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Abstract— Approximate high radix dividers (HR-AXDs) are proposed and investigated in this paper. High-radix division is 
reviewed and inexact computing is introduced at different levels. Design parameters such as number of bits (N) and radix (r) are 
considered in the analysis; the replacement of exact cells with inexact cells in a binary signed-digit adder is introduced by 
utilizing different replacement schemes. Cell truncation and error compensation are also proposed to further extend inexact 
computation. Circuit-level performance and the error characteristics of the inexact high radix dividers are analyzed for the 
proposed designs. The combined assessment of the normal error distance, power dissipation and delay is investigated and 
applications of approximate high-radix dividers are treated in detail. The simulation results show that the proposed approximate 
dividers offer extensive saving in terms of power dissipation, circuit complexity and delay, while only incurring in a small 
degradation in accuracy thus making them possibly suitable and interesting to some applications and domains such as low 
power/mobile computing. 

Index Terms— Approximate Divider, High-radix, Inexact computing, Normalized Error Distance, Power Dissipation 

——————————      —————————— 

1 INTRODUCTION
odern computer arithmetic applications are imple-
mented using digital logic circuits, thus operating 

with a high degree of precision. However, many applica-
tions such as machine learning, multimedia and image 
processing can tolerate errors and imprecision in compu-
tation and still produce results that can be useful in many 
applications in which human senses (such as vision) are 
involved. The paradigm of inexact computation relies on 
relaxing fully precise and completely deterministic mod-
ules when for example, designing energy efficient sys-
tems; this allows imprecise computation to redirect the 
existing design process by taking advantage of a decrease 
in complexity and cost with possibly a potential increase 
in performance and power efficiency. Approximate (or 
inexact) computing relies on using this property to design 
simplified, yet approximate circuits operating at higher 
performance and/or lower power consumption com-
pared with precise (exact) logic circuits. 

Approximate computing is well suited to arithmetic 
circuits such as approximate adders (AXA), multipliers 
(AXM) and dividers (AXD). These designs fall into two 
categories: circuit and algorithm. For a circuit, the exact 
deign is modified at either transistor or gate level by as-
sessing the benefits obtained from the approximate de-

signs with respect to a reduced hardware complexity. 
Five approximate MAs (AMAs) have been obtained using 
logic reductions at transistor level, i.e., by removing some 
transistors to attain reductions in power dissipation and 
circuit complexity [1]. The three AXAs of[2] show attrac-
tive operational profiles in performance, hardware effi-
ciency and power-delay product (PDP) at a good accura-
cy. When designing multiple-bit approximate adders, it is 
advisable to start from modifying the algorithm. For ex-
ample, carry propagation has received considerable atten-
tion. N. Zhu etc. have proposed error-tolerant adders in 
which he carry propagation chain is truncated by parti-
tioning the adder into several sub-adders [3-5]. [6] has 
proposed a variable latency speculative adder (VLSA) 
with error detection and recovery. The speculative adder 
of [7] reduces hardware overhead while keeping a low 
error rate when the operands are in 2’s complement for-
mat under a Gaussian distribution; the accurate configu-
rable adder of  [8] allows adaptive operations, so either 
approximate, or accurate by runtime configuration. Ap-
proximate multipliers (AXM) have been also proposed; 
since multiplication is usually implemented by utilizing 
an array of adders, some of the LSBs in the partial prod-
ucts can be omitted [9] (while adding error compensation 
mechanisms), thus fewer adders can be removed in the 
array for faster operation. In [10], a simplified 2⨉2 multi-
plier is used as module for designing a larger multiplier; a 
novel design using input pre-processing and error com-
pensation is proposed for reducing the critical path delay 
of a multiplier.  

Approximate arithmetic division has not yet been ex-
tensively analyzed; there are increasing demands for 
high-speed dividers in today’s floating point units (FPU) 
and digital signal processors for image and three-
dimensional graphics applications, such as 2D image 

xxxx-xxxx/0x/$xx.00 © 200x IEEE        Published by the IEEE Computer Society 

———————————————— 
• Linbin Chen and Fabrizio Lombardi are with the Electrical and Computer 

Engineering Department, Northeastern University, Boston, MA 02115. E-
mail: chen.lin@husky.neu.edu; lombardi@ece.neu.edu 

• Jie Han is with the Electrical and Computer Engineering Department, Uni-
versity of Alberta Edmonton, AB, Canada. E-mail: jhan8@ualberta.ca. 

• Weiqiang Liu is with the College of Electronic and Information Engineer-
ing, Nanjing University of Aeronautics and Astronautics, Nanjing, China. 
E-mail:  liuweiqiang@nuaa.edu.cn. 

• Paolo Montuschi is with the Department of Control and Computer Engi-
neering, Politecnico di Torino, 10129, Italy.  E-mail: pao-
lo.montuschi@polito.it. 
This manuscript is an extended version of the conference article listed in the 
bibliography as [18]. 

M 

mailto:chen.lin@husky.neu.edu
mailto:jhan8@ualberta.ca
mailto:liuweiqiang@nuaa.edu.cn


2332-7766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMSCS.2018.2817608, IEEE Transactions on Multi-Scale Computing Systems

2 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

background removal, change detection [11] and graphic 
rendering. These applications ultimately target human 
vision, so they can tolerate errors and imprecision in 
computing and still produce meaningful results. AXD de-
signs have been proposed by modifying the division al-
gorithm; [12] has proposed a dynamic AXD by truncating 
the input operands to reduce the size of the arithmetic di-
vider circuit, while [13, 14] has proposed a rounding-and-
truncation based approximate divider by converting divi-
sion into a series of shift and add operations. However, it 
is also possible to exploit the design space in which the 
original division algorithm is not fundamentally modi-
fied, but the transistor-level hardware is changed to re-
duce delay and power consumption.  

In the technical literatures, many exact algorithms 
have been proposed for division [15]. Digit recurrence 
methods are widely used for hardware design; imple-
mentations can be either sequential, combinational, or a 
combination of both. The implementation of a combina-
tional divider, is amenable to pipeline, thus would give 
higher throughput. Based on these findings, the combina-
tional implementations of a divider based on restoring, 
non-restoring [16] and SRT algorithms [17]are treated in 
more detail as according to the following features: 
1. In these division algorithms, computation is carried 

out by addition/subtraction and shifting, so only 
basic and simple operations are employed. These op-
erations are also highly modularized and enable an 
inexact design at module (or cell) level. 

2. A combinational array divider provides flexibility 
and granularity for an inexact design at all levels, i.e. 
from a cell through each computational stage up to 
the entire array. 

3. In a fully combinational array divider, the sequential 
division unit consists of several computational stages, 
in which different design parameters can be changed 
and assessed while meeting often conflicting figures 
of merit for approximate computing. 

Other methods for computing division exist in the 
technical literature, for example the Newton-Raphson 
method based on the intensive use of multiplications. 
However, in this paper we focus on digit-by-digit divi-
sion only. Hereafter unless explicitly stated, division is 
intended to be digit-by-digit. Different from multiplica-
tion, a digit-by-digit division method is mostly a sequen-
tial process, while multiplication can be executed as mul-
ti-operand parallel additions (i.e. partial product genera-
tion can be parallelized). Thus, for approximate division, 
the impact of the sequential processing nature on accura-
cy must be carefully assessed; for example, when calculat-
ing the quotient, iterations introduce a cumulative error. 
Therefore, error propagation must be mitigated in such 
approximate design. 

In the previous work by the same authors [18], designs 
of approximate radix-2 unsigned non-restoring and re-
storing dividers (denoted as AXDnr and AXDr) have 
been proposed. New approximate AXDr cells (denoted as 
AXDCr) have been investigated and approximate compu-
ting has been applied to division by considering different 
schemes by which exact cells are replaced/truncated in 

the array divider circuit. In [19], a high-radix division al-
gorithm [20] and its results have been analyzed, general-
ized and a novel architecture has been proposed for ap-
proximate high-radix division in a similar fashion as in 
[18]. The original exact design in [20] has presented an 
algorithm based on a SRT digit-by-digit scheme for high-
radix division; it employs a prescaling technique for divi-
sion by digit recurrence. In the inexact design of [19], the 
signed-digit adder cell is simplified, while still utilizing 
replacement or truncation; its contribution extends also to 
an algorithmic domain as different numbers of bits (N), 
radix number (r) and replacement/truncation depth (d) 
are also considered. While presenting a more detailed cir-
cuit schematics of the design, this paper proposes a new 
error compensation scheme to address the significant de-
crease of accuracy in [19] when a truncation scheme is uti-
lized. Comparison to the radix-2 AXDr design is also pro-
vided to address the difference between high-radix and 
traditional (radix-2) dividers. Circuit-level performance 
and the error characteristics of the inexact high radix di-
viders are also analyzed and assessed both at algorithmic 
and circuit levels, inclusive of performance for an image 
processing application. 

The paper is organized as follows. Section 2 gives a 
brief review of the high radix division algorithm with 
pre-scaling and the simple quotient selection logic. Sec-
tion 3 introduces the proposed approximate adder cells 
and error compensation cell designs and application to 
divider design as an array-level approximation. In Section 
4, the Normalized Error Distance (NED), the error distri-
bution, power and delay are simulated to assess the per-
formance of exact and approximate dividers. Possible 
trade-offs between the two metrics of NED and power are 
also discussed. Simulation results for different image pro-
cessing applications are presented in Section 5. Section 6 
concludes the paper. 

2 REVIEW 
This section presents a brief review of the high radix divi-
sion algorithm and the hardware implementation with 
prescaling by [20] as relevant to the proposed scheme . 

2.1 High-radix division algorithm 
In the current literature, the mostly widely used ap-
proaches for division are based either on selection tables, 
or on prescaling or a combination of the two [17]. In the 
selection table based approach approach, the digits of the 
quotient are obtained by inspecting the dividend and the 
partial remainder; according to the number of value com-
binations  (as stored in digit selection tables), the quotient 
digit is obtained at each iteration [15]. However, for high 
radix the size of these tables increases, yielding large im-
plementations. Among the techniques for addressing this 
negative design feature, prescaling (as proposed in [20-
22]) is widely employed.  

An efficient and unified implementation of high-radix 
array dividers with no lookup table for quotient digit se-
lection using prescaling has been presented in [20]. In this 
algorithm, additional prescaling and conversion of the 
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number representation are utilized; at each iteration, the 
quotient digit is directly obtained from the most signifi-
cant (integer) part of the partial remainder. This makes 
possible the construction of fully combinational high-
radix dividers exhibiting a latency similar to a radix-2 di-
vider.   

The high-radix division algorithm of [20] is based on 
the standard SRT digit-by-digit division; let the dividend 
and divisor be denoted by X and D, respectively (normal-
ized as 1/2 ≤ X<D< 1). The SRT division algorithm with 
n-bit precision is given by the following recursive equa-
tions: 

 𝑅𝑅(0) = 𝑋𝑋,  

 𝑅𝑅(𝑗𝑗+1) = 𝑟𝑟𝑅𝑅(𝑗𝑗) − 𝑞𝑞𝑗𝑗+1𝐷𝐷. (1) 

where (𝑗𝑗 = 0,1,2, … ,𝑛𝑛 − 1), r is the radix value (usual-
ly 𝑟𝑟 = 2𝑚𝑚(𝑚𝑚 = 1,2,3, … )R, j is the iteration step, 𝑅𝑅(𝑗𝑗)is the 
partial remainder at step j, and 𝑞𝑞𝑗𝑗 is the jth quotient digit 
selected from {-(r-1), … -1, 0, 1, …, r-1}. The quotient Q is 
given by 

 𝑄𝑄 = � 𝑟𝑟−𝑗𝑗 ⋅ 𝑞𝑞𝑗𝑗
𝑛𝑛
𝑗𝑗=1 , (2) 

In the design of [20], Eq. (1) is calculated using Signed-
Digit (carry-free) adders based on the redundant BSD 
representation; so, the shifted partial remainder 𝑟𝑟𝑅𝑅(𝑗𝑗)  is 
represented by using a BSD numbering system (denoted 
by the subscript SD2): 

 

Fig. 2 Example of HR-EXD for 8-bit radix-4  [20] 

  𝑟𝑟𝑅𝑅(𝑗𝑗) = [𝑎𝑎𝑚𝑚−1 … 𝑎𝑎1𝑎𝑎0.𝑎𝑎−1𝑎𝑎−2 … 𝑎𝑎−𝑘𝑘]𝑆𝑆𝑆𝑆2  

 = � 2𝑖𝑖𝑎𝑎𝑖𝑖
𝑚𝑚−1
𝑖𝑖=−𝑘𝑘 , (3) 

where 𝑎𝑎𝑖𝑖 ∈ {−1,0,1}. Then, the (𝑗𝑗 + 1)𝑡𝑡ℎ quotient digit 𝑞𝑞𝑗𝑗+1 
is obtained directly from the integer part of 𝑟𝑟𝑅𝑅(𝑗𝑗) by con-
verting the t most significant digits  𝑎𝑎−1𝑎𝑎−2 …𝑎𝑎−𝑡𝑡  of the 
fractional part of 𝑟𝑟𝑅𝑅(𝑗𝑗) to a non-redundant form, containing 
only digits from the set {-1, 0} or {0, 1}, i.e. 

 𝑟𝑟𝑅𝑅(𝑗𝑗) = [𝑐𝑐𝑚𝑚−1 … 𝑐𝑐1𝑐𝑐0. 𝑏𝑏−1 … 𝑏𝑏−𝑡𝑡𝑎𝑎−𝑡𝑡−1 … 𝑎𝑎−𝑘𝑘]𝑆𝑆𝑆𝑆2  (4) 

where 𝑏𝑏𝑖𝑖 ∈ {−1,0} or {0,1}, 𝑎𝑎𝑖𝑖, 𝑐𝑐𝑖𝑖 ∈ {−1,0,1}, and 

 𝑞𝑞𝑗𝑗+1 = [𝑐𝑐𝑚𝑚−1 … 𝑐𝑐1𝑐𝑐0]𝑆𝑆𝑆𝑆2 = � 2𝑖𝑖𝑐𝑐𝑖𝑖
𝑚𝑚−1
𝑖𝑖=−𝑘𝑘 , (5) 

where 𝑐𝑐𝑖𝑖 ∈ {−1,0,1} and 𝑞𝑞𝑗𝑗+1 ∈ {−(𝑟𝑟 − 1), … , 0, … , 𝑟𝑟 − 1}.  
To achieve this quotient selection method, the divisor 

D and the dividend X must be prescaled, so changing the 
divisor range from [1/2,1) to [Dmin, 1).  Dmin is the lower 
bound of the scaled D and is determined by the following 
equation: 

 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑟𝑟−2+2−𝑡𝑡

𝑟𝑟−1
≤ 𝐷𝐷 ≤ 1, (6) 

The proof of equation (6) has been provided by T. Aoki 
et al in [20]. The number of iterations in the division pro-
cess can be reduced by increasing the radix r, i.e. by se-
lecting r = 2m; this allows the generation of m quotient bits 
at each step, such that the number of steps is reduced to 
⌈𝑛𝑛/𝑚𝑚⌉.  

2.2 Exact High-radix Divider (HR-EXD) Hardware 
Design 

The implementation of a HR-EXD for the algorithm re-
viewed previously has been presented in [20]. The struc-
ture of an 8-bit radix-4 divider with r=4, t=2 is shown in 
Fig. 2; it consists of the following basic blocks. 

HR-EXD Row: The hardware implementation of the 
HR-EXD iteration row is shown in Fig. 1; it contains a row 
of Product Generation (PG) modules, a row of BSD Ad-
ders (BSDA) and a Quotient Selection (QS) module. As 
redundant BSD representation (RBR) allows addition 
without propagating a carry. When compared to a non-

 
Fig. 1 HR-EXD Iteration Row Schematics 
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redundant representation, RBR makes digit-wise logic 
operations slower, however arithmetic operations are 
faster when a large bit width is used [17]. In a high-radix 
division circuit design, a Binary Signed-Digit (BSD) num-
bering system (as a subcategory of a RBR system [23]) 
with a digit set of {-1,0,1} is used to represent the partial 
remainder at each stage. The intermediate quotient 𝑞𝑞𝑗𝑗 ∈
[−3, +3] is represented in signed-magnitude form; Posi-
tive/negative flag encoding (Table 1) is used for each BSD 
digit.  

TABLE 1 ENCODING OF BSD DIGITS 
BSD Digits d d+ d- 

-1 0 1 
0 1 or 1 0 or 0 
1 1 0 

 

  
(a) (b) 

Fig. 3 (a) An example of qD product generator (PG) for radix-4 case 
[20] (b) Exact Signed Digit Adder Cell (EXSDAC) 

 

 

(a) (b) 
Fig. 4 Example of (a) Scaling Unit (SU) (b) On-the-fly conversion for 
r=4, t=2   [20] 

Quotient Digit Selector (QS): As per the algorithm in 
[20], the real binary value of the integer part of 𝑟𝑟𝑅𝑅(𝑗𝑗) is se-
lected as the (𝑗𝑗 + 1)𝑡𝑡ℎ quotient digit 𝑞𝑞𝑗𝑗+1. The implemen-
tation of this quotient selection rule does not require a 
digit selection table; it requires only a high-speed signed-
digit carry propagation adder (SDCPA) for a limited 
number of bits (Fig. 1). For a higher radix, the design of 
the QS can be extended based on the radix-4 implementa-
tion. 

Product Generator (PG): PG requires all multiples of 
𝐷𝐷 (−3𝐷𝐷, … ,3𝐷𝐷) as pairs generated by shift operations. The 
circuit diagram of a PG is shown in Fig. 3(a); the PG 
module for radix-8 and higher can be extended from the 
radix-4 case. 

Exact Signed Digit Adder Cell (EXSDAC): Fig. 1 (b) 
shows the Exact Signed Digit Adder Cell (EXSDAC); The 
EXSDAC remains the same for all HR-EXD irrespective of 
bit width and radix. The approximate designs shown next 
are based on the approximation of EXSDAC, i.e., the pro-
posed approximate scheme is suitable for HR-EXD with 
different bit width and radix. 

Scaling Unit (SU): as input operands, the divisor D and 
the dividend X must be prescaled prior to starting the it-
erations in the division. Fig. 4(a) shows the operand scal-
ing unit using shifters and carry propagation adders 
(CPA). For radix-8 and higher radix values, the scaling 
unit does not change because it can be extended based on 
the radix-4 implementation. 

On-the-Fly Conversion: The quotient must be converted 
from a signed-digit representation to a two’s complement 
representation. This is accomplished by an addition after 
the quotient is fully computed; however, this addition in-
creases the overall execution time. So to avoid this step, 
the on-the-fly algorithm of [24] is usually used to perform 
the conversion in a digit-serial fashion to generate the 
digits of the quotient; this technique is also utilized in this 
paper. The recursive equation is shown below, the on-the-
fly conversion scheme is shown in Fig. 4(b). 

𝐴𝐴[𝑘𝑘 + 1] = �
𝐴𝐴[𝑘𝑘] + 𝑝𝑝𝑘𝑘+1𝑟𝑟−(𝑘𝑘+1),   𝑖𝑖𝑖𝑖 𝑝𝑝𝑘𝑘+1 ≥ 0

𝐵𝐵[𝑘𝑘] + (𝑟𝑟 − |𝑝𝑝𝑘𝑘+1|)𝑟𝑟−(𝑘𝑘+1),   𝑖𝑖𝑖𝑖 𝑝𝑝𝑘𝑘+1 < 0
 

𝐵𝐵[𝑘𝑘 + 1] = �
𝐴𝐴[𝑘𝑘] + (𝑝𝑝𝑘𝑘+1 − 1)𝑟𝑟−(𝑘𝑘+1),   𝑖𝑖𝑖𝑖 𝑝𝑝𝑘𝑘+1 ≥ 0

𝐵𝐵[𝑘𝑘] + ((𝑟𝑟 − 1) − |𝑝𝑝𝑘𝑘+1|)𝑟𝑟−(𝑘𝑘+1),   𝑖𝑖𝑖𝑖 𝑝𝑝𝑘𝑘+1 < 0
. 

3 PROPOSED APPROXIMATE DESIGNS 
As shown previously in Fig. 2, the binary signed-digit 
adder (made of exact cells, EXSDACs) is one of the most 
common used computational modules of a high radix di-
vider; hence, approximation for inexact computing must 
be directed to this module. 

3.1 Approximate Signed-Digit Adder Cell 
(AXSDAC) 

 
Fig. 5 Approximate design of EXSDAC (AXSDAC). 

The EXSDAC computes the subtraction or addition per 
the quotient selection output. As 𝑅𝑅(𝑗𝑗+1)+ = Cin+ , so the in-
put and output functions of these two signals can be ig-
nored. The critical path of this design has a delay of 3Δ, 
where Δ is the unitary delay through XOR gate (arrow in 
Fig. 3b). In [19], approximate design of EXSDAC (denoted 
as AXSDAC)is proposed(Fig. 5). R(j+1)−  is simplified to  
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜+  by changing the value of the other 8 outputs. 

Table 2 shows the truth table of the AXSDAC; this de-
sign has therefore 8 incorrect outputs out of 32 outputs 
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(denotes as bold in the table), so in theory its error rate is 
25% (if all combinations are equally probable). A pass-
transistor logic design is utilized to further decrease the 
circuit complexity, the delay and the power consumption; 
for example, the XOR and XNOR gates are shown in Fig. 
6.  

TABLE 2 TRUTH TABLE OF PROPOSED AXSDAC 
𝑟𝑟𝑅𝑅(𝑗𝑗)+ 𝑟𝑟𝑅𝑅(𝑗𝑗)− −qj+1D− −qj+1D+ Cın−���� Cout−����� Cout+  𝑅𝑅(𝑗𝑗+1)− ED 

0 0 0 0 1 1 0 0 0 
1 0 0 0 1 1 1 1 0 
0 1 0 0 1 0 1 1 0 
1 1 0 0 1 1 0 0 0 
0 0 1 0 1 1 1 1 0 
1 0 1 0 1 1 1 1 -1 
0 1 1 0 1 0 1 1 -1 
1 1 1 0 1 1 1 1 0 
0 0 0 1 1 0 1 1 0 
1 0 0 1 1 1 0 0 0 
0 1 0 1 1 0 0 0 0 
1 1 0 1 1 0 1 1 0 
0 0 1 1 1 0 1 1 -1 
1 0 1 1 1 1 1 1 0 
0 1 1 1 1 0 1 1 0 
1 1 1 1 1 0 1 1 -1 
0 0 0 0 0 1 0 0 +1 
1 0 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 0 
1 1 0 0 0 1 0 0 +1 
0 0 1 0 0 1 0 0 0 
1 0 1 0 0 1 1 1 0 
0 1 1 0 0 0 1 1 0 
1 1 1 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 0 
1 0 0 1 0 1 0 0 +1 
0 1 0 1 0 0 0 0 +1 
1 1 0 1 0 0 0 0 0 
0 0 1 1 0 0 1 1 0 
1 0 1 1 0 1 0 0 0 
0 1 1 1 0 0 0 0 0 
1 1 1 1 0 0 1 1 0 

 
(a) (b) (c) 

Fig. 6 XOR and XNOR implemented with pass-transistor logic 

3.2 Approximate High Radix Array Divider (HR-
AXD) 

1) Replacement Scheme and Truncation Scheme 
When designing the approximate divider, EXSDACs are 
selectively replaced by AXSDACs; hence in this case, ap-

proximation is the process by which an exact cell is re-
placed by an approximate cell or simply truncated.  Re-
placement and Truncation scheme are proposed in [19]. 
The extent by which this replacement process is per-
formed in a divider, is quantified by the depth d, i.e. the 
number of rows (and/or columns) in the divider with 
approximate cells. For an N bit width of a radix 2𝑚𝑚(m=1, 
2, 3…) divider, the number of EXSDACs is given as 
(N+2m)×(N/m); m EXSDACs are combined into a re-
placement element (RE). For example, in the 8-bit radix-4 
divider, two EXSDACs are treated together as a single RE 
(shown in Fig. 7 by the dotted rectangles of EXSDACs). 
The replacement configurations and corresponding depth 
d for an 8-bit radix-4 array divider are shown in Fig. 7. 

  
(a) (b) 

  
(c) (d) 

Fig. 7 Different approximate configurations and replacement depths 
for 8-bit radix-4 divider (a) VR d=2 (b) HR d=2 (c) SR d=2 (d) TR d=2 

Four types of replacement are used for approximation 
in the divider design: 
• Vertical Replacement (VR): The least significant REs in 

each row of the divider are replaced. So, both the re-
mainder and the quotient show a small error dis-
tance, while taking advantage of the power-saving 
characteristics of the AXSDACs. The depth of the ver-
tical replacement can be increased to further decrease 
the power, while tolerating more errors in the output. 
𝑚𝑚(𝑁𝑁/𝑚𝑚)𝑑𝑑 = 𝑁𝑁𝑁𝑁  EXSDACs are replaced with 
AXSDACs.  An example for m=2, d=2 is shown in Fig. 
7(a). 

• Horizontal Replacement (HR): In a divider, the value of 
the quotient is mostly related to the carry signal of 
each cell in a single row. For example, consider the 
last row corresponding to the LSB of Q; if the final 
value of reminder R is not of significant concern, then 
all EXSDACs in the last row can be replaced with 
AXSDACs at no significant loss of accuracy in Q. If 
an error can be tolerated in Q, then an increase in the 
depth of the horizontal replacement up to the dth LSB 
of Q is possible. An example of a horizontal replace-
ment divider of depth d=2 is shown in Fig. 7(b).(𝑁𝑁 +
2𝑚𝑚)𝑑𝑑 EXSDACs are replaced with AXSDACs in an 
approximate divider with a horizontal replacement of 
depth d. 

• Square Replacement (SR): the so-called square configu-
ration is generated by combining the vertical and 
horizontal replacements. So, 𝑚𝑚𝑑𝑑2 EXSDACs are re-
placed with AXSDACs; an example of a square re-
placement of depth d=2 is shown in Fig. 7(c). 

• Triangle Replacement (TR): Consider the integer pair 
(x,y) as coordinates of individual RE in a divider. For 
the replacement of an exact RE(i,j) (i<d or j<d) with an 
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inexact RE in a triangle approximation divider with 
depth d (d≥1), 𝑚𝑚𝑑𝑑(𝑑𝑑 + 1)/2  EXSDACs are replaced 
with AXSDACs. An example of a triangle replace-
ment divider with d=2 is shown in Fig. 7(d). 

Truncation is different from replacement, because the 
EXSDACs are not changed to AXSDACs, instead they are 
eliminated. As for replacement, four types of truncation 
are used as approximation in the divider design: Vertical 
Truncation (VT), Horizontal Truncation (HT), Squared 
Truncation (ST) and Triangle Truncation (TT). 

Consider next circuit complexity as given by the num-
ber of transistors in an implementation; based on the dif-
ferent replacements, this metric can be derived as follows. 
Consider a radix 𝑟𝑟 = 2𝑚𝑚(𝑚𝑚 = 1,2,3 … ) for a N-bit divider 
with replacement depth d; the number of adder cells is 
given by (𝑁𝑁 + 2𝑚𝑚) ⋅ 𝑁𝑁/𝑚𝑚. At a depth d, the replaced cells 
are given by 𝑁𝑁 ⋅ 𝑑𝑑 , (𝑁𝑁 + 2𝑚𝑚) ⋅ 𝑑𝑑 , 𝑚𝑚 ⋅ 𝑑𝑑2 , and 𝑚𝑚 ⋅ 𝑑𝑑 ⋅
(𝑑𝑑 + 1) 2⁄   for the vertical, horizontal, square and triangle 
replacements. For each replaced cell, the number of tran-
sistors is reduced by 25%. The number of transistors of a 
PG is 3 ⋅ 2𝑚𝑚, the number transistors of a QS is 𝑚𝑚2 + 33𝑚𝑚 +
4, the number of transistors of a SU is 24𝑚𝑚(𝑚𝑚 + 𝑁𝑁), while 
the number of transistors for the on-the-fly conversion 
circuit is 4𝑁𝑁(𝑁𝑁 + 1) 𝑚𝑚⁄ + 20; so, the total number of tran-
sistors (Z) for a HR-AXD replacement configuration is 
given by: 

𝑍𝑍 = 22(𝑁𝑁 + 2𝑚𝑚)
𝑁𝑁
𝑚𝑚
−

⎩
⎪
⎨

⎪
⎧
𝑁𝑁 ⋅ 𝑑𝑑 (𝑉𝑉𝑉𝑉)
(𝑁𝑁 + 2𝑚𝑚) ⋅ 𝑑𝑑 (𝐻𝐻𝐻𝐻)
𝑚𝑚 ⋅ 𝑑𝑑2 (𝑆𝑆𝑆𝑆)

𝑚𝑚 ⋅ (𝑑𝑑 + 1) ⋅
𝑑𝑑
2

(𝑇𝑇𝑇𝑇)⎭
⎪
⎬

⎪
⎫

⋅
4𝑁𝑁𝑁𝑁
𝑚𝑚

 

+ [3 ⋅ 2𝑚𝑚 ⋅ (𝑁𝑁 + 2𝑚𝑚) + 𝑚𝑚2 + 33𝑚𝑚 + 4]
𝑁𝑁
𝑚𝑚

 

+24𝑚𝑚(𝑚𝑚 + 𝑁𝑁) +
4𝑁𝑁(𝑁𝑁 + 1)

𝑚𝑚
+ 20 

2) Error Compensation Scheme 

 
Fig. 8 Error compensation for truncation 

The reduction of cells by truncation is amenable to error 
compensation. For a radix 𝑟𝑟 = 2𝑚𝑚 divider, the most signif-
icant (3m)th bits of the residual 𝑟𝑟𝑅𝑅(𝑗𝑗)of each adder stage 
are used to generate the quotient for the next stage; so, to 
attain a reduced inaccuracy in the quotient Q, the compu-
tation at the(3m)th bits of each adder stage must be done 
as nearly exact as possible. 

Consider the three cascading EXSDACs (shown in Fig. 
8)to form a cluster; assume that the left EXSDAC is at 

the(3m)th bit position of an adder stage. Using truncation, 
if the middle and right EXSDACs are eliminated by trun-
cation, the (3m)th cell will not generate a correct output 
for 𝑅𝑅(𝑗𝑗+1),  so making the quotient inaccurate. For the 
(3m)th bit cells to compute correctly, two paths (shown in 
red and blue) must be preserved; these paths are depend-
ent on the middle and right cells. As shown in Fig. 8, only 
some of the EXSDACs are needed for preserving correct-
ness in these two paths; so, the circuit drawn in dotted 
lines can be eliminated with no impact on the computa-
tion performed by the left cell. The middle cell corre-
sponds to the AXSDAC for replacement; the right cell is 
modified and it consists of only 8 transistors to compute 
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
−������. This circuit is hereafter referred to as the Error Com-

pensation Logic Cell (ECPLC). 

  
(a) (b) 

  
(c) (d) 

Fig. 9 Error compensation for an8-bit radix-4 divider(a) VC d=3 (b) 
HC d=2 (b) SC d=3 (c) TC d=3. The three clustered cells are the 
same as in Fig. 8. 

The truncation schemes VT, ST, TT and HT can then be 
modified for error compensation by utilizing the 
AXSDAC and ECPLC; the error compensation schemes 
for VT, HT, ST and TT are denoted as VC, HC, SC and TC 
respectively. Fig. 9 shows examples of the error compen-
sation schemes. The simultaneous utilization of a cluster 
consisting of these three cells (EXSDAC, AXSDAC and 
ECPLC) effectively results in an error buffer between the 
right located truncated cells (dotted circles) and the left 
located exact cells (solid circles). Therefore, the error 
compensation scheme is not only applied to the trunca-
tion depth that reaches the (3m)th bit cell at each adder 
stage, but it can be applied to schemes of any truncation 
depth. The effect of the error buffer can be clearly ob-
served from the simulation results presented next. 

4 SIMULATION RESULTS 
In this section, the designs of AXSDAC and approximate 
high-radix dividers are synthesis and simulated using 
Synopsis Design Compiler targeting 1GHz; predictive 
technology models at 45nm feature size are utilized in the 
simulation. For comparison purpose, the metrics of pre-
vious approximate restoring divider in [18] are also simu-
lated and presented for HR-AXD. 

4.1  NED 
The Normalized Error distance (NED) is defined as the 
Mean Error Distance (MED) normalized by the maximum 
ED[25]. The maximum value of the ED is 1, so in this case 
the NED is equal to the MED. For HR-AXD, only the 8-bit 
radix-4, 12-bit radix-4 and 12-bit radix-8 dividers are pre-
sented (the trend and conclusions for these dividers are 
applicable also to higher radix dividers). The NED results 
are plotted in log scale in Fig. 11, Fig. 13 and Fig. 14 for 
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different bit width, radix, and approximate configura-
tions; as expected, the divider with a higher depth d has a 
larger NED. The horizontal configurations have the worst 
NED among all different bit width, radix and schemes, 
while the triangle configurations are the best.  

  
(a) (b) 

Fig. 10 Q NED (in log scale) of 8-bit Radix-2 Restoring Approximate 
Divider  in [18] (a) Replacement (b) Truncation  

   
(a) (b) (c) 

Fig. 11 Q NED (in log scale) of 8-bit Radix-4 Approximate Divider (a) 
Replacement (b) Truncation (c) Error-compensation 

  
(a) (b) 

Fig. 12 Q NED (in log scale) of 12-bit Radix-2 Restoring Approximate 
Divider in [18] (a) Replacement (b) Truncation  

   
(a) (b) (c) 

Fig. 13 Q NED (in log scale) of 12-bit Radix-4 Approximate Divider 
(a) Replacement (b) Truncation (c) Error-compensation 

   
(a) (b) (c) 

Fig. 14 Q NED (in log scale) of 12-bit Radix-8 Approximate Divider 
(a) Replacement (b) Truncation (c) Error-compensation 

  
(a) (b) 

Fig. 15 NED changes in percentage using error compensation with 
respect to original truncation scheme a) Radix-4 (b) Radix-8 

   
(a) (b) (c) 

Fig. 16 Q NED (in log scale) of 16-bit Radix-4 Approximate Divider 
(a) Replacement (b) Truncation (c) Error-compensation 

   
(a) (b) (c) 

Fig. 17 Q NED (in log scale) of 24-bit Radix-4 Approximate Divider 
(a) Replacement (b) Truncation (c) Error-compensation 

   
(a) (b) (c) 

Fig. 18 Q NED (in log scale) of 24-bit Radix-8 Approximate Divider 
(a) Replacement (b) Truncation (c) Error-compensation 

All dividers employing truncation have the worst NED 
compared to the other two inexact schemes. So, a trunca-
tion scheme has a higher NED than a replacement 
scheme; the difference in NED between them is compen-
sated up to 10% by using the proposed error compensa-
tion scheme. The proposed error compensation scheme 
accomplishes a better NED when truncation is utilized, as 
it nearly reduces the NED to the same level as a replace-
ment scheme. The compensated NEDs are show in Fig. 
15; the NED of truncation is reduced when error compen-
sation is applied. Error compensation is more pronounced 
for ST and TT compared to the original truncation scheme. 
When considering the different radix schemes of a 12-bit 
divider, it is observed that a higher radix results in a 
higher NED; this occurs because a higher radix makes the 
quotient digit 𝑞𝑞𝑗𝑗(as generated at each iteration of the di-
vider) to a larger weight for generating the final Q result. 
Therefore, the error introduced at each iteration by these 
approximated configurations has a larger weight and is 
reflected in the NED of the output Q. The radix-2 AXDr 
proposed in [18] is also simulated for comparison (Fig. 10 
and Fig. 12 both in log scale). Compared to the former 
AXDr divider, HR-AXD has better NED metrics than 
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AXDr. 
As for high order architectures, 16-bit and 24-bit HR-

AXD have been simulated and assessed (Fig. 16 to Fig. 
18). As expected, a larger bit width provides a higher pre-
cision for the divider; hence, the NED decreases as the bit 
width increases. Also, when increasing the bit width, the 
NED differences between replacement, truncation and 
error compensation are significantly reduced. 

4.2 Distribution of Error Occurrence 
The error occurrence of different approximate configura-
tions is simulated to assess the effect of parameters (such 
as the radix, approximation scheme, and depth) on the 
output error of the proposed dividers. 

  
(a) (b) 

  
(c) (d) 

Fig. 19 Error occurrence distribution (in log scale) of (a)Vertical 
(b)Horizontal (c) Square (d)Triangle Error compensation scheme of 
12bit Radix-8 approximate divider 

Fig. 19, Fig. 20 and Fig. 21 show the distribution of er-
ror occurrence with respect to different trunca-
tion/approximation schemes and radix. The distribution 
is 0-biased and the absolute maximum error is very small 
in all cases, except for the horizontal scheme. Fig. 19 
shows that a horizontal (triangle) scheme has the widest 
(narrowest) distribution; Fig. 20 shows that the truncation 
scheme has the largest distribution width and higher av-
erage error occurrence. Fig. 21 shows that the distribution 
is narrowed by increasing the radix, while increasing the 
error occurrence. It also can be clearly shown that the dis-
tribution is widening by increasing the depth in all cases 
as corresponding to the larger amount of truncated val-
ues. 

 

   
(a) (b) (c) 

Fig. 20 Error occurrence distribution (in log scale) of Vertical (a) Re-
placement (b) Truncation (c) Error Compensation approximate for 
12bit radix-4 dividers 

   
(a) (b) (c) 

Fig. 21 Error occurrence distribution (in log scale) of Vertical Error 
Compensation Scheme of 12-bit (a) Radix-2 [18] (b) Radix-4 (c) Ra-
dix-8 dividers 

4.3 Distribution of Accumulated Error Value 
The accumulated error value distribution map for differ-
ent input combinations of the approximate configurations 
is simulated to assess the effect of parameters (such as the 
radix, approximation scheme) on the range of values for 
which errors may occur. 

  
(a) (b) 

  
(c) (d) 

Fig. 22 Accumulated error value distribution map of (a)Vertical 
(b)Horizontal (c)Square (d)Triangle Error compensation scheme for 
12bit Radix-8 approximate divider 

Fig. 22 and Fig. 23 show the distribution of error value 
with respect to the truncation/approximation scheme and 
radix. The input value pair forms a triangle from 0.5 to 1; 
so, the error spreads all over this area; the darker color 
represents the larger accumulated error. The error occurs 
mostly along bands that are nearly parallel to the X=D 45° 
line and the largest error is always located right on the 
edges of each band. Fig. 22 shows that a vertical scheme 
has the smallest average error; in Fig. 23 the truncation 
scheme has the largest error and wider average error oc-
currence.  The error compensation scheme effectively re-
covers the error generated by the truncation scheme. 

 

   
(a) (b) (c) 

Fig. 23 Accumulated error value distribution map of Vertical (a) Re-
placement (b)Truncation (c) Error Compensation for approximate 
12bit radix-4 dividers 

4.4 Power 
One of the primary goals of an approximate design is to 
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decrease the power consumption by tolerating a compu-
tational error. The power simulation results are shown as 
Fig. 24 through Fig. 26. As expected, the divider with a 
higher depth d has the smaller power consumption. By 
increasing d, the power consumption for a horizontal con-
figuration decreases faster than for the other types of con-
figuration, so the square and triangle configurations de-
crease their power consumption at a lower rate than the 
horizontal and vertical configurations.  

All truncated dividers save more power than the other 
two types of scheme considered in this manuscript. The 
error compensation scheme consumes a slightly more 
power than truncation, but its value is still well lower 
than a replacement scheme. The difference between trun-
cation and error compensation for the power is shown as 
Fig. 27; the power increase due to the error compensation 
circuit is marginal. The largest power penalty is not larger 
than 0.1% (Fig. 27); the delay remains nearly unchanged 
(more detail in next section), because each stage of the di-
vider array performs a constant time operation in the 
signed-digit adder. 

When two 12-bit HR-AXD (at different radix) are com-
pared, a similar amount of power is consumed, because 
although a high radix divider can reduce the number of 
iterations in the division process, in each iteration, it re-
quires more bit cells. Thus, the total power consumption 
of HR-AXD does not substantially change regardless of 
the radix. Moreover, the radix-2 AXDr (Fig. 24(a) and Fig. 
25(a)) consumes less power than HR-AXD, because the 
complexity of AXDr is significantly less than HR-AXD. 
HR-AXD has a better delay than AXDr but at a higher 
cost in hardware. 

   
(a) (b) (c) 

Fig. 24 Power consumption of 12-bit Approximate Divider with Re-
placement scheme (a) Radix-2 [18] (b) Radix-4 (c) Radix-8 

   
(a) (b) (c) 

Fig. 25 Power consumption of 12-bit Approximate Divider with Trun-
cation scheme (a) Radix-2[18] (b) Radix-4 (c) Radix-8 

  
(a) (b) 

Fig. 26 Power consumption of 12-bit Approximate Divider with Error-
Compensation scheme (a) Radix-4 (b) Radix-8 

  
(a) (b) 

Fig. 27 Power change using error compensation scheme with re-
spect to original truncation scheme (a) Radix-4 (b) Radix-8 

4.5 Delay 
The delay of each module in the divider is analyzed so 
that the total delay is then established.  
• The delays of the SU and QS are proportional to the 

bit width and the radix. 
• The delay of the PG for each stage is not related to 

the bit width, but it is proportional to the radix. 
• Each binary signed digit adder row has a constant 

delay.  
The critical path of the entire divider is close to the 

MSB of the array; it starts from the SU through each stage 
of the PG and the row of the signed digit adder; it finally 
passes through the QS and On-the-fly conversion module. 
For a divider with an approximate configuration, (either 
replacement or truncation), the approximation takes place 
at the LSB of the adder array, so the delay of the inexact 
divider is almost the same as the exact counterpart; the 
only exception is the horizontal configuration. For the 
horizontal configuration, the replacement scheme has a 
smaller delay because several stages (equal to the value of 
the replacement depth) are designed using AXSDACs, 
that have a smaller delay than EXSDACs. A truncation 
scheme has even a lower delay than the replacement 
scheme, because cells are removed. The delays of the dif-
ferent approximate schemes are plotted as Fig. 28 through 
Fig. 30; as the radix increases from radix-2 to higher radix, 
the delay decreases, because a high radix divider requires 
a fewer number of add-subtract iterations, hence the criti-
cal path delay is also shorter. Compared to the AXDr (Fig. 
28(a) and Fig. 29(a)), the delay of HR-AXD is reduced by 
nearly 60%. This is the largest benefit when using the car-
ry free HR-AXD compared to the ripple carry radix-2 di-
vider (which has a smaller delay at a high degree of com-
putation parallelism). 
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(a) (b) (c) 

Fig. 28 Delay of 12-bit Approximate Divider with Replacement 
scheme (a) Radix-2 [18] (b) Radix-4 (c) Radix-8 

   
(a) (b) (c) 

Fig. 29 Delay of 12-bit Approximate Divider with Truncation scheme 
(a) Radix-2 [18] (b) Radix-4 (c) Radix-8 

  
(b) (c) 

Fig. 30 Delay of 12-bit Approximate Divider with Error-Compensation 
scheme (a) Radix-4 (b) Radix-8 

4.6 Area 

   
(a) (b) (c) 

Fig. 31 Area of 12-bit Approximate Divider with Replacement 
scheme (a) Radix-2 [18] (b) Radix-4 (c) Radix-8 

   
(a) (b) (c) 

Fig. 32 Area of 12-bit Approximate Divider with Truncation scheme 
(a) Radix-2[18] (b) Radix-4 (c) Radix-8 

  
(a) (b) 

Fig. 33 Area of 12-bit Approximate Divider with Error-Compensation 
scheme (a) Radix-4 (b) Radix-8 

The synthesis results for the area are shown in Fig. 31 
through Fig. 33.  As expected, the area results of HR-AXD 
follow the same trends as the power results. The Radix-2 
AXDr occupies a smaller area than HR-AXD, thus con-
firming again that HR-AXD has a higher complexity than 
AXDr. 

4.7 Trade-off between NED and Power 

   
(a) (b) (c) 

Fig. 34 NPP (in log scale) of 12-bit Radix-4 Approximate Divider with 
(a) Replacement Scheme (b) Truncation Scheme (c) Error Compen-
sation Scheme 

   
(a) (b) (c) 

Fig. 35 NPP (in log scale) of 12-bit Radix-8 Approximate Divider with 
(a) Replacement Scheme (b) Truncation Scheme (c) Error Compen-
sation Scheme 

An approximate arithmetic design always must balance 
accuracy and energy dissipation. As shown previously as 
the depth changes, the power dissipation increases while 
the NED decreases. To further evaluate this trade-off, the 
MED Power Product (MPP) has been introduced in [26]. 
In this paper, the NPP (NED power product) is used as 
more relevant than the MPP. Fig. 34 and Fig. 35 show the 
NPP in log scale of the 12-bit radix-4 and radix-8 dividers 
using different approximation schemes; the error com-
pensation scheme has the lowest NPP compared to the 
other two schemes. Compensation recovers part of the 
error introduced by a truncation scheme to the same level 
as a replacement scheme, while still preserving the low 
power advantage of truncation.  

5 APPLICATIONS 
In this section, the proposed approximate schemes for 

high radix division are evaluated for image analysis (on a 
pixel basis) using input grayscale images normalized in 
the range [1/2, 1). 12-bit approximate dividers with dif-
ferent configurations are utilized; the approximations for 
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HR-AXD used in these applications are shown in Table 3; 
these configurations are chosen such that the power dis-
sipation of these HR-AXD is nearly the same. 
TABLE 3 APPROXIMATION DEPTH D CONFIGURATIONS OF 12-BIT HR-AXD 

USED FOR APPLICATION ANALYSIS 
 VR/VT HR/HT SR/ST TR/TT 

Radix-4 1 2 3 4 
Radix-8 1 2 3 4 

Radix-2[18] 2 4 6 8 
The Peak Signal-to-Noise Ratio (PSNR) and the SSIM 

[27] are used as metrics to evaluate the image quality of 
inexact schemes against an exact scheme. The Mean 
Structural SIMilarity Index (MSSIM) is a metric to assess 
image quality; it is based on the finding that human vi-
sion is highly adapted to extract structural information 
from the viewing field. Hence, such measure of structural 
information change can provide a good approximation to 
the perceived image distortion. These metrics are given 
by 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦) = [𝑙𝑙(𝑥𝑥, 𝑦𝑦)]𝛼𝛼 ⋅ [𝑐𝑐(𝑥𝑥, 𝑦𝑦)]𝛽𝛽 ⋅ [𝑠𝑠(𝑥𝑥,𝑦𝑦)]𝛾𝛾 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) =
1
𝑀𝑀
�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥𝑗𝑗 , 𝑦𝑦𝑗𝑗)
𝑀𝑀

𝑗𝑗=1

 

where X and Y are the reference and the distorted images, 
respectively; 𝑙𝑙(𝑥𝑥, 𝑦𝑦), 𝑐𝑐(𝑥𝑥, 𝑦𝑦) and 𝑠𝑠(𝑥𝑥, 𝑦𝑦) are the luminance, 
contrast and structure comparison function; 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 
are parameters used to adjust the relative importance of 
the three components; 𝑥𝑥𝑗𝑗 and 𝑦𝑦𝑗𝑗 are the image contents at 
the j-th local window; and M is the number of local win-
dows in the image. 

5.1  Image Change Detection 
Change detection consists of finding the fractional 

change (or ratio) between two frames of a sequence, i.e.,  
𝑄𝑄(𝑖𝑖, 𝑗𝑗) = 𝐹𝐹𝑡𝑡1(𝑖𝑖, 𝑗𝑗) ÷ 𝐹𝐹𝑡𝑡2(𝑖𝑖, 𝑗𝑗) 

where 𝐹𝐹𝑡𝑡1(𝑖𝑖, 𝑗𝑗) and 𝐹𝐹𝑡𝑡2(𝑖𝑖, 𝑗𝑗) are individual pixel values 
of two frames of a video or two pictures taken at 𝑡𝑡1 and 
𝑡𝑡2. 𝑄𝑄 is the resulting output image.  

If there is no movement, then the output image 𝑄𝑄 
mostly consists of 1-valued pixels. However, when there 
is a movement, then the pixels in the regions of the image 
in which the intensity spatially changes, exhibit signifi-
cant differences between the two frames. Change detec-
tion has been considered also in [19]. Fig. 36 shows the 
simulation results of the same image (IMG1 in Table 4) in 
[19] using the Peak Signal-to-Noise Ratio (PSNR) as met-
ric. The square approximation has the best PSNR on av-
erage, especially for the radix-4 divider; moreover, the 
radix-8 divider PSNR is lower than radix-4 dividers on 
average. A truncated scheme has a PSNR lower than the 
corresponding replacement scheme, while an error com-
pensation scheme regains most of the PSNR value lost 
due to truncation. Its value is now at nearly the same lev-
el as the corresponding replacement scheme. 

 

   
(a) (b) (c) 

Fig. 36 PSNRs of different radix (12-bit) approximate divider for 
change detection: (a) replacement (b) truncation (c) with error com-
pensation  

TABLE 4 IMAGES FOR CHANGE DETECTION 
 IMG1[19] IMG2 IMG3 IMG4 IMG5 

𝐹𝐹𝑡𝑡1 
     

𝐹𝐹𝑡𝑡2 
     

𝑄𝑄 
     

 

   
(a) (b) (c) 

Fig. 37 Additional images for change detection for square approxi-
mation (a) Replacement (b) Truncation (c) Error compensation 

TABLE 5 MSSIM VALUE FOR ALL IMAGES  

 Replacement Truncation Error 
compensation 

IMG1 
[19] 

   

IMG2 

   

IMG3 

   

IMG4 

   

IMG5 

   
Following the initial results of [19], more images 

(IMG2~5) from [28] are evaluated in this manuscript to 
assess the error for additional image pairs (Table 4). The 
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square approximation results are plotted in Fig. 37; the 
proposed approximate divider works well for all consid-
ered images, especially for radix-4 dividers. The truncat-
ed schemes have the lowest PSNR, while the error com-
pensated schemes efficiently recover the error due to 
truncation to nearly the same level as a replacement 
scheme. The MSSIM results of all images are shown as 
bar charts in Table 5; although the truncation scheme has 
the lowest MSSIM, the average MSSIMs in all images are 
above 0.95, so  a very high value and confirming that the 
the proposed approximate dividers will not  incur in a 
significant distortion as observed by human vision. 

5.2 Image Scaling 
Another common application of image division is to 

scale down the image values, so that they can be within 
two saturation limits (minimum and maximum) for ap-
propriate viewing. This is can be performed using divi-
sion by a constant, i.e., 

𝑄𝑄(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑖𝑖, 𝑗𝑗) ÷ 𝐶𝐶 

in which 𝑃𝑃 is the image to be scaled, 𝐶𝐶 is the scaling factor 
and 𝑄𝑄 is the resulting image. 

 
Fig. 38 Example of sharpening image with convolution and use of 
image scaling[29] 

The need of this operation arises on two scenarios: if 
the source image is too dark or too brigh; as result of a 
processing step, the resulting matrix has entries with very 
high values. An example (Fig. 38) of the second scenario 
is image sharpening this involves first convolution with a 
2D filter (top right in Fig. 38). As the products of sums 
can result in very high values, the convolved image (bot-
tom right in Fig. 38) is divided by a constant, so restoring 
the appropriate viewing image (bottom left in Fig. 38). 

TABLE 6 IMAGES FOR SCALING APPLICATION 
 IMG1 IMG2 IMG3 

Before 
scaling 

   

After  
scaling 

   
 

   
(a) (b) (c) 

Fig. 39 PSNR of Images scaling application for square approxima-
tion (a) Replacement (b) Truncation (c) Error compensation 

TABLE 7 MSSIM VALUE FOR ALL IMAGES 

 Replacement Truncation Error 
compensation 

IMG1 

   

IMG2 

   

IMG3 

   
Table 6 shows the images used in the scaling applica-

tion. The results for the triangle approximation are plot-
ted in Fig. 39; the proposed approximate divider works 
well among all considered images, especially for radix-4 
divider. In general, the truncation schemes have the low-
est PSNR, while the error compensated schemes efficient-
ly recover the error caused by truncation to nearly the 
same level as a replacement scheme. The scaling applica-
tion requires an image divided by a constant value, so the 
overall PSNR is higher than the PSNR for the change de-
tection application. The MSSIM results of all images are 
shown in Table 7. Although a truncation scheme has the 
lowest MSSIM, the average MSSIMs in all images are 
above 0.95, so indicating that the proposed approximate 
dividers do not cause a significant distortion in the image 
scaling application. 

6 CONCLUSION 
This paper has presented a detailed analysis, design and 
evaluation of high radix parallel dividers that utilize ap-
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proximate criteria in their operation. The basic computa-
tional modules for high-radix division have been re-
viewed and the signed-digit adder has been simplified to 
accomplish inexact computing. Replacement, truncation 
and error compensation schemes have been proposed; 
different design parameters including the number of bits 
N, the radix number r, and the replacement depth d have 
been varied to evaluate the performance and error charac-
teristics of these inexact high radix dividers. Compared to 
the original exact design counterpart in [20], simulation 
has shown that the power dissipation and delay of the 
inexact designs are better than the original exact de-
sign(for all cases). Moreover, the following conclusions 
can be drawn. 
• The error characteristics can be clearly seen from the 

NED and error distribution. A larger value for d pro-
vides a larger NED and a wider error distribution; 
among all schemes, the triangle replacement divider 
has the best NED and the narrowest error distribu-
tion among the placement schemes considered in this 
manuscript. A truncated scheme introduces more er-
ror, but if error compensation is introduced, the error 
introduced by truncation can be mitigated by utiliz-
ing a compensation scheme; this proposed scheme 
utilizes a 3-cell cluster that results in a significant im-
provement in error characteristics at a marginal in-
crease in power dissipation. 

• The power consumption and area reduce rapidly as 
the depth increases, i.e. the higher the depth is, more 
pronounced is the power and area reduction. A trun-
cation scheme provides a significant power and area 
reduction compared to a replacement scheme; the er-
ror compensation scheme slightly increases the pow-
er consumption and area compared to truncation 
scheme, but its value is still significantly lower than 
the replacement schemes. 

• The delay of a radix-4 divider is significantly less 
(nearly 60%) than for a radix-2 divider. Compared to 
radix-4, the delay is reduced about 25% for radix-8 
dividers. As only 𝑁𝑁/𝑚𝑚 stages are required to com-
plete the division, larger the value of 𝑚𝑚, smaller is the 
delay. The delay of all approximate divider schemes 
is however not significantly affected by the different 
approximate configurations. 

Compared to the radix-2 AXDr divider design of [18], 
a HR-AXD has a higher complexity and power consump-
tion, but the error characteristics and computation speed 
are significantly improved by using HR-AXD; The com-
bined metric of the NPP is reduced when the proposed 
error compensation scheme is utilized; so the HR-AXD 
with error compensation scheme is better suited for laten-
cy critical applications requiring a small NPP. Compared 
to other state-of-the-art approximate dividers, e.g., Trun-
cApp[14] and SEERAD[13], the proposed design employ-
es a high-radix array division algorithm by focusing on a 
transistor-level approximate implementation, so better 
suited to meet specific application constraints. For exam-
ple, when considering image division, the error metrics of 
the proposed design (at an average of 50dB for the PSNR 
and 0.98 for the MSSIM) are significantly better than for 

SEERAD and TruncApp (at an average of 28dB for the 
PSNR and 0.77 for the MSSIM); therefore, improvements 
in performance must also met satisfactory application re-
quirements and limiting errors in computation.  

In conclusion, when designing an approximate array 
divider, metrics (and related design parameters) must be 
considered and met as per the specific application. For 
power critical application, the former AXD design [18]  
could be still a better choice; for speed critical applica-
tions, HR-AXD is overall the best candidate. When de-
signing a divider, the power penalty incurred by choos-
ing a high radix can be reduced using approximation; 
most of the errors introduced by approximation can be 
compensated using the proposed scheme 
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