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Abstract—Resource allocation problems in multi-user systems,
modeled as Nash bargaining (NB) cooperative games, are inves-
tigated under different constraints. Using the joint time division
multiplexing and frequency division multiplexing (TDM/FDM)
scheme as a manner of cooperation in the NB resource allocation
game with only spectrum mask constraints (SMCs), it is shown that
the efficiency of the corresponding solution depends on both the
interference-to-signal and interference-to-noise ratios of the users.
Sufficient conditions under which the joint TDM/FDM based NB
solution outperforms a noncooperative Nash equilibrium solution
are derived and shown to be mild. A semi-distributed algorithm is
proposed for finding the NB solution of the corresponding game
with SMCs only. The NB based resource allocation game with
both SMCs and total power constraints (TPCs) is shown to be a
nonconvex optimization problem of high complexity. For such a
game, a classification of two-user systems into bandwidth- and
power-dominant systems is proposed based on the concept of
Pareto-optimality. This classification gives insights to the resource
allocation problem by showing that the benefits of both users
are guaranteed to increase simultaneously only when the dom-
inant resource in the system increases. Using this classification,
efficient suboptimal algorithms of low complexity are derived
based on the idea of optimally allocating the dominant resource
and suboptimally allocating the other resource. Simulation re-
sults demonstrate the efficiency of the proposed cooperative NB
resource allocation strategies.

Index Terms—Cooperative games, multi-user systems, Nash bar-
gaining, Pareto-optimality, spectral mask constraints, total power
constraints.

I. INTRODUCTION

G AME theory has recently attracted a significant interest as
an approach for studying resource allocation problems in

the multi-user systems in which the users compete for resources
and potentially conflict with each other [1]–[3]. If the users com-
pete for resources and do not cooperate, the corresponding re-
source allocation games are called noncooperative games and
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the existence and uniqueness of a so-called equilibrium of such
games, typically a Nash equilibrium (NE), are usually the main
concerns [4]–[8]. Noncooperative power allocation games are
studied in [4]–[6] for different problem setups. The existence
and uniqueness of an NE for a two-user power allocation game
on a frequency selective fading channel (FSFC) are investigated
in [4], while a noncooperative power allocation game on digital
subscriber lines is studied in [5]. It is shown that an NE can
be found in a distributed manner using iterative water-filling
based algorithms. A power allocation game on multiple-input
multiple-output (MIMO) multiple-access channels is studied in
[6], and the existence, uniqueness, and sum-rate efficiency of an
NE for temporal and spatial power allocations are analyzed for
a two-user game. Noncooperative spectrum sharing games are
considered in [7], [8]. It is shown in [7] that in the situation when
multiple users coexist in the same frequency band, an NE can
be nonunique, which may render the outcome of the game un-
predictable. A noncooperative spectrum sharing game in a cog-
nitive radio system consisting of a single primary and multiple
secondary users is studied in [8], and it is shown that an NE is
a fair yet inefficient solution for the considered problem due to
the fact that the total benefit of all secondary users is not maxi-
mized. The inefficiency of an NE has also been emphasized for
other games, for example, the beamforming game investigated
in [9] for two multiple-antenna systems operating in the same
spectrum band.

The aforementioned possible inefficiency of NE solutions has
motivated the investigations of the systems with a voluntary co-
operation among the users, and it has been shown that extra ben-
efits may be obtained by the users in such systems [9]–[15]. The
corresponding games are called cooperative games, and one of
the most popular approaches developed for such games is the
Nash bargaining (NB) approach [16]. Cooperative power allo-
cation games are studied in [10]–[13]. A two-user power alloca-
tion game on a flat fading channel (FFC) is investigated in [10].
It is argued that certain points in the utility space of the game are
not achievable from a game-theoretic perspective. The rate re-
gion achievable by the frequency division multiplexing (FDM)
scheme is analyzed and the corresponding FDM based NB so-
lution is derived. It is shown that this solution increases the ben-
efits of all users as compared to a noncooperative NE solution.
The study is extended in [11] to multi-user systems with FSFCs
for the case when only spectral mask constraints (SMCs) are im-
posed on the users. The NB solution is derived based on the joint
time division multiplexing/FDM (TDM/FDM) manner of coop-
eration. Unlike the FFC case, the allocation of frequency bins
becomes the main concern in the FSFC case. A low-complexity
algorithm is developed for finding the joint TDM/FDM based
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NB solution of the game. In [12], a nonconvex resource alloca-
tion game on an FSFC with only total power constraints (TPCs)
limiting the total transmission power of each user is considered.
A water-filling based algorithm is proposed to search for the
NB solution in a two-user game, but the nonconvex nature of
the problem leads to a high complexity of the algorithm. NB so-
lutions are extended to games with log-convex utility spaces in
[13], and it is shown that the existence and uniqueness of an NB
solution in such utility spaces depend on the interference cou-
pling among the users and, therefore, are not guaranteed in gen-
eral. Other cooperative games, such as beamforming and pre-
coding games have been considered in [9], [14], and [15].

In this paper, we consider NB based cooperative resource al-
location games for multi-user systems with SMCs and TPCs.1

Our main contributions are the following. i) We show that the
efficiency of the joint TDM/FDM based solutions of the consid-
ered resource allocation games with SMCs depends on both the
interference-to-signal ratio (ISR) and the interference-to-noise
ratio (INR) of each user. Sufficient conditions under which the
joint TDM/FDM based NB solution outperforms a noncooper-
ative NE solution are derived and shown to be mild. ii) We also
show that the bargaining process among users for the NB based
resource allocation games with SMCs can be physically realized
in a semi-distributed manner which distributes the computations
among all users. iii) We show that the NB based resource allo-
cation game with both SMCs and TPCs corresponds to a non-
convex optimization problem which has a high complexity. We
classify two-user systems into bandwidth- and power-dominant
based on the concept of Pareto-optimality. Using such a classi-
fication, we develop low-complexity suboptimal algorithms for
each case of bandwidth- or power-dominant systems based on
the idea of optimally allocating the dominant resource and sub-
optimally allocating the other resource.

The rest of this paper is organized as follows. The system
model and the cooperative resource allocation game formulation
are given in Section II. The NB based cooperative resource allo-
cation games with SMCs are studied in Section III. Section IV
deals with the two-user NB based cooperative resource alloca-
tion games with both SMCs and TPCs. Section V demonstrates
our simulation results and Section VI concludes the paper. This
paper is reproducible research [19] and the software needed to
generate the numerical results can be obtained from www.ece.
ualberta.ca/~vorobyov/ProgNB.zip.

II. SYSTEM MODEL AND GAME FORMULATION

A. System Model

Consider a system of users sharing frequency bins. De-
note the set of user indexes as and the set
of frequency bin indexes as . The vector of
power allocation on the frequency bins for user is written as

where is the power that user
allocates on frequency bin and stands for the transpose.

The information rate that user can achieve is a function of all
users’ power allocations, and it is denoted as where

stands for the combination of power allocation vectors of all

1Some preliminary results have been reported in [17] and [18].

users except user . Treating the interference from other users as
noise, the overall information rate that user can achieve is the
summation of the information rates of this user on all frequency
bins, that is,

(1)

where is the gain of the channel from transmitter to
receiver on frequency bin and stands for the noise
power for user on frequency bin .

In practice, all users attempt to maximize their information
rates under certain power constrains such as SMCs and option-
ally TPCs. SMCs are typically adopted to limit the power that
users can allocate on different frequency bins. A vector of such
power limits for user is
where stands for the maximum power that user can al-
locate on frequency bin . Although SMCs also bound the total
power for user by the value , such a bound
may be loose as compared to the user’s total power limit .
Thus, in certain cases TPCs are also needed. The SMCs and
TPCs can be mathematically expressed, respectively, as

SMCs:

(2)

TPCs:

(3)

B. Resource Allocation Game Formulation

Considering users as players, their choices of resource
allocations as strategies, and their corresponding information
rates ’s as utilities, the game model of the resource allocation
problem can be written as

(4)

where stands for the resource allocation strategy of user
consisting of both bandwidth and power allocations2 and
stands for the combination of resource allocation strategies of
all users except user , and is the information rate
that user can achieve given all users’ strategies, i.e., given
and .

In noncooperative games, the players (users) do not collab-
orate and an NE, if it exists and it is unique, provides stable
strategies for all users. An NE of a noncooperative game satis-
fies the following conditions

(5)

where is the resource allocation strategy of user in the
NE, is the combination of resource allocation strategies of
all users except user in the NE, and denotes any possible
resource allocation strategy of user .

2The term “bandwidth allocation” is used throughout the paper to refer to the
allocation of frequency bins.
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In cooperative games, the users are willing to cooperate with
each other and agree on a common principle for sharing the
public resource of the bandwidth in the system. If the users
choose the NB approach as a cooperation principle, they aim
at maximizing the Nash function (NF) defined in the coopera-
tive utility space of the game as [16]

(6)

where is the information rate (the utility) that user can
achieve in a predefined disagreement point to which the users
resort if the cooperation breaks up.

Although (6) defines the common principle for sharing the
public resource of the bandwidth in the system, a more spe-
cific manner of cooperation according to which the bargaining
is performed should be determined in cooperative NB games. It
is required by the NB theory that such a particular manner of
cooperation should result in a convex utility space. Note that, in
our case, the utility space of the cooperative game is the -user
rate region3 which can be achieved based on a chosen manner of
cooperation. In the literature, the users are typically assumed to
cooperate with each other using orthogonal signaling schemes
which allow no interference among the users. The most widely
applicable orthogonal signaling approaches are the TDM, FDM,
and joint TDM/FDM [3], [11], [23]. The subcarrier allocation
in [3] is essentially the FDM, while [11] and [23] consider the
joint TDM/FDM. We also use the joint TDM/FDM approach
for the games with only SMCs in this work. There are three
main reasons for considering orthogonal signaling such as the
joint TDM/FDM. i) The resulted utility space of the game is
convex as required by the NB theory. ii) Power-efficient simple
receivers can be used since there is no interference in the system.
It significantly reduces the receiver complexity, and in fact, al-
lows for simple matched-filter receivers. As a comparison, if the
users are allowed to interfere with each other in a cooperative
game, they need to exchange certain information about inter-
ference to achieve a desirable performance, which may signif-
icantly increase the receiver complexity. iii) Most importantly,
although the cooperative games based on orthogonal signaling
(such as the joint TDM/FDM) may not achieve the boundaries of
the capacity regions, the noncooperative games generally cannot
achieve those boundaries either. Moreover, the solutions of the
cooperative games with orthogonal signaling may outperform
the solutions of the noncooperative games. It will be shown in
Section III that the joint TDM/FDM based NB solutions are in-
deed more efficient than NE solutions under some mild condi-
tions. It is also worth mentioning that orthogonal signaling may
be inefficient when the interference is low [20]. However, it is
shown in [20] that the cooperative bargaining problem becomes
convex even without orthogonal signaling when the interference
is low, which renders the problem simpler in this case.

For further developments, four general assumptions need
to be made: i) The desired channel is

3Throughout the paper the term “rate region” refers to a region of users’ rates
achievable under a specified manner of cooperation, while the term “capacity
region” refers to the information-theoretic capacity region which does not de-
pend on any specific manner of cooperation.

known at both the transmitter and receiver sides of user ;
ii) The TPCs are tight when they are taken into account, i.e.,

; iii) The channel co-
herence time is large enough, i.e., the channel is slow fading
such that the change of channel statistics is negligible within
a sufficiently long period of transmission; iv) The users use
codebooks approaching the Gaussian codebooks. With these
assumptions, our focus is to study the cooperative resource
allocation games under different sets of constraints.

III. COOPERATIVE RESOURCE ALLOCATION

GAMES WITH SMCS

A. Cooperative Strategies for Two-User Games

In this subsection, the NB based cooperative resource alloca-
tion game is considered for a two-user system, i.e., and

. Since there is no TPC, it is easy to see that the
corresponding noncooperative game has at least one NE [11].
In this NE,4 both users use all available frequency bins in their
bandwidth allocation strategies and they use maximum allowed
powers, i.e., ,
as their power allocation strategies. Any unilateral deviation
from this NE leads to the signal-to-noise ratio (SNR) degrada-
tion and, consequently, to the rate loss for the user which devi-
ates from the NE. Note that the overall rate achieved by user
in this NE is given as

(7)

For our cooperative game, the point in the utility
space is selected as the disagreement point of the two-user
game5 and the joint TDM/FDM is chosen as the manner of
cooperation (see the arguments in the previous section). This
manner of cooperation suggests that any frequency bin can
be used only by one user at any time instant, but it may be
shared by different users throughout the operation time. The
NB solution of this two-user game can be obtained by sharing
at most a single frequency bin between both users [11].

The following definition is instrumental for our studies of the
joint TDM/FDM based cooperative NB games.

Definition 1: The standard ordering of frequency bins in a
two-user -frequency bin system is such ordering that

(8)

4Throughout Section III, when the term “the NE” is used, it refers to the spe-
cific NE which corresponds to the utilities (7).

5The reason we select the NE which corresponds to the utilities (7) is that
it always exists for any two-user game with SMCs. Moreover, if there exists a
unique NE, it is the NE which corresponds to the utilities (7). A similar selec-
tion of the disagreement point is used, for example, in [11]. Note that generally
the disagreement point can be any NE if multiple NE exist or other points, for
example, the origin.
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where

(9)
The result in [11] states that if the frequency bins are ordered

in the standard ordering, the NB solution of the joint TDM/FDM
based two-user game must satisfy the following two conditions:
i) There is a frequency bin such that ,

; , .
This condition indicates that frequency bins 1 to are allo-
cated to user 1 exclusively while frequency bins to are
allocated to user 2 exclusively. ii) There is a coefficient such
that the frequency bin is allocated to user 1 for portion of
time, while it is allocated to user 2 for portion of time.

In order to find and , two vectors
and are

assigned to users 1 and 2, respectively. Here denotes
the time portion allocated to user on frequency bin . Note
that for the joint TDM/FDM based manner of cooperation, the
bandwidth allocation strategy of user is fully represented by

. The power allocation strategy of user , in this case, boils
down to using maximum allowed power
on the frequency bins allocated to the user. Then the joint
TDM/FDM based NB game with SMCs can be mathematically
expressed as the following optimization problem

(10)

(11)

(12)

(13)

where is the rate that user can
obtain given and the objective function (10) is the logarithm
of the Nash function (6) for the two-user game. It is easy to
see that (10)–(13) is a convex optimization problem that can be
solved using standard convex optimization methods. According
to the above mentioned conditions, only for

and in the solution of (10)–(13).
Intuitively, the joint TDM/FDM based manner of cooperation

is efficient when the interference between users is high. How-
ever, it is not trivial to quantitatively characterize the situation
when the interference can be marked as high. Therefore, the fol-
lowing two questions are of interest: i) What are the conditions
for a system to be a high-interference system? ii) Are such con-
ditions mild enough to be satisfied in practical systems and sit-
uations?

Answering the first question, note that the joint TDM/FDM
based manner of cooperation is efficient if the corresponding NB
solution guarantees that the utility of each user is larger than the
utility of this user in the NE solution. Consequently, the domain
of the constraints in the optimization problem (10)–(13) should
be nonempty. Thus, the following definition is in order.

Definition 2: A two-user system is a high-interference
system if and only if the domain of the constraints in (10)–(13)
is nonempty.

Therefore, if a two-user system is a high-interference system,
then according to Definition 1 and the above mentioned prop-
erties of the joint TDM/FDM based NB solution, the following
inequalities hold

(14)

(15)

where , , and
is the rate that user can achieve on frequency bin in

the NE solution, that is,

(16)
Inequalities (14) and (15) can be equivalently rewritten as

(17)

(18)

where is the modified noise power for user on frequency
bin defined as

(19)

The right-hand sides of (17) and (18) are the “losses”, for
users 1 and 2, respectively, in the joint TDM/FDM based NB
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solution due to the fact that, correspondingly, user 1 can no
longer use frequency bins in and user 2 can no longer use
frequency bins in . At the same time, the left-hand sides
of (17) and (18) are the required “excesses” for user 1 on fre-
quency bins in and for user 2 on frequency bins
in , respectively, for compensating for the “losses”.
Given the “losses”, inequalities (17) and (18) indicate that the
outcome that the NB solution is more efficient than the NE solu-
tion highly depends on the modified noise powers . More-
over, it follows from (19) that the level of interference for user
depends on both the INRs
and the ISRs .

Answering the second question (“Are such conditions mild
enough to be satisfied in practical systems and situations?”), the
following theorem is in order.

Theorem 1: If any of the following sufficient conditions
Per-user condition

(20)

or Inter-user condition

(21)

is satisfied, then the corresponding two-user system is a high-
interference system. Here

(22)

Proof: See Appendix A.
The following examples are of interest. Note that the condi-

tions (20) and (21) apply on all frequency bins. Thus, only one
frequency bin is considered in our examples.

Example 1: Let the SNRs for users 1 and 2 be, respec-
tively, ( 15 dB) and

(10 dB). According to the
sufficient condition (20), if the INR for user 1 satisfies

( 7.6 dB) and the INR for user
2 satisfies ( 5.2 dB), then the
corresponding two-user system is a high-interference system.

Example 2: Let the SNRs for users 1 and 2 be, re-
spectively, ( 6 dB) and

( 9 dB). According to the
sufficient condition (21), if the product of INRs satisfies

( 9.5 dB), then the corresponding two-user system is a
high-interference system.

It can be concluded based on Theorem 1 and the examples
that conditions (20) and (21) are easy to be satisfied in practice

and a majority of two-user systems are actually high-interfer-
ence systems for which the joint TDM/FDM based manner of
cooperation is efficient.

B. Cooperative Strategies for -User Games

The above results can be straightforwardly generalized to
-user systems. Indeed, the joint TDM/FDM based -user

NB game with SMCs can be formulated as the following
convex optimization problem

(23)

(24)

(25)

(26)

The definition of high interference extends directly from the
two-user systems to the -user systems. Specifically, if the
domain of the constraints in (23)–(26) is nonempty, then the

-user system is a high-interference system. The sufficient
conditions for an -user system to be a high-interference
system are summarized in the following theorem.

Theorem 2: If any of the following sufficient conditions
Per-user condition

(27)

or Inter-user condition

(28)

is satisfied, then the corresponding -user system is a high-
interference system. Here

(29)

The proof of this theorem is a direct extension of the proof of
Theorem 1 and it is omitted here.

The following two examples are of interest. Here again only
one frequency bin is considered.

Example 3: Consider a four-user system with
the users’ SNRs
( 9 dB), ( 12
dB), ( 6 dB), and

(10 dB). According to
the sufficient condition (27), if the users’ INRs sat-
isfy ( 10 dB),

( 11.6 dB),
( 8.5 dB), and
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( 10.5 dB), then the
system is a high-interference system.

Example 4: Consider a system of six users with the max-
imum SNR 31.6 ( 15 dB). According to the inter-user condi-
tion, the system is a high-interference system if the left-hand
side of (28) is smaller than 32.6 ( 15 dB). Particularly, assume
that the INRs are the
same for all users for the sake of evaluation, then the required
INR is ( 15.9 dB) for
each user. The average required INR from each interfering user
is 7.9 ( 9.0 dB).

From the above examples, it can be seen that the requirements
of the conditions (27) and (28) on the average INR from each
interferer are not difficult to be satisfied. The above examples
verify again that the conditions for an -user system to be a
high-interference system are mild. Thus, the joint TDM/FDM
based manner of cooperation can be considered as a valid ap-
proach which is generally efficient.

Unlike the two-user case, there is no fast algorithm as in [10]
available in the literature for finding the NB solution for the

-user case. Therefore, it is necessary to design an algorithm
realizing the bargaining process in the -user game. Note that
we do not assume the availability of an additional independent
central point for the considered -user system. Indeed, if there
is a central point, which can do the computations in order to
find the optimal cooperative solution for all users, there is
no need for bargaining among the users. Therefore, bargaining
is especially desirable when there is no central point available
in the system. Moreover, none of the users has the computa-
tional resource or the wish to perform the function of such a cen-
tral point. Thus, we next propose a semi-distributed algorithm
for solving (23)–(26), which distributes the major computations
among all users. Note that a coordinator is still required in the
proposed semi-distributed algorithm. However, the complexity
of the problem that must be solved by a coordinator is much
lower than the complexity of the original problem (23)–(26),
and therefore, any user has a sufficient computational resource
to serve as a coordinator.

C. Semi-Distributed Algorithm for Finding the NB Solution

The problem (23)–(26) is a convex optimization problem with
coupling constraints . Therefore,
it can be solved in a semi-distributed manner using the dual
decomposition method [21].

The Lagrange dual problem to the problem (23)–(26) is given
as

(30)

(31)

(32)

(33)

where is a nonnegative Lagrange multiplier on frequency
bin . All Lagrange multipliers form the vector

.
The problem (30)–(33) can be further converted into a two-

level optimization problem with the following lower level sub-
problems:

(34)

(35)

(36)

for each user , and the higher level master problem

(37)

(38)

where is the maximum value of the objective function
(34) given .

The two-level dual problem (34)–(36) and (37)–(38) can be
solved based on a semi-distributed structure with a coordinator.
Since the original problem is convex, strong duality holds and
the solutions of the dual problem (30)–(33) and the original
problem (23)–(26) are the same if Slater’s condition is satisfied
[22]. For our specific problem, we have the following result.

Theorem 3: The Slater’s condition is guaranteed to be satis-
fied for the problem (23)–(26) as long as the NB solution exists.

Proof: See Appendix A.
Substituting into the objec-

tive function of the subproblem (34)–(36), this subproblem can
be rewritten as

(39)

(40)

(41)

The lower level subproblems (39)–(41) can be solved distribu-
tively by the corresponding users. Moreover, information re-
quired for solving the th subproblem, that is, ’s

and , is local to user .
The algorithm for solving the dual problem is summarized in

Table I. The complexity of finding the NB solution is determined
by the complexity of the lower level subproblems (39)–(41),
which is . Note that the coefficients ’s
have specific physical meanings. Indeed, represents the
risk that cooperation among users breaks up due to a conflict on
sharing frequency bin . Thus, in the lower level subproblems,
the objective for each user consists of two parts. Generally, a
larger is preferred to increase the total information rate
of user . However, if becomes too large, the cooperation
may break up and the utility of user will return to the inferior
noncooperative solution.
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TABLE I
DUAL DECOMPOSITION ALGORITHM FOR THE JOINT TDM/FDM

BASED NB GAME WITH SMCS

IV. COOPERATIVE RESOURCE ALLOCATION GAMES WITH

SMCS AND TPCS FOR TWO USERS

The presence of TPCs significantly changes the resource allo-
cation problem. Indeed, under TPCs, the users may not be able
to use maximum powers on their allocated frequency bins if the
joint TDM/FDM based manner of cooperation is considered.
Therefore, both ’s and ’s , repre-
senting the users’ bandwidth allocation strategies and power al-
location strategies, respectively, have to be optimized jointly in
this case. Thus, with both SMCs and TPCs, the joint TDM/FDM
based NB problem can be formulated as the following optimiza-
tion problem

(42)

(43)

(44)

(45)

(46)

(47)

where is the overall information rate that user can
obtain under the power allocation strategy and bandwidth
allocation strategy given as

(48)

The optimization problem (42)–(47) is a nonconvex
problem. Indeed, the Hessian matrix of

can be written as

(49)

where and denote the identity and all-zero matrices, re-
spectively. Thus, ’s are orthogonal matrices,
i.e., . The eigenvalues of an orthog-
onal matrix can only be 1 or 1. Moreover, it is known that

the summation of all eigenvalues of equals the trace of
which is zero for any . Therefore, any

must have equal number of eigenvalues 1 and 1, which means
that ’s are indefinite. Thus, the constraints

are nonconvex and the
nonconvexity of the optimization problem (42)–(47) follows.

In the following studies, the two-user case is considered. The
disagreement point is chosen at the origin of the utility space,
that is, , instead of the NE point as was
in the case of the resource allocation problem with only SMCs.
The disagreement point is chosen at the origin because finding
a noncooperative NE solution in the game with both SMCs and
TPCs is itself a complicated problem.

A. Bandwidth-Dominant and Power-Dominant Systems

Finding the joint TDM/FDM based NB solution of the
problem (42)–(47) requires joint power and bandwidth alloca-
tions for each user, and the resulted complexity of the two-user
game can be unacceptably high. Moreover, the joint TDM/FDM
based manner of cooperation with maximum power allocation
as adopted for games with only SMCs can be inefficient in some
cases when TPCs are present. To overcome these problems, we
categorize systems into two classes and deal with each class of
system differently. Toward this end, two definitions need to be
given first.

Definition 3: A point is Pareto-optimal in space if and
only if for all satisfying in , where denotes
the element-wise inequality.

A Pareto-optimal point corresponds to an efficient allocation
of system resources. The NB solution is one of the Pareto-op-
timal points in a utility space.

For the two-user cooperative game, there exists an algorithm
in the literature for obtaining the joint TDM/FDM based NB
solution if SMCs are the only constraints [10] (see also [11] and
[23]). The idea of this algorithm is of interest for our further
studies. For any given integer , let

(50)

(51)

(52)

If the frequency bins are in the standard ordering defined in (8),
then the corresponding point is guaranteed to
be Pareto-optimal in the joint TDM/FDM based rate region for
any . Varying and , all Pareto-optimal points
can be obtained including the NB solution of the game. In other
words, the NB solution for the two-user cooperative resource
allocation game with only SMCs can be found by searching on
the Pareto-boundary instead of the entire utility space of the
game, where the Pareto-boundary is defined as the following.

Definition 4: All Pareto-optimal points in a convex space
form the Pareto-boundary of .

The above mentioned algorithm in [10] is based on the prin-
ciple that frequency bins which are “better” for a certain user
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should be allocated to this user prior to frequency bins which are
“inferior”. However, this principle may fail and lead to highly
inefficient solutions if TPCs are also imposed. Consider the fol-
lowing simple example.

Example 5: Assume that there are four frequency bins
and are for ,
for , for , and for .
Also assume that and
for either user. Then according to the aforementioned
principle [10], the following resource allocation can be
obtained: , ,

and . Note that the TPCs
are used to derive the

coefficients
and . The re-
sulted rates are and , and obviously the point
(1.5, 2.5) is not Pareto-optimal. For example, the strategies

, , ,
and provide higher rates for both users.

It follows from the above discussion that the presence of
TPCs renders a different bargaining problem since there is a
need to coordinate the power allocation and the bandwidth
allocation. Therefore, a different approach has to be developed.
Toward this end, we first consider the solutions for the NB
game with only SMCs (denoted as game ), and then add
TPCs to the game (denoted as game ).

Observation 1: TPCs do not enlarge the utility space of
the game. The Pareto-optimal solutions for game are also
Pareto-optimal for game if they are achievable.

Denote the Pareto-boundary of the joint TDM/FDM utility
space of game as . Then, the following result is in order.

Theorem 4: Assume that the frequency bins are in the stan-
dard ordering defined in (8). A nonempty subset of can be
achieved in game under both SMCs and TPCs if and only if
there exist and such that

(53)

Proof: See Appendix B.
According to (53), all two-user systems can be categorized

into bandwidth- and power-dominant systems. If condition (53)
is satisfied, the system is bandwidth-dominant and the rates of
both users are guaranteed to increase simultaneously only when
new frequency bins are added into the system. Otherwise, the
system is power-dominant and the rates of both users are guar-
anteed to increase simultaneously only when TPCs of the users
are relaxed.

Observation 2: Beginning as bandwidth-dominant, a two-
user system gradually changes towards power-dominant as the
number of available frequency bins increases.

B. Bandwidth-Dominant Systems: Joint TDM/FDM Based
Bargaining

In the bandwidth-dominant systems, the joint TDM/FDM
based manner of cooperation is efficient in the sense that a

nonempty subset of can be achieved in game . Denote
the Pareto-boundary of the joint TDM/FDM utility space of
game as . Then, for the bandwidth-dominant systems, the
bargaining can be restricted in the set only. The
resulted NB solution, denoted as , can be suboptimal as
compared to the optimal solution of the nonconvex optimization
problem (42)–(47). It is because the power allocation (which
is not the dominant factor in this case) is not optimized jointly
with bandwidth allocation.

Denote the optimal NB solution of game as . Also
denote the joint TDM/FDM utility spaces of games and
as and , respectively. Then, the following theorem about
the optimality of is in order.

Theorem 5: if . If ,
then but , which means that is not
Pareto-optimal in but is Pareto-optimal in .

Proof: See Appendix B.
Theorem 5 leads to the following two conclusions about the

optimality of in the bandwidth-dominant systems: (i)
can be identical to the optimal joint TDM/FDM based NB solu-
tion; (ii) is guaranteed to be Pareto-optimal in (which
is larger than ) even if the optimal NB solution is not Pareto-
optimal in . Theorem 5 also indicates that for bandwidth-
dominant systems, the same algorithm as the one developed for
finding the NB solution of the two-user game without TPCs can
be used, with replaced by . Therefore, an efficient solu-
tion, in the sense of Pareto-optimality, can be obtained with a
low complexity.

Observe that the Pareto-boundary of is a piece-wise
linear boundary. The slop of the th line segment of
is where is the horizontal
axis and is the vertical axis. There are junctions

on . Let the rates associated with junction
be denoted as and for users 1 and 2, respectively. Then
the following theorem gives a sufficient condition under which
the result holds.

Theorem 6: For bandwidth-dominant systems with standard
ordering of frequency bins defined in (8), a sufficient condition
for is that for given total power limits and

, the inequality is satisfied. Here is the
abscissa of the point in the rate region satisfying

if

satisfying

with

otherwise,
(54)

and

(55)
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with being the minimum integer in the interval satis-
fying

(56)

while

(57)

with being the maximum integer in the interval satis-
fying

(58)

Proof: See Appendix B.
The following two examples further illustrate Theorem 6.
Example 6: Consider a system with frequency bins in

standard ordering with , ,
, , , and . A Nash

curve, that is, , is tangent to the rate region at
the point on the line segment (see
also the proof of Theorem 6 in Appendix B for details). Then
according to Theorem 6, a sufficient condition for
is that and

.
Example 7: Consider a system with frequency bins

in standard ordering with , ,
, , , and

. A Nash curve, that is, , intersects
the rate region at the unique point , which
is the junction connecting the line segments and (see
also the proof of Theorem 6 in Appendix B for details). Then
according to Theorem 6, a sufficient condition for
is that and .

C. Power-Dominant Systems: the Sampled Joint FDM/Time
Sharing Based Bargaining

Let us now consider the case of power-dominant systems. Ex-
ample 5 in Section IV-A is, in fact, an example of a power-dom-
inant system. From this example, we can make the following
observation.

Observation 3: In power-dominant systems, the use of the
maximum allowed power on all allocated frequency bins gener-
ally results in a nonoptimal solution for game .

To verify this observation, let us denote the set of all fre-
quency bins as , the subset of frequency bins which user 1 oc-
cupies using the maximum allowed power as , the subset
of frequency bins which user 2 occupies using the maximum
allowed power as . Then, user 1 can improve its rate by
water-filling on the frequency bins instead of using
the maximum allowed power on , while the rate of user
2 can be kept the same. Here denotes the difference

between sets and , and the general term water-filling is
used to represent the specific meaning of finding the solution of
the following convex optimization problem

(59)

(60)

(61)

which is a single-user multi-frequency bin power allocation
problem with constant being a mea-
sure of channel ’s quality for user .

Observation 3 suggests that the power-dominant games have
to be played based on a different manner of cooperation from
the joint TDM/FDM with maximum allowed powers on all al-
located frequency bins. The crux here is that the power allo-
cation, which is the dominant factor for power-dominant sys-
tems, has the priority. A reasonable choice of the manner of
cooperation for the power-dominant systems is then the joint
FDM/time sharing (TS). The main idea of the joint FDM/TS is
to use the TS between points corresponding to different FDM
based bandwidth allocations, while performing the power allo-
cation using the water-filling (59)–(61). Note that the power al-
location based on water-filling is optimal for any given band-
width allocation. Unfortunately, the complexity of finding the
joint FDM/TS based NB solution, in this case, is very high, espe-
cially when the number of frequency bins is large. To obtain the
joint FDM/TS based NB solution, the water-filling should first
be performed for all possible bandwidth allocations, and the
resulted points in the utility space should be recorded. Then
the TS is used to obtain a minimum convex space containing all
these points and the NB solution is derived within this convex
space. The complexity of the TS is , which is exponential
in the number of frequency bins.

To reduce the complexity, we consider a sampled version of
the joint FDM/TS, which is the sampled joint FDM and TS
(SJ-FDM/TS). According to the SJ-FDM/TS approach, a sub-
optimal solution of the game can be found using the algorithm
summarized in Table II. In the first step of the algorithm, two
sets of frequency bins which are most desirable for users 1 and
2 are found and denoted as and , respectively. Here, the set
of frequency bins is found by performing the water-filling for
user on the entire set of frequency bins . Then, the set of fre-
quency bins which are desired by both users is ,
and the allocation of the frequency bins from is the key of
the bandwidth allocation.

In the second step, the frequency bins from are allocated
in a manner which favors user 1 and the corresponding FDM
samples are obtained. Specifically, all frequency bins from
are allocated to user 1 in the first round. Then, a frequency bin
with smallest channel gain for user 1 is transferred to user 2
at each subsequent round of the iterative procedure which con-
sists of rounds where denotes the cardinality of
the set . Let us denote the set of frequency bins which have
been transferred from user 1 to user 2 during rounds 1 to as

where stands for the current round. In round , user 1 per-
forms water-filling on the set and selects the frequency
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TABLE II
THE SJ-FDM/TS BASED ALGORITHM FOR THE POWER-DOMINANT SYSTEMS

Fig. 1. The graphical demonstration of the principle used in the proposed
SJ-FDM/TS based algorithm for power-dominant systems.

bins (from ) to which it allocates nonzero power ac-
cording to the corresponding water-filling solution. Then user
2 performs water-filling on the frequency bins which are not
claimed by user 1 and selects the frequency bins to which it al-
locates nonzero power. The above bandwidth allocation favors
user 1 in two ways. First, user 1 always obtains the frequency
bins from with largest channel gains. Second, user 1 always
has a priority to obtain any other frequency bins which are not
in . In this step, we obtain points in the utility space
(see Fig. 1, the ‘dots’). Each of these points corresponds to the
highest rate that user 1 can obtain given that it can have only

frequency bins from where is the
round index.

The third step of the algorithm is similar to the second step
with the only difference that the frequency bins are allocated in
a manner which favors user 2. As a result, we obtain more
points in the utility space (see Fig. 1, the ‘ ’ symbols). Note
that while obtaining these points in Steps 2 and 3, the power
allocation is strictly based on water-filling.

In the fourth step, the minimum convex utility space ,
which contains the set of all points obtained in Steps 2

TABLE III
THE OVERALL ALGORITHM FOR THE TWO-USER NB

GAME WITH SMCS AND TPCS

and 3, is found. The Pareto-boundary of the utility space is
(see Fig. 1, the circled points and the curve). Finally, in the

last step, the NB is performed on and the solution of the
game is obtained.

This algorithm gives the priority to the power allocation as
the water-filling, which is optimal for any given bandwidth al-
location, is used. The bandwidth allocation, which is not the
dominant factor for the power-dominant systems, is performed
according to the principle described in Steps 2 and 3, which is
motivated by the necessity of reducing the complexity. Thus, fo-
cusing on the dominant power resource, the algorithm can pro-
vide an efficient solution with low complexity. It is worth noting
that the algorithm is more efficient when is relatively small as
compared to . Moreover, the algorithm actually finds the op-
timal solution when . The efficiency of the algorithm is
studied next.

Let denotes the water-filling operator for user on
the set of frequency bins . It returns the maximum rate that
user can obtain by optimizing its power allocation on . Let
also the point corresponding to the optimal FDM/TS based
NB solution be obtained by TS of two points
and in the utility space of game with TS co-
efficients and , respectively, that is,

. Denote the sets of fre-
quency bins allocated to the users in the points
and as and , respec-
tively. Then, the following theorem is in order.

Theorem 7: The SJ-FDM/TS based NB solution ob-
tained using the algorithm in Table II can be identical to the
FDM/TS based NB solution . If they are not identical, the
difference between the logarithm of the NF for and the
logarithm of the NF for is bounded by

(62)
Proof: See Appendix B.

The following conclusions can be drawn: (i) can be
identical to ; (ii) The efficiency of depends on the
ratios .

D. The Two-User Algorithm

The overall algorithm, which combines both the bandwidth-
dominant and power-dominant cases, for the two-user coopera-
tive NB game with both SMCs and TPCs is given in Table III.

In the bandwidth-dominant case, the complexity of searching
on is . In the power-dominant case, the complexity of
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the algorithm in Table II is determined by the TS part, which is
. In the latter case, the complexity reduction as compared

to for the optimal FDM/TS based solution (where the
time consumed on water-filling is neglected in both cases) is
significant, especially for large .

V. SIMULATION RESULTS

A. Cooperative Resource Allocation Games With SMCs

In the first example, we assume that two users share four
available frequency bins. The noise power is 0.01 for
both users on all frequency bins. The channel gains of the
desired channels and
are generated as Rayleigh random variables with mean 1. The
channel gains of the interfering channels
and are generated as Rayleigh random
variables with means 0.7 and 0.2, respectively. The elements
of the spectral mask vector are also random
variables with mean 1.

In Fig. 2(a), the NB solution is shown together with the NE
solution. The boundary of the joint TDM/FDM based rate re-
gion is also included in the figure. Fig. 2(b) displays the values
of the logarithm of the NF under different TDM/FDM based
bandwidth allocations. In this subfigure, is the frequency bin
being shared and is the fraction of time that user 1 uses fre-
quency bin . It can be seen in Fig. 2(a) that the NB solution lies
on the boundary of the joint TDM/FDM based rate region and
provides significantly larger rates to both users than the NE solu-
tion. Moreover, the NB solution is fair to both users. In Fig. 2(b),
the largest value of the logarithm of the NF corresponds to the
optimal scheme that provides the NB solution.

In the second example, the semi-distributed algorithm for the
-user game developed in Section III-C is tested. It is assumed

that four users share six frequency bins. The channel gains of
the desired and interfering channels are generated as Rayleigh
random variables with means 1 and 0.2, respectively. The el-
ements of the spectral mask vector are also
random variables with mean 1. The step length is (if not
otherwise specified) and the stopping threshold is .

The iterations of the NB process are shown in Fig. 3(a). The
four curves on the upper side of Fig. 3(a) show the instantaneous
information rates that the corresponding users can achieve, and
the curve at the bottom shows the corresponding values of the
logarithm of the NF. The NB and NE solutions and the compar-
ison between them in terms of the percentage of improvement
provided by the NB solution versus the NE solution are shown
in Table IV for one of the runs. It can be seen from Fig. 3(a) and
Table IV that all users obtain supplementary benefit from coop-
eration. The corresponding final allocation of time portions on
each frequency bin for each user is shown in Fig. 3(b). It can be
seen that frequency bins 1, 2, 3, and 4 are occupied exclusively
by users 3, 4, 1, and 2, respectively, while frequency bins 5 and
6 are shared by users 1 and 4, and users 2 and 3, respectively.

Fig. 3(c) depicts the effect of the step length on the con-
vergence speed of the algorithm. With the step lengths

, the corresponding logarithm of the NF is shown.
It can be seen that the algorithm is time-efficient with a good
choice of the step length.

Fig. 2. Numerical example 1: (a) the TDM/FDM based rate region and the
NE and NB solutions; (b) log(NF) under different TDM/FDM based bandwidth
allocations.

B. Cooperative Resource Allocation Games With SMCs and
TPCs

Fig. 4 shows the system classification according to Theorem
4 versus the total power limits and the number of frequency bins
for a two-user system. The total power limits of the users
and vary in the interval . The number of
frequency bins increases from 1 to 256. The desired channel
gains are randomly generated using Rayleigh distribution with
mean 1, and the users do not interfere with each other due to
the orthogonal signaling assumption. The power limits on dif-
ferent frequency bins are uni-
formly distributed in the interval [1.8, 2.2]. The frequency bins
are in the standard ordering (see (8)). Following the principle
introduced in [10] (see Section IV-A), the maximum number
of frequency bins that user can cover is the maximum in-
teger in that satisfies for and

for . The total normalized
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Fig. 3. Numerical example 2: (a) instantaneous information rates and the cor-
responding logarithm of the NF versus the number of iterations; (b) frequency
bin allocations �� ����; (c) log(NF) versus the number of iterations for � �
����� ���� ����.

bandwidth (with the bandwidth of each frequency bin nor-
malized to 1) that user can cover is then

for user 1 and

TABLE IV
COMPARISONS BETWEEN NE AND NB

Fig. 4. System classification versus total power limits and number of frequency
bins.

for user 2. Then the vari-
able stands for the system characteristic
according to Theorem 4. The system is bandwidth-dominant if

and it is power-dominant if . It can
be seen from Fig. 4 that the system changes gradually from
bandwidth- to power-dominant when new frequency bins are
added into the system, while it changes gradually from power-
to bandwidth-dominant when the total power limits of the users
are relaxed.

In our last example, the power-dominant two-user system is
considered. The number of frequency bins varies from 4 to 8 (50
runs are used for each case with the number of frequency bins
being 4, 5, 6, 7, and 8). The total power limits of the users are
set as for each user, and the power limits
on different frequency bins are set to where is a
uniform random variable in the interval [0.2, 0.25]. It guaran-
tees that the system is power-dominant. The channel gains on
all frequency bins are randomly generated for both users using
Rayleigh distribution with mean 1.

Fig. 5(a) shows the FDM/TS and SJ-FDM/TS based NB solu-
tions and , respectively, for all 250 simulation runs. It
can be seen in the figure that is identical to for most
of the cases. Moreover, although the distance between and

for some cases may appear relatively large in the rate re-
gion, the differences between the values of the logarithm of their
NF are small as shown in Fig. 5(b). Particularly, Fig. 5(b) depicts
the logarithm of the NF for and (denoted as
and , respectively) versus the number of frequency bins
when the total power limits are set to
1.5, 2, or 2.5. Every point in the figure is averaged over 50 runs.
It can be seen from Fig. 5(b) that the gap between and

is very small, if not zero.
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Fig. 5. Numerical example 3: (a) � and � in the rate region; (b) the
logarithm of the NF for the FDM/TS and SJ-FDM/TS based NB solutions.

VI. CONCLUSIONS

Cooperative NB based resource allocation strategies have
been studied under SMCs and optionally TPCs. First, resource
allocation in two-user systems with SMCs has been investigated
and then the results have been generalized to -user systems.
It has been shown that the joint TDM/FDM is an efficient
manner of cooperation for such games. Particularly, it has been
shown that the NB based cooperative resource allocation with
the joint TDM/FDM based manner of cooperation outperforms
the noncooperative resource allocation under mild conditions.
A semi-distributed algorithm has been also developed to imple-
ment the NB. The two-level structure of the algorithm enables
the users to perform most of the computations individually and
in parallel using local information.

Second, the NB based cooperative resource allocation game
with both SMCs and TPCs has been studied. It has been
shown that this game corresponds to a nonconvex optimization
problem which requires joint optimization of both the band-
width (which is the public resource) allocation and the users’

individual power allocations. The complexity of finding the
optimal solution is unacceptably high in this case. Therefore,
it has been proposed to categorize the two-user systems into
bandwidth- and power-dominant depending on the bottleneck
resource in the system using the concept of Pareto-optimality.
Then different manners of cooperation have been suggested
for these two classes of systems and corresponding algorithms
have been developed. For the bandwidth-dominant systems,
bandwidth is the bottleneck resource and, therefore, the pro-
posed algorithm allocates bandwidth as a priority, while a
suboptimal power allocation is used to reduce the complexity
of the algorithm. Similarly, for the power-dominant systems,
power is the bottleneck resource and the proposed algorithm
allocates power as a priority, while a suboptimal bandwidth
allocation is used to reduce the complexity. This guarantees that
the obtained solutions are efficient and can be even identical
to the optimal solutions, while the complexity is significantly
reduced. Simulation results demonstrate the effectiveness of
the proposed cooperative solutions.

APPENDIX A
PROOFS OF THEOREMS 1 AND 3 IN SECTION III

Proof of Theorem 1: Let us prove the per-user condition (20)
by first considering the case with , i.e., the case when
there is only one frequency bin. In this case, the system is a
high-interference system if and only if there exists
which satisfies

(63)

(64)

These conditions can be rewritten as

(65)

(66)

where

(67)

If condition (20) is satisfied for user 1, that is,
, the

(68)
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Therefore, the left-hand side of (65) has the following property

(69)

It is now easy to verify that there is at least one feasible value
for which satisfies and (65), and this value is

. In the same way, it can be verified that
also satisfies (66) if (20) is satisfied. Thus, condition (20) is
a sufficient condition for the system to be a high-interference
system when .

The extension to is straightforward. Indeed, from
the above proof for , it can be seen that if condition
(20) is satisfied, then both users can achieve on each frequency
bin better utilities than their utilities in the NE by sharing the
frequency bins with , i.e.,

.
Since and

, it is guaranteed that there is at
least one feasible solution for ,
that is, , for which

. Therefore, the domain of the
three constraints in (10)–(13) is nonempty and the system is a
high-interference system.

Let us now prove the inter-user condition (21) by again first
considering the case with . The constraints in (10)–(13)
have a nonempty domain if and only if there exist
and such that

(70)

(71)

(72)

The conditions (70)–(72) can be written in another form.
Specifically, it can be shown that there exist and

which satisfy (70)–(72) if and only if there exist
and such that

(73)

(74)

(75)

The conditions (73)–(75) are equivalent to the following single
condition

(76)

The left-hand side of (76) is a summation of func-
tions
with and con-
stant . It can
be shown that this is an increasing function of

within its domain. Therefore, defining
, we

obtain the following inequality

(77)

which is satisfied as equality if and only if
.

Therefore, if

(78)

or, equivalently, if

(79)

then (76) is guaranteed to be satisfied and the system is a high-
interference system.

The extension to is again straightforward. Indeed, the
NE rate of the game for user is a summation of its NE rates on
each frequency bin, i.e., . The overall
rate given by the joint TDM/FDM based NB solution for user

is also a summation of its rates on each frequency bin, i.e.,
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. Therefore, if the domain of
the following per-bin constraints

(80)

(81)

(82)

is nonempty for each frequency bin , then the
domain of the constraints in the problem (10)–(13) is also
nonempty. This completes the proof.

Proof of Theorem 3: Since the constraints of the problem
(23)–(26) are all linear, the Slater’s condition reduces to two
parts with the first part requiring that the feasible domain of

be open and the second part requiring
that the feasible domain of the whole problem be nonempty.

It is straightforward to verify that the first part is satisfied. The
second part is equivalent to the requirement of the existence of
the NB solution. This completes the proof.

APPENDIX B
PROOFS OF THEOREMS 4 TO 7 IN SECTION IV

Proof of Theorem 4: First note that in game any resource
allocation scheme satisfying (50)–(52) results in a Pareto-op-
timal point in the utility space, and vice versa. Thus, the state-
ment of the theorem is equivalent to the statement that (53)
is the sufficient and necessary condition which guarantees that
at least one set of satisfies the conditions (50)–(52). To
prove the sufficiency, let (53) be satisfied, , and
in (50)–(52). Then the resulted total powers used by the users
are for user 1 and

for user 2. Using (53), it
is easy to verify that and . Therefore,
the sufficiency is proved. The necessity can be proved similarly
using contradiction.

Proof of Theorem 5: The first part of this theorem follows
from the independence on irrelevant alternatives property of the
NB [24]. This property states that bargaining in a convex subset
which contains the NB solution of the original set results in the
same NB solution. Thus, if , then .
Therefore, it is clear that if , then . Since

is the achievable subset of in game , it is impossible
that and simultaneously. Thus, if

, then as well. This completes the proof.
Proof of Theorem 6: First, note that the line segment

is the projection of the boundary onto the abscissa, i.e., onto
axis. To prove this, we only need to verify that the minimum

and maximum rates that user 1 can obtain on are and ,
respectively. From (55) and (56), it can be seen that the min-
imum rate that user 1 can obtain on is indeed when user
1 occupies frequency bins 1 to exclusively and frequency
bin for a por-
tion of time. Similarly, from (57) and (58), it can be seen that the
maximum rate that user 1 can obtain on is indeed when
user 1 occupies frequency bins 1 to exclusively and frequency
bin for a portion

of time. Note that using (53) in Theorem 4, it can be shown that
for bandwidth-dominant systems.

Second, according to Theorem 5, a sufficient condition
for is that the optimal solution of game
is in . Recall that the Pareto-boundary of is a
piece-wise linear boundary with segments and

junctions . The slop of segment is
, while the rates associated with

junction are and for users 1 and 2, respectively. De-
noting the optimal solution of game associated with rates
and as , it can be shown that the point can
be either in the interior of one of the line segments
or at one of the junctions . If is
in the interior of one of the line segments , there
is a Nash curve, that is, , which is tangent to the
convex rate region, for a unique constant . More specifically,
it is tangent to one of the line segments at the
point . Note that it is possible that the Nash curve is
tangent to the convex rate region at one of the junctions as well,
which provides rates and for users 1 and 2, respectively.
Moreover, in the case when there is no tangent point, there
exists a Nash curve, that is, , that intersects with
the rate region only at , which is one of the junctions

, for a unique constant .
Let the point on the line segment be the tangent

point, then the corresponding Nash curve is with
the slope at being . At the same time, the slope
of the line segment is . Thus, if
is indeed a tangent point, then ,
and the first line of (54) is proved. Another case is when
is a unique intersection point at one of the junctions

. In this case, the optimal solution maximizes
within all junctions, and the second line of (54) straight-
forwardly follows.

It is now easy to see that if and only if
. This completes the proof.

Proof of Theorem 7: Let . Then
due to the Pareto-optimality. Let also and

be two points generated in Steps 2 and 3 of the algorithm
summarized in Table II such that and .
Denote the sets of frequency bins allocated to the users 1 and 2
in the points and as and , respectively,
where the superscripts stand for the corresponding indexes of
the points and the subscripts denote the corresponding indexes
of the users. Recalling that , i.e., the disagree-
ment point is the origin, the difference between the logarithm of
the NF for and the logarithm of the NF for can be ob-
tained as
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(83)

where the inequalities hold because
,

, , and , and the last equality is
obtained by substituting the notations and

. Furthermore, using the fact that
, (83) can be simplified as

(84)

It can be derived in a similar way that the difference be-
tween the logarithm of the NF for and the logarithm of the
NF for obeys the following inequality

(85)

Finally, note that neither nor has been assumed to be the
rates corresponding to the SJ-FDM/TS based NB solution. In-
deed, and are just two of points generated in Steps 2 and
3 of the algorithm summarized in Table II, respectively. Thus,
the rates corresponding to the actual solution returned by the al-
gorithm are expected to be superior to the rates corresponding to
the points and , or equal to the rates in the optimal solution

. As an
example, when , the solution obtained by the algorithm
in Table II is identical to the optimal solution . Therefore,

and can be equal to zero. This completes the
proof.
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