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Summary

Localization is essential for wireless sensor networks (WSNs). It is to determine the positions of sensor nodes based
on incomplete mutual distance measurements. In this paper, to measure the accuracy of localization algorithms, a
ranging error model for time of arrival (TOA) estimation is given, and the Cramer–Rao Bound (CRB) for the model
is derived. Then an algorithm is proposed to deal with the case where (1) ranging error accumulation exists, and
(2) some anchor nodes broadcast inaccurate/wrong location information. Specifically, we first present a ranging
error-tolerable topology reconstruction method without knowledge of anchor node locations. Then we propose
a method to detect anchor nodes whose location information is inaccurate/wrong. Simulations demonstrate the
effectiveness of our algorithm. Copyright © 2008 John Wiley & Sons, Ltd.
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1. Introduction

Localization is essential for wireless sensor networks
(WSNs). It is to determine the positions of sensor nodes
based on incomplete mutual distance measurements.
Localization algorithms can be loosely categorized
into two classes: ranging-based algorithms and
ranging-free algorithms. Compared with ranging-free
algorithms, ranging-based algorithms can achieve
higher localization accuracy with fewer anchor nodes
[1]. Traditional ranging methods are based on the
time of arrival/time difference of arrival (TOA/TDOA),
received signal strength (RSS), and angle of arrival
(AOA). Among them, TOA is preferred because
of its high ranging accuracy and relatively simple

*Correspondence to: Hai Jiang, Department of Electrical and Computer Engineering, University of Alberta, Canada.
†E-mail: hai.jiang@ece.ualberta.ca

hardware structure, especially with the technique of
ultra-wideband (UWB).

Specifically, localization is to estimate the positions
of all the nodes in a network, given the positions of
some nodes (referred to as anchor nodes) and partial
pairwise distance measurements between neighboring
nodes [2]. Two major challenges in localization are as
follows. First, the accuracy of distance measurements
may be degraded by noise (referred to as the ranging
error problem). The impact of the ranging error usually
depends on the estimation algorithm, the bandwidth of
pulses, application scenarios, etc. [3,4]. It is difficult to
take all the factors into account. Second, the position
information provided by some anchor nodes may be
inaccurate/wrong. For example, in a WSN for forest
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fire detection, some anchor nodes may be moved by
pedestrians or animals (thus referred to as inaccurately
positioned anchor nodes). But the anchor nodes still
broadcast their original positions, thus leading to
localization errors.

In the literature, the ranging error problem
has been investigated extensively. Using distance
measurements and positions of anchor nodes, other
nodes’ relatively accurate positions can be calculated
by Multilateration [5] or multidimensional scaling
(MDS) [6] algorithm. Furthermore, to overcome
the ranging errors, an optimization problem can be
formulated to minimize some global error functions
such as maximum likelihood estimation [7] and
semidefinite programming [2,8]. Although these
algorithms may guarantee estimation accuracy under
certain conditions, most of them become vulnerable in
the presence of inaccurately positioned anchor nodes.

In this paper, our objective is to solve both the
ranging error problem and the inaccurate anchor
node position problem simultaneously. We first analyze
Cramer–Rao Bound (CRB) for localization in a WSN.
To measure the accuracy of a specific localization
algorithm, CRB is studied in the literature [9,10], where
ranging error between any pair of nodes is usually
assumed to be independent and identically distributed.
However, as shown in Subsection 2.2 of this paper,
ranging error also depends on the distance between
the two nodes. In this research, we present an ideal
ranging error model in TOA estimation, and further
derive the CRB for localization. Moreover, we propose
a localization algorithm that consists of two steps: first,
to estimate the network topology (i.e., relative positions
between nodes) without knowledge of anchor node
locations, then to detect inaccurately positioned anchor
nodes and further obtain the positions of all the nodes
in the network. The rest of this paper is organized
as follows. The CRB for localization is derived in
Section 2. Sections 3 and 4 present the two steps in our
localization algorithm, that is, topology reconstruction
and detection of inaccurately positioned anchor nodes,
respectively. The performance evaluation is given in
Section 5, followed by concluding remarks in Section 6.

2. CRB for Localization

2.1. Network Model

Assume that all the nodes in a WSN are fixed on a plane.
There are M sensors (with IDs from 1 to M) without
position information and N − M sensors (with IDs
from M + 1 to N) with known position information,

referred to as non-anchor nodes and anchor nodes,
respectively. Non-anchor nodes form a set Q, while
anchor nodes form a set P. Node i can communicate
with node j and thus can measure the distance to node
j if and only if the distance between nodes i and j, that
is, di,j , is less than the visible radius R. All the nodes
that can communicate with node i form a set denoted
as F(i). Define a distance measurement set D in which

D = {
d̂i,j|i ∈ P ∪ Q, j ∈ F(i)

}
(1)

where d̂i,j is the measured distance between nodes i and
j. Our objective is to use setD and position information
of anchor nodes, WP, where

WP = {
(xi, yi)

T|i ∈ P
}

(2)

to reconstruct the set

WQ = {
(xi, yi)

T|i ∈ Q
}

(3)

where the superscript T means transpose, (xi, yi)T is
coordinate vector of node i, and WP and WQ denote
the set of coordinate vectors of anchor nodes and non-
anchor nodes, respectively. Throughout the paper, if z

means the coordinate of a node or the distance between
two nodes, we use ẑ to denote the measured or estimated
value of z in the localization.

2.2. Ranging Error Model

As localization is based on ranging results among
nodes, a well-built ranging error model can facilitate
localization in the process of refinement. Ranging
accuracy depends on a number of factors such as
application scenarios, TOA estimation algorithms,
and the bandwidth of pulses. Generally, it is difficult
to construct a general ranging error model to take into
account all the factors. So we use the lower bound
of TOA estimation error to approximate the ranging
error. With additive Gaussian white noise, the CRB of
time delay estimation using TOA ranging is [11]

σ2
ε ≥ 1

8π2γβ2
f

(4)

where σ2
ε is the variance of time delay estimation

error, βf is the bandwidth of ranging signal, and γ

is signal-to-noise ratio (SNR). For omnidirectional
antennas with only line-of-sight, we have

Pr = P

4πd2
i,j

(5)
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wherePr is received power, P is transmit power, anddi,j

is the true distance between the transmitter (node i) and
receiver (node j). When in a multipath channel, we have

Pr = P

4πd2n
i,j

(6)

where n is multipath factor that depends on specific
application scenarios.

The SNR of the received signal is

γ = Pr

N0βf

(7)

where N0 is the noise power spectral density. From
Equations (4), (6), and (7), we can get

σ2
ε ≥ N0d

2n
i,j

2πβf P
(8)

Since our objective is to obtain the lower bound of
ranging error, we take the equality in Equation (8) and
multiply both sides with c2 where c denotes the speed
of light, and then we get

E
{

(d̂i,j − di,j)2} = c2 · σ2
ε = c2N0d

2n
i,j

2πβf P
(9)

where E{·} means expectation. Similar to Refer-
ence [10], it is assumed that the ranging error follows

a zero-mean normal distribution. Let σ0 =
√

c2N0
2πβf P

,

then the ranging error model can be described as

d̂i,j = di,j + dn
i,jσ0ε0 (10)

where σ0 is defined as noise factor, and ε0 is a standard
normal random variable denoted as ε0 ∼ N(0, 1).

2.3. Error Bound for Localization

With the ranging error model, the CRB for localization
can be derived. Suppose there are (i) at least three
anchor nodes (i.e., N − M ≥ 3), and (ii) a sufficient
number of measured distances between nodes in the
WSN. Let

θn = (x1, y1, · · · , xM, yM)T (11)

be the coordinate vector of non-anchor nodes, and

θ̂n = (x̂1, ŷ1, · · · , x̂M, ŷM)T (12)

be the estimated coordinate vector of non-anchor
nodes. Then the error covariance matrix is

C = E{(θ̂n − θn)(θ̂n − θn)T} (13)

The error covariance matrix is bounded by the CRB,
that is,

C ≥ CRB (14)

The CRB can be represented as

CRB = J−1 (15)

where J is the Fisher Information Matrix (FIM). Note
that the FIM has a full rank (and thus its inverse exists)
only if there are at least three anchor nodes and a
sufficient number of measured distances between nodes
in the WSN. The method to obtain J in our model is
described in details in the Appendix.

In an actual application, the location information
provided by some anchor nodes may not be accurate.
Still taking these anchor nodes as reference points will
lead to inaccurate or even catastrophic results. Thus,
we propose to first obtain the whole network’s topology
(i.e., a set of mutual distances of all the nodes) without
use of anchor node location information, then detect
and remove inaccurately positioned anchor nodes, and
finally get the positions of all the nodes. So for the
ranging error bound, we view the N − M anchor nodes
as non-anchor nodes, and thus have a 2N × 2N FIM J.
Without anchor nodes, the FIM J has a rank of 2N − 3
[9]. So the inverse of the FIM does not exist. This
means lower bound of E{(x̂i − xi)2} or E{(ŷi − yi)2}
for node i cannot be obtained. However, the lower
bound of the summation of E{(x̂i − xi)2 + (ŷi − yi)2},
i = 1, 2, · · · , N can still be measured with the help
of the rank-deficient FIM. According to References
[9,12],

∑N
i=1 E{(x̂i − xi)2 + (ŷi − yi)2} is no less than

the trace (i.e., sum of diagonal elements) of J†, where
J† is the Moore–Penrose pseudo-inverse of J. Let
λ1, λ2, · · · , λ2N−3 be the non-zero eigenvalues of J,
then the trace of J† can be expressed as

Tr(J†) =
2N−3∑
i=1

1

λi

(16)

Further, the average CRB of ranging errors can be
obtained, given by Tr(J†)/N.
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3. Topology Reconstruction

3.1. Proposed Topology Reconstruction
Method

To obtain a network topology, MDS [6] algorithm
that only takes distance matrix as the input is a
good candidate because of its capability of parallel
computing. However, it requires that any pair of
nodes should be able to reach each other, which is
not practical. On the other hand, in Reference [13],
a method is given for topology reconstruction
from incomplete distance information. Let D be a
distance matrix in which Di,j = d2

i,j . It is proved in
Reference [13] that the rank of D is at most 4. As
discussed in Reference [13], suppose the first four
rows of D are linearly independent and are known,
which also means that each of the first 4 nodes can
reach all other nodes. Also, assume that in each of
other rows in D, at least four entries are known, that
is, each node can range the distance with at least
four other nodes. Then the network topology can be
reconstructed, that is, the value of each entry inD can be
obtained. One problem in the topology reconstruction
is how to find four nodes, each with measured distance
to any other node. Furthermore, in the topology
reconstruction method, it is assumed that pi,j (the
probability that node i can measure the distance to node
j) is known for any i and j. The assumption makes
the method impractical in a real network. Another
drawback of the topology reconstruction method comes
from the fact that the accuracy of localization with
the method depends largely on the ‘best guess’ of
the distance between nodes i and j when the distance
cannot be measured. In the following, we propose a
new topology reconstruction method to solve these
problems.

As aforementioned, it may be difficult to find four
nodes in a WSN, each with measured distance to any
other node. Generally, this condition can be satisfied
in a local area, namely a sub-network. In other words,
in the group of nodes in a sub-network, it is possible
to find four nodes that can reach any other node in
the group, and then to obtain the distance matrix of all
nodes in the sub-network by the preceding procedure.
Thus, the sub-network becomes all-connected, which
means the distance between any pair of nodes is known.
For a node in an adjacent area of the all-connected sub-
network, if it can reach at least four nodes in the sub-
network, its distance to any node in the sub-network
can be obtained, and thus it can be included into the all-
connected sub-network. This means the all-connected

sub-network is gradually enlarged, and eventually it
includes all the nodes in the WSN.

As ranging errors are inevitable, the performance
of topology reconstruction can be degraded due to
accumulated ranging errors. To deal with the error ac-
cumulation issue, we have the following requirements:

• The initially selected sub-network should be an all-
connected sub-network rather than one with only
four nodes that can reach any other node.

• Once adjacent nodes are included into the sub-
network and new topology is generated (e.g., by
MDS method), distance refinement is necessary to
address the error accumulation in the search for
adjacent nodes. We choose BFGS method [14] (a
quasi-Newton method) to reduce the accumulated
ranging errors.

Define a connection matrix asW in which wi,j is equal
to 1 if the distance between node i and j is measurable
and the measurement result is credible, and equal to 0
otherwise. The discovery mechanism to determine the
W is as follows. In a sensor network, besides anchor
nodes positions and mutual distance measurements,
other information can also be obtained such as SNR
or other parameters that can represent the credibility
of ranging data between two nodes [15]. The ranging
data is accepted if its credibility is high, and discarded
otherwise.

Our topology reconstruction method is stated as
follows.

Step 1: Setup of initial all-connected sub-network—
Set k = 0, find an all-connected sub-network
Ak, in which |Ak| ≥ 4, that is, the number of
elements in set Ak is not less than 4, and gen-
erate distance matrix D0 for the sub-network.‡

Step 2: Inclusion of new adjacent nodes—According
to connection matrix W, search the set Bk =
{i|i /∈ Ak, |F(i) ∩ Ak| ≥ 4}, that is, each node
in Bk has at least four measured distances
with nodes in Ak. All the nodes in Bk are to

‡ It is possible that the initial four fully connected nodes are
not able to be found. However, for a localization problem with
TOA technique in a 2D plane, one basic requirement for each
node is that it can communicate with at least three other nodes.
Considering the basic requirement, the worst case (i.e., the
initial four fully connected nodes cannot be found) happens
only when all the nodes are sparsely and evenly located in
the network. So the probability of the worst case is expected
to be low.
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be added into the all-connected network Ak,
shown as follows.

For each i ∈ Bk, define Ti as the set of
nodes in Ak that have measured distances
with i, denoted as Ti = {j|j ∈ F(i) ∩ Ak}.
Obviously, |Ti| ≥ 4. Let Ri = Ak\Ti. So we
need to know the distances of i to the nodes
in Ri. Without loss of generality, we assume
|Ak| = m, |Ti| = l ≥ 4, the nodes in Ti are
with IDs from 1 to l, and nodes in Ri are with
IDs from l + 1 to m. So the distance matrix of
the set Ak ∪ {i} is given by

Dk =



d̂
2
1,1 d̂

2
1,2 · · · d̂

2
1,m d̂

2
1,i

...
...

. . .
...

...

d̂
2
l,1 d̂

2
l,2 · · · d̂

2
l,m d̂

2
l,i

...
...

. . .
...

...

d̂
2
m,1 d̂

2
m,2 · · · d̂

2
m,m d̂

2
m,i

d̂
2
i,1 d̂

2
i,2 · · · d̂

2
i,m d̂

2
i,i


All the diagonal entries are 0s. The unknown

entries in Dk are d̂
2
i,l+1, d̂

2
i,l+2, · · · , d̂

2
i,m.§

Because the rank of D is at most 4 and l ≥ 4,
the last row in Dk can be represented by a
linear combination of the first l rows, that is,

d̂
2
1,1 d̂

2
2,1 · · · d̂

2
l,1

d̂
2
1,2 d̂

2
2,2 · · · d̂

2
l,2

...
...

. . .
...

d̂
2
1,m d̂

2
2,m · · · d̂

2
l,m

d̂
2
1,i d̂

2
2,i · · · d̂

2
l,i




c1

c2

...

cl

 =



d̂
2
i,1

d̂
2
i,2

...

d̂
2
i,m

d̂
2
i,i


(17)

From Equation (17), we can obtain the values
of c1, c2, · · · , cl, and further get the values of

d̂
2
i,l+1, d̂

2
i,l+2, · · · , d̂

2
i,m.

Step 3: Topology refinement—After all nodes inBk are
added intoAk, use MDS method on the present
Dk (for nodes in the present Ak) to get the esti-
mated coordinate vectors of nodes in Ak (e.g.,
(x̂i, ŷi) for node i). Then use the BFGS method

§ SinceD is a symmetric matrix, we do not count the unknown

entries d̂
2
l+1,i, d̂

2
l+2,i, · · · , d̂

2
m,i.

to adjust the coordinate vectors of the nodes
such that the following objective function

∑
i<j,j∈F(i),i∈Ak,j∈Ak

(
d̂i,j−

√
(x̂i−x̂j)2+(ŷi−ŷj)2

)2

(18)

is minimized. And update entries of Dk

accordingly.
Step 4: Increase k by 1, and proceed to Step 2 until

all the nodes in the WSN have been included
in Ak.

3.2. Analysis of the Proposed Topology
Reconstruction Method

In the proposed topology reconstruction method, the
main operation includes the hierarchical update of
topology reconstruction in Step 2, and MDS method
and BFGS method in Step 3. The feature how the MDS
method and BFGS method address the ranging error
can be found in References [16] and [14], respectively.
In the following, we will analyze the hierarchical
update of the topology reconstruction. Let

A1 + �A1 =



d̂
2
1,1 d̂

2
2,1 · · · d̂

2
l,1

d̂
2
1,2 d̂

2
2,2 · · · d̂

2
l,2

...
...

. . .
...

d̂
2
1,l d̂

2
2,l · · · d̂

2
l,l

d̂
2
1,i d̂

2
2,i · · · d̂

2
l,i


where A1 denotes the true distance matrix and �A1
denotes the distance error matrix. We also define

b1 + �b1 =
(
d̂

2
i,1, d̂

2
i,2, · · · , d̂

2
i,l, d̂

2
i,i

)T

where b1 denotes the true distance vector and �b1
denotes the distance error vector,

A2 + �A2 =


d̂

2
1,l+1 d̂

2
2,l+1 · · · d̂

2
l,l+1

d̂
2
1,l+2 d̂

2
2,l+2 · · · d̂

2
l,l+2

...
...

. . .
...

d̂
2
1,m d̂

2
2,m · · · d̂

2
l,m



b2 + �b2 =
(
d̂

2
i,l+1, d̂

2
i,l+2, · · · , d̂

2
i,m

)T
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and

c = (c1, c2, · · · , cl)
T (19)

Obviously, we have

A1c = b1 (20)

A2c = b2 (21)

and

b1 + �b1 = (A1 + �A1)(c + �c) (22)

b2 + �b2 = (A2 + �A2)(c + �c) (23)

To minimize the estimation error of b2, we can state
the object as

minimize‖�b2‖ (24)

where ‖ · ‖ means the L2-norm of a vector, that

is, ‖(x1, x2, · · · , xn)T‖ =
√

x2
1 + x2

2 + · · · + x2
n. From

Equations (21) and (23), we can derive that

�b2 = �A2c + (A2 + �A2)�c (25)

So it is desired to minimize ‖�A2c + (A2 +
�A2)�c‖, which is equivalent to solving the following
equation that is very likely to be an inconsistent
equation:

−(A2 + �A2)�c = �A2c (26)

According to Reference [17], the best solution to
minimize ‖�A2c + (A2 + �A2)�c‖ should be

�c = − (
(A2 + �A2)T(A2 + �A2)

)−1

(A2 + �A2)T�A2c (27)

However, since �A2 is unknown, it may not be feasible
to design a method to get the best estimation of b2 based
on Equation (27). Therefore, we alternatively aim at
estimating c as accurately as possible, and our goal can
then be formulated as

minimize‖(A1+�A1)(c+�c)−(b1+�b1)‖ (28)

Similar to Equation (27), the best solution is

ĉ = (
(A1 + �A1)T(A1 + �A1)

)−1

(A1 + �A1)T(b1 + �b1) (29)

which is exactly what we use to solve Equation (17) in
Step 2 of our proposed topology reconstruction.

Next, we explain the reason why we use a linear
combination of the first l rows in Dk to represent the
last row. Since the rank of matrix [AT

1 A
T
2 ] is at most

4 [13], one may guess that it is sufficient to use only
four rows inDk to represent the last row. However,A1 is
disturbed by �A1. To address estimation error, that is,
�A1, we use all the first l rows in Dk to represent the
last row. Denote Ã = A1 + �A1 and b̃ = b1 + �b1.
Let S̃A be a (l + 1) × j (j ≤ l) matrix whose columns
are selected from columns of Ã. Then, we have

‖Ã
(
ÃTÃ

)−1
ÃTb̃−b̃‖ ≤ ‖S̃A

(
S̃A

T
S̃A

)−1
S̃A

T
b̃−b̃‖

(30)
as proved as follows.

Proof.
(
ÃTÃ

)−1
ÃTb̃ is the optimal solution to

minimize ‖Ãx − b̃‖ [17], that is, for arbitrary vector
x = (x1, x2, · · · , xl)T, we have

‖Ã
(
ÃTÃ

)−1
ÃTb̃ − b̃‖ ≤ ‖Ãx − b̃‖ (31)

Let x = B̃(
S̃A

T
S̃A

)−1
S̃A

T
b̃ where B̃ satisfies ÃB̃ =

S̃A. From Equation (31), we can get∥∥∥Ã(
ÃTÃ

)−1
ÃTb̃−b̃

∥∥∥≤
∥∥∥ÃB̃(

S̃A
T
S̃A

)−1
S̃A

T
b̃−b

∥∥∥
=

∥∥∥S̃A(
S̃A

T
S̃A

)−1
S̃A

T
b̃−b̃

∥∥∥
(32)

This completes the proof. �

So it is clear that using more rows inDk to represent
the last row will promise less estimation error.

4. Detection of Inaccurately Positioned
Anchor Nodes

Once the network topology is reconstructed (as
discussed in the previous section), the positions of
all non-anchor nodes can be obtained based on the
reconstructed network topology and known anchor
node positions. However, since some anchor nodes may
be inaccurately positioned, it is necessary to detect
these anchor nodes and prevent them from serving as
reference nodes. Note that the inaccurately positioned
anchor nodes are still able to measure the distances to
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their neighboring nodes and broadcast them correctly.
So the reconstructed network topology is assumed to
be accurate because the position information of anchor
nodes is not used in the reconstruction procedure. It is
also assumed that only a small portion of the anchor
nodes are inaccurately positioned, and their position
errors are randomly distributed.

Define a matrix U in which an entry ui,j means
the estimated distance (in the topology reconstruction)
of anchor node i to anchor node j, that is, d̂i,j .
Define a matrix V in which an entry vi,j means the
declared distance of anchor node i to anchor node j,
that is, the distance calculated based on the position
information broadcast from the anchor nodes. Also
define a difference matrix Q in which

qi,j =
{

1, if |ui,j−vi,j |
ui,j

< τ

0, otherwise
(33)

where τ is a pre-specified threshold. It can be seen
that the more the position error of an anchor node i,
the larger the likelihood of qi,j (with another anchor
node j) being 0. Note that for an inaccurately positioned
anchor node i, the qi,js may not be all 0s. Therefore, in
order to detect inaccurately positioned anchor nodes,
we propose to find the set of accurately positioned
anchor nodes instead, as described in the following.
The principle in the detection of accurately positioned
anchor nodes is the fact that qi,j should be 1 if anchor
nodes i and j are both accurately positioned. For the
simplicity of presentation, if qi,j = 1, we say anchor
nodes i and j are connected. Thus, our objective is to
find the maximum set of all-connected anchor nodes.
This can be achieved by a heuristic method, that is,
first getting a small set of all-connected anchor nodes
and then gradually adding new anchor nodes into the
set until no more new anchor nodes can be added. The
detailed procedure is stated as follows.

Step 1: Find all pairs of connected anchor nodes. Each
pair is an all-connected set.

Step 2: For each all-connected set, if any other anchor
node is connected to all of its element nodes,
include the anchor node into the set and form
an enlarged all-connected set. This procedure
is continued until no new anchor node can be
included in the set.

Step 3: The all-connected set with the largest number
of elements is our objective result.

Once the set of accurately positioned anchor nodes
is obtained, the locations of non-anchor nodes and

inaccurately positioned anchor nodes can be calculated
based on the reconstructed network topology and the
locations of the accurately positioned anchor nodes,
using a method similar to that in Reference [12].

Currently, the proposed algorithm (including
topology reconstruction and inaccurately positioned
anchor node detection methods) is performed in a
central controller. For a large WSN, it is desired to
perform localization in a distributed mode. In this case,
we can use a solution similar to that in Reference [6].
The WSN can be partitioned into sub-networks. In each
sub-network, our proposed algorithm can be performed
in a local central controller. Then the maps of the local
sub-networks can be merged to form the map of the
whole WSN.

5. Performance Evaluation

We evaluate the performance of our proposed algorithm
through simulations. A number N = 100 nodes are
randomly placed in a unit square. The multipath factor
n is assumed to be 1.

5.1. Evaluation of Topology Reconstruction

We use root mean square distance (RMSD) [2] to
measure estimation error

RMSD = 1√
N

√√√√ N∑
i=1

(
(xi − x̂i)2 + (yi − ŷi)2

)
(34)

5.1.1. Effect of refinement steps

Figure 1 shows the relationship between estimation
error (RMSD2) and the number of search steps in BFGS
method. Noise factor σ0 is 0.3, and visible radius R is
0.6. As the figure reveals, estimation error becomes
almost stable when the number of search steps is larger
than 15. So we choose 15 as default number of search
steps for subsequent simulations.

5.1.2. Effect of noise factor

Figure 2 shows the estimation error when the noise
factor σ0 increases from 0.05 to 0.4. In the simulation,
visible radius is set to be 0.5. It can be seen that
the estimation error increases with the noise factor.
The average CRB as derived in Section 2 (i.e.,
Tr(J†)/N) is also shown in Figure 2 for comparison.
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Fig. 1. Estimation error versus the number of search steps
using BFGS method.

The result demonstrates that the estimation error in
our method can keep two to three times corresponding
CRB. This result is reasonable as explained in the
following.

The optimization problem for localization has been
shown to be a non-convex problem [12,18]. So for tradi-
tional numerical methods, only local optimization can
be achieved. Thus, it is reasonable that the estimation
error in our method keeps two to three times CRB.
Although global optimization methods such as genetic

Fig. 2. Estimation error versus noise factor.

Fig. 3. Estimation error versus visible radius.

algorithm [19] or simulated annealing algorithm [20]
can be implemented, the computation complexity is
very high, which may not be desired in WSNs.

5.1.3. Effect of visible radius

Figure 3 shows the estimation error when the visible
radius varies from 0.45 to 0.6. Noise factor is set to
be 0.15. It can be seen that the estimation error in
our proposed method can keep about 2.5 times CRB.
When the visible radius increases, the estimation error
decreases. This is because with a larger visible radius,
more pairs of nodes can have measured distance, thus
enhancing the localization accuracy.

5.2. Evaluation of Inaccurately Positioned
Anchor Node Detection

We first show the comparison of our inaccurately
positioned anchor node detection with Multilateration
[5] and our topology reconstruction algorithm in
Section 3 without inaccurately positioned anchor node
detection. In the simulations, noise factor is fixed at 0.2,
visible radius is 0.5, the number of anchor nodes is 10
(with IDs from 1 to 10), and 3 of them (with IDs from
1 to 3) are inaccurately positioned. Figure 4 shows the
true positions and estimated positions with different
algorithms. True location of a node is marked by an
asterisk. For an inaccurately positioned anchor node,
the broadcast location (i.e., the false location) is marked

Copyright © 2008 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2009; 9:705–717
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Fig. 4. A comparison between Multilateration algorithm
and our topology reconstruction algorithm without and
with inaccurately positioned anchor node detection.
(a) Localization result of Multilateration algorithm. (b)
Localization result of our topology reconstruction algorithm
without inaccurately positioned anchor node detection. (c)
Localization result of our topology reconstruction algorithm

with inaccurately positioned anchor node detection.

by a triangle, and is connected with the true location
by a dashed line. For a non-anchor node, the estimated
location is marked by a circle, and is connected with
the true location by a solid line. The RMSD of non-
anchor nodes in Figure 4(a), (b), and (c) is 0.0967,
0.0701, and 0.0218, respectively. It can be seen that
our inaccurately positioned anchor node detection can
improve the accuracy of localization.

The value of threshold τ is critical in the inaccurately
positioned anchor node detection. If the threshold is too
low, some entries inQ that should be 1 will be marked
as 0, then accurately positioned anchor nodes will be
mistaken for inaccurately positioned anchor nodes;
if the threshold is too high, it is possible that some
inaccurately positioned anchor nodes will be mistaken
for accurately positioned anchor nodes. Figure 5(a),
(b), and (c) show the effective interval‖ (lower bound
and upper bound) of τ when there is one inaccurately
positioned anchor node and the offset distance (the
distance between true location and broadcast (false)
location of the inaccurately positioned anchor node) is
0.3, 0.4, and 0.5, respectively. Figure 6 shows the result
when the number of inaccurately positioned anchor
nodes is 3. It can be seen that:

• When the offset distance becomes larger with a fixed
noise factor, the upper bound of τ increases while the
lower bound almost keeps constant.

• When the noise factor becomes larger with a fixed
offset distance, lower bound of τ increases while the
upper bound only fluctuates slightly.

These can be explained as follows. When the noise
factor grows, the estimation error level will grow as
well, and so do the entries |ui,j−vi,j |

ui,j
. To avoid false

detection of inaccurately positioned anchor nodes, the
lower bound of τ should also become larger. In other
words, lower bound of τ is mainly determined by noise
factor. On the other hand, a larger offset distance can
make inaccurately positioned anchor nodes be easier
to be detected, thus leading to a higher upper bound
of τ. This means the upper bound of τ is primarily
determined by offset distance.

Simulation results also show that there is a broad
interval for selection of threshold τ in our inaccurately
positioned anchor node detection.

‖ A τ value in the effective interval can achieve effective
detection of inaccurately positioned anchor nodes.
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Fig. 5. Effective interval of τ versus noise factor with one
inaccurately positioned anchor node. (a) Offset distance is

0.3. (b) Offset distance is 0.4. (c) Offset distance is 0.5.

Fig. 6. Effective interval of τ versus noise factor with three
inaccurately positioned anchor nodes. (a) Offset distance is

0.3. (b) Offset distance is 0.4. (c) Offset distance is 0.5.
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6. Conclusions and Further Discussions

In this paper, to measure localization accuracy in
WSNs, we first present a ranging error model for
TOA estimation, and derive CRB for localization
accordingly. Ranging error resistance and reference
location error tolerance are two challenging tasks
in localization. We address these issues by a
topology reconstruction method without use of anchor
node location information and a method to detect
inaccurately positioned anchor nodes. Simulation
results show that the estimation error in our proposed
topology reconstruction method can maintain two
to three times CRB, and inaccurately positioned
anchor node detection method can improve localization
accuracy significantly.

Currently, we consider a WSN with Gaussian
distance measurement errors. On the other hand,
in many cases, non-Gaussian distance measurement
errors exist. Interesting issues for future work may
include derivation of the lower bound of non-Gaussian
distance measurement errors, based on existing [3] or
emerging non-Gaussian error model. Since the analysis
is much more challenging than that with Gaussian
errors, significant research efforts are needed.

Appendix : Derivation of J

According to deduced ranging error model in
Subsection 2.2, it can be proved that

J2i−1,2i−1 =
∑

j∈F (i)

(
2n2(xi − xj)2

d4
i,j

+ 1

σ2
0

· (xi − xj)2

d2n+2
i,j

)
(35)

J2i,2i =
∑

j∈F (i)

(
2n2(yi − yj)2

d4
i,j

+ 1

σ2
0

· (yi − yj)2

d2n+2
i,j

)
(36)

J2i,2i−1 =J2i−1,2i =
∑

j∈F (i)

(
2n2(xi − xj)(yi − yj)

d4
i,j

+ 1

σ2
0

· (xi − xj)(yi − yj)

d2n+2
i,j

)
(37)

For j 
= i, if j ∈ F (i)

J2i−1,2j−1 = J2j−1,2i−1

= −
(

2n2(xi − xj)2

d4
i,j

+ 1

σ2
0

· (xi − xj)2

d2n+2
i,j

)
(38)

J2i,2j = J2j,2i

= −
(

2n2(yi − yj)2

d4
i,j

+ 1

σ2
0

· (yi − yj)2

d2n+2
i,j

)
(39)

J2i−1,2j = J2j,2i−1 = J2i,2j−1 = J2j−1,2i

= −
(

2n2(xi − xj)(yi − yj)

d4
i,j

+ 1

σ2
0

· (xi − xj)(yi − yj)

d2n+2
i,j

)
(40)

Other entries in J are 0s.

Proof. Let x and y be the vector of x-coordinates
and y-coordinates of all the nodes, respectively. Let d̂ be
the vector of measured distances (e.g., d̂i,j from node i
to node j) in the network. We first have the probability
density function (PDF) of d̂ conditioned on x and y as
follows:

p(d̂|x, y) =
∏

i<j,j∈F (i)

e−(d̂i,j−di,j)2/2σ2
0d2n

i,j

√
2πσ0d

n
i,j

(41)

So the Log-likelihood function of p(d̂|x, y) is given by

ln p(d̂|x, y)

= C −
∑

i<j,j∈F (i)

(
ln dn

i,j + 1

2σ2
0

(d̂i,j − di,j)2

d2n
i,j

)
(42)

where C is a constant. Take first-order and second-order
partial derivative of ln p(d̂|x, y) with respect to xi, we
have

∂ ln p(d̂|x, y)

∂xi

=−
∑

j∈F (i)

(
n

di,j

+ 1

σ2
0

(
d

−(n−1)
i,j − d̂i,j

dn
i,j

)

·
(

nd̂i,j

dn+1
i,j

− (n − 1)

dn
i,j

))
· (xi − xj)

di,j

(43)
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∂2 ln p(d̂|x, y)

∂x2
i

=−
∑

j∈F (i)

(
n(d2

i,j−2(xi−xj)2)

d4
i,j

+ nd̂i,j

σ2
0

· (d2
i,j − (2n + 1)(xi − xj)2)

d2n+3
i,j

− n − 1

σ2
0

· (d2
i,j − 2n(xi − xj)2)

d2n+2
i,j

− nd̂
2
i,j

σ2
0

· (d2
i,j − 2(n + 1)(xi − xj)2)

d2n+4
i,j

+ (n − 1)d̂i,j

σ2
0

·
(

d2
i,j−(2n+1)(xi−xj)2

d2n+3
i,j

))
(44)

Because

E{d̂i,j} = di,j (45)

E{d̂2
i,j} = d2

i,j + d2n
i,j · σ2

0 (46)

we can get the (2i − 1, 2i − 1)th entry of J as

J2i−1,2i−1 =−E

{
∂2 ln p(d̂|x, y)

∂x2
i

}

=
∑

j∈F (i)

(
2n2(xi−xj)2

d4
i,j

+ 1

σ2
0

· (xi−xj)2

d2n+2
i,j

)
(47)

Other entries of J can be obtained similarly. This
completes the proof. �
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