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Optimal Resource Allocation in Wireless Powered Relay Networks
with Nonlinear Energy Harvesters

Qi Gu, Gongpu Wang, Rongfei Fan, Ning Zhang, Hai Jiang, and Zhangdui Zhong

Abstract—This paper investigates a multiple-relay decode-and-
forward (DF) network with simultaneous wireless information
and power transfer (SWIPT). The relays use the power splitting
(PS) technique to receive radio frequency (RF) energy and
information simultaneously from the source. To characterize
nonlinearity of energy harvesters at the relays, two existing
models are adopted, which are the logistic function model and
the constant-linear-constant (CLC) model. We target end-to-
end throughput maximization by optimizing the power and
bandwidth assignment for every source-relay-destination link and
the PS ratio at every relay node. The formulated problems are
demonstrated to be nonconvex. Through a series of analysis
and transformations, we find global optimal solutions for the
formulated problems. Numerical results verify the effectiveness
of our proposed methods.

Index Terms—Simultaneous wireless information and power
transfer (SWIPT), multiple relays, throughput maximization,
nonlinear energy harvesting model.

I. INTRODUCTION

Simultaneous wireless information and power transfer
(SWIPT) is a promising technical solution for energy-
constrained wireless networks, which enables a transmitter to
send energy and information simultaneously to a receiver via
the radio frequency (RF) signals [1], [2]. To realize SWIPT,
the receiver may use the power splitting (PS) technique, in
which the received signal is split into two portions, which are
used for energy harvesting (EH) and for information decoding
(ID), respectively [3]. By adjusting the PS ratio between EH
and ID, the rate of information transmission and the rate of
energy harvesting can be balanced [4], [5].

A special application of SWIPT lies in relay networks, in
which a relay node with no battery extracts both energy and
information from the source’s signal through SWIPT, and then
forwards the received signal (in amplify-and-forward (AF)
mode or decode-and-forward (DF) mode) to the destination by
using the harvested energy. In such a SWIPT-powered relay
network, it is not necessary to equip relay nodes with external
battery supply [4]–[11]. For SWIPT-powered relay networks,
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ergodic capacity analysis and/or outage probability analysis are
performed in [4] for DF relay networks, in [5] for AF relay
networks, in [6] for AF relay networks with multiple-antenna
relay and co-channel interference, and in [7] for AF networks
with relay selection from multiple randomly distributed relays.
PS ratio optimization is performed in [8] that maximizes the
outage capacity and in [9]–[11] that maximize end-to-end
throughput. In [8], PS ratio is optimized in a DF relay network.
In [9], multiple antennas are assumed at an AF relay, and
PS ratio and antenna selection strategy are optimized jointly.
In [10], beamforming vector and PS ratio are optimized with
multiple antennas implemented at the source node, AF relay,
and destination node. In [11], PS ratio is optimized over
multiple channels separately.

For all these works [4]–[11] for SWIPT-powered relay
networks, a linear model is assumed for the energy harvester
at a relay node, which means that the output power of
the energy harvesting circuit grows linearly with the power
of input RF signal. However, measurements [12] show that
output power of a practical energy harvester is non-linear with
the input RF signal power. In the literature, two models to
characterize the non-linearity are shown to match well with
the measurement data, as follows. A logistic function model
is used in [12], which models the energy harvester output as
a logistic function of the input RF signal power. In another
model in [13], the energy harvester output is modelled as a
linear function of the input RF signal power when the input
RF signal power is between two thresholds, referred to as
the constant-linear-constant (CLC) model. There is limited
work in the literature for performance analysis in SWIPT-
powered relay networks with a nonlinear energy harvester. The
work in [14] investigates the system secrecy outage probability
for a SWIPT-powered single-relay system under the logistic
function model.

In this paper, we investigate throughput maximization in
a SWIPT-powered multiple-relay network considering non-
linear energy harvesters at the relays. Multiple DF relays
with the PS technique are used. End-to-end throughput is
targeted to be maximized by optimizing the transmit power
and bandwidth on every source-relay-destination link and the
PS ratio at every relay node. Two optimization problems
are formulated for the logistic function model and the CLC
model, respectively. Both problems are shown to be non-
convex. For the case with the logistic function model, with
a series of transformations, the original optimization problem
is transformed to a standard monotonic optimization problem,
whose global optimal solution can be achieved by using a
polyblock algorithm. For the case with the CLC model, we first
transform the optimization problem, and then derive a semi-
closed-form optimal solution for the transformed problem. The
major differences between this paper and [14] are as follows.
1) The work [14] investigates closed-form expressions of
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system secrecy outage probability, while we target end-to-end
throughput maximization. 2) The work [14] considers logistic
function model, while we consider both logistic function
model and the CLC model. 3) The work [14] considers a
single relay, while we consider multiple relays. 4) The work
[14] focuses on performance analysis, but does not analytically
find the optimal system configuration. We focus on analytically
deriving the optimal configuration of the system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a two-hop multiple-relay network, in which a
source node denoted as S would like to send its information
to its destination denoted as D. A direct link from S to D
does not exist due to physical obstacles [5]. Thus, S uses N
relays denoted as R1, R2, ..., RN to help forward its signals.
The relays have no external power supply, and thus, they use
the PS technique to harvest energy and decode information
from S. Denote the link S → Rn → D as link n, for
n ∈ N , {1, 2, ..., N}. The channel gain from S to Rn is
hn, and the channel gain from Rn to D is gn. In the system,
all the channel gains keep stable in one fading block, and
are randomly and independently distributed over fading blocks
following a distribution function. Denote σ2 as the power
spectrum density of noise at each node.

S has total transmit power denoted as pT and total band-
width denoted as wT . It assigns bandwidth wn and transmit
power pn for its transmission to relay Rn. Thus, we have∑N

n=1 wn = wT , and
∑N

n=1 pn = pT .
Time is divided into frames, and the length of each frame

is equal to a fading block duration denoted as T . One frame
is equally divided into two phases, each with time duration T

2 .
Consider a target frame. In the first phase, relay Rn (n ∈ N )
uses the PS technique for SWIPT: a fraction βn (0 ≤ βn ≤ 1)
of the received signal’s power expressed as pThn is used for
energy harvesting, and the remaining (1−βn) of the received
signal power is for information decoding. To boost the energy
harvester, the power of received energy pThnβn should be
not less than a threshold, denoted as Eth, which requires
βn ≥ Eth

pThn
, βmin

n for n ∈ N . In the second phase of the
target frame, Rn forwards to the destination D with transmit
power qn over its assigned bandwidth wn. Hence the transmit
power is expressed as qn =

T
2 ϕ(pThnβn)

T
2

= ϕ(pThnβn). Here
ϕ(·) is the output power of the energy harvester as a function
of the input RF signal power. For the nth link, the throughput
from S to Rn is wn

2 log
(
1 + pnhn(1−βn)

σ2wn

)
, and the throughput

from Rn to D is wn

2 log
(
1 + ϕ(pThnβn)gn

σ2wn

)
. As DF relaying

mode is used, the throughput on link n can be written
as 1

2 min{wn log(1 +
pnhn(1−βn)

σ2wn
), wn log(1 +

ϕ(pThnβn)gn
σ2wn

)}
according to [15], and the end-to-end throughput from S to
D over all relays can be written as

C({βn}, {pn}, {wn})

, 1
2

N∑
n=1

min

{
wn log

(
1 + pnhn(1−βn)

σ2wn

)
,

wn log
(
1 + ϕ(pThnβn)gn

σ2wn

)}
.

(1)

For an energy harvester, experimental measurements [12]
show that, when the input RF power is above a threshold,

output power of the energy harvester grows with the input
RF power, but the growth rate becomes smaller and smaller
until the output power saturates. To approximate this feature,
two models are introduced in the literature. 1) Logistic
function model: In this model, ϕ(x) is written as ϕL(x) =(

M
1+e−a(x−b) − M

1+eab

)
/
(
1− 1

1+eab

)
, where M represents the

maximal power that the energy harvester can harvest, and a
and b are nonlinearity parameters. This model is used in [12],
[16]. 2) CLC model: In this model, ϕ(x) is written as

ϕC(x) =

 0,when x < xL,
c(x− xL),when xL ≤ x ≤ xU ,
c(xU − xL),when x > xU

(2)

where xL and xU are two thresholds, and c is a parameter to
characterize the growth rate of ϕC(x) with x between the two
thresholds. This model is used in [13].

We target maximal end-to-end throughput by optimizing
the transmit power and bandwidth on every source-relay-
destination link and the PS ratio at every relay node. Accord-
ingly, the following optimization problem is formulated:

Problem 1:

max
{βn},{pn},{wn}

C({βn}, {pn}, {wn})

s.t. βmin
n ≤ βn ≤ 1,∀n ∈ N , (3a)

pn ≥ 0, wn ≥ 0,∀n ∈ N , (3b)
N∑

n=1

wn = wT ;

N∑
n=1

pn = pT . (3c)

Considering the non-convexity of ϕL(x) and ϕC(x), it can
be checked that Problem 1 is a non-convex optimization
problem, whose optimal solution is hard to find. In Section
III, we will address this challenge, as follows. In Problem
1, the optimization variables are {βn} , {pn} , {wn}. For the
logistic function model or CLC model, we first convert Prob-
lem 1 to an equivalent problem with optimization variables
{βn} , {wn}. The equivalent problem is further converted to
another equivalent problem with optimization variables {βn}.
After solving the last equivalent problem, we get optimal
solution of Problem 1.

III. OPTIMAL SOLUTION

A. The Case under the Logistic Function Model

In this subsection, the logistic function model is adopted
to characterize the energy harvesters, i.e., ϕL(x) defined in
Section II is adopted.

For Problem 1, the objective function is expressed in (1).
In the expression, the term wn log

(
1 + pnhn(1−βn)

σ2wn

)
is a decreasing function with βn, and the term
wn log

(
1 + ϕL(pThnβn)gn

σ2wn

)
is an increasing function

with βn considering that ϕL(x) is an increasing function of
x. Hence, when the objective function of Problem 1 achieves
its maximal, the above two terms wn log

(
1 + pnhn(1−βn)

σ2wn

)
and wn log

(
1 + ϕL(pThnβn)gn

σ2wn

)
should be equal, i.e., we

should have

pnhn(1− βn) = ϕL(pThnβn)gn, (4)



3

which further indicates pn = ϕL(pThnβn)gn
hn(1−βn)

. Together with the
fact that pn ≤ pT , we have an upper bound of βn, denoted
as β̂n ∈ (0, 1), such that ϕL(pThnβ̂n)

(1−β̂n)
= pThn

gn
. Together with

constraint (3a), we know that βn should be bounded as βmin
n ≤

βn ≤ β̂n,∀n ∈ N .

By replacing pn with ϕL(pThnβn)gn
hn(1−βn)

and by relaxing the

two constraints in (3c) as
N∑

n=1
wn ≤ wT and

N∑
n=1

pn ≤ pT ,

respectively,1 Problem 1 is equivalent to the following problem
Problem 2:

max
{βn},{wn}

1

2

N∑
n=1

wn log

(
1 +

ϕL(pThnβn)gn
σ2wn

)
s.t. βmin

n ≤ βn ≤ β̂n,∀n ∈ N , (5a)
wn ≥ 0,∀n ∈ N , (5b)
N∑

n=1

wn ≤ wT , (5c)

N∑
n=1

ϕL(pThnβn)gn
hn(1− βn)

≤ pT . (5d)

Problem 2 is non-convex. Here we first investigate Prob-
lem 2 for given β1, β2, ..., βN . With given β1, β2, ..., βN ,
the objective function of Problem 2 is concave with
w , (w1, w2, ..., wN )T (where (·)T denotes the transpose
operation), as ∂2{wn log

(
1 + ϕL(pThnβn)gn

σ2wn

)
}/∂(wn)

2 =

− (ϕL(pThnβn)gn)
2

wn(wnσ2+ϕL(pThnβn)gn)
2 ≤ 0. Further, all the constraints

of Problem 2 are linear with w. Thus, Problem 2 with given
β1, β2, ..., βN is a convex optimization problem with w. In
addition, Problem 2 with given β1, β2, ..., βN satisfies the
Slater condition [17]. In this case, KKT condition is a
sufficient and necessary condition for the optimal wn, ∀n ∈ N
[17], which can be given as follows

ln

(
1 +

ϕL(pThnβn)gn
σ2wn

)
− ϕL(pThnβn)gn

ϕL(pThnβn)gn + wnσ2

+ µn − ν = 0, (6a)

µnwn = 0,∀n ∈ N ; ν

(
wT −

∑
n∈N

wn

)
= 0, (6b)

µn ≥ 0,∀n ∈ N ; ν ≥ 0, (6c)
Constraints(5b), (5c), (6d)

where µn and ν are Lagrange multipliers associated with
the constraints (5b) and (5c), respectively. For n ∈ A ,
{n′|wn′ > 0}, it can be checked that µn = 0 from
(6b). Then from (6a) we know that f(ϕ

L(pThnβn)gn
σ2wn

) = ν

with f(x) , ln(1 + x) − x/(1 + x). Thus, we have
ϕL(pThnβn)gn

σ2wn
= γ , f−1(ν). Note that to be physically

meaningful, both ν and f−1(ν) should be less than infinity.
For n ∈ N \ A = {n′|wn′ = 0}, from (6a) we know
that ϕL(pThnβn)gn

σ2wn
= f−1 (ν − µn) ≤ f−1 (ν) < ∞, which

implies that we should have ϕL(pThnβn)gn = 0. As an

1The relaxation does not affect the equivalence of Problems 1 and 2.

overall result, for n ∈ N , we have wn = ϕL(pThnβn)gn
σ2γ .

The above discussion also indicates that constraint (5b) would
be non-binding unless ϕL(pThnβn)gn = 0. For constraint
(5c), it is binding due to the following two reasons: 1)
The objective function of Problem 2 is increasing with wn

since the partial derivative of the objective function with
respect to wn is nonnegative. 2) The left-hand function of
constraint (5c) is increasing with wn for n ∈ N . Hence, we
have

∑
n∈N wn = wT at optimality. Accordingly, γ can be

derived as γ = 1
wTσ2

∑N
n=1 ϕ

L(pThnβn)gn. With this derived
γ value, optimal wn (n ∈ N ) for Problem 2 with given
β1, β2, ..., βN is a closed-form expression of β1, β2, ..., βN ,
given as wn = ϕL(pThnβn)gn

σ2γ . Substituting these optimal
closed-form expressions of w1, w2, ..., wN into Problem 2 and
with some mathematical manipulations, Problem 2 transforms
to the following equivalent optimization problem

Problem 3:

max
{βn}

N∑
n=1

ϕL(pThnβn)gn

s.t. βmin
n ≤ βn ≤ β̂n,∀n ∈ N , (7a)
N∑

n=1

ϕL(pThnβn)gn
hn(1− βn)

≤ pT . (7b)

Recall that ϕL(x) defined in Section II is an increasing
function. Thus, both the objective function of Problem 3 and
the left-hand side function of (7b) are increasing functions
with the vector β , (β1, β2, ..., βN )

T . Hence Problem 3 falls
into the standard form of monotonic optimization problem, i.e.,

max
y

f(y) s.t. yL ≤ y ≤ yU ; g(y) ≤ 0,

where variable y is a vector, yL and yU represent lower
and upper bounds of y, respectively, and f(y) and g(y) are
monotonically increasing functions with y. For a standard
monotonic optimization problem, there is a polyblock algo-
rithm to achieve the ε-optimal solution (ε > 0 is a predefined
parameter) [18, p. 2316], i.e., the gap between the achieved
objective function by the polyblock algorithm and the globally
maximal objective function is bounded by ε. Due to space
limit, detailed procedure of the polyblock algorithm is omitted.

B. The Case under the CLC Model

In this subsection, the CLC model is adopted for the energy
harvester, i.e., ϕC(x) defined in (2) is adopted. Looking
into the expression of ϕC(x), to guarantee positive harvested
energy, we should have pThnβn ≥ xL, i.e., βn ≥ xL

pThn
,

βL
n ,∀n ∈ N . On the other hand, when input RF power at an

energy harvester is more than xU , the energy harvester will
become saturated. Thus, there is no need to set the input RF
power to be larger than xU , i.e., we have pThnβn ≤ xU ,
which implies βn ≤ xU

pThn
,∀n ∈ N .

When βn is bounded in [βL
n ,

xU

pThn
], then we have ϕC(x) =

c(x−xL). Similar to the discussion for (4), when the objective
function of Problem 1 achieves its maximal, we should have
pnhn(1 − βn) = ϕC(pThnβn)gn = c (pThnβn − xL) gn,
which indicates pn = c(pThnβn−xL)gn

hn(1−βn)
. As pn ≤ pT , we
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know that βn is upper bounded by β̃n, in which β̃n satisfies
c(pThnβ̃n−xL)

(1−β̃n)
= pThn

gn
,∀n ∈ N . Thus, overall, we have

max{βL
n , β

min
n } ≤ βn ≤ min{β̃n,

xU

pThn
, 1}.

By replacing pn with c(pThnβn−xL)gn
hn(1−βn)

, Problem 1 under the
CLC model is equivalent to the following problem

Problem 4:

max
{βn},{wn}

1

2

N∑
n=1

wn log

(
1 +

c (pThnβn − xL) gn
σ2wn

)
s.t. max{βL

n , β
min
n } ≤ βn ≤ min{β̃n,

xU

pThn
, 1},

∀n ∈ N , (8a)

wn ≥ 0,∀n ∈ N ;

N∑
n=1

wn ≤ wT , (8b)

N∑
n=1

c (pThnβn − xL) gn
hn(1− βn)

≤ pT . (8c)

Similar to the transformation from Problem 2 to Problem
3, Problem 4 can be transformed to

Problem 5:

max
{βn}

N∑
n=1

c (pThnβn − xL) gn

s.t. max{βL
n , β

min
n } ≤ βn ≤ min{β̃n,

xU

pThn
, 1},∀n ∈ N ,

(9a)
N∑

n=1

c (pThnβn − xL) gn
hn(1− βn)

≤ pT . (9b)

For Problem 5, its objective function is a linear function
with βn for n ∈ N , and the left-hand side function in (9b) is
convex with βn when pThn

xL
> 1.2 Therefore, Problem 5 is a

convex optimization problem. It can be checked that Problem
5 satisfies Slater’s condition. Thus, the KKT condition of
Problem 5 can serve as a sufficient and necessary condition
of its optimal solution [17], which can be written as

cpThngn − Ξ
cgn
hn

(pThn − xL)

(βn − 1)
2 + Γn −∆n = 0, (10a)

Γn

(
βn −max{βL

n , β
min
n }

)
= 0,∀n ∈ N , (10b)

∆n

(
βn −min{β̃n,

xU

pThn
, 1}
)

= 0,∀n ∈ N , (10c)

Ξ

(
pT −

N∑
n=1

c (pThnβn − xL) gn
hn(1− βn)

)
= 0, (10d)

Γn ≥ 0,∆n ≥ 0,∀n ∈ N , (10e)
Ξ ≥ 0, (10f)
Constraints(9a), (9b), (10g)

where Γn, ∆n, and Ξ are Lagrange multipliers associated
with left-hand side of (9a), right-hand side of (9a), and (9b),
respectively.

2If pT hn
xL

≤ 1, then relay Rn has no chance to work, as output power of
its energy harvester is always zero.

According to (10b) and (10c), when max{βL
n , β

min
n } <

βn < min{β̃n,
xU

pThn
, 1}, we have Γn = ∆n = 0. Hence,

according to (10a), we have

βn = 1−

√
Ξ (pThn − xL)

pTh2
n

. (11)

For a given Ξ, if the calculated βn in (11) is larger than
its upper bound min{β̃n,

xU

pThn
, 1}, then we should have βn =

min{β̃n,
xU

pThn
, 1} according to (10a) and (10c). Similarly, if

the calculated βn in (11) is smaller than its lower bound
max{βL

n , β
min
n }, then we should have βn = max{βL

n , β
min
n }

according to (10a) and (10b). Overall, βn (∀n ∈ N ) can be
expressed as a function of Ξ as

βn(Ξ) =

[
1−

√
Ξ (pThn − xL)

pTh2
n

] ∣∣∣∣∣
min{β̃n,

xU
pT hn

,1}

max{βL
n ,βmin

n }

, (12)

with operation [x]|ba , max{a,min{x, b}}.3 The βn(Ξ) in
(12) is a non-increasing function with Ξ for n ∈ N .

On the other hand, both the left-hand side function of
(9b) and the objective function of Problem 5 are increasing
functions with βn for n ∈ N . So it is better to set βn as
large as possible, which indicates that the optimal solution of
Problem 5 happens when the constraint (9b) becomes active,4

i.e.,
N∑

n=1

c (pThnβn(Ξ)− xL) gn
hn(1− βn(Ξ))

= pT . (13)

The left-hand side function of constraint (13) is increasing
with βn(·), and βn(Ξ) is monotonic with Ξ. Thus, the left-
hand side function of constraint (13) is also monotonic with
Ξ. Hence we can use a bisection search method to get the
value of Ξ that satisfies (13). With the value of Ξ, the optimal
βn for Problem 5 can be obtained by using (12). Such an
optimal solution of βn is in semi-closed-form, as expression
of βn(Ξ) in (12) is in closed-form and the value of Ξ needs
to be obtained by using a bisection search.

IV. NUMERICAL RESULTS

In this section, numerical results are presented to verify the
effectiveness of our proposed methods. Similar to [12], the
system parameters are set as follows. The carrier frequency
is 915MHz, σ2 = −95dBm, Emin = 1µW, both gn and hn

are subject to Rician distribution with a Rician factor being
3dB, the path loss exponent is 3.6, the antenna gain on every
link is 10dB, and wT = 2MHz. There are four relay nodes.
As SWIPT can only be applied for short-range harvesting
links and communication links, we consider two short-range
location setups: the coordinates (in unit of meter) of source,
destination, and the four relays are (−5, 0), (10, 0), (0, 10),
(0, 5), (0,−5), and (0,−10) in the 1st setup, and are (−15, 0),
(25, 0), (0, 10), (0, 5), (0,−5), and (0,−10) in the 2nd setup.
For the energy harvester, by utilizing the curve fitting tool on

3Accordingly, for the KKT condition in (10), it is hard to say whether
constraint (9a) is binding or not, which depends on whether the truncation
operations in (12) are active.

4Accordingly, for the KKT condition in (10), the constraint (9b) is binding.
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Fig. 1: End-to-end throughput vs. pT in the 1st location setup.
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Fig. 2: End-to-end throughput vs. pT in the 2nd location setup.

the measured data in [12], it is calculated that M = 2.3×10−2,
a = 170, and b = 1.398×10−2 for the logistic function model,
and c = 0.7833, xL = 0, and xU = 3× 10−2 for CLC model.
When running the polyblock algorithm, ε is set as 1× 10−2.
As a comparison, for each of the logistic function model and
CLC model, a relay selection method in [7] is also simulated,
in which the source uses all transmit power and bandwidth
to transmit to one selected relay, and then the selected relay
forwards to the destination. In addition, the optimal allocation
of transmit power, bandwidth, and PS ratios under the linear
energy harvesting model is also simulated for comparison.

Fig. 1 shows the end-to-end throughput versus pT in the
1st location setup. Our proposed methods under the logistic
function model and CLC model outperform other methods. For
the two selection schemes, their throughput do not increase
when pT increases from 0.2 to 1, for the following reason.
The selected best relay intends to have a very good first-hop
channel gain, and thus, its harvested energy has a very large
chance to get saturated when pT ≥ 0.2.

Fig. 2 shows the end-to-end throughput versus pT in the 2nd
location setup. The throughput in our methods and in the linear
model are almost the same. This is because with larger link
distances in the 2nd location setup, the energy harvesters have
a low chance to get saturated (one major difference among the
two nonlinear energy harvesting models and the linear energy
harvesting model lies in whether or not to model saturation

and/or how to model saturation). Also due to the low chance
for energy harvesters to get saturated, the throughput with the
two selection schemes increase with pT .

V. CONCLUSION

A two-hop multiple-relay DF network with SWIPT under
the PS technique is investigated, taking into account the non-
linearity of energy harvesters. The logistic function model and
CLC model are adopted to characterize the nonlinearity. Trans-
mit power and bandwidth on every source-relay-destination
link and the PS ratio at every relay node are optimized so
as to maximize the end-to-end throughout. For each nonlinear
model, the formulated problem is non-convex. With a series
of analysis and transformations, we find the global optimal
solution of each formulated optimization problem. Our optimal
solution with the CLC model is in a semi-closed-form.
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