which the SICC at the root equals the
set of EICs of the cube. Since the SICC at the root is
nonempty and its size is no more than e, the number of
EICs of the cube should be at least 1 and at most e. For
the Boolean function shown in Fig. 1 and e = 2, the cube
x2x4y1y2 can be considered, since it contains one EIC
x1x2x3x4. However, the cube x4y1 cannot be considered,
because it has 4 EICs x1x2x3x4, x1x2 x3x4, x1 x2x3x4,
and x1x2x3x4.

2) Adding the cube to the original SOP should remove at
least one existing cube in the original expression. Here,
for the simplicity of processing, we do not consider
cube expansion induced by the added cube. Thus, if the
added cube could remove an existing cube c, it should
cover all of c’s COMs. Consider the Boolean function in
Fig. 1. The cube x1 x3x4y1 can remove the existing cube
x1 x2 x3y1 (the cube in the green rectangle) by covering
its only COM x1 x2 x3x4y1. This criterion is necessary
because otherwise, adding the cube may increase the
literals.

3) The literal count of the cube should be no larger than the
sum of the literal counts of the existing cubes removed
by it. This means that adding this cube and removing the
corresponding existing cubes do not increase the literals.

The flow of the first step is shown in Alg. 2. To identify the
candidate cubes, we scan all cubes in the Hasse Diagram in a
breadth-first order (see Line 2). At the same time, we maintain
a growing set of SICC-cube trees. For each cube c we visit, we
judge whether it satisfies the above criteria (see Lines 3–5). If
it does, we identify its set of EICs R (see Line 6). Then, we
search the set of the SICC-cube trees. If there exists an SICC-
cube tree with the root SICC same as R, we add the cube to
the second level of that tree (see Lines 7–8). Otherwise, we
create a new SICC-cube tree with the root SICC as set R and
the second level consisting of only cube c (see Lines 9–11).

For the convenience of later steps, for each SICC-cube tree,
we order the cubes in the second level from left to right in

Algorithm 2: The function SICCCubeTree(F , e) for building
the set of SICC-cube trees.

Input : a simplified SOP expression F and an NoE threshold
e.

Output : the set of SICC-cube trees S for the given F and e.
1 the set of SICC-cube trees S ← ∅;
2 for each cube c in the Hasse Diagram in the breadth-first

traversal order do
3 if the number of EICs of c is at least 1 and at most e then
4 find all cubes in F such that all of their COMs are

covered by c, and compute the sum of the literals L
of these cubes;

5 if L is no less than the literal count of c then
6 obtain the set R of EICs of c;
7 if there is an SICC-cube tree of root R in set S

then
8 add c to the second level of the tree of root R;
9 else

10 build an SICC-cube tree with the root as R
and the second level only with cube c;

11 add the new tree into set S;
12 return S;

increasing size of a cube. If there is a tie, we further order them
in increasing number of existing cubes that can be removed
by the cube.

Example 3
Figs. 4a and 4b are two SICC-cube trees for the SOP indicated
in Fig. 1 and the NoE threshold e = 2. In Fig. 4a, the
cubes x1x3y2 and x1 x2y1 have the same size, but x1 x2y1
can remove more existing cubes than x1x3y2. Specifically,
x1 x2y1 can remove two existing cubes x1 x2 x3y1 (the cube
in the green rectangle) and x1 x2 x4y1 (the cube in the orange
rectangle), while x1x3y2 can only remove one existing cube
x1x3x4y2 (the cube in the black rectangle). Therefore, x1 x2y1
is on the right of x1x3y2. In Fig. 4b, the cube x2x4y1y2 has a
larger size than the other cubes, so it is at the rightmost side. 2

When we build the set of SICC-cube trees, we also avoid
unnecessary cube checking in the Hasse diagram. For example,
when we find a cube that has no EICs, we will ignore
its descendant cubes in the Hasse diagram, because each
descendant cannot have any EICs and hence, does not satisfy
the first criterion above.

D. Second Step: Building Augmented SICC-Cube Trees
The second step is to update the SICC-cube trees obtained

in the first step. Each SICC-cube tree only contains cubes
such that their sets of EICs equal the prime SICC at the
root. However, if the prime SICC is selected to form the final
optimal SICC, the cubes that can be added into the original
SOP are not just limited to those cubes. The cubes such that
their sets of EICs are the subsets of the SICC at the root can
also be added into the original SOP. For example, consider the
SICC-cube tree shown in Fig. 4c. If its root SICC is selected,
then the cubes that can be added into the original SOP are not
just limited to its only cube at the second level, i.e., x1x4y1;
they also include the cubes such that their sets of EICs are
either {x1 x2x3x4} or {x1x2x3x4}, which is a subset of the
SICC {x1 x2x3x4, x1x2x3x4}.

Thus, in this step, we augment the second level of each
SICC-cube tree t by merging all cubes in the SICC-cube trees
such that their SICCs are subsets of the SICC of the tree
t. We call such an SICC-cube tree an augmented SICC-cube



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

tree. The cubes in the second level of an augmented SICC-
cube tree are also ordered according to the rules described in
Section IV-C. For example, for the SICC-cube tree in Fig. 4c,
we add the cubes in the SICC-cube trees shown in Figs. 4a
and 4b into its second level. The result is the augmented SICC-
cube tree of the SICC {x1 x2x3x4, x1x2x3x4}. It is shown
in Fig. 5. We denote this step as AugTree(S), where S is a
set of SICC-cube trees.

E. Third Step: Identifying Optimal Subset of Prime SICCs
From the first step, we have identified all the prime SICCs.

In this step, we identify the optimal subset of the prime SICCs
that causes the maximal literal reduction.

Algorithm 3: The function SynthOpt(T, F, e) for synthesiz-
ing a good approximate SOP expression.

Input : a set T of augmented SICC-cube trees, a simplified
SOP expression F , and an NoE threshold e.

Output : an approximate SOP expression F ′.
1 the optimal result array R← Search (T, F, e);
2 bestNoE ← the index of the entry in R that gives the largest

literal reduction;
3 construct the approximate SOP expression F ′ from the SICC of

the tree R[bestNoE].t;
4 return F ′ simplified by Espresso;

The flow of this step is shown in Alg. 3. The major work
is done by the function Search (T, F, e) (see Line 1). It
enumerates all subsets of the prime SICCs and returns the
optimal result array R. Specifically, the function enumerates
all combined SICC-cube trees. A combined SICC-cube tree is
a combination of some augmented SICC-cube trees: its root
is the union of the prime SICCs of these augmented trees;
its second level is the union of all cubes in the second levels
of these augmented trees. The cubes in the second level of a
combined SICC-cube tree are ordered according to the rules
described in Section IV-C. After the function Search ends,
it returns an optimal result array R of size (e + 1), where
e is the given NoE threshold. The i-th (0 ≤ i ≤ e) entry
of the array R, R[i], involves two components, R[i].mlr and
R[i].t. R[i].mlr records the maximal literal reduction among
all prime SICC unions with size equal to i, while R[i].t records
the combined SICC-cube tree that gives that specific maximal
literal reduction. Note that the array includes the entry R[0],
since it corresponds to the special case where no error is
introduced to the original function, which is also a candidate
for the final best solution. An important subroutine in the
function Search is to estimate the literal reduction for a
union of some prime SICCs. We will discuss this subroutine
in Section IV-F.

After the array R is constructed, Line 2 identifies the index
of the entry in R that gives the largest literal reduction among
all entries in R. Note that given NoE threshold e, it is not
necessary that the maximal literal reduction occurs for an
SICC with size exactly equal to e. It is possible that it occurs
for an SICC with size smaller than e. This explains why we
build array R and scan it to find the entry of the maximal literal
reduction. Suppose the index we have identified is bestNoE.
Then, Line 3 constructs the approximate SOP expression
F ′ from the combined SICC-cube tree R[bestNoE].t. The
construction of the approximate expression is achieved as a
byproduct of calling the subroutine for estimating the literal
reduction, which will be described in Section IV-F. Finally,
Line 4 simplifies F ′ by Espresso and returns it.

F. Estimating the Literal Reduction
One important procedure is to estimate the literal reduction

of the union of a subset of the prime SICCs. It takes a
combined SICC-cube tree as an input and estimates the literal
reduction of the SICC at the root of that tree. We can leverage
Espresso [32] to do this. Specifically, we identify the outputs
of the input combinations in the SICC that are 0 and set these
outputs as don’t cares. Then, we apply Espresso to simplify
this modified Boolean function. The final literal reduction
is the difference between the literal count of the original
expression and that of the simplified expression. However,
since each subset of the prime SICCs requires one call of
Espresso, the total runtime could be large.

In this section, we describe a more efficient procedure to
estimate the literal reduction. As a byproduct, this procedure
also tells how to construct the approximate function that gives
the estimated literal reduction. Note that at Line 3 of Alg. 3,
we build the approximate SOP expression for the identified
optimal SICC. This is achieved as a byproduct of applying
this procedure. In what follows, for simplicity, we will refer
to a combined SICC-cube tree as an SICC-cube tree.

To obtain the exact number of decreased literals is compu-
tationally intractable. Instead, we propose a heuristic method
that gives an estimation. The overall flow of this heuristic
method is shown in Alg. 4. It has the following three steps.

1) Identifying the maximal set M1 of the existing cubes in
the original SOP that can be removed by adding all cubes
in the second level of the SICC-cube tree t. It corresponds
to Lines 3–9 in Alg. 4. The reason for this step is because
we want to remove as many existing cubes as possible to
achieve the maximal literal reduction.

2) Identifying the minimal set M2 of the cubes in the second
level of the tree t so that adding them into the original
SOP can remove the cubes in set M1. It corresponds to
Lines 10–13 in Alg. 4. The reason for this step is because
in order to remove the cubes in set M1, we need to add
cubes. However, each added cube increases the literals.
Thus, we want to minimize the number of added cubes.

3) Calculating the literal reduction due to the addition of the
cubes in set M2 and the removal of the cubes in set M1.
It corresponds to Line 14 in Alg. 4.

We elaborate these three steps in the following sub-sections.
1) Identifying the Maximal Set of Existing Cubes that Can

Be Removed: This step is shown in Lines 3–9 in Alg. 4.
To identify the maximal set M1 of the existing cubes in the
original SOP that can be removed, we construct the SICC-cube
graph from the SICC-cube tree.

Fig. 6 shows the SICC-cube graph of the SICC
{x1 x2x3x4, x1x2x3x4} constructed from the SICC-cube tree
shown in Fig. 5. The first and the second levels of the SICC-
cube graph are the same as those of the SICC-cube tree. Its
third level is composed of all covered-once minterms (COMs)
of the cubes in the fourth level. Its fourth level is composed of
all cubes in the original SOP that can be removed by adding
all cubes in the second level. Thus, its fourth level gives the
maximal set M1. The edge between a COM v in the third
level and a cube c in the fourth level means that v is a COM
of cube c. The edge between a COM v in the third level and a
cube c in the second level means that cube c covers COM v.
To show the graph clearly, the edges starting from the same
cube in the second level are drawn with the same color and
style.

Next, we describe how we build the SICC-cube graph in
detail. We first identify the covered on-set (see Line 3), which



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

Figure 5: The augmented SICC-cube tree of the prime SICC {x1 x2x3x4, x1x2x3x4} for the SOP indicated in Fig. 1 and the NoE threshold
e = 2.

Figure 6: The SICC-cube graph of the SICC {x1 x2x3x4, x1x2x3x4} for the SOP indicated in Fig. 1 and the NoE threshold e = 2.

Algorithm 4: The function LiteralReduct(F, t) for esti-
mating the literal reduction of a combined SICC-cube tree.

Input : the original simplified SOP expression F and a
combined SICC-cube tree t.

Output : the estimated literal reduction dl.
1 the maximal existing cube set M1 ← ∅;
2 the minimal cube set M2 ← ∅;
3 covered on-set So ← all on-set minterms of F that are covered

by the cubes in the second level of tree t;
4 for each minterm v in So do
5 for each cube c of F covering v do
6 if all COMs of c are in So then
7 if c has not been added into the fourth level of t

then
8 add all COMs of c into the third level of t,

add c into the fourth level of t, and add c
into M1;

9 remove c from F and update COMs of the other
cubes of F ;

10 Sc ← all COMs in the third level of t;
11 for each cube c in the second level of t from right to left do
12 if c covers some COMs in Sc then
13 add c into M2 and remove the COMs covered by c

from Sc;
14 the estimated literal reduction dl← the sum of the literal

counts of the cubes in M1 minus that of the cubes in M2;
15 return dl;

is composed of all on-set minterms of the original SOP that
are covered by the cubes in the second level of the SICC-cube
tree. For example, Fig. 7 duplicates the Karnaugh map shown
in Fig. 1. The shaded 1s in Fig. 7 form the covered on-set of
the SICC-cube tree shown in Fig. 5.

Then, we iterate over all minterms in the covered on-set
(see Line 4). For each minterm v in the covered on-set, we
further iterate over all cubes in the original SOP that cover
v (see Line 5). For each cube c, we check whether it can be
removed due to the addition of the cubes in the second level
of the tree. If all COMs of c are in the covered on-set (see

Figure 7: The same Karnaugh map as that shown in Fig. 1. A shaded
1 corresponds to an on-set minterm of the original SOP that is covered
by the cubes in the second level of the SICC-cube tree in Fig. 5.

Line 6), c can be removed. In this case, if c has not been added
into the SICC-cube graph, we add its COMs and the cube c
into the third and the fourth level of the SICC-cube graph,
respectively (see Lines 7–8). For each COM added into the
third level and each cube in the second level that covers the
COM, we draw an edge from the cube to the COM. For each
COM added into the third level, we also draw an edge from
it to the cube c added in the fourth level.

Example 4
Consider the SOP shown in Fig. 7 and the SICC-cube tree
shown in Fig. 5. We first consider the (shaded) minterm
x1 x2 x3 x4y1 in the covered on-set. We can identify two
existing cubes, x1 x2 x3y1 (the cube in the green rectangle)
and x1 x2 x4y1 (the cube in the orange rectangle) covering
that minterm. We first check cube x1 x2 x3y1. It has only one
COM, i.e., x1 x2 x3x4y1, and the COM is shaded, which means
that the COM is in the covered on-set. Thus, the cube can be
removed due to the addition of the cubes in the second level of
the SICC-cube tree. Therefore, we add the COM x1 x2 x3x4y1
into the third level and the cube x1 x2 x3y1 into the fourth
level of the SICC-cube graph. For each cube in the second level
covering the COM, we draw an edge from the cube to the COM.
We also draw an edge from the COM to the cube x1 x2 x3y1 in
the fourth level. This is shown in Fig. 6. 2



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

Each time a cube of the original SOP that can be removed is
identified, it is temporarily removed from the original SOP and
the COMs of the other cubes of the original SOP are updated
immediately (see Line 9). Then, the next iteration begins.

Example 5
Continue from Example 4. We have just identified that cube
x1 x2 x3y1 can be removed. Then, we temporarily remove
the cube from the original SOP. As a result, the set of COMs
of cube x1 x2 x4y1 should be updated: originally, minterm
x1 x2 x3 x4y1 is not a COM of the cube, but now it is. Con-
tinuing the overall procedure, we next check cube x1 x2 x4y1,
since it is the next cube in the original SOP that covers minterm
x1 x2 x3 x4y1. Since its COM set contains two COMs and both
are in the covered on-set, the cube can be removed. Thus, we
also add the two COMs and cube x1 x2 x4y1 into the third and
fourth level of the SICC-cube graph, respectively. The edges are
connected based on the rules mentioned above. We continue the
process. Finally, the entire SICC-cube graph is constructed, as
shown in Fig. 6. Its fourth level includes all cubes in the original
SOP that can be removed by adding the cubes in the second
level to the original SOP. Compared to the original SOP shown
in Eq. (1), all cubes in the original SOP except cube x1x2x3y1
are in the fourth level, since these cubes can be removed by
adding the cubes in the second level to the original SOP. Cube
x1x2x3y1 is not in the fourth level. This is because its COM
x1x2x3x4y1 is not covered by any cubes in the second level.
Thus, adding the cubes in the second level to the original SOP
cannot remove cube x1x2x3y1. The third level are the COMs
of those cubes in the fourth level. 2

It should be noted that the order in which we check the
minterms in the covered on-set will influence the graph and
hence, the estimated literal reduction. For simplicity, we stick
to the order of these minterms in the on-set of the original
function.

2) Identifying the Minimal Set of Cubes to Add: In this step,
we identify the minimal set of cubes in the second level of
the SICC-cube tree that can remove all cubes in the maximal
set M1, which correspond to the cubes in the fourth level of
the SICC-cube graph. This step corresponds to Lines 10–13
in Alg. 4. It is done with the help of the SICC-cube graph.
First, note that for a cube c in the fourth level of the graph, if
a set of cubes in the second level covers all COMs in the third
level that connect to c, adding this set of cubes can remove
cube c. The following shows an example.

Example 6
Consider cube x1x2x4y1y2 in the fourth level of the SICC-
cube graph shown in Fig. 6. By the graph, its set of COMs
is {x1x2x3x4y1, x1x2x3x4y2, x1x2x3x4y2}. Also, from the
graph, we can see that cube set {x2x4y1y2} covers that set of
COMs. Thus, adding cube set {x2x4y1y2} can remove cube
x1x2x4y1y2. 2

In order to identify the minimal set of cubes that can remove
all cubes in the fourth level, we only need to identify the
minimal set that covers all COMs in the third level. This
problem can be solved exactly by formulating it as an integer
linear programming (ILP) problem. Here, we propose a quick
heuristic method. We initialize a set Sc, which consists of all
COMs in the third level (see Line 10). We check each cube in
the second level from right to left (see Line 11). If the cube
under check covers some COMs in set Sc, we add the cube to
set M2 and remove all COMs covered by the cube from set

Sc (see Lines 12–13). Otherwise, we do nothing and check
the next cube. Note that the check order is from right to left.
This is because by our ordering rule, a cube on the right has a
larger size and could remove more existing cubes than a cube
on the left. Thus, a cube on the right is likely to cover more
COMs in the third level than a cube on the left. Below shows
an example of how our procedure obtains the minimal set M2.

Example 7
Consider the SICC-cube graph shown in Fig. 6. The initial set
Sc consists of all COMs in the third level of the graph. By
the proposed procedure, we first check the rightmost cube in
the second level of the graph, i.e., cube x2x4y1y2. Since the
cube covers some COMs in Sc, it is added into set M2. The
COMs covered by the cube are removed from set Sc. In this
case, the rightmost 5 COMs in the third level are removed.
Next, we check cube x1 x2y1. Since it covers the leftmost 3
COMs in the third level, which are in the current set Sc, it
is added into set M2. The leftmost 3 COMs in the third level
are then removed from set Sc. Consequently, Sc only contains
the 4th, 5th, 6th, and 7th COMs in the third level. Next, we
check cube x1 x4y1. However, it does not cover any COMs
in set Sc. Thus, we do nothing and check the next cube. After
all cubes in the second level are checked, we obtain set M2 as
{x2x3y2, x1x3y2, x1 x2y1, x2x4y1y2}. The cubes in set M2

are those shaded rectangles in the second level of the graph in
Fig. 6. They are also marked by the dashed-line rectangles in
Fig. 8, which duplicates the Karnaugh map shown in Fig. 1.
The COMs in the third level are marked in red in Fig. 8. We
can see that all COMs are covered by the set of cubes M2 we
choose. Thus, this cube set can remove all existing cubes in the
fourth level. It should be noted that as shown in Fig. 8, minterm
x1x2x3x4y1 is not covered by any dashed-line rectangles. This
is because the minterm is not in the third level of the SICC-
cube graph. Since we only require all dashed-line rectangles,
i.e., cubes in set M2, to cover all minterms in the third level, it
is possible that a minterm not in the third level is not covered
by any dashed-line rectangles. 2

Figure 8: The same Karnaugh map as that shown in Fig. 1. The
c’s form the root node of the SICC-cube graph shown in Fig. 6. A
dashed-line rectangle corresponds to a shaded cube in the second
level of the graph. A red 1 corresponds to a minterm in the third
level of the graph.

3) Calculating Literal Reduction: In this step, we calculate
the literal reduction due to the addition of the cubes in set M2

and the removal of the cubes in set M1. It is shown in Line 14
in Alg. 4. The literal reduction is calculated by subtracting the
total literal count of the cubes in set M2 from the total literal
count of the cubes in set M1. For the example in Fig. 6, the
literal reduction equals 26− 13 = 13.

It should be noted that as a byproduct of the proposed
estimation method, it gives us a way to construct the approxi-
mate SOP expression that gives the estimated literal reduction.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

TABLE I: The optimal subset of the prime SICCs for six benchmark
circuits. Each cell gives the list of the sizes of the prime SICCs in
the optimal subset.

NoE threshold Benchmark
z9sym sym10 rd73 clip sao2 5xp1

3 1,2 1,1,1 1,1,1 1,2 1,1,1 2,1
4 1,2,1 1,1,1,1 1,1,1,1 1,1,2 1,1,1,1 1,2,1

Specifically, we can construct the approximate SOP expression
by removing the cubes in set M1 from the original expression
and adding the cubes in set M2 into the original expression.

V. SPEED-UP TECHNIQUES

A drawback of the heuristic search method is its long
runtime, especially when the NoE threshold e is large. To
estimate a lower bound on the runtime, we assume that the
number of prime SICCs of size 1 is k. Then, the number of
SICCs of size e formed by these size-1 prime SICCs is

(
k
e

)
.

This number is a lower bound on the total number of subsets of
the prime SICCs that are checked by our method. Assume that
the average time of estimating the literal reduction of a subset
of the prime SICCs is t. Thus, a lower bound on the runtime
is

(
k
e

)
t = Ω(ket). Therefore, the runtime at least increases

exponentially with the NoE threshold e. For the circuits that
we tested, k is on the order of hundreds. Thus, the runtime
is very large when the NoE threshold is large. In this section,
we present four speed-up techniques to reduce the runtime.

A. Progressive Error Reduction
We propose a progressive error reduction method (PERM)

based on the experiments of the original heuristic search
method. We chose the NoE threshold as 3 and 4 and applied
the original method to six benchmark circuits. The results are
shown in Table I. Each cell shows the list of the sizes of
the prime SICCs in the optimal subset. For example, when
the NoE threshold is 3, the optimal subset for the benchmark
z9sym consists of 2 prime SICCs. The first is of size 1 and the
second is of size 2. From the table, we can see that although
there exist prime SICCs of sizes 3 and 4, the optimal subset
for each benchmark is only composed of prime SICCs of size
1 or 2. The reason for this can be explained as follows. Each
prime SICC corresponds to a set of promising cubes that can
be added into the original SOP expression. Thus, a set of prime
SICCs of small sizes may produce more promising cubes than
a single SICC of a large size. Consequently, the former can
cover more existing cubes than the latter and hence, remove
more literals. Therefore, the optimal subset tends to consist of
prime SICCs of sizes 1 or 2.

Based on this observation, we propose PERM. The basic
idea is to produce a sequence of approximate SOP expressions.
A later expression is produced from a previous expression
by further introducing an optimal SICC of either size 1 or
size 2. This is done by calling the proposed heuristic search
method on the previous expression with the NoE threshold as
2. As we discussed in Section IV-E, in the last step of the
heuristic method, a result array R is obtained (see Line 1
of Alg. 3), in which R[i].mlr records the maximal literal
reduction among all prime SICC unions with size equal to
i and R[i].t records the combined SICC-cube tree that gives
the maximal literal reduction. In PERM, we exploit the array
R to generate two SOP expressions from the previous SOP
expression F . The first is produced by introducing the SICC of
R[1].t into F , while the second is produced by introducing the
SICC of R[2].t into F . Each SOP expression is also associated

with a remaining NoE. Compared to the previous SOP F , the
remaining NoE of the first SOP is reduced by 1 and that of
the second SOP is reduced by 2.

The entire flow of PERM is shown in Alg. 5. Assume
that the NoE threshold is e. We maintain (e + 1) SOP sets
S0, S1, . . . , Se, where Si stores the SOPs with the remaining
NoE as i. Initially, S0, . . . , Se−1 are set as empty (see Lines 1–
2) and Se consists of the original SOP expression F (see
Line 3). Then, we iterate from set Se down to set S1 (see
Line 4). Line 5 at the beginning of each iteration is ignored for
the current moment. For each SOP f in set Si, we approximate
it by Alg. 1 under the NoE threshold 2 and derive two SOPs
f1 and f2 with the remaining NoEs as (i − 1) and (i − 2),
respectively (see Line 7). Then, f1 is added into set Si−1 (see
Line 8) and f2 is added into set Si−2 (see Line 9). After all
SOPs in set Si are processed, set Si−1 stores all SOPs with the
remaining NoEs as (i− 1). Then, we continue with set Si−1.
Finally, after all the SOPs are built, we check all of them and
pick the one that gives the fewest literals (see Line 10).

Algorithm 5: The progressive error reduction method with
limited processed SOPs.

Input : a simplified SOP expression F , an NoE threshold e,
and a parameter H .

Output : an approximate SOP expression F ′.
1 for i← 0 to e− 1 do
2 the set of SOPs with the remaining NoE as i, Si ← ∅;
3 Se ← {F};
4 for i← e down to 1 do
5 Si ← the top H SOPs with the fewest literals in Si;
6 for each SOP f in Si do
7 approximate f by Alg. 1 under NoE threshold 2 and

derive two SOPs f1 and f2 with the remaining NoEs
as i− 1 and i− 2, respectively;

8 Si−1 ← Si−1 ∪ {f1};
9 Si−2 ← Si−2 ∪ {f2};

10 F ′ ← the approximate SOP with the fewest literals in the set
Se ∪ Se−1 ∪ · · · ∪ S0;

11 return F ′;

Fig. 9 shows an example where the NoE threshold is 4. It
presents all SOPs built by PERM in the form of a tree. Each
node in the tree corresponds to an SOP. Each edge connects
two SOPs where the one at the end of the edge is derived from
the one at the beginning of the edge. The value in each node is
the remaining NoE for that SOP and the value near each edge
is the reduced NoE, which is either 1 or 2. The final optimal
approximate SOP is the one that gives the fewest literals in
the tree.

Now, we analyze the time complexity of this method. From
Alg. 5, it is obvious that the amount of work is dominated by
the total amount of work of applying Alg. 1 to SOPs.

We first analyze the runtime of each invocation of Alg. 1.
We assume that for each SOP processed by Alg. 1, its numbers
of prime SICCs of sizes 1 and 2 are no more than k and l,
respectively. The algorithm has three steps. In the first step,
it builds the set of SICC-cube trees by traversing the Hasse
diagram. Assume that the average time that the first step
spends in visiting one cube in the Hasse diagram is τ . Given
that the Hasse diagram has 3m(2n − 1) cubes, the runtime of
the first step is O(3m2nτ). In the second step, the algorithm
creates the set of augmented SICC-cube trees by checking all
pairs of SICC-cube trees such that one has a prime SICC of
size 1 and the other has a prime SICC of size 2. For each
pair, if proper, it may merge the cubes in the second-level



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

Figure 9: The solution tree built by the progressive error reduction
method for an example with the NoE threshold of 4.

of the SICC-cube tree of a prime SICC of size 1 into the
second-level of the SICC-cube tree of a prime SICC of size
2. Assume that the average time the second step spends for
each pair is λ. Given that the number of pairs is no more
than kl, the runtime of the second step is O(klλ). In the third
step, the algorithm checks all subsets of the prime SICCs to
produce two resulting SOPs. The number of unions of prime
SICCs checked is no more than k +

(
k
2

)
+ l, where the first

k corresponds to the maximal number of prime SICC unions
with sizes of 1 and the sum

(
k
2

)
+l corresponds to the maximal

number of prime SICC unions with sizes of 2. Assume that
the average time of estimating the literal reduction of a union
of prime SICCs is t. Then, the runtime of the third step is
O((k+

(
k
2

)
+ l)t) = O((k2 + l)t). In summary, the runtime of

each invocation of Alg. 1 is O(3m2nτ + klλ+ (k2 + l)t). It
should be noted that λ is much less than t. Thus, the runtime
of each invocation of Alg. 1 can be simplified as

O(3m2nτ + (k2 + l)t). (2)

The total number of invocations equals the number of SOPs
processed. As Fig. 9 shows, if the NoE threshold is e, the
number of SOPs processed equals the number of internal nodes
in the tree, which is no more than the total number of nodes
in a perfect binary tree1 of e levels. Thus, the number of
invocations equals O(2e) and the runtime of PERM is

O(2e(3m2nτ + (k2 + l)t)).

As we analyzed before, the runtime of the heuristic search
method is at least Ω(ket). Given that k is much larger than
2, when the NoE threshold e is larger than both the number
of inputs m and the number of outputs n, PERM runs much
faster than the heuristic search method.

B. Limiting the Processed SOPs
Although PERM runs much faster than the heuristic search

method, its runtime still increases exponentially with the NoE
threshold e. We propose an additional speed-up technique by
limiting the processed SOPs. We call it limiting processing
(LP) for short.

As the tree in Fig. 9 shows, the number of SOPs of the same
remaining NoE grows with the remaining NoE. This causes
the exponential increase of the runtime. To reduce the runtime,
we introduce a time-quality tuning parameter H . Among all

1A perfect binary tree is is a binary tree in which all internal nodes have
two children and all leaves have the same depth.

SOPs of the same remaining NoE, we only process the top
H with the fewest literals to produce further SOPs. This is
realized by Line 5 in Alg. 5: before we process each SOP
in set Si, which stores all SOPs with i remaining NoEs, we
first shrink Si by only keeping the top H SOPs in it with the
fewest literals. Note that if the parameter H is set to infinity,
it is the normal PERM.

With this technique, the total number of invocations of
Alg. 1 is limited to eH . Thus, the runtime reduces to

O(eH(3m2nτ + (k2 + l)t)), (3)

which only increases linearly with the NoE threshold. By
setting different values for H , we can achieve a trade-off
between the runtime and the design quality.

C. Reducing the Subsets of the Prime SICCs for Checking
PERM with LP reduces the number of invocations of Alg. 1.

To further reduce the runtime, we can reduce the runtime of
each invocation of Alg. 1. As we analyzed in Section V-A,
the runtime of each invocation of Alg. 1 is dominated by two
components, the runtime of the first step, which is O(3m2nτ),
and the runtime of the third step, which is O((k2 + l)t). Note
that t, the average time of estimating the literal reduction of a
subset of the prime SICCs, is much larger than τ , the average
time that the first step spends in visiting one cube in the Hasse
diagram. When the circuit size is small (i.e., 3m2n is small),
the runtime of each invocation of Alg. 1 is dominated by that
of the third step. In this section, we propose a technique to
further reduce the runtime of the third step of Alg. 1. In PERM,
each invocation of Alg. 1 has the NoE threshold as 2. Thus,
one major work in the third step is checking the pairs of prime
SICCs of sizes 1. Therefore, to decrease the runtime of the
third step, we can decrease the number of pairs of prime SICCs
of sizes 1 that we need to check.

To propose an acceleration strategy, we performed an em-
pirical study of PERM on six benchmarks. We identified the
sequence of SICCs that leads to the final solution. We found
that when an SICC in the sequence is of size 2 and is formed
by two prime SICCs of size 1, the first component SICC is
ranked within top 21% in the entire list of size-1 prime SICCs
by the literal reduction, while the second was ranked within
top 72%. This is reasonable because the top-ranked size-1
prime SICCs reduce more literals than the others. Based on
this observation, we propose the following strategy to reduce
the number of size-1 prime SICC pairs for checking. We only
consider the size-1 prime SICC pairs such that the first prime
SICC is within top 25% and the second prime SICC is within
top 80%. We call this speed-up technique reducing subsets
(RS) for short.

Applying RS does not affect the runtime complexity equa-
tion of PERM with LP. Its runtime complexity equation is still
Eq. (3). However, it reduces the number of size-1 primes SICC
pairs that needs to be checked from k(k−1)

2 to roughly 0.2k2.
Thus, this effectively reduces the runtime of the third step in
Alg. 1. As will be demonstrated by the experimental results in
Section VI, this speed-up technique does not reduce the final
quality much.

D. Reducing the Number of Cubes Visited in the First Step of
Alg. 1

The speed-up technique proposed in Section V-C reduces
the runtime of the third step in Alg. 1. However, it is only
effective when the circuit size is small. For a large circuit



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

with large m and n, the exponential factor in the runtime
complexity formula of the first step, i.e., 3m2n, is very large.
For example, for a circuit with m = 14 and n = 8, the
exponential factor 3m2n is more than 1.2 trillion. As a result,
the runtime of the first step dominates that of Alg. 1. In this
section, we propose a speed-up technique to handle a large
circuit by reducing the runtime of the first step of Alg. 1. The
key idea is to reduce the exponential factor.

The exponential factor 3m2n is due to the traversal of each
cube in the Hasse diagram. Thus, to reduce this factor, we
propose to reduce the number of cubes that we visit in the
Hasse diagram. In the proposed method, we only visit the
existing cubes in the original SOP and their ancestor cubes in
the Hasse diagram to build the set of SICC-cube trees. This
is achieved by starting from each existing cube and visiting
its ancestors bottom up. To avoid unnecessary cube checking,
when we visit an ancestor cube c and find that its number of
EICs is larger than the given NoE threshold e, we will stop
exploring the ancestor cubes of c. This is because any ancestor
cube of c covers c and hence, its number of EICs must also be
larger than the NoE threshold. By Definition 2, such a cube
cannot belong to any SICC-cube tree. Note that this technique
is used within PERM where the NoE threshold is set as 2 for
each invocation of Alg. 1. Thus, we usually do not need to go
very far from an existing cube to reach an ancestor with its
number of EICs larger than the NoE threshold. Consequently,
the number of cubes that we visit is significantly reduced,
causing the runtime reduction for the first step of Alg. 1. Of
course, this method may influence the quality of the results,
since it may miss candidate cubes that are not ancestor cubes
of any existing cube but can still reduce the literal count.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results on our
proposed heuristic search method and the speed-up techniques.
We implemented the algorithms in C++. In Sections VI-A–
VI-F, the experiments were carried on six small benchmarks,
z9sym, sym10, rd73, clip, sao2, and 5xp1, which were
also used in [24] and [26]. In Section VI-G, the experiments
were carried on more benchmarks, including some larger ones.
All the experiments were run on a desktop with a quad core
I5-6500 3.2GHz CPU and 32GB RAM.

A. Proposed Literal Reduction Estimation Method
As mentioned in Section IV-F, one important procedure is

to estimate the literal reduction of the union of a subset of
the prime SICCs. In this section, we studied the effectiveness
of our literal reduction estimation method proposed in Sec-
tion IV-F. We compared it with the method based on Espresso
mentioned at the beginning of that section. The approxima-
tion flow where these estimation methods are applied is the
heuristic search method without any speed-up techniques. The
results are shown in Table II. Column 1 of the table lists
the benchmark names. The values after the letters “i”, “o”,
and “c” are the number of inputs, the number of outputs, and
the number of existing cubes, respectively, for a benchmark.
Column 2 is the given NoE threshold. Columns 3, 4, and
6 list the numbers of literals for the original benchmark,
the approximate version with our proposed literal reduction
estimation method, and the approximate version with the
Espresso-based method, respectively. Columns 5 and 7 list the
runtime for estimating the literal reduction for all subsets of
the prime SICCs by the proposed method and that by the
Espresso-based method, respectively.

TABLE II: The comparison between our proposed literal reduction
estimation method and the Espresso-based estimation method.

Original Proposed Espresso
Benchmark NoE Literals Literals Time/ms Literals Time/ms

z9sym 1 610 581 10 581 82
i:9,o:1,c:86 2 567 940 554 3734

sym10 1 1470 1344 116 1344 284
i:10,o:1,c:210 2 1292 23269 1302 20353

rd73 1 903 881 5 881 56
i:7,o:3,c:127 2 865 554 862 3872

clip 1 793 755 10 756 103
i:9,o:5,c:120 2 743 494 738 3962

sao2 1 496 459 35 458 403
i:10,o:4,c:58 2 429 3146 428 33020

5xp1 1 347 327 1 347 24
i:7,o:10,c:65 2 315 53 320 552

TABLE III: The comparison between the basic heuristic search
method and PERM.

Original Heuristic PERM
Benchmark NoE Literals Literals Time/s Literals Time/s

z9sym 2
610

567 0.883 560 0.848
i:9,o:1 3 552 38.888 547 1.611
c:86 4 529 1444 530 3.042

sym10 2
1470

1292 23.625 1292 24.305
i:10,o:1 3 1269 1985 1259 48.428
c:210 4 1245 122674 1227 93.72
rd73 2

903
865 0.586 865 0.600

i:7,o:3 3 849 39.984 849 1.167
c:127 4 833 2917 833 2.248
clip 2

793
743 1.458 738 2.395

i:9,o:5 3 729 11.212 721 4.878
c:120 4 717 333 706 8.622
sao2 2

496
429 2.399 429 3.801

i:10,o:4 3 408 62.743 408 7.571
c:58 4 395 3725 394 13.068
5xp1 2

347
315 4.345 311 6.859

i:7,o:10 3 312 5.105 302 14.114
c:65 4 300 23.683 289 25.003

According to Table II, the quality of the approximate
expression using our literal reduction estimation method is
similar to that using the Espresso-based method. However,
our method is 9× faster than the Espresso-based method on
average. This shows the effectiveness of our proposed literal
reduction estimation method. In the following experiments, we
will use this method for estimating the literal reduction.

B. Progressive Error Reduction Method (PERM)

In this section, we studied the effectiveness of PERM
proposed in Section V-A. We compared it with the basic
heuristic search method. The results are shown in Table III.
This table is similar to Table II, except that the time refers to
the entire runtime of a method. In terms of the quality, PERM
can decrease more literals than the heuristic search method for
most cases. This is because the former works on a sequence of
approximation problems of smaller NoE thresholds, while the
latter works on a single problem of a larger NoE threshold.
Thus, the former may give more accurate literal reduction
estimation than the latter, and hence, a better quality. In terms
of the runtime, although PERM spends a little more time than
the heuristic search method for NoE thresholds smaller than 3,
for a larger NoE threshold, it saves much more time for most
cases. For NoE threshold of 4, it can reduce 81.9% runtime on
average. The trend of runtime increase over the NoE threshold
agrees with our runtime analysis in Section V-A: the runtime
of PERM roughly increases in the same trend as 2e, where e is
the NoE threshold. Although it is still exponential, the speed
of runtime increase is much slower than that of the heuristic
search method. In summary, PERM is superior to the heuristic
search method for a large NoE threshold.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

TABLE IV: The comparison among PERM with and without LP
and with and without RS.

PERM H = 2 RS RS, H = 2
Bench. NoE Literals Time/s Literals Time/s Literals Time/s Literals Time/s

z9sym 2 560 0.848 560 0.856 560 0.263 560 0.283
4 530 3.04 525 3.66 530 0.913 525 0.841

i:9,o:1 8 450 22.3 454 9.54 450 6.58 455 2.01
16 323 862 324 19.4 320 284 335 4.20

sym10 2 1292 24.3 1292 23.9 1294 1.10 1294 1.14
4 1227 93.7 1227 106 1228 3.86 1230 3.77

i:10,o:1 8 1098 711 1099 317 1100 28.3 1100 9.13
16 845 26071 845 673 847 1169 851 18.4

rd73 2 865 0.600 865 0.602 865 0.227 865 0.235
4 833 2.25 833 2.52 820 0.782 820 0.804

i:7,o:3 8 769 17.3 769 7.11 727 5.63 728 2.00
16 589 624 596 15.0 571 214 573 3.83

clip 2 738 2.40 738 2.40 738 2.22 738 2.35
4 706 8.62 706 8.98 703 7.82 703 7.92

i:9,o:5 8 653 64.7 653 21.9 652 60.7 652 19.2
16 584 2906 584 45.9 579 2886 579 40.5

sao2 2 429 3.80 429 3.79 429 3.05 429 3.20
4 394 13.1 394 13.7 394 10.8 394 10.7

i:10,o:4 8 322 86.3 326 32.4 318 82.6 318 25.5
16 209 4079 221 65.7 209 3924 209 53.1

5xp1 2 311 6.86 311 6.84 311 6.82 311 7.04
4 289 25.0 294 26.8 294 24.7 294 26.0

i:7,o:10 8 264 199 266 67.7 264 195 266 66.2
16 227 9222 228 149 225 6935 228 143

C. Limiting the Processed SOPs (LP)

In this section, we studied the effectiveness of the second
speed-up technique, LP, which is proposed in Section V-B. We
compared PERM with and without LP. The results of PERM
with and without LP are shown in columns 5 and 6 under the
title “H = 2” and columns 3 and 4 under the title “PERM” in
Table IV, respectively. When LP is applied, we set the time-
quality tuning parameter H to 2. From the table, we can see
that applying LP accelerates PERM for NoE threshold larger
than or equal to 8. The speed-up ratio grows with the NoE
threshold. For NoE threshold of 16, the speed-up ratio reaches
up to 63×. For benchmark clip, setting the parameter H to
2 does not affect the approximation quality for all the tested
NoE thresholds. For the remaining benchmarks, applying LP
degrades the quality slightly for a large NoE threshold. For
NoE threshold of 16, the average quality reduction over the
remaining benchmarks is only 1.5%. Overall, LP is quite
effective.

D. Reducing Subsets of the Prime SICCs for Checking (RS)

In this section, we studied the effectiveness of the third
speed-up technique, RS, which is proposed in Section V-C.
The experimental results are also shown in Table IV. In the ta-
ble, columns 7 and 8 under the title “RS” show the quality and
runtime, respectively, of PERM with RS. Comparing column
4 with column 8 we can see that PERM with RS runs faster
than PERM without RS for all the tested NoE thresholds. On
average, applying RS can reduce 42.4% runtime. Comparing
column 3 with column 7 we can see that applying RS does not
degrade the quality in most cases. For many cases, applying
RS can even improve the quality. This can be explained as
follows. With RS, the subsets formed by the prime SICCs in
the later part of the ordered SICC lists are not considered.
However, if they are considered, they have the potential of
giving a better literal reduction estimation. However, due to
the inexactness of the literal reduction estimation, they are
actually not the good choices. Thus, RS helps eliminate these
“false” optimal subsets.

Value of H

10
0

10
1

10
2

10
3

L
it
e
ra

l 
re

d
u
c
ti
o
n

200

250

300

350

T
im

e
/s

0

1500

3000

4500

Time of sao2

Time of rd73

Literal reduction of sao2

Literal reduction of rd73

Figure 10: The effect of the parameter H on the runtime and the
quality for PERM with LP and RS.

E. PERM with both LP and RS
In this section, we studied the effectiveness of PERM with

both LP and RS. LP has a time-quality tuning parameter H .
To decide a good choice for H , we first tested the method
on two benchmarks rd73 and sao2 for different choices of
H as 1, 2, 3, 5, 10, 30, 50, and +∞. The NoE threshold was
chosen as 16. The results are shown in Fig. 10, where the
blue curves show the literal reduction trend with the y-axis on
the left, while the red curves show the runtime trend with the
y-axis on the right. The dashed lines and the solid lines give
the results for rd73 and sao2, respectively. From Fig. 10, it
is clear that the runtime of the method increases with H . The
quality of approximate results improves a lot when H changes
from 1 to 2. However, when H further increases, the quality
improvement is very small. Based on this result, a good choice
for H is 2.

Columns 9 and 10 under the title “RS, H = 2” in Table IV
list the quality and runtime, respectively, of PERM with both
LP and RS and with parameter H = 2. Comparing the
columns under the title “PERM” and the columns under the
title “RS, H = 2” in Table IV, we can see that applying both
LP and RS to PERM can significantly reduce the runtime. For
the NoE thresholds of 8 and 16, the average speed-up ratios
are 18× and 333×, respectively. Meanwhile, the quality loss
is small. Out of the total 24 test cases, only 9 has quality loss.
The maximal quality loss is 3.7%. For some cases, the quality
even improves. For example, for the benchmark rd73 and the
NoE threshold 8, the quality improves by 5.3%.

Finally, we studied how the runtime increases with the NoE
threshold for PERM with both LP and RS. The parameter H
was set as 2. Fig. 11 shows the runtime-versus-NoE-threshold
curves for NoE thresholds of 1, 2, 4, 8, 16 for six benchmarks.
We can see that the runtime increases linearly with the NoE
threshold for all benchmarks when the NoE is larger than 1.
This agrees with our time complexity analysis in Section V-C:
as shown in Eq. (3), the runtime of PERM with LP and RS
increases linearly with the NoE threshold e.

In summary, the experimental results in this section demon-
strate the advantage of applying both LP and RS to PERM.
Thus, we will use PERM with LP and RS to compare with
other state-of-the-art methods.

F. Comparison with Other Methods
In this section, we compared our proposed PERM with LP

and RS to three other methods: the exhaustive search for the
optimal result, the method proposed in [24], and the method
proposed in [26]. We set the time-quality tuning parameter H
to 2. The method proposed in [24] is a state-of-the-art method
handling the same problem as ours. The comparison results
are shown in Table V. Since the exhaustive search method
has a very high time complexity, we only did the comparison



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

Number of errors

0 5 10 15

T
im

e
/s

0

50

100

150
z9sym

sym10

rd73

clip

sao2

5xp1

Figure 11: Runtime versus NoE threshold for PERM with LP and
RS.

under NoE thresholds of 1 and 2. Column 4 in the table
shows the optimal results returned by the exhaustive search.
Columns 5 and 6 are the experiment results from [24] and [26],
respectively. Column 7 shows the results of our method. For
each test case, if our result is no worse than the corresponding
results in [24] and [26], we highlight it in bold.

From the table, we can see for single-output functions,
i.e., z9sym and sym10, our method and the method in [24]
have nearly the same quality and both are near the optimal.
For multiple-output functions, our method is better than the
methods in [24] and [26]. This is because the methods in [24]
and [26] partition a multiple-output function into multiple
single output functions. Thus, they lose the optimization
opportunity across multiple outputs. In contrast, our method
considers the multiple outputs synergistically. When only the
multiple-output functions are considered, the average literal re-
duction ratios of our method over the methods in [24] and [26]
are 2.22% and 4.04%, respectively, while the maximal literal
reduction ratios of our method over those in [24] and [26] are
4.77% and 10.3%, respectively. It should be noted that in this
set of experiments, the NoE threshold is very small (i.e., 1 or
2). Thus, in some cases, the other methods already produce
results very close to the optimal results shown in column 4
of the table. Thus, the additional space for improvement is
limited and it causes the reduction ratio of our method to be
small. However, on the other hand, further closing the small
gap between the result of an existing method and the optimal
result is a challenging task, but our method is able to achieve it.
Thus, it still shows the value of the proposed method. Another
important point showing the effect of our method is that for
benchmark clip, it achieves the exact optimal result, while
the other methods cannot.

The last three columns list the runtime of the exhaustive
search, the method in [26], and our method, respectively. Since
we do not have the source code of the method in [24], we do
not list the runtime of it. Compared with the exhaustive search,
our method is much faster, which is expected. Compared with
the method in [26], our method is slower. This is because
the method in [26] does not estimate the literal reduction and
it simplifies the procedure by partitioning a multiple-output
function into individual single-output functions. However, the
runtime of our method is still within ten seconds and it has
better quality than the method in [26] for all the test cases.

Finally, we compared our method with the methods in [24]
and [26] for large NoE thresholds. In [24], the authors plotted
a literal-reduction-ratio-versus-error-rate curve for NoE thresh-
olds of 1, 2, 4, 8. We did the same thing here. The comparison
for single-output benchmarks is shown in Fig. 12a and that
for multiple-output benchmarks is shown in Fig. 12b. In both
figures, we use solid lines to indicate the results of [24], dashed

TABLE V: Comparison among our method, the exhaustive search
method, the method in [24], and the method in [26].

Literal count Time/s
Bench. NoE Original* Optimal [24] [26] Our* Optimal [26] Our
z9sym 1 610 581 581 581 581(84) 0.883 0.014 0.103
i:9,o:1 2 (86) 554 564 572 560(81) 41.7 0.016 0.283
sym10 1 1470 1344 1345 1345 1344(210) 2.94 0.042 0.45
i:10,o:1 2 (210) 1290 1290 1312 1294(210) 244 0.047 1.14

rd73 1 903 873 886 887 881(124) 1.45 0.004 0.034
i:7,o:3 2 (127) 843 866 875 865(121) 191 0.015 0.235

clip 1 793 755 777 777 755(114) 62.8 0.026 0.965
i:9,o:5 2 (120) 738 759 775 738(112) 86525 0.039 2.35
sao2 1 496 447 482 464 459(53) 17.3 0.061 1.46

i:10,o:4 2 (58) 408 - 455 429(49) 21328 0.084 3.20
5xp1 1 347 324 339 347 327(62) 66.9 0.006 2.59

i:7,o:10 2 (65) 305 314 347 311(61) 300323 0.012 7.04
* A value inside a pair of parentheses is the number of cubes in the

corresponding simplified SOP.

lines to indicate the results of [26], and dash-dotted lines to
indicate our results. The results of the three methods for the
same benchmark are shown in the same color. As shown in
Fig. 12a, for single-output functions, our method reduces a
similar number of literals as the methods in [24] and [26] for
NoE thresholds no more than 4. However, for a larger NoE
threshold like 8, our method is better. As shown in Fig. 12b,
for multiple-output functions, our method reduces more literals
than the methods in [24] and [26] for all the ERs. Generally,
the improvement by our method increases as the ER increases.
Notably, for benchmark sao2, when the ER is 0.8%, our
method can reduce 36% literals over the input expression
optimized by Espresso, while the methods in [24] and [26] can
only reduce 23% and 13% literals, respectively. On average,
for an ER threshold of 0.8%, the methods in [24] and [26]
can only reduce 11.4% and 8.97% literals, respectively, while
our method reduces 15.8% literals.

Error rate (%)

0 0.5 1 1.5 2

L
it
e
ra

l 
re

d
u
c
ti
o
n
 (

%
)

0

10

20

30

z9sym of Shin

sym10 of Shin

z9sym of Zou

sym10 of Zou

z9sym of us

sym10 of us

(a)

Error rate (%)

0 0.5 1 1.5 2

L
it
e

ra
l 
re

d
u

c
ti
o

n
 (

%
)

0

10

20

30

40
rd73 of Shin

clip of Shin

sao2 of Shin

5xp1 of Shin

rd73 of Zou

clip of Zou

sao2 of Zou

5xp1 of Zou

rd73 of us

clip of us

sao2 of us

5xp1 of us

(b)
Figure 12: Comparison between our method and the methods in [24]
(called Shin’s method) and [26] (called Zou’s method) on literal
reduction for different error rates: (a) single-output functions; (b)
multiple-output functions.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

14

G. Results on More Benchmarks

TABLE VI: The basic information of 19 benchmarks in the IWLS93
benchmark suit and the approximate results by our method under the
NoE threshold of 16.

Benchmark Original Approximate Literal
Literals Cubes Literals Cubes Time/s Reduction(%)

con1, i:7, o:2 32 9 32 9 0.385 0
rd73, i:7, o:3 903 127 578 88 1.48 36.0
inc, i:7, o:9 198 30 156 25 0.494 21.2

5xp1, i:7, o:10 347 65 235 49 0.726 32.3
sqrt8, i:8, o:4 188 38 98 22 0.587 47.9
rd84, i:8, o:4 2070 255 1578 218 6.52 23.8

misex1, i:8, o:7 96 12 96 12 0.509 0
z9sym, i:9, o:1 610 86 340 54 2.59 44.3
chip, i:9, o:5 793 120 588 93 1.99 25.9

apex4, i:9, o:19 5419 436 5040 421 109 7.0
sao2, i:10, o:4 496 58 231 29 2.48 53.4

ex1010, i:10, o:10 2718 284 2693 283 14.3 0.920
alu4, i:14, o:8 5087 575 4904 562 298 3.60

misex3, i:14, o:14 7784 690 7446 656 693 4.34
table3, i:14, o:14 2644 175 2459 165 513 7.0

misex3c, i:14, o:14 1561 197 1239 163 252 20.6
b12, i:15, o:9 207 43 207 43 249 0
t481, i:16, o:1 5233 481 5105 473 1570 2.45

table5, i:17, o:15 2501 158 2410 154 7868 3.64
Average 2046 202 1865 185 610 17.6

In the previous works [24] and [26], only a limited number
of benchmarks were tested. To benefit future research on the
same topic, in this section, we present the experimental results
of our proposed method on more benchmarks. We applied our
method to the circuits in the IWLS93 benchmark suit [33].
Due to the memory limitation, the algorithm can only handle
circuits with fewer than 20 inputs and the sum of the numbers
of inputs and outputs fewer than 34. Furthermore, we did not
consider circuits with fewer than 6 inputs, since for these
circuits, a small NoE will give a large ER. As a result,
we tested our method on 19 circuits as shown in Table VI.
Column 1 of the table lists the circuit names, the numbers of
inputs (i), and the numbers of outputs (o). For those circuits
with more than 10 inputs, even PERM with both LP and RS is
slow due to the prohibitively large Hasse diagram. Thus, our
method, which was applied to all the circuits, further includes
the speed-up technique proposed in Section V-D. The time-
quality tuning parameter H was set as 2 here. Columns 2
and 3 of the table list the numbers of literals and cubes of the
original SOPs, respectively. Columns 4 and 5 list the numbers
of literals and cubes of the approximate results by our method,
respectively, under the NoE threshold of 16. Column 6 shows
the runtime of our method. Column 7 lists the literal reduction
rates.

Among 19 circuits, our method cannot reduce any literals
for three circuits, i.e., con1, misex1, and b12. This is be-
cause these circuits do not have any prime SICCs of sizes 1 or
2 and the speed-up technique PERM reduces literals only when
a circuit has such prime SICCs. For some remaining circuits,
a significant amount of literal reduction can be achieved. For
example, for circuit sao2, the NoE of 16 corresponds to an
ER of 1.56%. Under this ER, our method could reduce 53.4%
literals. For circuit misex3c, the NoE of 16 corresponds to
an ER of 0.10%. Under this ER, our method could reduce
20.6% literals. On average, under the NoE threshold of 16,
our method reduces literals by 17.6%.

For circuits with at most 10 inputs, our method is fast:
the runtime is no more than 15s. However, as expected, the
runtime of our method increases with the circuit size. For
circuits with at least 14 inputs, our method takes more than
200s. However, except the largest circuit table5, our method

could still finish within half an hour. The average runtime over
all 19 circuits is 610s. If table5 is excluded, the average
runtime is 206s.

By comparing Tables IV and VI, we can also see the
effect of the speed-up technique proposed in Section V-D,
i.e., reducing the number of cubes visited in the first step
of Alg. 1. Specifically, Tables IV and VI share five common
benchmarks, z9sym, rd73, clip, sao2, and 5xp1. The last
two columns of Table IV give the literal counts and runtimes
of applying the method with all the speed-up techniques except
the one proposed in Section V-D to these five circuits under
the NoE threshold of 16. By comparing the corresponding
entries in Tables IV and VI on these five circuits, we found
that on average, using the speed-up technique proposed in
Section V-D, we can further reduce the time by 77.9% with a
small quality loss of 3.50%.

Fig. 13 further plots the average literal reduction over all
circuits with the same number of inputs for different ERs. In
this experiment, we excluded circuits con1, misex1, and
b12, for which our method is ineffective. We can see that the
average literal reduction increases with the ER. For the circuits
with 9 inputs, our method reduces 40.8% literals on average
under an ER threshold of 6.25%. For the circuits with 10
inputs, our method reduces 33.1% literals on average under
an ER threshold of 3.12%. For the circuits with 14 inputs,
our method reduces 13.1% literals on average under an ER
threshold of 0.195%.

Error rate (%)

10-4 10-3 10-2 10-1 100 101 102

A
v
e

ra
g

e
 l
it
e

ra
l 
re

d
u

c
ti
o

n
 (

%
)

0

10

20

30

40

50

#inputs: 7

#inputs: 8

#inputs: 9

#inputs: 10

#inputs: 14

#inputs: 16

#inputs: 17

Figure 13: The average literal reduction over all circuits with the
same number of inputs for different error rates.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel heuristic search method
for two-level approximate logic synthesis under the error rate
(ER) constraint. The key idea of our method is to search for
an optimal set of input combinations for 0-to-1 output com-
plement. We also proposed four speed-up techniques to reduce
the runtime significantly. The experimental results showed
that our accelerated search method is more effective than
the previous state-of-the-art methods, especially for multiple-
output circuits. In our future work, we will extend our method
to handle the ER and the worst case error constraints together
and handle incompletely specified Boolean functions with
don’t cares. We will also study how to apply the proposed
method as a subroutine for multi-level approximate logic
synthesis. Another direction to pursue is approximate logic
synthesis for look-up table (LUT)-based FPGAs. In this case,
since a LUT can implement any Boolean function of k inputs,
minimizing the number of literals in the SOP does not readily
translate into improvement in the LUT count. Thus, a different
technique should be developed.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2890532, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

15

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 61574089 and
the Natural Sciences and Engineering Research Council of
Canada (NSERC) under Project No. RES0025211.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in European Test Symposium,
2013, pp. 1–6.

[2] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys, vol. 48, no. 4, pp. 62:1–62:33, 2016.

[3] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8–22, 2016.

[4] S.-L. Lu, “Speeding up processing with approximation circuits,” Com-
puter, vol. 37, no. 3, pp. 67–73, 2004.

[5] N. Zhu, W. L. Goh et al., “Design of low-power high-speed truncation-
error-tolerant adder and its application in digital signal processing,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 18, no. 8, pp. 1225–1229, 2010.

[6] Y. Kim, Y. Zhang, and P. Li, “An energy efficient approximate adder
with carry skip for error resilient neuromorphic VLSI systems,” in
International Conference on Computer-Aided Design, 2013, pp. 130–
137.

[7] J. Hu and W. Qian, “A new approximate adder with low relative error
and correct sign calculation,” in Design, Automation and Test in Europe,
2015, pp. 1449–1454.

[8] C.-H. Lin and I.-C. Lin, “High accuracy approximate multiplier with
error correction,” in International Conference on Computer Design,
2013, pp. 33–38.

[9] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” in
Design, Automation and Test in Europe, 2014, pp. 95:1–95:4.

[10] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in International Confer-
ence on VLSI Design, 2011, pp. 346–351.

[11] D. Shin and S. K. Gupta, “A new circuit simplification method for error
tolerant applications,” in Design, Automation and Test in Europe, 2011,
pp. 1–6.

[12] S. Venkataramani, A. Sabne et al., “SALSA: Systematic logic synthesis
of approximate circuits,” in Design Automation Conference, 2012, pp.
796–801.

[13] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality con-
figurable circuits,” in Design, Auntomation and Test in Europe, 2013,
pp. 1367–1372.

[14] A. Bernasconi and V. Ciriani, “2-SPP approximate synthesis for error
tolerant applications,” in Euromicro Conference on Digital System De-
sign, 2014, pp. 411–418.

[15] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level approximate
logic synthesis under general error constraints,” in International Con-
ference on Computer-Aided Design, 2014, pp. 504–510.

[16] Y. Wu and W. Qian, “An efficient method for multi-level approximate
logic synthesis under error rate constraint,” in Design Automation
Conference, 2016, pp. 128:1–128:6.

[17] A. Chandrasekharan, M. Soeken et al., “Approximation-aware rewriting
of AIGs for error tolerant applications,” in International Conference on
Computer-Aided Design, 2016, pp. 83:1–83:8.

[18] Y. Wu, C. Shen et al., “Approximate logic synthesis for FPGA by wire
removal and local function change,” in Asia and South Pacific Design
Automation Conference, 2017, pp. 163–169.

[19] M. Traiola, A. Virazel et al., “Towards digital circuit approximation
by exploiting fault simulation,” in IEEE East-West Design and Test
Symposium, 2017, pp. 1–7.

[20] Y.-A. Lai, C.-C. Lin et al., “Efficient synthesis of approximate threshold
logic circuits with an error rate guarantee,” in Design, Automation and
Test in Europe, 2018, pp. 409–414.

[21] S. Su, Y. Wu, and W. Qian, “Efficient batch statistical error estimation for
iterative multi-level approximate logic synthesis,” in Design Automation
Conference, 2018, pp. 54:1–54:6.

[22] S. Hashemi, H. Tann, and S. Reda, “BLASYS: Approximate logic
synthesis using Boolean matrix factorization,” in Design Automation
Conference, 2018, pp. 55:1–55:6.

[23] A. Ranjan, A. Raha et al., “ASLAN: Synthesis of approximate sequential
circuits,” in Design, Automation and Test in Europe, 2014, pp. 364:1–
364:6.

[24] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in Design, Automation and Test in Europe, 2010, pp. 957–
960.

[25] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis
under general error magnitude and frequency constraints,” in Interna-
tional Conference on Computer-Aided Design, 2013, pp. 779–786.

[26] C. Zou, W. Qian, and J. Han, “DPALS: A dynamic programming-based
algorithm for two-level approximate logic synthesis,” in International
Conference on ASIC, 2015, pp. 1–4.

[27] C. Umans, T. Villa, and A. L. Sangiovanni-Vincentelli, “Complexity of
two-level logic minimization,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 25, no. 7, pp. 1230–
1246, 2006.

[28] V. Mrazek, R. Hrbacek et al., “EvoApprox8b: Library of approximate
adders and multipliers for circuit design and benchmarking of approxi-
mation methods,” in Design, Automation and Test in Europe, 2017, pp.
258–261.

[29] R. K. Brayton and F. Somenzi, “An exact minimizer for Boolean re-
lations,” in International Conference on Computer-Aided Design, 1989,
pp. 316–319.

[30] D. Baneres, J. Cortadella, and M. Kishinevsky, “A recursive paradigm
to solve Boolean relations,” IEEE Transactions on Computers, vol. 58,
no. 4, pp. 512–527, 2009.

[31] B. Garrett, Lattice Theory Revised. American Mathematical Society,
1948.

[32] R. K. Brayton, G. D. Hachtel et al., Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Publishers, 1984.

[33] K. McElvain, “IWLS93 benchmark set: Version 4.0,” 1993. [Online].
Available: https://ddd.fit.cvut.cz/prj/Benchmarks/IWLS93.pdf

Sanbao Su is a master student in the University
of Michigan-Shanghai Jiao Tong University Joint
Institute at Shanghai Jiao Tong University. He re-
ceived his B.S. degree from School of Management
and Engineering at Nanjing University. His main
research interests include logic synthesis for approx-
imate computing.

Chen Zou is a Ph.D. student in the Computer
Science Department of the University of Chicago.
Chen Zou obtained B.S. in Microelectronics in June
2016 at Fudan University where he did some work
on electronic design automation. Chen Zou lays a
broad interest in different layers of the computer
systems.

Weijiang Kong received the B.S. degree from
Shanghai Jiao Tong University, Shanghai, China, in
2018. He is currently pursuing the masters degree at
Department of Electronics, Royal Institute of Tech-
nology, Stockholm, Sweden. His current research
interests include VLSI design and reconfigurable
hardware architecture.

Jie Han (S’02-M’05-SM’16) is currently an As-
sociate Professor in the Department of Electrical
and Computer Engineering at the University of
Alberta, Canada. He received the B.S. degree in
Electronic Engineering from Tsinghua University in
1999 and the Ph.D. degree from the Delft University
of Technology in 2004. His research interests include
approximate computing, stochastic computing, relia-
bility and fault tolerance, nanoelectronic circuits and
systems, novel computational models for nanoscale
and biological applications.

Weikang Qian (S’08-M’11) is an associate pro-
fessor in the University of Michigan-Shanghai Jiao
Tong University Joint Institute at Shanghai Jiao Tong
University. He received his Ph.D. degree in Elec-
trical Engineering at the University of Minnesota
in 2011 and his B.Eng. degree in Automation at
Tsinghua University in 2006. His main research
interests include electronic design automation and
digital design.


