
2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Design, Evaluation and Application of
Approximate High-Radix Dividers

Linbin Chen, Student Member IEEE, Jie Han, Member IEEE, Weiqiang Liu, Senior Member IEEE
IEEE, Paolo Montuschi Fellow IEEE and Fabrizio Lombardi, Fellow, IEEE

Abstract— Approximate high radix dividers (HR-AXDs) are proposed and investigated in this paper. High-radix division is
reviewed and inexact computing is introduced at different levels. Design parameters such as number of bits (N) and radix (r) are
considered in the analysis; the replacement of exact cells with inexact cells in a binary signed-digit adder is introduced by
utilizing different replacement schemes. Cell truncation and error compensation are also proposed to further extend inexact
computation. Circuit-level performance and the error characteristics of the inexact high radix dividers are analyzed for the
proposed designs. The combined assessment of the normal error distance, power dissipation and delay is investigated and
applications of approximate high-radix dividers are treated in detail. The simulation results show that the proposed approximate
dividers offer extensive saving in terms of power dissipation, circuit complexity and delay, while only incurring in a small
degradation in accuracy thus making them possibly suitable and interesting to some applications and domains such as low
power/mobile computing.

Index Terms— Approximate Divider, High-radix, Inexact computing, Normalized Error Distance, Power Dissipation

——————————  ——————————

1 INTRODUCTION
odern computer arithmetic applications are imple-
mented using digital logic circuits, thus operating

with a high degree of precision. However, many applica-
tions such as machine learning, multimedia and image
processing can tolerate errors and imprecision in compu-
tation and still produce results that can be useful in many
applications in which human senses (such as vision) are
involved. The paradigm of inexact computation relies on
relaxing fully precise and completely deterministic mod-
ules when for example, designing energy efficient sys-
tems; this allows imprecise computation to redirect the
existing design process by taking advantage of a decrease
in complexity and cost with possibly a potential increase
in performance and power efficiency. Approximate (or
inexact) computing relies on using this property to design
simplified, yet approximate circuits operating at higher
performance and/or lower power consumption com-
pared with precise (exact) logic circuits.

Approximate computing is well suited to arithmetic
circuits such as approximate adders (AXA), multipliers
(AXM) and dividers (AXD). These designs fall into two
categories: circuit and algorithm. For a circuit, the exact
deign is modified at either transistor or gate level by as-
sessing the benefits obtained from the approximate de-

signs with respect to a reduced hardware complexity.
Five approximate MAs (AMAs) have been obtained using
logic reductions at transistor level, i.e., by removing some
transistors to attain reductions in power dissipation and
circuit complexity [1]. The three AXAs of[2] show attrac-
tive operational profiles in performance, hardware effi-
ciency and power-delay product (PDP) at a good accura-
cy. When designing multiple-bit approximate adders, it is
advisable to start from modifying the algorithm. For ex-
ample, carry propagation has received considerable atten-
tion. N. Zhu etc. have proposed error-tolerant adders in
which he carry propagation chain is truncated by parti-
tioning the adder into several sub-adders [3-5]. [6] has
proposed a variable latency speculative adder (VLSA)
with error detection and recovery. The speculative adder
of [7] reduces hardware overhead while keeping a low
error rate when the operands are in 2’s complement for-
mat under a Gaussian distribution; the accurate configu-
rable adder of [8] allows adaptive operations, so either
approximate, or accurate by runtime configuration. Ap-
proximate multipliers (AXM) have been also proposed;
since multiplication is usually implemented by utilizing
an array of adders, some of the LSBs in the partial prod-
ucts can be omitted [9] (while adding error compensation
mechanisms), thus fewer adders can be removed in the
array for faster operation. In [10], a simplified 2⨉2 multi-
plier is used as module for designing a larger multiplier; a
novel design using input pre-processing and error com-
pensation is proposed for reducing the critical path delay
of a multiplier.

Approximate arithmetic division has not yet been ex-
tensively analyzed; there are increasing demands for
high-speed dividers in today’s floating point units (FPU)
and digital signal processors for image and three-
dimensional graphics applications, such as 2D image

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
• Linbin Chen and Fabrizio Lombardi are with the Electrical and Computer

Engineering Department, Northeastern University, Boston, MA 02115. E-
mail: chen.lin@husky.neu.edu; lombardi@ece.neu.edu

• Jie Han is with the Electrical and Computer Engineering Department, Uni-
versity of Alberta Edmonton, AB, Canada. E-mail: jhan8@ualberta.ca.

• Weiqiang Liu is with the College of Electronic and Information Engineer-
ing, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
E-mail: liuweiqiang@nuaa.edu.cn.

• Paolo Montuschi is with the Department of Control and Computer Engi-
neering, Politecnico di Torino, 10129, Italy. E-mail: pao-
lo.montuschi@polito.it.
This manuscript is an extended version of the conference article listed in the
bibliography as [18].

M

mailto:chen.lin@husky.neu.edu
mailto:jhan8@ualberta.ca
mailto:liuweiqiang@nuaa.edu.cn

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

background removal, change detection [11] and graphic
rendering. These applications ultimately target human
vision, so they can tolerate errors and imprecision in
computing and still produce meaningful results. AXD de-
signs have been proposed by modifying the division al-
gorithm; [12] has proposed a dynamic AXD by truncating
the input operands to reduce the size of the arithmetic di-
vider circuit, while [13, 14] has proposed a rounding-and-
truncation based approximate divider by converting divi-
sion into a series of shift and add operations. However, it
is also possible to exploit the design space in which the
original division algorithm is not fundamentally modi-
fied, but the transistor-level hardware is changed to re-
duce delay and power consumption.

In the technical literatures, many exact algorithms
have been proposed for division [15]. Digit recurrence
methods are widely used for hardware design; imple-
mentations can be either sequential, combinational, or a
combination of both. The implementation of a combina-
tional divider, is amenable to pipeline, thus would give
higher throughput. Based on these findings, the combina-
tional implementations of a divider based on restoring,
non-restoring [16] and SRT algorithms [17]are treated in
more detail as according to the following features:
1. In these division algorithms, computation is carried

out by addition/subtraction and shifting, so only
basic and simple operations are employed. These op-
erations are also highly modularized and enable an
inexact design at module (or cell) level.

2. A combinational array divider provides flexibility
and granularity for an inexact design at all levels, i.e.
from a cell through each computational stage up to
the entire array.

3. In a fully combinational array divider, the sequential
division unit consists of several computational stages,
in which different design parameters can be changed
and assessed while meeting often conflicting figures
of merit for approximate computing.

Other methods for computing division exist in the
technical literature, for example the Newton-Raphson
method based on the intensive use of multiplications.
However, in this paper we focus on digit-by-digit divi-
sion only. Hereafter unless explicitly stated, division is
intended to be digit-by-digit. Different from multiplica-
tion, a digit-by-digit division method is mostly a sequen-
tial process, while multiplication can be executed as mul-
ti-operand parallel additions (i.e. partial product genera-
tion can be parallelized). Thus, for approximate division,
the impact of the sequential processing nature on accura-
cy must be carefully assessed; for example, when calculat-
ing the quotient, iterations introduce a cumulative error.
Therefore, error propagation must be mitigated in such
approximate design.

In the previous work by the same authors [18], designs
of approximate radix-2 unsigned non-restoring and re-
storing dividers (denoted as AXDnr and AXDr) have
been proposed. New approximate AXDr cells (denoted as
AXDCr) have been investigated and approximate compu-
ting has been applied to division by considering different
schemes by which exact cells are replaced/truncated in

the array divider circuit. In [19], a high-radix division al-
gorithm [20] and its results have been analyzed, general-
ized and a novel architecture has been proposed for ap-
proximate high-radix division in a similar fashion as in
[18]. The original exact design in [20] has presented an
algorithm based on a SRT digit-by-digit scheme for high-
radix division; it employs a prescaling technique for divi-
sion by digit recurrence. In the inexact design of [19], the
signed-digit adder cell is simplified, while still utilizing
replacement or truncation; its contribution extends also to
an algorithmic domain as different numbers of bits (N),
radix number (r) and replacement/truncation depth (d)
are also considered. While presenting a more detailed cir-
cuit schematics of the design, this paper proposes a new
error compensation scheme to address the significant de-
crease of accuracy in [19] when a truncation scheme is uti-
lized. Comparison to the radix-2 AXDr design is also pro-
vided to address the difference between high-radix and
traditional (radix-2) dividers. Circuit-level performance
and the error characteristics of the inexact high radix di-
viders are also analyzed and assessed both at algorithmic
and circuit levels, inclusive of performance for an image
processing application.

The paper is organized as follows. Section 2 gives a
brief review of the high radix division algorithm with
pre-scaling and the simple quotient selection logic. Sec-
tion 3 introduces the proposed approximate adder cells
and error compensation cell designs and application to
divider design as an array-level approximation. In Section
4, the Normalized Error Distance (NED), the error distri-
bution, power and delay are simulated to assess the per-
formance of exact and approximate dividers. Possible
trade-offs between the two metrics of NED and power are
also discussed. Simulation results for different image pro-
cessing applications are presented in Section 5. Section 6
concludes the paper.

2 REVIEW
This section presents a brief review of the high radix divi-
sion algorithm and the hardware implementation with
prescaling by [20] as relevant to the proposed scheme .

2.1 High-radix division algorithm
In the current literature, the mostly widely used ap-
proaches for division are based either on selection tables,
or on prescaling or a combination of the two [17]. In the
selection table based approach approach, the digits of the
quotient are obtained by inspecting the dividend and the
partial remainder; according to the number of value com-
binations (as stored in digit selection tables), the quotient
digit is obtained at each iteration [15]. However, for high
radix the size of these tables increases, yielding large im-
plementations. Among the techniques for addressing this
negative design feature, prescaling (as proposed in [20-
22]) is widely employed.

An efficient and unified implementation of high-radix
array dividers with no lookup table for quotient digit se-
lection using prescaling has been presented in [20]. In this
algorithm, additional prescaling and conversion of the

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

AUTHOR ET AL.: TITLE 3

number representation are utilized; at each iteration, the
quotient digit is directly obtained from the most signifi-
cant (integer) part of the partial remainder. This makes
possible the construction of fully combinational high-
radix dividers exhibiting a latency similar to a radix-2 di-
vider.

The high-radix division algorithm of [20] is based on
the standard SRT digit-by-digit division; let the dividend
and divisor be denoted by X and D, respectively (normal-
ized as 1/2 ≤ X<D< 1). The SRT division algorithm with
n-bit precision is given by the following recursive equa-
tions:

 𝑅𝑅(0) = 𝑋𝑋,

 𝑅𝑅(𝑗𝑗+1) = 𝑟𝑟𝑅𝑅(𝑗𝑗) − 𝑞𝑞𝑗𝑗+1𝐷𝐷. (1)

where (𝑗𝑗 = 0,1,2, … ,𝑛𝑛 − 1), r is the radix value (usual-
ly 𝑟𝑟 = 2𝑚𝑚(𝑚𝑚 = 1,2,3, …)R, j is the iteration step, 𝑅𝑅(𝑗𝑗)is the
partial remainder at step j, and 𝑞𝑞𝑗𝑗 is the jth quotient digit
selected from {-(r-1), … -1, 0, 1, …, r-1}. The quotient Q is
given by

 𝑄𝑄 = � 𝑟𝑟−𝑗𝑗 ⋅ 𝑞𝑞𝑗𝑗
𝑛𝑛
𝑗𝑗=1 , (2)

In the design of [20], Eq. (1) is calculated using Signed-
Digit (carry-free) adders based on the redundant BSD
representation; so, the shifted partial remainder 𝑟𝑟𝑅𝑅(𝑗𝑗) is
represented by using a BSD numbering system (denoted
by the subscript SD2):

Fig. 2 Example of HR-EXD for 8-bit radix-4 [20]

 𝑟𝑟𝑅𝑅(𝑗𝑗) = [𝑎𝑎𝑚𝑚−1 … 𝑎𝑎1𝑎𝑎0.𝑎𝑎−1𝑎𝑎−2 … 𝑎𝑎−𝑘𝑘]𝑆𝑆𝑆𝑆2

 = � 2𝑖𝑖𝑎𝑎𝑖𝑖
𝑚𝑚−1
𝑖𝑖=−𝑘𝑘 , (3)

where 𝑎𝑎𝑖𝑖 ∈ {−1,0,1}. Then, the (𝑗𝑗 + 1)𝑡𝑡ℎ quotient digit 𝑞𝑞𝑗𝑗+1
is obtained directly from the integer part of 𝑟𝑟𝑅𝑅(𝑗𝑗) by con-
verting the t most significant digits 𝑎𝑎−1𝑎𝑎−2 …𝑎𝑎−𝑡𝑡 of the
fractional part of 𝑟𝑟𝑅𝑅(𝑗𝑗) to a non-redundant form, containing
only digits from the set {-1, 0} or {0, 1}, i.e.

 𝑟𝑟𝑅𝑅(𝑗𝑗) = [𝑐𝑐𝑚𝑚−1 … 𝑐𝑐1𝑐𝑐0. 𝑏𝑏−1 … 𝑏𝑏−𝑡𝑡𝑎𝑎−𝑡𝑡−1 … 𝑎𝑎−𝑘𝑘]𝑆𝑆𝑆𝑆2 (4)

where 𝑏𝑏𝑖𝑖 ∈ {−1,0} or {0,1}, 𝑎𝑎𝑖𝑖, 𝑐𝑐𝑖𝑖 ∈ {−1,0,1}, and

 𝑞𝑞𝑗𝑗+1 = [𝑐𝑐𝑚𝑚−1 … 𝑐𝑐1𝑐𝑐0]𝑆𝑆𝑆𝑆2 = � 2𝑖𝑖𝑐𝑐𝑖𝑖
𝑚𝑚−1
𝑖𝑖=−𝑘𝑘 , (5)

where 𝑐𝑐𝑖𝑖 ∈ {−1,0,1} and 𝑞𝑞𝑗𝑗+1 ∈ {−(𝑟𝑟 − 1), … , 0, … , 𝑟𝑟 − 1}.
To achieve this quotient selection method, the divisor

D and the dividend X must be prescaled, so changing the
divisor range from [1/2,1) to [Dmin, 1). Dmin is the lower
bound of the scaled D and is determined by the following
equation:

 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑟𝑟−2+2−𝑡𝑡

𝑟𝑟−1
≤ 𝐷𝐷 ≤ 1, (6)

The proof of equation (6) has been provided by T. Aoki
et al in [20]. The number of iterations in the division pro-
cess can be reduced by increasing the radix r, i.e. by se-
lecting r = 2m; this allows the generation of m quotient bits
at each step, such that the number of steps is reduced to
⌈𝑛𝑛/𝑚𝑚⌉.

2.2 Exact High-radix Divider (HR-EXD) Hardware
Design

The implementation of a HR-EXD for the algorithm re-
viewed previously has been presented in [20]. The struc-
ture of an 8-bit radix-4 divider with r=4, t=2 is shown in
Fig. 2; it consists of the following basic blocks.

HR-EXD Row: The hardware implementation of the
HR-EXD iteration row is shown in Fig. 1; it contains a row
of Product Generation (PG) modules, a row of BSD Ad-
ders (BSDA) and a Quotient Selection (QS) module. As
redundant BSD representation (RBR) allows addition
without propagating a carry. When compared to a non-

Fig. 1 HR-EXD Iteration Row Schematics

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

redundant representation, RBR makes digit-wise logic
operations slower, however arithmetic operations are
faster when a large bit width is used [17]. In a high-radix
division circuit design, a Binary Signed-Digit (BSD) num-
bering system (as a subcategory of a RBR system [23])
with a digit set of {-1,0,1} is used to represent the partial
remainder at each stage. The intermediate quotient 𝑞𝑞𝑗𝑗 ∈
[−3, +3] is represented in signed-magnitude form; Posi-
tive/negative flag encoding (Table 1) is used for each BSD
digit.

TABLE 1 ENCODING OF BSD DIGITS
BSD Digits d d+ d-

-1 0 1
0 1 or 1 0 or 0
1 1 0

(a) (b)

Fig. 3 (a) An example of qD product generator (PG) for radix-4 case
[20] (b) Exact Signed Digit Adder Cell (EXSDAC)

(a) (b)
Fig. 4 Example of (a) Scaling Unit (SU) (b) On-the-fly conversion for
r=4, t=2 [20]

Quotient Digit Selector (QS): As per the algorithm in
[20], the real binary value of the integer part of 𝑟𝑟𝑅𝑅(𝑗𝑗) is se-
lected as the (𝑗𝑗 + 1)𝑡𝑡ℎ quotient digit 𝑞𝑞𝑗𝑗+1. The implemen-
tation of this quotient selection rule does not require a
digit selection table; it requires only a high-speed signed-
digit carry propagation adder (SDCPA) for a limited
number of bits (Fig. 1). For a higher radix, the design of
the QS can be extended based on the radix-4 implementa-
tion.

Product Generator (PG): PG requires all multiples of
𝐷𝐷 (−3𝐷𝐷, … ,3𝐷𝐷) as pairs generated by shift operations. The
circuit diagram of a PG is shown in Fig. 3(a); the PG
module for radix-8 and higher can be extended from the
radix-4 case.

Exact Signed Digit Adder Cell (EXSDAC): Fig. 1 (b)
shows the Exact Signed Digit Adder Cell (EXSDAC); The
EXSDAC remains the same for all HR-EXD irrespective of
bit width and radix. The approximate designs shown next
are based on the approximation of EXSDAC, i.e., the pro-
posed approximate scheme is suitable for HR-EXD with
different bit width and radix.

Scaling Unit (SU): as input operands, the divisor D and
the dividend X must be prescaled prior to starting the it-
erations in the division. Fig. 4(a) shows the operand scal-
ing unit using shifters and carry propagation adders
(CPA). For radix-8 and higher radix values, the scaling
unit does not change because it can be extended based on
the radix-4 implementation.

On-the-Fly Conversion: The quotient must be converted
from a signed-digit representation to a two’s complement
representation. This is accomplished by an addition after
the quotient is fully computed; however, this addition in-
creases the overall execution time. So to avoid this step,
the on-the-fly algorithm of [24] is usually used to perform
the conversion in a digit-serial fashion to generate the
digits of the quotient; this technique is also utilized in this
paper. The recursive equation is shown below, the on-the-
fly conversion scheme is shown in Fig. 4(b).

𝐴𝐴[𝑘𝑘 + 1] = �
𝐴𝐴[𝑘𝑘] + 𝑝𝑝𝑘𝑘+1𝑟𝑟−(𝑘𝑘+1), 𝑖𝑖𝑖𝑖 𝑝𝑝𝑘𝑘+1 ≥ 0

𝐵𝐵[𝑘𝑘] + (𝑟𝑟 − |𝑝𝑝𝑘𝑘+1|)𝑟𝑟−(𝑘𝑘+1), 𝑖𝑖𝑖𝑖 𝑝𝑝𝑘𝑘+1 < 0

𝐵𝐵[𝑘𝑘 + 1] = �
𝐴𝐴[𝑘𝑘] + (𝑝𝑝𝑘𝑘+1 − 1)𝑟𝑟−(𝑘𝑘+1), 𝑖𝑖𝑖𝑖 𝑝𝑝𝑘𝑘+1 ≥ 0

𝐵𝐵[𝑘𝑘] + ((𝑟𝑟 − 1) − |𝑝𝑝𝑘𝑘+1|)𝑟𝑟−(𝑘𝑘+1), 𝑖𝑖𝑖𝑖 𝑝𝑝𝑘𝑘+1 < 0
.

3 PROPOSED APPROXIMATE DESIGNS
As shown previously in Fig. 2, the binary signed-digit
adder (made of exact cells, EXSDACs) is one of the most
common used computational modules of a high radix di-
vider; hence, approximation for inexact computing must
be directed to this module.

3.1 Approximate Signed-Digit Adder Cell
(AXSDAC)

Fig. 5 Approximate design of EXSDAC (AXSDAC).

The EXSDAC computes the subtraction or addition per
the quotient selection output. As 𝑅𝑅(𝑗𝑗+1)+ = Cin+ , so the in-
put and output functions of these two signals can be ig-
nored. The critical path of this design has a delay of 3Δ,
where Δ is the unitary delay through XOR gate (arrow in
Fig. 3b). In [19], approximate design of EXSDAC (denoted
as AXSDAC)is proposed(Fig. 5). R(j+1)− is simplified to
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜+ by changing the value of the other 8 outputs.

Table 2 shows the truth table of the AXSDAC; this de-
sign has therefore 8 incorrect outputs out of 32 outputs

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

AUTHOR ET AL.: TITLE 5

(denotes as bold in the table), so in theory its error rate is
25% (if all combinations are equally probable). A pass-
transistor logic design is utilized to further decrease the
circuit complexity, the delay and the power consumption;
for example, the XOR and XNOR gates are shown in Fig.
6.

TABLE 2 TRUTH TABLE OF PROPOSED AXSDAC
𝑟𝑟𝑅𝑅(𝑗𝑗)+ 𝑟𝑟𝑅𝑅(𝑗𝑗)− −qj+1D− −qj+1D+ Cın−���� Cout−����� Cout+ 𝑅𝑅(𝑗𝑗+1)− ED

0 0 0 0 1 1 0 0 0
1 0 0 0 1 1 1 1 0
0 1 0 0 1 0 1 1 0
1 1 0 0 1 1 0 0 0
0 0 1 0 1 1 1 1 0
1 0 1 0 1 1 1 1 -1
0 1 1 0 1 0 1 1 -1
1 1 1 0 1 1 1 1 0
0 0 0 1 1 0 1 1 0
1 0 0 1 1 1 0 0 0
0 1 0 1 1 0 0 0 0
1 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 1 -1
1 0 1 1 1 1 1 1 0
0 1 1 1 1 0 1 1 0
1 1 1 1 1 0 1 1 -1
0 0 0 0 0 1 0 0 +1
1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 +1
0 0 1 0 0 1 0 0 0
1 0 1 0 0 1 1 1 0
0 1 1 0 0 0 1 1 0
1 1 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0 +1
0 1 0 1 0 0 0 0 +1
1 1 0 1 0 0 0 0 0
0 0 1 1 0 0 1 1 0
1 0 1 1 0 1 0 0 0
0 1 1 1 0 0 0 0 0
1 1 1 1 0 0 1 1 0

(a) (b) (c)

Fig. 6 XOR and XNOR implemented with pass-transistor logic

3.2 Approximate High Radix Array Divider (HR-
AXD)

1) Replacement Scheme and Truncation Scheme
When designing the approximate divider, EXSDACs are
selectively replaced by AXSDACs; hence in this case, ap-

proximation is the process by which an exact cell is re-
placed by an approximate cell or simply truncated. Re-
placement and Truncation scheme are proposed in [19].
The extent by which this replacement process is per-
formed in a divider, is quantified by the depth d, i.e. the
number of rows (and/or columns) in the divider with
approximate cells. For an N bit width of a radix 2𝑚𝑚(m=1,
2, 3…) divider, the number of EXSDACs is given as
(N+2m)×(N/m); m EXSDACs are combined into a re-
placement element (RE). For example, in the 8-bit radix-4
divider, two EXSDACs are treated together as a single RE
(shown in Fig. 7 by the dotted rectangles of EXSDACs).
The replacement configurations and corresponding depth
d for an 8-bit radix-4 array divider are shown in Fig. 7.

(a) (b)

(c) (d)

Fig. 7 Different approximate configurations and replacement depths
for 8-bit radix-4 divider (a) VR d=2 (b) HR d=2 (c) SR d=2 (d) TR d=2

Four types of replacement are used for approximation
in the divider design:
• Vertical Replacement (VR): The least significant REs in

each row of the divider are replaced. So, both the re-
mainder and the quotient show a small error dis-
tance, while taking advantage of the power-saving
characteristics of the AXSDACs. The depth of the ver-
tical replacement can be increased to further decrease
the power, while tolerating more errors in the output.
𝑚𝑚(𝑁𝑁/𝑚𝑚)𝑑𝑑 = 𝑁𝑁𝑁𝑁 EXSDACs are replaced with
AXSDACs. An example for m=2, d=2 is shown in Fig.
7(a).

• Horizontal Replacement (HR): In a divider, the value of
the quotient is mostly related to the carry signal of
each cell in a single row. For example, consider the
last row corresponding to the LSB of Q; if the final
value of reminder R is not of significant concern, then
all EXSDACs in the last row can be replaced with
AXSDACs at no significant loss of accuracy in Q. If
an error can be tolerated in Q, then an increase in the
depth of the horizontal replacement up to the dth LSB
of Q is possible. An example of a horizontal replace-
ment divider of depth d=2 is shown in Fig. 7(b).(𝑁𝑁 +
2𝑚𝑚)𝑑𝑑 EXSDACs are replaced with AXSDACs in an
approximate divider with a horizontal replacement of
depth d.

• Square Replacement (SR): the so-called square configu-
ration is generated by combining the vertical and
horizontal replacements. So, 𝑚𝑚𝑑𝑑2 EXSDACs are re-
placed with AXSDACs; an example of a square re-
placement of depth d=2 is shown in Fig. 7(c).

• Triangle Replacement (TR): Consider the integer pair
(x,y) as coordinates of individual RE in a divider. For
the replacement of an exact RE(i,j) (i<d or j<d) with an

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

inexact RE in a triangle approximation divider with
depth d (d≥1), 𝑚𝑚𝑑𝑑(𝑑𝑑 + 1)/2 EXSDACs are replaced
with AXSDACs. An example of a triangle replace-
ment divider with d=2 is shown in Fig. 7(d).

Truncation is different from replacement, because the
EXSDACs are not changed to AXSDACs, instead they are
eliminated. As for replacement, four types of truncation
are used as approximation in the divider design: Vertical
Truncation (VT), Horizontal Truncation (HT), Squared
Truncation (ST) and Triangle Truncation (TT).

Consider next circuit complexity as given by the num-
ber of transistors in an implementation; based on the dif-
ferent replacements, this metric can be derived as follows.
Consider a radix 𝑟𝑟 = 2𝑚𝑚(𝑚𝑚 = 1,2,3 …) for a N-bit divider
with replacement depth d; the number of adder cells is
given by (𝑁𝑁 + 2𝑚𝑚) ⋅ 𝑁𝑁/𝑚𝑚. At a depth d, the replaced cells
are given by 𝑁𝑁 ⋅ 𝑑𝑑 , (𝑁𝑁 + 2𝑚𝑚) ⋅ 𝑑𝑑 , 𝑚𝑚 ⋅ 𝑑𝑑2 , and 𝑚𝑚 ⋅ 𝑑𝑑 ⋅
(𝑑𝑑 + 1) 2⁄ for the vertical, horizontal, square and triangle
replacements. For each replaced cell, the number of tran-
sistors is reduced by 25%. The number of transistors of a
PG is 3 ⋅ 2𝑚𝑚, the number transistors of a QS is 𝑚𝑚2 + 33𝑚𝑚 +
4, the number of transistors of a SU is 24𝑚𝑚(𝑚𝑚 + 𝑁𝑁), while
the number of transistors for the on-the-fly conversion
circuit is 4𝑁𝑁(𝑁𝑁 + 1) 𝑚𝑚⁄ + 20; so, the total number of tran-
sistors (Z) for a HR-AXD replacement configuration is
given by:

𝑍𝑍 = 22(𝑁𝑁 + 2𝑚𝑚)
𝑁𝑁
𝑚𝑚
−

⎩
⎪
⎨

⎪
⎧
𝑁𝑁 ⋅ 𝑑𝑑 (𝑉𝑉𝑉𝑉)
(𝑁𝑁 + 2𝑚𝑚) ⋅ 𝑑𝑑 (𝐻𝐻𝐻𝐻)
𝑚𝑚 ⋅ 𝑑𝑑2 (𝑆𝑆𝑆𝑆)

𝑚𝑚 ⋅ (𝑑𝑑 + 1) ⋅
𝑑𝑑
2

(𝑇𝑇𝑇𝑇)⎭
⎪
⎬

⎪
⎫

⋅
4𝑁𝑁𝑁𝑁
𝑚𝑚

+ [3 ⋅ 2𝑚𝑚 ⋅ (𝑁𝑁 + 2𝑚𝑚) + 𝑚𝑚2 + 33𝑚𝑚 + 4]
𝑁𝑁
𝑚𝑚

+24𝑚𝑚(𝑚𝑚 + 𝑁𝑁) +
4𝑁𝑁(𝑁𝑁 + 1)

𝑚𝑚
+ 20

2) Error Compensation Scheme

Fig. 8 Error compensation for truncation

The reduction of cells by truncation is amenable to error
compensation. For a radix 𝑟𝑟 = 2𝑚𝑚 divider, the most signif-
icant (3m)th bits of the residual 𝑟𝑟𝑅𝑅(𝑗𝑗)of each adder stage
are used to generate the quotient for the next stage; so, to
attain a reduced inaccuracy in the quotient Q, the compu-
tation at the(3m)th bits of each adder stage must be done
as nearly exact as possible.

Consider the three cascading EXSDACs (shown in Fig.
8)to form a cluster; assume that the left EXSDAC is at

the(3m)th bit position of an adder stage. Using truncation,
if the middle and right EXSDACs are eliminated by trun-
cation, the (3m)th cell will not generate a correct output
for 𝑅𝑅(𝑗𝑗+1), so making the quotient inaccurate. For the
(3m)th bit cells to compute correctly, two paths (shown in
red and blue) must be preserved; these paths are depend-
ent on the middle and right cells. As shown in Fig. 8, only
some of the EXSDACs are needed for preserving correct-
ness in these two paths; so, the circuit drawn in dotted
lines can be eliminated with no impact on the computa-
tion performed by the left cell. The middle cell corre-
sponds to the AXSDAC for replacement; the right cell is
modified and it consists of only 8 transistors to compute
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
−������. This circuit is hereafter referred to as the Error Com-

pensation Logic Cell (ECPLC).

(a) (b)

(c) (d)

Fig. 9 Error compensation for an8-bit radix-4 divider(a) VC d=3 (b)
HC d=2 (b) SC d=3 (c) TC d=3. The three clustered cells are the
same as in Fig. 8.

The truncation schemes VT, ST, TT and HT can then be
modified for error compensation by utilizing the
AXSDAC and ECPLC; the error compensation schemes
for VT, HT, ST and TT are denoted as VC, HC, SC and TC
respectively. Fig. 9 shows examples of the error compen-
sation schemes. The simultaneous utilization of a cluster
consisting of these three cells (EXSDAC, AXSDAC and
ECPLC) effectively results in an error buffer between the
right located truncated cells (dotted circles) and the left
located exact cells (solid circles). Therefore, the error
compensation scheme is not only applied to the trunca-
tion depth that reaches the (3m)th bit cell at each adder
stage, but it can be applied to schemes of any truncation
depth. The effect of the error buffer can be clearly ob-
served from the simulation results presented next.

4 SIMULATION RESULTS
In this section, the designs of AXSDAC and approximate
high-radix dividers are synthesis and simulated using
Synopsis Design Compiler targeting 1GHz; predictive
technology models at 45nm feature size are utilized in the
simulation. For comparison purpose, the metrics of pre-
vious approximate restoring divider in [18] are also simu-
lated and presented for HR-AXD.

4.1 NED
The Normalized Error distance (NED) is defined as the
Mean Error Distance (MED) normalized by the maximum
ED[25]. The maximum value of the ED is 1, so in this case
the NED is equal to the MED. For HR-AXD, only the 8-bit
radix-4, 12-bit radix-4 and 12-bit radix-8 dividers are pre-
sented (the trend and conclusions for these dividers are
applicable also to higher radix dividers). The NED results
are plotted in log scale in Fig. 11, Fig. 13 and Fig. 14 for

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

AUTHOR ET AL.: TITLE 7

different bit width, radix, and approximate configura-
tions; as expected, the divider with a higher depth d has a
larger NED. The horizontal configurations have the worst
NED among all different bit width, radix and schemes,
while the triangle configurations are the best.

(a) (b)

Fig. 10 Q NED (in log scale) of 8-bit Radix-2 Restoring Approximate
Divider in [18] (a) Replacement (b) Truncation

(a) (b) (c)

Fig. 11 Q NED (in log scale) of 8-bit Radix-4 Approximate Divider (a)
Replacement (b) Truncation (c) Error-compensation

(a) (b)

Fig. 12 Q NED (in log scale) of 12-bit Radix-2 Restoring Approximate
Divider in [18] (a) Replacement (b) Truncation

(a) (b) (c)

Fig. 13 Q NED (in log scale) of 12-bit Radix-4 Approximate Divider
(a) Replacement (b) Truncation (c) Error-compensation

(a) (b) (c)

Fig. 14 Q NED (in log scale) of 12-bit Radix-8 Approximate Divider
(a) Replacement (b) Truncation (c) Error-compensation

(a) (b)

Fig. 15 NED changes in percentage using error compensation with
respect to original truncation scheme a) Radix-4 (b) Radix-8

(a) (b) (c)

Fig. 16 Q NED (in log scale) of 16-bit Radix-4 Approximate Divider
(a) Replacement (b) Truncation (c) Error-compensation

(a) (b) (c)

Fig. 17 Q NED (in log scale) of 24-bit Radix-4 Approximate Divider
(a) Replacement (b) Truncation (c) Error-compensation

(a) (b) (c)

Fig. 18 Q NED (in log scale) of 24-bit Radix-8 Approximate Divider
(a) Replacement (b) Truncation (c) Error-compensation

All dividers employing truncation have the worst NED
compared to the other two inexact schemes. So, a trunca-
tion scheme has a higher NED than a replacement
scheme; the difference in NED between them is compen-
sated up to 10% by using the proposed error compensa-
tion scheme. The proposed error compensation scheme
accomplishes a better NED when truncation is utilized, as
it nearly reduces the NED to the same level as a replace-
ment scheme. The compensated NEDs are show in Fig.
15; the NED of truncation is reduced when error compen-
sation is applied. Error compensation is more pronounced
for ST and TT compared to the original truncation scheme.
When considering the different radix schemes of a 12-bit
divider, it is observed that a higher radix results in a
higher NED; this occurs because a higher radix makes the
quotient digit 𝑞𝑞𝑗𝑗(as generated at each iteration of the di-
vider) to a larger weight for generating the final Q result.
Therefore, the error introduced at each iteration by these
approximated configurations has a larger weight and is
reflected in the NED of the output Q. The radix-2 AXDr
proposed in [18] is also simulated for comparison (Fig. 10
and Fig. 12 both in log scale). Compared to the former
AXDr divider, HR-AXD has better NED metrics than

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

AXDr.
As for high order architectures, 16-bit and 24-bit HR-

AXD have been simulated and assessed (Fig. 16 to Fig.
18). As expected, a larger bit width provides a higher pre-
cision for the divider; hence, the NED decreases as the bit
width increases. Also, when increasing the bit width, the
NED differences between replacement, truncation and
error compensation are significantly reduced.

4.2 Distribution of Error Occurrence
The error occurrence of different approximate configura-
tions is simulated to assess the effect of parameters (such
as the radix, approximation scheme, and depth) on the
output error of the proposed dividers.

(a) (b)

(c) (d)

Fig. 19 Error occurrence distribution (in log scale) of (a)Vertical
(b)Horizontal (c) Square (d)Triangle Error compensation scheme of
12bit Radix-8 approximate divider

Fig. 19, Fig. 20 and Fig. 21 show the distribution of er-
ror occurrence with respect to different trunca-
tion/approximation schemes and radix. The distribution
is 0-biased and the absolute maximum error is very small
in all cases, except for the horizontal scheme. Fig. 19
shows that a horizontal (triangle) scheme has the widest
(narrowest) distribution; Fig. 20 shows that the truncation
scheme has the largest distribution width and higher av-
erage error occurrence. Fig. 21 shows that the distribution
is narrowed by increasing the radix, while increasing the
error occurrence. It also can be clearly shown that the dis-
tribution is widening by increasing the depth in all cases
as corresponding to the larger amount of truncated val-
ues.

(a) (b) (c)

Fig. 20 Error occurrence distribution (in log scale) of Vertical (a) Re-
placement (b) Truncation (c) Error Compensation approximate for
12bit radix-4 dividers

(a) (b) (c)

Fig. 21 Error occurrence distribution (in log scale) of Vertical Error
Compensation Scheme of 12-bit (a) Radix-2 [18] (b) Radix-4 (c) Ra-
dix-8 dividers

4.3 Distribution of Accumulated Error Value
The accumulated error value distribution map for differ-
ent input combinations of the approximate configurations
is simulated to assess the effect of parameters (such as the
radix, approximation scheme) on the range of values for
which errors may occur.

(a) (b)

(c) (d)

Fig. 22 Accumulated error value distribution map of (a)Vertical
(b)Horizontal (c)Square (d)Triangle Error compensation scheme for
12bit Radix-8 approximate divider

Fig. 22 and Fig. 23 show the distribution of error value
with respect to the truncation/approximation scheme and
radix. The input value pair forms a triangle from 0.5 to 1;
so, the error spreads all over this area; the darker color
represents the larger accumulated error. The error occurs
mostly along bands that are nearly parallel to the X=D 45°
line and the largest error is always located right on the
edges of each band. Fig. 22 shows that a vertical scheme
has the smallest average error; in Fig. 23 the truncation
scheme has the largest error and wider average error oc-
currence. The error compensation scheme effectively re-
covers the error generated by the truncation scheme.

(a) (b) (c)

Fig. 23 Accumulated error value distribution map of Vertical (a) Re-
placement (b)Truncation (c) Error Compensation for approximate
12bit radix-4 dividers

4.4 Power
One of the primary goals of an approximate design is to

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

AUTHOR ET AL.: TITLE 9

decrease the power consumption by tolerating a compu-
tational error. The power simulation results are shown as
Fig. 24 through Fig. 26. As expected, the divider with a
higher depth d has the smaller power consumption. By
increasing d, the power consumption for a horizontal con-
figuration decreases faster than for the other types of con-
figuration, so the square and triangle configurations de-
crease their power consumption at a lower rate than the
horizontal and vertical configurations.

All truncated dividers save more power than the other
two types of scheme considered in this manuscript. The
error compensation scheme consumes a slightly more
power than truncation, but its value is still well lower
than a replacement scheme. The difference between trun-
cation and error compensation for the power is shown as
Fig. 27; the power increase due to the error compensation
circuit is marginal. The largest power penalty is not larger
than 0.1% (Fig. 27); the delay remains nearly unchanged
(more detail in next section), because each stage of the di-
vider array performs a constant time operation in the
signed-digit adder.

When two 12-bit HR-AXD (at different radix) are com-
pared, a similar amount of power is consumed, because
although a high radix divider can reduce the number of
iterations in the division process, in each iteration, it re-
quires more bit cells. Thus, the total power consumption
of HR-AXD does not substantially change regardless of
the radix. Moreover, the radix-2 AXDr (Fig. 24(a) and Fig.
25(a)) consumes less power than HR-AXD, because the
complexity of AXDr is significantly less than HR-AXD.
HR-AXD has a better delay than AXDr but at a higher
cost in hardware.

(a) (b) (c)

Fig. 24 Power consumption of 12-bit Approximate Divider with Re-
placement scheme (a) Radix-2 [18] (b) Radix-4 (c) Radix-8

(a) (b) (c)

Fig. 25 Power consumption of 12-bit Approximate Divider with Trun-
cation scheme (a) Radix-2[18] (b) Radix-4 (c) Radix-8

(a) (b)

Fig. 26 Power consumption of 12-bit Approximate Divider with Error-
Compensation scheme (a) Radix-4 (b) Radix-8

(a) (b)

Fig. 27 Power change using error compensation scheme with re-
spect to original truncation scheme (a) Radix-4 (b) Radix-8

4.5 Delay
The delay of each module in the divider is analyzed so
that the total delay is then established.
• The delays of the SU and QS are proportional to the

bit width and the radix.
• The delay of the PG for each stage is not related to

the bit width, but it is proportional to the radix.
• Each binary signed digit adder row has a constant

delay.
The critical path of the entire divider is close to the

MSB of the array; it starts from the SU through each stage
of the PG and the row of the signed digit adder; it finally
passes through the QS and On-the-fly conversion module.
For a divider with an approximate configuration, (either
replacement or truncation), the approximation takes place
at the LSB of the adder array, so the delay of the inexact
divider is almost the same as the exact counterpart; the
only exception is the horizontal configuration. For the
horizontal configuration, the replacement scheme has a
smaller delay because several stages (equal to the value of
the replacement depth) are designed using AXSDACs,
that have a smaller delay than EXSDACs. A truncation
scheme has even a lower delay than the replacement
scheme, because cells are removed. The delays of the dif-
ferent approximate schemes are plotted as Fig. 28 through
Fig. 30; as the radix increases from radix-2 to higher radix,
the delay decreases, because a high radix divider requires
a fewer number of add-subtract iterations, hence the criti-
cal path delay is also shorter. Compared to the AXDr (Fig.
28(a) and Fig. 29(a)), the delay of HR-AXD is reduced by
nearly 60%. This is the largest benefit when using the car-
ry free HR-AXD compared to the ripple carry radix-2 di-
vider (which has a smaller delay at a high degree of com-
putation parallelism).

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

(a) (b) (c)

Fig. 28 Delay of 12-bit Approximate Divider with Replacement
scheme (a) Radix-2 [18] (b) Radix-4 (c) Radix-8

(a) (b) (c)

Fig. 29 Delay of 12-bit Approximate Divider with Truncation scheme
(a) Radix-2 [18] (b) Radix-4 (c) Radix-8

(b) (c)

Fig. 30 Delay of 12-bit Approximate Divider with Error-Compensation
scheme (a) Radix-4 (b) Radix-8

4.6 Area

(a) (b) (c)

Fig. 31 Area of 12-bit Approximate Divider with Replacement
scheme (a) Radix-2 [18] (b) Radix-4 (c) Radix-8

(a) (b) (c)

Fig. 32 Area of 12-bit Approximate Divider with Truncation scheme
(a) Radix-2[18] (b) Radix-4 (c) Radix-8

(a) (b)

Fig. 33 Area of 12-bit Approximate Divider with Error-Compensation
scheme (a) Radix-4 (b) Radix-8

The synthesis results for the area are shown in Fig. 31
through Fig. 33. As expected, the area results of HR-AXD
follow the same trends as the power results. The Radix-2
AXDr occupies a smaller area than HR-AXD, thus con-
firming again that HR-AXD has a higher complexity than
AXDr.

4.7 Trade-off between NED and Power

(a) (b) (c)

Fig. 34 NPP (in log scale) of 12-bit Radix-4 Approximate Divider with
(a) Replacement Scheme (b) Truncation Scheme (c) Error Compen-
sation Scheme

(a) (b) (c)

Fig. 35 NPP (in log scale) of 12-bit Radix-8 Approximate Divider with
(a) Replacement Scheme (b) Truncation Scheme (c) Error Compen-
sation Scheme

An approximate arithmetic design always must balance
accuracy and energy dissipation. As shown previously as
the depth changes, the power dissipation increases while
the NED decreases. To further evaluate this trade-off, the
MED Power Product (MPP) has been introduced in [26].
In this paper, the NPP (NED power product) is used as
more relevant than the MPP. Fig. 34 and Fig. 35 show the
NPP in log scale of the 12-bit radix-4 and radix-8 dividers
using different approximation schemes; the error com-
pensation scheme has the lowest NPP compared to the
other two schemes. Compensation recovers part of the
error introduced by a truncation scheme to the same level
as a replacement scheme, while still preserving the low
power advantage of truncation.

5 APPLICATIONS
In this section, the proposed approximate schemes for

high radix division are evaluated for image analysis (on a
pixel basis) using input grayscale images normalized in
the range [1/2, 1). 12-bit approximate dividers with dif-
ferent configurations are utilized; the approximations for

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

AUTHOR ET AL.: TITLE 11

HR-AXD used in these applications are shown in Table 3;
these configurations are chosen such that the power dis-
sipation of these HR-AXD is nearly the same.
TABLE 3 APPROXIMATION DEPTH D CONFIGURATIONS OF 12-BIT HR-AXD

USED FOR APPLICATION ANALYSIS
 VR/VT HR/HT SR/ST TR/TT

Radix-4 1 2 3 4
Radix-8 1 2 3 4

Radix-2[18] 2 4 6 8
The Peak Signal-to-Noise Ratio (PSNR) and the SSIM

[27] are used as metrics to evaluate the image quality of
inexact schemes against an exact scheme. The Mean
Structural SIMilarity Index (MSSIM) is a metric to assess
image quality; it is based on the finding that human vi-
sion is highly adapted to extract structural information
from the viewing field. Hence, such measure of structural
information change can provide a good approximation to
the perceived image distortion. These metrics are given
by

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦) = [𝑙𝑙(𝑥𝑥, 𝑦𝑦)]𝛼𝛼 ⋅ [𝑐𝑐(𝑥𝑥, 𝑦𝑦)]𝛽𝛽 ⋅ [𝑠𝑠(𝑥𝑥,𝑦𝑦)]𝛾𝛾

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) =
1
𝑀𝑀
�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗)
𝑀𝑀

𝑗𝑗=1

where X and Y are the reference and the distorted images,
respectively; 𝑙𝑙(𝑥𝑥, 𝑦𝑦), 𝑐𝑐(𝑥𝑥, 𝑦𝑦) and 𝑠𝑠(𝑥𝑥, 𝑦𝑦) are the luminance,
contrast and structure comparison function; 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾
are parameters used to adjust the relative importance of
the three components; 𝑥𝑥𝑗𝑗 and 𝑦𝑦𝑗𝑗 are the image contents at
the j-th local window; and M is the number of local win-
dows in the image.

5.1 Image Change Detection
Change detection consists of finding the fractional

change (or ratio) between two frames of a sequence, i.e.,
𝑄𝑄(𝑖𝑖, 𝑗𝑗) = 𝐹𝐹𝑡𝑡1(𝑖𝑖, 𝑗𝑗) ÷ 𝐹𝐹𝑡𝑡2(𝑖𝑖, 𝑗𝑗)

where 𝐹𝐹𝑡𝑡1(𝑖𝑖, 𝑗𝑗) and 𝐹𝐹𝑡𝑡2(𝑖𝑖, 𝑗𝑗) are individual pixel values
of two frames of a video or two pictures taken at 𝑡𝑡1 and
𝑡𝑡2. 𝑄𝑄 is the resulting output image.

If there is no movement, then the output image 𝑄𝑄
mostly consists of 1-valued pixels. However, when there
is a movement, then the pixels in the regions of the image
in which the intensity spatially changes, exhibit signifi-
cant differences between the two frames. Change detec-
tion has been considered also in [19]. Fig. 36 shows the
simulation results of the same image (IMG1 in Table 4) in
[19] using the Peak Signal-to-Noise Ratio (PSNR) as met-
ric. The square approximation has the best PSNR on av-
erage, especially for the radix-4 divider; moreover, the
radix-8 divider PSNR is lower than radix-4 dividers on
average. A truncated scheme has a PSNR lower than the
corresponding replacement scheme, while an error com-
pensation scheme regains most of the PSNR value lost
due to truncation. Its value is now at nearly the same lev-
el as the corresponding replacement scheme.

(a) (b) (c)

Fig. 36 PSNRs of different radix (12-bit) approximate divider for
change detection: (a) replacement (b) truncation (c) with error com-
pensation

TABLE 4 IMAGES FOR CHANGE DETECTION
 IMG1[19] IMG2 IMG3 IMG4 IMG5

𝐹𝐹𝑡𝑡1

𝐹𝐹𝑡𝑡2

𝑄𝑄

(a) (b) (c)

Fig. 37 Additional images for change detection for square approxi-
mation (a) Replacement (b) Truncation (c) Error compensation

TABLE 5 MSSIM VALUE FOR ALL IMAGES

 Replacement Truncation Error
compensation

IMG1
[19]

IMG2

IMG3

IMG4

IMG5

Following the initial results of [19], more images

(IMG2~5) from [28] are evaluated in this manuscript to
assess the error for additional image pairs (Table 4). The

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

square approximation results are plotted in Fig. 37; the
proposed approximate divider works well for all consid-
ered images, especially for radix-4 dividers. The truncat-
ed schemes have the lowest PSNR, while the error com-
pensated schemes efficiently recover the error due to
truncation to nearly the same level as a replacement
scheme. The MSSIM results of all images are shown as
bar charts in Table 5; although the truncation scheme has
the lowest MSSIM, the average MSSIMs in all images are
above 0.95, so a very high value and confirming that the
the proposed approximate dividers will not incur in a
significant distortion as observed by human vision.

5.2 Image Scaling
Another common application of image division is to

scale down the image values, so that they can be within
two saturation limits (minimum and maximum) for ap-
propriate viewing. This is can be performed using divi-
sion by a constant, i.e.,

𝑄𝑄(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑖𝑖, 𝑗𝑗) ÷ 𝐶𝐶

in which 𝑃𝑃 is the image to be scaled, 𝐶𝐶 is the scaling factor
and 𝑄𝑄 is the resulting image.

Fig. 38 Example of sharpening image with convolution and use of
image scaling[29]

The need of this operation arises on two scenarios: if
the source image is too dark or too brigh; as result of a
processing step, the resulting matrix has entries with very
high values. An example (Fig. 38) of the second scenario
is image sharpening this involves first convolution with a
2D filter (top right in Fig. 38). As the products of sums
can result in very high values, the convolved image (bot-
tom right in Fig. 38) is divided by a constant, so restoring
the appropriate viewing image (bottom left in Fig. 38).

TABLE 6 IMAGES FOR SCALING APPLICATION
 IMG1 IMG2 IMG3

Before
scaling

After
scaling

(a) (b) (c)

Fig. 39 PSNR of Images scaling application for square approxima-
tion (a) Replacement (b) Truncation (c) Error compensation

TABLE 7 MSSIM VALUE FOR ALL IMAGES

 Replacement Truncation Error
compensation

IMG1

IMG2

IMG3

Table 6 shows the images used in the scaling applica-

tion. The results for the triangle approximation are plot-
ted in Fig. 39; the proposed approximate divider works
well among all considered images, especially for radix-4
divider. In general, the truncation schemes have the low-
est PSNR, while the error compensated schemes efficient-
ly recover the error caused by truncation to nearly the
same level as a replacement scheme. The scaling applica-
tion requires an image divided by a constant value, so the
overall PSNR is higher than the PSNR for the change de-
tection application. The MSSIM results of all images are
shown in Table 7. Although a truncation scheme has the
lowest MSSIM, the average MSSIMs in all images are
above 0.95, so indicating that the proposed approximate
dividers do not cause a significant distortion in the image
scaling application.

6 CONCLUSION
This paper has presented a detailed analysis, design and
evaluation of high radix parallel dividers that utilize ap-

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

AUTHOR ET AL.: TITLE 13

proximate criteria in their operation. The basic computa-
tional modules for high-radix division have been re-
viewed and the signed-digit adder has been simplified to
accomplish inexact computing. Replacement, truncation
and error compensation schemes have been proposed;
different design parameters including the number of bits
N, the radix number r, and the replacement depth d have
been varied to evaluate the performance and error charac-
teristics of these inexact high radix dividers. Compared to
the original exact design counterpart in [20], simulation
has shown that the power dissipation and delay of the
inexact designs are better than the original exact de-
sign(for all cases). Moreover, the following conclusions
can be drawn.
• The error characteristics can be clearly seen from the

NED and error distribution. A larger value for d pro-
vides a larger NED and a wider error distribution;
among all schemes, the triangle replacement divider
has the best NED and the narrowest error distribu-
tion among the placement schemes considered in this
manuscript. A truncated scheme introduces more er-
ror, but if error compensation is introduced, the error
introduced by truncation can be mitigated by utiliz-
ing a compensation scheme; this proposed scheme
utilizes a 3-cell cluster that results in a significant im-
provement in error characteristics at a marginal in-
crease in power dissipation.

• The power consumption and area reduce rapidly as
the depth increases, i.e. the higher the depth is, more
pronounced is the power and area reduction. A trun-
cation scheme provides a significant power and area
reduction compared to a replacement scheme; the er-
ror compensation scheme slightly increases the pow-
er consumption and area compared to truncation
scheme, but its value is still significantly lower than
the replacement schemes.

• The delay of a radix-4 divider is significantly less
(nearly 60%) than for a radix-2 divider. Compared to
radix-4, the delay is reduced about 25% for radix-8
dividers. As only 𝑁𝑁/𝑚𝑚 stages are required to com-
plete the division, larger the value of 𝑚𝑚, smaller is the
delay. The delay of all approximate divider schemes
is however not significantly affected by the different
approximate configurations.

Compared to the radix-2 AXDr divider design of [18],
a HR-AXD has a higher complexity and power consump-
tion, but the error characteristics and computation speed
are significantly improved by using HR-AXD; The com-
bined metric of the NPP is reduced when the proposed
error compensation scheme is utilized; so the HR-AXD
with error compensation scheme is better suited for laten-
cy critical applications requiring a small NPP. Compared
to other state-of-the-art approximate dividers, e.g., Trun-
cApp[14] and SEERAD[13], the proposed design employ-
es a high-radix array division algorithm by focusing on a
transistor-level approximate implementation, so better
suited to meet specific application constraints. For exam-
ple, when considering image division, the error metrics of
the proposed design (at an average of 50dB for the PSNR
and 0.98 for the MSSIM) are significantly better than for

SEERAD and TruncApp (at an average of 28dB for the
PSNR and 0.77 for the MSSIM); therefore, improvements
in performance must also met satisfactory application re-
quirements and limiting errors in computation.

In conclusion, when designing an approximate array
divider, metrics (and related design parameters) must be
considered and met as per the specific application. For
power critical application, the former AXD design [18]
could be still a better choice; for speed critical applica-
tions, HR-AXD is overall the best candidate. When de-
signing a divider, the power penalty incurred by choos-
ing a high radix can be reduced using approximation;
most of the errors introduced by approximation can be
compensated using the proposed scheme

REFERENCES
[1] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K.

Roy, "IMPACT: IMPrecise Adders for Low-Power Approximate
Computing," in International Symposium on Low Power Electronics
and Design, 2011, pp. 409-414.

[2] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi,
"Approximate XOR/XNOR-Based Adders for Inexact
Computing," in 13th IEEE Conference on Nanotechnology (IEEE-
NANO), 2013, pp. 690-693.

[3] N. Zhu, W.-L. Goh, and K.-S. Yeo, "An Enhanced Low-Power
High-Speed Adder For Error-Tolerant Application," in 12th
International Symposium on Integrated Circuits, 2009, pp. 69-72.

[4] N. Zhu, W.-L. Goh, G. Wang, and K.-S. Yeo, "Enhanced Low-
Power High-Speed Adder for Error-Tolerant Application," in
International SoC Design Conference (ISOCC), 2010, pp. 323-327.

[5] N. Zhu, W.-L. Goh, and K.-S. Yeo, "Ultra Low-Power Hig-Speed
Flexible Probabilistic Adder for Error-Tolerant Applications," in
International SoC Design Conference (ISOCC), 2011, pp. 393-396.

[6] A. K. Verma, P. Brisk, and P. Ienne, "Variable Latency
Speculative Addition: A New Paradigm for Arithmetic Circuit
Design," in Design, Automation and Test in Europe (DATE), 2008,
pp. 1250-1255.

[7] D. Esposito, D. D. Caro, and A. G. M. Strollo, "Variable Latency
Speculative Parallel Prefix Adders for Unsigned and Signed
Operands," IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 63, no. 8, pp. 1200-1209, 2016.

[8] A. B. Kahng and S. Kang, "Accuracy-Configurable Adder for
Approximate Arithmetic Designs," in 49th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2012, pp. 820-825.

[9] K. Y. Kyaw, W.-L. Goh, and K.-S. Yeo, "Low-Power High-Speed
Multiplier for Error-Tolerant Application," in International
Conference of Electron Devices and Solid-State Circuits, 2010, pp. 1-
4.

[10] P. Kulkarni, P. Gupta, and M. Ercegovac, "Trading Accuracy for
Power with an Underdesigned Multiplier Architecture," in 24th
International Conference on VLSI Design, 2011, pp. 346-351.

[11] R. Fisher, S. Perkins, A. Walker, and E. Wolfart. (2003).
Hypermedia Image Processing Reference (HIPR2).
Available: http://homepages.inf.ed.ac.uk/rbf/HIPR2

[12] S. Hashemi, R. I. Bahar, and S. Reda, "A low-power dynamic
divider for approximate applications," in 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), 2016,
pp. 1-6.

[13] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-Kusha, S. Safari,
and M. Pedram, "SEERAD: A high speed yet energy-efficient
rounding-based approximate divider," in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE),

http://homepages.inf.ed.ac.uk/rbf/HIPR2

2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

2016, pp. 1481-1484.
[14] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z.

Navabi, "TruncApp: A truncation-based approximate divider
for energy efficient DSP applications," in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017, 2017, pp.
1635-1638.

[15] S. F. Oberman and M. Flynn, "Division algorithms and
implementations," IEEE Transactions on Computers, vol. 46, no. 8,
pp. 833-854, 1997.

[16] B. Parhami, Computer Arithmetic: Algorithms and Hardware
Designs. Oxford University Press, 2000.

[17] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan
Kaufmann, 2004.

[18] L. Chen, J. Han, W. Liu, and F. Lombardi, "On the Design of
Approximate Restoring Dividers for Error-Tolerant
Applications," IEEE Transactions on Computers, vol. 65, no. 8, pp.
2522-2533, 2016.

[19] L. Chen, J. Han, W. Liu, P. Montuschi, and F. Lombardi,
"Design of Approximate High-Radix Dividers by Inexact Binary
Signed-Digit Addition," in 27th Great Lakes Symposium on VLSI,
Banff, Alberta, USA, Canada, 2017.

[20] T. Aoki, K. Nakazawa, and T. Higuchi, "High-radix parallel
VLSI dividers without using quotient digit selection tables," in
30th IEEE International Symposium on Multiple-Valued Logic, 2000,
pp. 345-352.

[21] M. D. Ercegovac, T. Lang, and P. Montuschi, "Very-high radix
division with prescaling and selection by rounding," IEEE
Transactions on Computers, vol. 43, no. 8, pp. 909-918, 1994.

[22] P. Montuschi and T. Lang, "Boosting very-high radix division
with prescaling and selection by rounding," IEEE Transactions
on Computers, vol. 50, no. 1, pp. 13-27, 2001.

[23] A. Avizienis, "Signed-Digit Number Representations for Fast
Parallel Arithmetic," IRE Transactions on Electronic Computers,
vol. EC-10, no. 3, pp. 389-400, 1961.

[24] M. D. Ercegovac and T. Lang, "On-the-Fly Conversion of
Redundant into Conventional Representations," IEEE
Transactions on Computers, vol. C-36, no. 7, pp. 895-897, 1987.

[25] L. Jinghang, H. Jie, and F. Lombardi, "New Metrics for the
Reliability of Approximate and Probabilistic Adders," IEEE
Transactions on Computers, vol. 62, no. 9, pp. 1760-1771, 2013.

[26] L. Chen, J. Han, W. Liu, and F. Lombardi, "Design of
Approximate Unsigned Integer Non-restoring Divider for
Inexact Computing," in 25th Great Lakes Symposium on VLSI,
Pittsburgh, Pennsylvania, USA, 2015, pp. 51-56, 2742063: ACM.

[27] W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
"Image quality assessment: from error visibility to structural
similarity," IEEE Transactions on Image Processing, vol. 13, no. 4,
pp. 600-612, 2004.

[28] "The USC-SIPI Image Database," A. G. Weber, Ed., 5 ed. Signal
and Image Processing Institute, University of Southern
California, Department of Electrical Engineering.

[29] U. Qidwai and C. H. Chen, Digital Image Processing: An
Algorithmic Approach with MATLAB. CRC Press, 2009.

Linbin Chen received the B.Sc. degree in
information engineering from Beijing Institute
of Technology, China, in 2009, and the M.S.
degree from Northeastern University, Boston,
USA, in 2012, where he is currently working
toward the Ph.D. degree in the Department of
Electrical and Computer Engineering. His
research interests include low power and high
performance VLSI design, emerging logic and
memory devices and circuits, inexact and fault

tolerant computing.

Jie Han (S’02-M’05-SM’16) received the B.Sc.
degree in electronic engineering from
Tsinghua University, Beijing, China, in 1999
and the Ph.D. degree from Delft University of
Technology, The Netherlands, in 2004.
He is currently an associate professor in the
Department of Electrical and Computer
Engineering at the University of Alberta,
Edmonton, AB, Canada. His research
interests include approximate computing,
stochastic computation, reliability and fault

tolerance, nanoelectronic circuits and systems, and novel
computational models for nanoscale and biological applications.

Weiqiang Liu (S’10-M'12-SM'15) received the
B.Sc. degree in Information Engineering from
Nanjing University of Aeronautics and Astro-
nautics (NUAA), Nanjing, China and the Ph.D.
degree in Electronic Engineering from the
Queen’s University Belfast, Belfast, UK, in
2006 and 2012, respectively. He is currently
an associate professor in the College of Elec-
tronic and Information Engineering at Nanjing
University of Aeronautics and Astronautics,

Nanjing, China. His research interests include approximate compu-
ting, computer arithmetic and cryptographic hardware.

Paolo Montuschi (M’90-SM’07-F’14) is a Full
Professor in the Department of Control and
Computer Engineering and a Member of the
Board of Governors at Politecnico di Torino,
His research interests include computer
arithmetic and architectures, computer
graphics, semantics and education. He is an
IEEE Fellow, an IEEE Computer Society
Golden Core member, a recipient of the “Dis-
tinguished Service” and the “Spirit of the
Computer Society” awards. Currently, he is

serving as Editor-in-Chief of IEEE Transactions on Computers, as
the Chair of the Ccomputer Society Awards Committee, and as a
member of the IEEE Publications Services and Products Board, He
is a life member of the International Academy of Sciences of Turin
and of Eta Kappa Nu (the Honor Society of IEEE). In March 2017, he
co-founded the first HKN Student Chapter in Italy.

Fabrizio Lombardi (M’81-SM’02-F’09) gradu-
ated in 1977 from the University of Essex
(UK) with a B.Sc. (Hons.) in Electronic Engi-
neering. In 1977 he joined the Microwave Re-
search Unit at University College London,
where he received the Master in Microwaves
and Modern Optics (1978), the Diploma in
Microwave Engineering (1978) and the Ph.D.
from the University of London (1982).
He is currently the holder of the International

Test Conference (ITC) Endowed Chair Professorship at Northeastern
University, Boston. His research interests are bio-inspired and nano
manufacturing/computing, VLSI design, testing, and fault/defect tol-
erance of digital systems. He has extensively published in these are-
as and coauthored/edited seven books.

