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Abstract—To support wireless Internet of things (loT) devices,

environments, lower cost and enhance productivity in itrgus

this paper presents a new solution which combines wireless etc. Thus, I0T has experienced rapid growth in recent years

power transfer and mobile edge computing. Specifically, we
consider one mobile device, which first harvests energy from
radio frequency signals sent by a base station and then offlda
all or part of its data to be processed to the base station. The
process of energy harvesting and offloading span over multlp
fading blocks. The target is to maximize the average amountfo
processed data in unit time. To achieve this target, we optiime
the stopping rule for energy harvesting (i.e., when to stop rergy
harvesting and start offloading) and the number of fading blaks
for data offloading. To solve the formulated problem optimaly,
we decompose it into two levels. In the lower level, the stojimg
rule for energy harvesting is optimized given a fixed number 6
fading blocks for offloading. The associated lower-level prblem
is solved optimally based on a series of special propertiesf o
the problem. In the upper level, the number of fading blocks
for offloading is optimized. Efficiency of our work with fully
offloading mode and partially offloading mode is shown by usig
simulation.

Index Terms—Mobile edge computing (MEC), wireless power
transfer, multiple fading blocks, optimal stopping.

I. INTRODUCTION

[5].

With the popularity of 10T, mobile devices need to process
data (referred to as computation tasks) collected fromrothe
devices or from the environments. It may be difficult to ldgal
compute the computation tasks at some mobile devices, e.g.,
devices with limited computation capacity and/or limited e
ergy supply [6], [7]. To help the mobile devices to compléte t
computation tasks, mobile edge computing (MEC) can serve
as a promising solution. In an MEC system, computation tasks
of a mobile device with limited computation capability caam b
sent to a nearby base station (BS) with strong computation
capability, and then the BS completes the computation tasks
and tells the mobile device the computation results [8]}[13

On the other hand, it may also be hard for a mobile device in
an loT network to get stable energy supply. Thus, motivated
by the idea of wireless power transfer (in which a receiver
can harvest energy from radio frequency signals transtnitte
by a transmitter [14]), wireless-powered MEC is proposed
and investigated in the literature [15]-[17]. In the system
mobile device first harvests energy from the radio frequency

The Internet of things (IoT) is a network of connectedignals sent by a nearby BS and then offloads all or part of

devices, which includes traditional Internet-connectedacks,

its data to the BS for computing. The BS then sends back the

such as desktops, laptops, etc., as well as other devicesnputation results to the mobile device.

that are not traditionally connected to the Internet, sush

wireless sensors, automobiles, home appliances, etd4]1]-

a There are two open questions for wireless-powered MEC.
1) Most of the existing works [18]—[20] for data offloading in

The connectivity among many categorizes of devices makg&EC assume that the whole data offloading process can be
it easy to collect data from devices at distance and to cbntammpleted within a single fading block, and thus, during the
devices remotely, which enables people to interact withlpeawhole data offloading process, the wireless channel gais doe

every device anywhere. The functionality of 10T can faatt

not change. However, the length of one fading block can be

the dally life of people, extend the reach of people in harginly at the scale of 2ms [21], while the maximal allowable de-
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lay of some applications, such as wearable devices, industr
Internet, smart farming, etc., can be at the scale of dozéns o
milliseconds or even longer [1], [5], [22]. Thus, it may nesd
number of fading blocks to complete the data offloading. For
this case, existing offloading schemes that assume offlgadin
over a single fading block do not work anymore, because it
is difficult for a mobile device to predict the channel gairis o
forthcoming fading blocks for offloading. 2) In a wireless-
powered MEC system, the energy harvesting and the data
offloading processes alternate in time. A mobile device first
harvests some energy, and then it stops harvesting enedgy an
starts data offloading. It is unclear when it is optimal topsto
the energy harvesting process and start the data offloading.



In this paper, we will focus on the above two open quesidered. In the following, we survey works on MEC powered
tions. Specifically, we consider one target mobile device 10T networks over wireless fading channels.
a multiple-user system. The mobile device is first wireless It is considered in [18] that a computation task of a mobile
powered by a BS, and then offloads all or part of its compdevice can be computed jointly by the mobile device and a BS.
tation tasks to the BS for computing. The energy harvestifdne ratio of data for offloading and the wireless transmissio
process and the data offloading process span over multiptewver level are optimized. In [19], it is assumed that the CPU
fading blocks. We target maximal data processing rate. $tate of an edge-computing BS switches between “busy” and
achieve this, we find out the optimal moment when the enerjgle” and the BS’s CPU-idling profile (i.e., the time windew
harvesting process should be stopped and the optimal numivaen the BS’s CPU is idle in the future) is known. The most
of fading blocks that the data offloading process shou&hergy-saving strategy is designed by optimizing the adiéal
occupy. data amount. The authors in [20] investigate the case when

The main contributions of our work are as follows. both the mobile device and the BS are equipped with multiple

« The formulated problem involves the optimization ofntennas.
a stopping rule and the number of fading blocks for It is assumed in [18]-[20] that the whole data offloading
data offloading. This problem is hard to solve. To fin@rocess can be completed within a single fading block, and
the solution of the formulated problem, we decompodBUs, during the whole data offloading process, the wireless
the problem into two levels. In the lower level, thechannel gain does not change. Considering that the toterabl
optimal stopping rule for energy harvesting is found fof€lay in many IoT applications [1], [5], [22] is much larger
a given number of fading blocks in data offloading. Ithan a fading block duration (which is at scale of 2 ms [21]),
the upper level, the optimal number of fading blocks idlata offloading should experience varying wireless channel
data offloading is found. gains over multiple fading blocks, and thus, the methods in

« In the lower-level optimization problem, we find somd18]-[20] do not work anymore.
interesting properties of the problem. Based on theseThe work in [29] considers that data offloading occurs
properties and after some math manipulations, the o\githin a number of fading blocks. A mobile device either
timal strategy is derived. performs all the computation itself, or offloads all its d&ta

« In the upper level, we theoretically prove that the optim@ BS, whichever consumes less energy of the mobile device.
number of fading blocks in data offloading should not b offloading happens, the most energy efficient strategy is

infinite. Based on this, the optimal number is found by €esigned by optimally distributing data over multiple fagli
one-dimensional search. blocks, based on a two-state channel modeling. The work in

The rest of this paper is organized as follows. In Section I[ﬁ_or]]_also mvgstlge;tfesd_the b(iaslf Wg1en (_1ata offloadnlwghoccurls
related literature is surveyed. Section Il introducesdht of- within a number of fading blocks, by using a general channe

floading system over multiple fading blocks and formulates a{nodelmg. . . . .
optimization problem. Section IV and Section V discuss ho The aforementioned works consider that the mobile devices

to solve the lower-level problem and the upper-level proble Wave constant power supply. To the best of our knowledge, the

respectively. Numerical results are discussed in Sectign \¥vorks in [16], [17] are the on!y technical research effontéie
and the conclusion is given in Section VI, iterature that investigate wireless-powered MEC. The kwor

in [16] considers data offloading over a single fading block,
with a BS, a near mobile device, and a far mobile device.
The two mobile devices first harvest energy from the BS, and

The idea of powering loT by MEC has been investigated then offload their data to the BS. The near mobile device
the literature [23], [24]. In [23], edge computing is propds sends its data to the BS, and also provides relaying service
to assist 10T devices to run deep learning applicationsh sufor the far mobile device’s data offloading. The work in [17]
as feature extraction from voice or image. In [24], edgeonsiders offloading of a mobile device to a BS over a number
computing is utilized to perform channel assignment vigpdeef fading blocks, referred to asffloading fading blocksere.
learning methods so as to improve transmission quality At the beginning of the offloading process, the mobile device
0T delivery networks. Resource allocation for MEC loTis assumed to know the channel state information (CSI) of
networks is investigated in [25]-[27]. In [25], network pew all future offloading fading blocks. Two working modes are
consumption is minimized with a consideration of I0T desgice considered: fully offloading and fully local computing. For
traffic and mobility. In [26], energy consumption of mulipl fully offloading mode, in every fading block, the mobile dewi
loT devices is minimized via adjusting the bandwidth altech first gets charged by RF signals from the BS, and then offloads
to every IoT device. In [27], the number of activated edgiés data to the BS. The fraction of time for energy harvesting
computing BSs is minimized with a consideration of multiplén every fading block and the amount of data to be offloaded
loT devices’ spacial distribution and mobility. In [28], ain every fading block are optimized so as to maximize thd tota
scalable deployment solution is given for a massive numbe&mount of saved energy. For fully local computing mode, an
of 10T devices in 6G wireless networks by using a machirenergy-efficient strategy is designed, which decides theuamn
learning approach. of data for processing in each fading block.

The works mentioned above study MEC powered IoT In this paper, we investigate the problem of wireless-
networks from the network layer. Wireless fading is not corpowered MEC over multiple fading blocks. The major differ-

Il. RELATED WORKS



TABLE I: Notations used the mobile device offloads part of its data, it performs local
computing for the rest of its data. In this research, we @®@rsi

Symbols Description

o number of required CPU cycles for computing a data nat Only a target channel and the associated mobile device gas th
¢ energy capacity of the battery _ _ derived solution for the associated mobile device can aéso b
Dp amount of offloaded data nats in partial offfoading ___  5h5jiad by other mobile devices. Fig. 1 shows the BS and the
Dy, amount of locally computed data nats in partial offloading . .
Dy (y, M) | the maximal amount of data nats that can be processed inmobile device on the target channel.
the M offloading fading blocks at the mobile device The wireless charging (i.e., energy harvesting) and data
with energy levely in fully offloading mode _offloading alternate in time. In one round of energy harvgsti
Dy(y, M) | the maximal amount of data nats that can be processed in . . . .
the M offloading fading blocks at the mobile device and data offloading, the mobile device first harvests energy
with energy levely in partial offloading mode from zero to some level, and then stops harvesting energy and
e(d, 9) the energy consumption within the fading block with uses up all the available energy to offload data and/or egecut
channel gain being for offloading d nats . . . . .
E(N) the total available energy in the battery of mobile device local computing. This _charglng-offload|_ng pl’(_)CGSS IS rma
by the end of EH fading blockV round by round. In this research, we investigate the optimal
fx) channel gain distribution between BS and mobile device performance that can be achieved in a round.
gn the channel gain from mobile device to BS in
offloading fading blockn
g (9, 901, 91) " Wireless power
hn the channel gain from BS to mobile device in EH Base transfer Target
fading blockn . —> o
o Thi, h, s fon station |« mobile
T the set of integers . 2
T (d) minimum energy amount that the mobile device expects (B S) Data offloading device
to consume for offloading data nats when the device
is at the beginning of offloading fading bloek but . . .
has not measured the channel gain yet Fig. 1: lllustration of our system with a BS and the target
k parameter related to mobile device’s CPU features mobile device.
M the number of fading blocks for data offloading
N the number of fading blocks for EH
Pg transmit power of BS
n energy conversion efficiency ) ' )
A (D) the minimum energy needed to procdssdata nats i/ k—Totally N EH fading blocks <-Totally M offloading fading blocks—>
offloading fading blocks under partially offloading mode EH fading EH fading Offloading Offloading
o2 noise power spectrum density block 1 block N fading block M fading block 1
T length of one fading block Y ~ / \
TN, M the total time duration foN EH fading blocks and

M offloading fading blocks

S — —T7—A

ence between our work and [17] lies in the system assumption.
The work in [17] assumes that the mobile device knows CSI of
future fading blocks in the data offloading process. We agsum ) _
that the mobile device knows only CSI of its current fadin§j'9- 2: One round of energy harvesting and data offloading
block, while the CSI of future fading blocks is assumed to e OCESSes.

unknown.

Energy harvesting Data offloading

In the system, the channel gain between the BS and the

mobile device is block-faded, i.e., the channel gain keeps

lIl. SYSTEM MODEL AND PROBLEM FORMULATION stable in one fading block and changes randomly from fading
In this section, system model will be introduced, indudb'OCk to fadlng block. The duration of each fadlng block is

ing the model for energy harvesting, computing and data The channel gain of the fading blocks are independent
offloading. Then our optimization problem will be formuldte and identically distributed, which is subject to the distri

Important notations used in this work are given in Table I. tion function f(z) and upper bounded b, i.e., we have
f(x) = 0 for x > h,. Both energy harvesting and data

offloading may span over multiple fading blocks.

A. System Model In one round of energy harvesting and data offloading,

Consider an MEC system, in which there are one BS adénote N and M as the number of fading blocks in energy
multiple mobile devices. Every mobile device always hagdaharvesting and data offloading, respectively, as showngnZi
(i.e., computation tasks) to process, and is allocated writn  We call the N fading blocks for energy harvesting (EH)
channel which has a bandwidth af. On each channel, theas EH fading blocks indexed as EH fading block 1, EH
associated mobile device is charged by the BS via wirelesgling block 2, ..., EH fading block N, with channel gains
power transfer (WPT) technique, and then offloads all or pdftom the BS to the mobile device) denoted/ashs, ..., hy,
of its data to the BS for computing, in order to save its energgspectively. We call thd/ fading blocks for data offloading
consumption. After the BS finishes computing the offloadexbsoffloading fading blocksndexed as offloading fading block
data, it tells the mobile device the computation resultsewh M, offloading fading block\/ —1, ..., offloading fading block



1, with channel gains (from the mobile device to the BS) By the end of EH fading blockV, the available energy
denoted ag/ns, gar—1, ---, g1, respectively. In other words, forin total for the mobile device i/ (N) given in (1). For the
presentation simplicity, the beginning fading block in alatfully offloading mode, denotd:(E(N), M) as the maximal
offloading is called offloading fading blocR/, while the amount of data nats that can be processed (i.e., offloaded)
ending fading block in data offloading is called offloadingn the M offloading fading blocks at the mobile device
fading block 1. with energy levelE(N). Here subscript ‘f* stands for fully
Energy harvesting is performed over multiple fading blockeffloading mode.
At the beginning of EH fading block 1, the energy level of the In an offloading fading block, say offloading fading block
mobile device is 0, and then the mobile device starts to sarver (m € {1,2,..., M}), if the channel gain igj,,, then the
energy. Denote the transmit power of the BSRs and the amount of data nats that can be offloaded in the fading block
energy conversion efficiency of the energy harvester at tlseexpressed as [21]
mobile device ag). Then the harvested energy in EH fading D Gm
block n(n € {1,2,..., N}) is nPg7h,. Assume the maximal tn = w7 In (1 T o? ) ’ @)
energy capacity of the battery of the energy harvester'is \herey,, is transmit power of the mobile device in offloading
By the end of EH fading blockV, the total available energy fading block m, and o is noise power spectrum density.

in the battery of the mobile device can be written as Looking into (2), transmit powep,, can be expressed as a
N function ofd,,, andg,, as
E(N):min{nPETZhn,C}. (1) (e% _1) wo2
n=t Pm (dm,s gm) = . 3)

For data offloading, two modes are considered. Hence the energy consumption within the offloading fading

« Fully Offloading Mode: The mobile device offloads allpjock for offloadingd,, data nats is given by
its data to be processed at the BS.

« Partially Offloading Mode: The mobile device offloads ¢ (dm, gm) :pmi(jm’gmh
part of its data to be processed at the BS, and computes B (e wr —1>w02T (4)
the rest of its data locally. - gm ‘

Here we assume that computing time at the BS and theNextwe try to characteriz®:(E(N), M). For this purpose,
downlink transmission time of the computation results at&e denote/,,(d) as follows. Consider that the mobile device
negligible, due to the following reasons. 1) As indicated i$ at the beginning of offloading fading bloeck but has not
[10], [11], the computing capability of the BS is usually hjg measured the channel gajn, yet. For the mobile device to
and thus, the computation time at the BS is small; and afeer tffload d data nats within the remaining offloading fading
BS finishes the computing, the amount of computation resuftiocks (i.e., from the current offloading fading block until
to be sent back to the mobile device is usually of small siye. @ffloading fading block 1), denotd,,(d) as the minimum
In our system, the bottleneck resources are the mobile eflsvicdmount of energy that the mobile device expects to consume. |
energy and uplink transmission capacity, and thus, ourgodg straightforward to see thde(E(N), M) = J;,' (E(N)e),
is to efficiently utilize the two bottleneck resources. Inrouvheree € (0,1) is the efficiency of the amplifier at the
system, the mobile device has multiple rounds of operatiof&nsmitter of the mobile device, ang,'(-) is the inverse
and in each round, the mobile device first harvests energnction of Ju(-). Thus, to characterizé(E(N), M), we
and then offloads its data to the BS. Consider Rojindifter ~should characterizé(-), by following a similar procedure
the mobile device finishes offloading data to the BS, the BS that in [30].
starts to compute the received data, while the mobile deviceVhen the mobile device is at the beginning of offloading
can start Round; + 1) immediately (i.e., the mobile devicefading blockm and has measured the channel gain denote
does not need to wait until the computation results are sédt.(d,g») as the minimum amount of energy that the mobile
back). So the computing at the BS and the mobile devic&lgvice expects to consume for offloadidglata nats within
operations in Roundj + 1) can happen in parallel For the remaining offloading fading blocks (i.e., from the cutre
example, in Roundj + 1)'s EH fading blocks (in which offloading fading block until offloading fading block 1). Tine
the mobile device harvests energy), the BS can compute @ have
data it received in Roung, and then send back computation e
results by using a downlink channel. In other words, the BS'’s Ju(d) = /0 Qar(d, gar) f(9ar)dgna -
computing and computation result feedback do not consume
the system’s bottleneck resources (the mobile device’sggne For energy consumptiof)(d, gar), it contains two por-
and uplink transmission capacity). Thus, the BS’s computinions: the energy used in offloading fading blodk, and
of data received in Roungl and the subsequent computatiohe energy used in subsequent offloading fading blocks (i.e.
result feedback can happen in Roufjd+- 1) or even beyond offloading fading blocksM — 1, M — 2,...,2,1). Denoted’
Round(j + 1). as the offloaded data amount in offloading fading blddk

1) Fully Offloading Mode: In this mode, all available Then the energy used in offloading fading blotk can be
energy is used for offloading. expressed as(d’, gy), and the energy used in subsequent



offloading fading blocks can be expressedJjas_1(d — d’). Thus, Ay (D) can be given as
As Qs (d, gar) is theminimum expectednergy consumption, Ant(D) = n%in EL(D — De, M7) + Jas (De)
E

we have
S.t. 0< Dg<D.

Qum(d, gnr) = Og}li/f%d {e(d, grr) + Jar—a(d = d')} .

(10)

By using (10), Ay(D) can be found off-line via a one-

) ) dimensional exhaustive search. With,(D), Dp(E(N), M)
In the above expression, we need to charactefige (). can be expressed as in (7).

We can follow the same procedure as we trégt(-). This
procedure is repeated until offloading fading block 1. _
To summarize the procedure from offloading fading blocR. Problem Formulation

M until offloading fading block 1, we have When the mobile device stops energy harvesting at the end
oo of EH fading block N, the amount of data nats that can be
Im(d) = /O Qu(d, gm) f(gm)dgm, processed isD;(E(N), M) for i € {f,p}, and the total time
Vm = MM —1,..2.1, ) duration for energy harvesting and offloading is
TN = N7+ MT. (12)
Qm(d: gun) ) , , Here N is called thestopping timewhich is a random variable
02 W2 g {e(d's gm) + Jm—1(d = d)}, with values in{1, 2, ....}. In optimal stopping theoryy is also
= Vm=M,M-1,..,3,2 (6) calledstopping rule
e(d,g1), m=1. At an EH fading block (say EH fading block, after the

energy is harvested in the fading block, the mobile device

It can be seen that the recursive procedure shown nieeds to decide whether to continue energy harvesting or
(5) and (6) is actually a dynamic programming procde stop energy harvesting. If the mobile device decides to
dure [29]-[31]. By using dynamic programming approachestop energy harvesting (i.eY = [), then it processes (i.e.,
Ju(+) can be characterized. And as aforementioned, we havfloads and/or locally computes) its data in the subsequent
D{(E(N), M) = J;/(E(N)e). M offloading fading blocks. If the mobile device decides

2) Partially Offloading Mode:In this mode, the available to continue energy harvesting, it harvests energy in the nex
energy at the mobile device is used for both offloading aridding block and makes a decision again (i.e., to continue or
local computing. Recall that by the end of EH fading blocko stop energy harvesting).
N, the available energy in total for the mobile devic&i&\V) When the stopping rul&/ is applied repeatedly fak times,
given in (1). DenoteDy(E(N), M) as the maximal amount there areK independent and identically distributed stopping
of data nats that can be offloaded and locally computed in ttime moments{N;, No, ..., Nx}. Thus, average processed
M offloading fading blocks at the mobile device with energgata amount in unit time withk’ rounds (each round con-
level E(N). Here subscript ‘p’ stands for partially offloadingtaining one energy harvesting process and one offloading pro
mode. _ _ cess) is given as(szzl Dl-(E(Nk),M)) / (Zszl TN,C,A,I)

To characterizeDy(E(N), M), we try to find out the ¢ ; c rf b1 WhenK goes to infinity, the average processed

minimum energy needed to process (i.e., offload and localiiiz amount in unit time can be written as
compute)D data nats inM offloading fading blocks, denoted

K . y .
asAy (D). We can see that Aim kzzlfl(fliNii’M) = E[ng([fﬁ]\gjm] (12)
—00 k=1 TNy, M ,
—1
Dp(E(N), M) = Ay (E(N)e), () almost surely. Her&[] means expectation. Our research goal

WhereA&l(.) is the inverse function oA (-). is to design the optimal stopping rufé and selectM so as
Now we try to find outA, (D). For the D data nats to maximize the average processed data amount in unit time.

denoteD, and Dg as the amount of data nats to be |Oca")§pecifically, the optimization problem is given as follows.
computed at the mobile device and to be offloaded to the Bs,Problem 1:
respectively. Here subscript ‘L’ and ‘E’ stand for “localha E[D;(E(N), M)]

“external”, respectively. Then we have NEQMI-,I}\?é(I-,MZl E[7n,m] 13)

D = Dy + De. (8) where Q) 2 {N|N > 1,E[ry.u] < oo} is the set of all
stopping rules; € {f, p}, andZ is the set of integers.

To solve Problem 1, we decompose it into two levels.
- Specifically, in the lower-level problem, we find the optimal
kcg D i i i .
EL(DL,T) = & L ) stopping rule for a givenV/ value. Accordingly, the lower

T2 level problem is
wherek is a parameter related to the features of the mobile Problem 2:
device’'s CPU,¢ is the number of required CPU cycles for R E[D;(E(N), M))
i ; 0N ti R(M)= max —————=—.
computing a data nat, arifl is the computation time. NEOy E[ry ]

For the mobile device to locally comput@, data nats, the
consumed energy can be written as [18]

(14)



In the upper-level problem, we try to find the optimal value Finally, we try to prove Condition (iii). Define4,, =
{#zin > Elzint1|lh1=n]}. A monotone problem means that
Aio €A1 C... CA;,. Namely, if there is

of M. Accordingly, the upper-level problem is
Problem 3:

A

MeIIzlgaﬁzl R(M) (15) Zin > E[Zi,n+1|hl~>n]7 (19)
Next, we first solve the lower-level problem (Problem 2) ithen the following inequality always holds:
Section V. Then based on the optimal solution of Problem 2, . > Efzipnyalh ] (20)
we solve the higher-level problem (Problem 3) in Section V. Gl = BZn 42 (1))
For z; ,,, we have
IV. SOLUTION OF THELOWER-LEVEL PROBLEM: .
in =D C,nPrp7(h1 +ho+ ... +hp)}, M
PROBLEM 2 #, (win {C,nPp7(hn +h2 + ... & hn)} )
— Ant+ MT). (21)

To solve Problem 2 optimally, some features of functions

Di(y, m) and Dy(y, m) are characterized first in the followingSubstitute (21) into (19) and (20) respectively, (19) isiequ
lemmas (the proofs are given in Appendix A and Appendient to

B).

Lemma 1:D¢(y, m) is an increasing and concave function

with respect toy.

D; (min{C,B,},M) > E[D; (min{C, Bp+1},M)] — \r,

(22)

Lemma 2:Dy(y,m) is an increasing and concave functior@Nd (20) is equivalent to

with respect toy.

According to the optimal stopping theory [32], solving Prob
lem 2 is equivalent to finding* such thatV;*(\*, M) = 0,
whereV;*(X, M) is defined as

Problem 4:

VXN M) = sup E[D;(E(N),M)— AN, A>0.
NeQum

i (min{C, Bn+1}, M) Z E [Dl (min{C, Bn+2}, M)] — AT

(23)

where B,, = nPgr7(hy + ha + ... + hy,). It is straightforward
to see that

B, < By (24)

Thus, we only need to prove that when (22) holds, (23) also

(16) holds.

To complete this proof, three possible cases need to be

For given )\, to get the optimal solution of Problem 4, th%onsidered as follows.

following lemma can be expected.

Lemma 3:The optimal stopping rule for Problem 4 is the(

myopic stopping rule, i.e., define;,, = D;(E(n),M) —
Ao for i € {f, p}, the optimal stopping time is given as

N (AN M) =min{n : z; , > Elz; nt1]h1-n]} a7

a) C < B, < B,41. In this case B, 2 > B,11 > C, thus

min {C, B,+1} = min{C, B,,+2} = C, which indicates
the holding of (23) naturally.

(b) B, < C < B,41. In this case, the same proof for the

case in (a) also works.

(c) B, < B,+1 < C. In this case, we need to prove that

whereh; ., = {h1, ha, ..., hy, }.
Proof: According to [32], for Problem 4, the myopic rule
is optimal if three conditions can all be met:
(i) We can express; ,, in the form of z; ,, = v, — Ui n.
HereE[sup,, |v;.|] is less than infinity, and the nonneg-
ative component; ,, is nondecreasing almost surely;
(i) lm z; , = 2z  almost surely;
(iii) Problem 4 is a monotone problem.

Firstly, z; , = D;(E(n), M) — Aty mr = Di(E(n), M) —
A(nT + MT), where A\(nT + M7) is nonnegative and non-
decreasing with respect to and E[sup |D;(E(n), M)|] <

E[D;(C, M)] < oo, whereC' is the maximal energy capacity
of the mobile device’s battery. Thus Condition (i) is saédfi
Secondly,z;, = D;(E(n),M) — Arp,p. Whenn —
00, Ty — 00, and E(n) < C < oo, thus we have
limsupz;, — —oo. Due to the fact thafiminfz;,, <

n—00 n—00
limsup z; , = —oo, we have
n— o0
lim z;, = liminf 2; , = limsup z; ,, = —o0. (18)
n—00 | n—00

n—oo

Hence Condition (i) is satisfied.

Dl(Bn, M) > E[Dl(mln{C, Bn+77PEThn+1}, M)] — AT

(25)
can lead to
Di(Bn+17 M) ZE[Dl (mm(C, Bn+1 + T]PETthrQ), M)]
— AT. (26)
This can be proved by showing that
E[D;(min{C, x + nPg7h, }, M)] — D;(z, M)
z/Di(min{C,x + nPgTh}, M) f(h)dh
- / D, M) f(h)dh (27)

is a decreasing function with respecttowhenxz < C,
which is equivalent to showing that

Di(min{C,x—i-nPETh},M)—Di(:v,M) (28)

is a decreasing function with respect:to

We considerr; < x4 < C:

e When zo + nPgth < C: Define the first-order
derivative function ofD; (x, M) with x asG;(z, M).



SinceD;(z, M) is an increasing and concave function To this end, how to find the optimal stopping rulé for
according to Lemma 1 and Lemma@;(x, M) is a Problem 2 has been presented. As a summary, the compu-
decreasing function with respectto Hence we have tational complexity to solve Problem 2 is composed of the
following three components: 1) Bisection search)df such
Gilwr + A8, M) 2 Gi(wz + A, M), A €[0,nPeTh] o0 VN, M) = 0 for i € {f,p}; 2) The calculation
(29) of Algorithm 1 for every\. 3) The evaluation of function
z1+nPpTh D,(E(N),M) for i € {f,p} in expression ofz;, when
:>/ Gi(z, M)dx running Algorithm 1.
o « For the computational complexity dP;(E(N), M) for

> /wﬁnpmh Gy(x, M)da (30) i € {f,p}, we use dynamic programming, whose com-
T S ’ putational complexity is in the order @b(e™).

= D;(x1 +nPg7h, M) — D;(x1, M) o For the computational complexity of Algorithm 1, we
> D;(zs + nPprh, M) — Dy(z2, M), (31) have@ Monte Carlo simulation runs. In each simulation

_ o run, the complexity is proportional to the number rof
which proves that the expression in (28) decreases yalues searched. However, it is hard to predict when

with respect taz. to stop searching (i.e., whes,, > E[zi,n11]h1n))
« When zy + nPgrh > C: We have Di(xzs + since the channel gain,, hs,...,h, are all random.
nPgTh, M) > D;(C, M). Combining (31), we have Even with the distribution function ok, ks, ..., h,,, the
D;(z1 + nPgrh, M) — Di(z1, M) distribution of stopping time is also hard to characterize

since we have no closed-form expressiop{x, M) for

>Di(C, M) = Di(x2, M), (32) i€ {f,p} (D;(x, M) is a component ir; ,, expression).
which proves that the expression in (28) decreases Therefore, it is hard to give an analytical expression for
with respect tar. the complexity of Algorithm 1. In Section VI, we plot the
Therefore, the inequality (26) is proved. average stopping time versus the mean of channel gain in
To this end, we can state that (23) holds, which indicates tha Fig. 10. This figure would be helpful for evaluating the
Problem 4 is monotone. complexity of Algorithm 1.
This completes the proof. - « For the bisection search of*, suppose\* is searched

Lemma 3 offers the following insight. To find out the  DetweenAni, and Amax, and the error tolerance of*
optimal stopping rule that achieves the maximal utility of is 0. Then the computational complexity of the bisection
Problem 4 for a given\, the mobile device only needs to do search isO(log (@))
an easy on-line computing. At every EH fading block, say EH Note that the above three computation components can
fading blockn, the mobile device should compatg,, with all be done off-line. In a real application, to achieve the
E [2imt1|h1sn]. If 2, is larger, then the mobile device stopgnaximal utility of Problem 2 for a gived/, the mobile device
energy harvesting and starts data offloading; otherwise, #®nly needs to do a simple on-line computing enlightened by
mobile device proceeds to the next fading block and repe&gmma 3. Specifically, with* calculated off-line, at every EH
the procedure again. fading block, say EH fading block, the mobile device stops

To find the optimal solution of Problem 2, i.e., to find the  when z;,, > E[z; ,41]h1-,,] and proceeds to the next EH
such thatV;*(\*, M) = 0, a bisection search method can bé&ding block otherwise. In other words, a simple comparison
utilized. In the bisection search, we need to know the valuissneeded for each EH fading block. The online computation
of V;*(\, M) for some particulan\ values. This can be donecomplexity isO(1).

off-line by using Monte Carlo method with the help of Lemmav S U L P - P
3. 2 ahoa in Algaritm 1. . SOLUTION OF THEUPPERLEVEL PROBLEM: PROBLEM

3
Algorithm 1 Calculation ofV;*(\, M) for a given\ value. For Problem 3, we have some analytical results as follows

1: Suppose the number of Monte Carlo simulation run@is (Proofs are given in Appendix C, Appendix D, and Appendix
and setg = 1. E

2: while ¢ < Q do Lemma 4:With d fixed, J,,,(d) is monotonically decreasing
3 Setn = 1. Randomly generaté,, according to the With . _ _ _ _ _
distribution f(h). EvaluateE [z; +1|/1—sn). _Lemma 5:With d fixed, A,,,(d) is monotonically decreasing
: while Zin < E [Zi,n+1|hl~>n] do with m. . . . . .
5 Randomly generaté,,,; according to the distribu- Lemma 6:With the stopping timeV fixed, both the function
tion f(h) E[D;(E(N), M)] and the functiofiE[7x, /] are monotonically
6 n=n+ 1 increasing functions with\/ for ¢ € {f, p}.
' Record the bresenti According to Lemma 6, both the numerator and the de-
7 g=q+1 " nominator of Problem 1’s objective function are monotohyca

glcreasing with)M . Hence it is hard to say whether the optimal
solution of Problem 3 is finite or infinite. The following lenam
addresses this issue.

8 V*(\, M) is evaluated as the statistical mean of all th
recordedz; ,,.




Lemma 7:The optimal solution of Problem 3 is finite. ~ function Ex |,(d, g) can be derived as follows. Sgfg) to be
Proof: To prove this claim, it is sufficient to show thatthe Lagrange multiplier associated with the constrainaf39
the optimal solution of\/ does not happen &t/ = oo, which then the optimal solution of the convex optimization prable

will hold if shown in (39) should satisfy the following equalit
. E[D;(E(N),M)] (39) fy g equality
A}lm ﬂ =0 (33) 2 i
— TN,M a2 _
2w T2 gy, dz. = Xg),vym € {1,2,..., M} (40)

for any given stopping timeV. With stopping timeN given,
it can be seen thdk [ty /] increases with\/ linearly. Thus which indicates
to prove the claim in this lemma, we only need to show

that E [D;(F(n), M)] grows with M sublinearly asM goes dm = VA (9) %’Vm €{1,2,...,M}. (41)
to infinity by L'Hospital’s rule, which is equivalent to the 7
following condition Then substituting the expression &f, for m € {1,2, ..., M}
Di(E(n), M) in (41) into constraint (39a), we can derive a closed-form
Jim =0 (34) expression of\(g), which is given as

for i € {f,p}. 2

Define notationg = (gar, gai—1,...g1)" with ()7 repre- o d 42
senting transpose operation, and denfdig) as the joint prob- Mg) = 2272 M (42)
ability density function (PDF) 0§, i.e., f(g) = [T, f(gm). > Vom

m=1

For: = f, define

o Then substituting the\(g) expression in (41), we have

Ef(d7 g) £ min Z e(dmagm) d
| me(L2,. M)} iy d,, = M\/gm Vm e {1,2, ... M}, (43)
s.t. S dm = d, > VIm
m=1 m=1
dm > 0,Ym € {1,2,..., M}. _
(35) HenceE: 1(d, g) can be written as
Also define Ex(d) £ [ Fi(d,g)f(g)dg. It can be seen that M ) P
Ef(d) is calculated by_ as_suming that, go, o, g0 are known Eiw(d,g) = Z 02 ! V9m ; (42)
in advance at the beginning of the data offloading phase. From o= 6w M
(5), it can be seen thaf,/(d) is calculated by assuming that m; vV Im

only channel gain information of the current offloading fagli

block is known. Thus, it is apparent that we have which indicates that

A
JI\I (d) > Ef(d) (36) Ef, b (d) = fEf, |b(d7 g)f(]%)dg
Then by following the similar proof method in Lemma 6, it - m; vV gm
can be inferred that =d 6w272/ " 5.f(9)dg )
Dt(E(n), M) = J;; (E(n)e) < E ' (E(n)e) (37) (mZ_l v 9’”) ,
Iy _
where E;*(-) is the inverse function ofz(-). o3 g /
For the functiore(d,,, g,,) in (35), it can be derived that BT T; Vom | f(9)dg.
2
e(dm, gm) > 62072@"’ (38) Therefore, the inverse function & |,(d) can be given as
W T=gm,
—1
because the , first order derivative of E¢ p(E(n)e) N
e(dm, gm) — Gw;’Tqmdfn with respect tod,, is larger 3
than zero. Defindz; p(d
i, 1b(d,g) as | Boyesurs? )
By b(d, g) 2 i L o g G T
,g) = min e —dn,
" 1614 g {dm |mE{1,2,...,M}} o=y OW7T79m / > Vim | flg)dg
M m=1 (46)
s.t. 3 dy =d, (39a) 3
m=1 n)ebw?r?
dy > 0,¥m € {1,2,..., M} (39b) | 2 / ; 1f( )
25— f(9)dg
in which subscript ‘Ib’ stands for “lower bound”. From (38), thu
we know thatEx ,(d, g) is a lower bound off(d, g). _ (M%) s

It can be checked thak; r(d, g) is the optimal objective
function of the convex optimization problem shown in (39where h, is the upper bound of the channel gajp since
By resorting to the KKT condition [33], the optimal objeaiv f(g,,) = 0 for g,,, > hu.



SinceFE: 1p(d, g) is a lower bound of the objective functionof 47.7m with a carrier frequency 500MHz in free space. To
of (35), we have save the computation complexity, the number of fading kdock
for data offloadingl/ would be searched between the interval

Ei(d.g) = Ein(d. 9), (47) [0, 30]. For the ease of presentation, the average processed data
and thereafter amount in unit time, i.e., the objective function of Problém
Ei(d) > Ex 1p(d), (48) would be written as “Average processing rate” in this sectio

which can lead to

E'(E(n)e) < Ef p(E(n)e) (49) ‘ ‘
1800 %mz»]o
by following the proof method in Lemma 6. 1600 | —©—m=20
Combining (37), (49), and (46), we have —+—m=30
1400
. Dy(EMn),M . E{p(B(n)e)
]\f}gnoo s (4) b < Mh—I>noo S L g
. n)ebw?r2hy\ 3 50 = ,
g ()t O
_ O o 800
Fori = p, define oo
400
Ep(dv g) é
M 200
min e(dpm, gm) + EL(dL, MT ‘ | | ‘
{dm|me{1,2,....M}} m%l ( gm) L ) 51 (<0 2 4 6 8
/ -10
st Z d,, +d. :d, ( ) Energy y (J) %10
m=1
dm 2 0,Ym € {1,2, ..., M}, Fig. 3: Verification of Lemma 1.
d. > 0.
Here d. means the amount of data nats that are locally
calculated at the mobile device. Note that in the objective
function shown in (51), the functio® (d., M) is a mono- L
mial function ofd. with order 3, as shown in (9). Then by 5000
following the similar procedure for the discussion whea f, 4500
it can be also derived that 4000 f
Dy(E M I
fim 2B M) _ (52) e
M—ro0 M & 3000
This completes the proof. | E 2500
Remark: Lemma 7 offers the following insight. For any o sono |
stopping ruleN, the solutionM = oo cannot be optimal for & m=10
Problem 3. In other words, we can perform one-dimensional 1500 ¢ —O—m=20
search ofM in finite steps to get the optimal/. Suppose 1000 —+—m=30
the optimal M is searched between 1 ard,, ... Then the 500 |
computational complexity of solving Problem 3G M.y ). ‘ | | |
2 4 6 8
VI. NUMERICAL RESULTS Enerayy () <10

Similar to [10], [18], we use the following system param- _ o
eters: the number of CPU cycles for computing one data Fig. 4: Verification of Lemma 2.
nat ¢ = 40, the fixed coefficient characterizing the mobile
device's CPUL = 10728, the length of one fading block Fig. 3 and Fig. 4 plot the function ds(y, m) andDy(y, m)
T = 1ms, the energy conversion efficiency of the energyersusy for m = 10, m = 20 andm = 30, respectively. It
harvestemn = 0.3, the maximal energy capacity of the energgan be seen that both the functiéh(y, m) and Dp(y, m) are
harvester's battery> = 20J, the bandwidth of one channelincreasing and concave function withfor given m. These

w = 1MHz, the noise power spectrum density = —140 results verify the claims that are given in Lemma 1 and Lemma
dBmW/Hz, the transmit powePr = 0.5 W, the efficiency of 2.
the amplifier at the transmitter of the mobile device= 1. Fig. 5 and Fig. 6 plot the function af,,(d) and A,,(d)

The channel between the BS and the mobile device experérsusm whend = 80 nat,d = 800 nat, andd = 1600
ences Rayleigh fading. Thus, channel gain is exponentiafiat, respectively. It can be observed thatasncreases, both
distributed. The mean of channel gain, denoteddas set function J,,(d) and functionA,,(d) go down. These results
as 107, which corresponds to the attenuation at a distanwerify the claims in Lemma 4 and Lemma 5.
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Fig. 5: Verification of Lemma 4.
Fig. 7: Comparison with the threshold policy under fully

offloading mode.

5
% e} : : o : : ©
10710 ¢ 1 | —4A— Threshold method, Partially offloading | |
1.6 —©O©— Proposed method, Partially offloading
N
@ 14
S gy
£ 2
< ©
10712 g —H&— d=80 nat 212f
—O6— d=800 nat 2
—A—d=1600 nat §
& 1f
[
o)
©
o
1014 ¢ Z 08
. ]
5 10 15 20 25 30
m 0.6

2 4 6 8 10 12 14 16 h
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Fig. 8: Comparison with the threshold policy under pariall
In Fig. 7 and Fig. 8, our proposed method is compared witiffloading mode.
a threshold strategy, which compares the total harvestedgn
>, _, Penhy, 7 with a fixed-value threshold and will stop at
the nth fading block if Y, _, Pgnh, 7 is larger than the the first method, the harvested energy will be fully utilizsd
selected threshold. Various threshold values are listeéidn local (i.e., offloading is not performed). This method isleal
7 and Fig. 8. The results show that our method outperforms thé&cal computing” here. For the second method, one round
threshold policy, which verifies the advantage of our preposof charging and fully offloading is performed in every fading
method. block, which means that in a fading block, the mobile device
In Fig. 9, the average processing rate versus transmit poviest harvests energy and then offloads data for computinig. Th
Pg of the BS is investigated under fully offloading mode anchethod is called “One round in one block” here. To maximize
partially offloading mode. It can be observed that the optimthe processing rate under the setup of the second method in
solution under partially offloading mode always outperfern{17], the optimal charging time is found to Be From Fig. 9,
the one under fully offloading mode. This can be explainetdcan be observed that as the transmit powgrincreases, the
by the fact that the fully offloading mode is only a feasibl@average processing rate grows in all methods. This is becaus
solution of partially offloading mode, which will be no bettethe increase ofPg contributes to higher harvested energy
than the optimal solution under partially offloading mode faand higher throughput for data offloading in unit time. In
sure. As a comparison, two methods in [17] are realized. Faddition, both partially offloading mode and fully offloadin
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from radio frequency signals of a BS and then offloads the
data to be processed to the BS. The whole process may span
over multiple fading blocks. For data offloading, both the
fully offloading and partially offloading are considered.eTh
expected data processing rate is maximized. To achieve the
goal, both the stopping rule for energy harvesting and the
number of fading blocks for offloading are optimized. To solv

10°F ] the associated optimization problem, we decompose it wo t
levels. In the lower level, with the number of fading blocks f
—A— Partially offloading offloading fixed, the optimal stoping rule for energy harirest
ifsglocfg?namgg is derived._ In.the upper Ievell, the number of fad!ng blocks
103 4 One round in one block | 1 for offloading is optimized. This research can provide hdlpf

Average processing rate (nat/s)

insights for the implementation of wireless-powered mebil

)/E/EW] devices in loT networks.
o X In our research, when the partially offloading mode is used,

102 ‘ ‘ ‘ | ‘ ‘ ‘ ‘ the mobile device’s local computing is performed only in
02 04 06 08 1 12 14 16 18 offloading fading blocks (i.e., after energy harvestingoass
is finished and the available energy amount is known). Based
on (9), it can be seen that the energy used for local computing
Fig. 9: Average processing rate versis. is reduced if the local computing time duration increases.
Thus, the system performance can be further improved if the

) mobile device can also perform its local computing in EH
mode outperform the local computing method and one rouﬂijding blocks. Then at each EH fading block, the mobile

in one block method, which demonstrates the advantage of YeVice needs to decide how much energy is used in the current

proposed method. fading block for local computing and how much energy is
reserved for future use (i.e., for offloading and local cotimu

& ‘ ‘ ‘ [ during the offloading fading blocks). As the mobile device
—10% N . . .
v A=10°,Fully offioading does not know energy arrival rates in subsequent EH fading
5— \=107,Fully offloading I . . .
508 —6— 3105 Partially offioading | | blocks, it is challenging for the mobile device to make an
—%— \=102 Partially offloading optimal decision, which deserves further research efforts

N
o
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APPENDIXA
PROOF OFLEMMA 1

Average number of n
w
o

N
(=]

oO%

First, we prove that/,,(d) is an increasing function by
induction method. It can be easily checked thiatd) and
? Q1 (d,z) are increasing function with respect b Suppose
f both J,,,—1(d) and Q,,—1(d,x) are increasing with respect
to d. Denoted, (d,z) as the optimal solution ofl’ in the
minimization problem in (6) when there are fading blocks

. o _left andd data nats to be transmitted for data offloading, and
Fig. 10: Average stopping time versus mean channel gain, = — ;. Consider two values of: d > d*.

* (Tt 1
In Fig. 10, the average number of EH fading blocks (at When0 < d7, (d', z) < d¥, we have
stopping) is plotted versus the mean of channel gain under

N
o

0 I I I |
10 10" 10 107 102 107"
Mean of channel gain

both partially offloading mode and fully offloading mode with Qm(d', ) = e(d}, (d",2),2) + Jp_1 (dF — d;, (dT,z))
different A values. It can be seen that Algorithm 1 usually > e(dy (dN,z),2) + Jpo1 (d* — di, (dT, z))
stops within 50 steps. It can be also seen that as the mean > e(ds, (d*, @), m) + Joo1 (dF — di, (d, )
of channel gain increases, the average number of EH fading = Qm(dt, 1)

blocks (at stopping) trends to decrease. This is becausiea be (53)

channel leads to a higher energy arrival rate, which permi¢éhend’ < d;,(d,z) < df, we have

the mobile device to collect enough energy earlier.

Qm(d*, z) =e(d:, (d* x),2) + Jm_1 (d* — dZ,(d*, )

VII. CONCLUSION <e(dh2)t s (di - dg) )
In this paper, we investigate a wireless-powered MEC = e(dt, z).

system, in which a target mobile device first harvests energy (54)



Then according to (54), we have

Qm(dl,z) =e(d;,(d",2),2) + Jp—1 (dF — d;,(dT, z))

> e(dy,(d', ), )
+Jm-1 (dfn(dT, x) — dfn(dT,:c))
= e(dfn(dT,x),x)

12

in which the last inequality comes from (58). Thus, the
increasing monotonicity of\,,,(D) with D has been proved.
For the convexity, consider two different values and «*.
Define DL and D{ as the optimal solutions of the Problem in
(10) whenD = z' and D = x*, respectively. Foka € [0, 1],
denoteD¢ as the optimal solution of the Problem in (10) when

> e(d*, x) o e opt
> Qum(dt, z). D = az' + (1 — a)z*. Then we have
(55) ol (zh) 4+ (1 — ) A (2F)
Thus, it can be concluded thap,,(d,z) is an increasing — of («f — DL, mr) + (1 — a)EL(at — DE, mr)

function with respect tal. Based on (5),/,,(d) is also an

increasing function with respect th

Finally, we look into Ds(y,m). Since Dt(y, m) =

e), we have

dJ, "' (y-e)
d(ye)
£

T (I (y€))
g

= 7., (Di(ym))
>0

Di(y, m)

+OéJm(D|TE) + (1 — Q)Jm(DE)

—
Q
=

*1(y- Y oR ((axT-l—(l—Oé)CCi) _ (aDE—l—(l—a)Dé) ,mT)
+J ((aDsz +(1- Q)Dé))
2 B ((aa" +(1- a)at) — DE,m7) + I (D)

v

A (axt + (1 — a)at)

where (a) holds since both the functioR (-) and the
function J,,,(-) are convex, and (b) is due to the fact that

(56)

where Di(y,m) and J,,(-) are the first-order derivative of aD,TEJr (1- a)Dé) is a feasible solution of the Problem
Di(y, m) (with respect tay) and J,,(-), respectively, and the j, (10) when D = (az’ + (1 — a)at) and will have no

inequality holds since the functiod,,(-) is increasing and petter performance compared wifhg (recalling thatDg is
thus its derivative is always positive. ThuBs(y,m) is an ihe optimal solution of the Problem in (10) wheR —

increasing function of.

azt + (1 — a)zh).

In addition, sinceJ,,,(-) is a convex function (which can This completes the proof.

be proved by using an induction method, with the aid of [34,
Theorem 5.4]),7/.(-) is an increasing function. Recalling that
it can be derived thaD;(y, m) is

a decreasing function of, which proves the concavity of

Di(y,m) = gmimy
Dx(y, m) with y.
This completes the proof.
APPENDIX B
PROOF OFLEMMA 2

By following the proof method in Lemma 1, to prove the
increasing monotonicity and concavity &f,(y, m), we only
need to prove thad,,(z) is increasing and convex with.

For the increasing monotonicity, looking into the Problem
in (10). SupposeD’ < D*. Assume the optimal solution of
the Problem in (10) whe® = Dt and D = D! are D{ and

Dé, respectively. Wher) < Dé < D%, we have
Am(DT) = EL(D' = DL, m7) + J (DY)
< EL(D' — DE,mr) 4 J(DE)
< EL(D* — DE,mr) + Jo (DY)

= A (DH).
When D < DE < D*, we have
Am(DT) = EL(D' = DL, m7) + J (DY)
< EL(Df — DY, m7) + J,,(DT)
= J (D),
and
A (DY) = EL(D* — DE,m7) + Ju (DY)
> E (DL — DE, m7) + J,,(DE)
= Jm(Dé)
> Jn (DY)
> A, (DY)

APPENDIXC
PROOF OFLEMMA 4

Recalling thatd}, (d, z) is the optimal solution ofl’ in the
minimization problem in (6) when there are fading blocks
left and d data nats to be transmitted for data offloading, and
gm = x. There is

Qm(d, x)
= e(d:n(dv 'r)v 'r) + fooo mel (d - d;kn (da I)a II) f(:Z?I)dZC/
S 6(0, :E) + J"OOO Qm—l(d - 01 xl)f(xl)dxl
= Jmfl(d)a
(60)
in which z represents a value gf,,, andz’ represents a value
of g,,—1. Hence we have

Jm(d) = fOOO Qm(dv x)f(:z:)d:z:
< 1 o () () (61)
= m—l(d)a

(57) " in which z represents a value @f,,.
This completes the proof.
APPENDIXD
PROOF OFLEMMA 5

Supposeig(d, m) is the optimal solution of the Problem in
(58) (10) when the amount of data to be processed imts (i.e.,
D = d) and there aren fading blocks left for data offloading
(i.e., M = m). Form! < m*, we have

Ani(d) = EL(d — d&(d,m?), mir) + J,; (de(d, m"))
@ EL(d — di(d, mb), mi7) + J,s (dE(d, m"))

(59) D BL(d = d(d,mt), mir) + Jpe (de(d, m?)
=A,:(d)
(62)



where (a) comes from Lemma 4 an¢b) is due to the fact [13]
that bothdg(d, m") anddg(d, m*) lie in the intervall0, d] and
no solution lying in[0, d] can achieve better performance than
dt(d, m*) in the Problem in (10) with\/ = m* andD =d. [14]
This completes the proof.
APPENDIXE
PROOF OFLEMMA 6

[15]

It is evident that functior[7, /] is monotonic increasing [16]
with M for given N.

Next the monotonicity of functiorE[Ds(E(N), M)] with
M is proved. Supposen’ < m?, for N = n, defined’ =
Di(E(n),m") andd* = D¢(E(n), m*). Then we have

eE(n) = Jpi(d") = Je (db).

[17]

[18]
(63)

Combining the fact that/,,:(d) > J,,:(d) according to (19]
Lemma 4, it can be inferred that

[20]

d < d*. (64)

Thus, form! < m*, D¢(E(n),m") < D¢(E(n),m*), which
further indicates thall[Dt(E(n), m")] < E[Ds(E(n), m*)].
At last, by combing the result in Lemma 5 and followingzy)
the proof for the monotonicity of functioft[D;(E(N), M)]
with M, the monotonicity of functio£[Dy(E(N), M )] with
M can be proved.
This completes the proof.

[21]

[23]

[24]
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