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Abstract—To support wireless Internet of things (IoT) devices,
this paper presents a new solution which combines wireless
power transfer and mobile edge computing. Specifically, we
consider one mobile device, which first harvests energy from
radio frequency signals sent by a base station and then offloads
all or part of its data to be processed to the base station. The
process of energy harvesting and offloading span over multiple
fading blocks. The target is to maximize the average amount of
processed data in unit time. To achieve this target, we optimize
the stopping rule for energy harvesting (i.e., when to stop energy
harvesting and start offloading) and the number of fading blocks
for data offloading. To solve the formulated problem optimally,
we decompose it into two levels. In the lower level, the stopping
rule for energy harvesting is optimized given a fixed number of
fading blocks for offloading. The associated lower-level problem
is solved optimally based on a series of special properties of
the problem. In the upper level, the number of fading blocks
for offloading is optimized. Efficiency of our work with fully
offloading mode and partially offloading mode is shown by using
simulation.

Index Terms—Mobile edge computing (MEC), wireless power
transfer, multiple fading blocks, optimal stopping.

I. I NTRODUCTION

The Internet of things (IoT) is a network of connected
devices, which includes traditional Internet-connected devices,
such as desktops, laptops, etc., as well as other devices
that are not traditionally connected to the Internet, such as
wireless sensors, automobiles, home appliances, etc. [1]–[4].
The connectivity among many categorizes of devices makes
it easy to collect data from devices at distance and to control
devices remotely, which enables people to interact with nearly
every device anywhere. The functionality of IoT can facilitate
the daily life of people, extend the reach of people in harsh
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environments, lower cost and enhance productivity in industry,
etc. Thus, IoT has experienced rapid growth in recent years
[5].

With the popularity of IoT, mobile devices need to process
data (referred to as computation tasks) collected from other
devices or from the environments. It may be difficult to locally
compute the computation tasks at some mobile devices, e.g.,
devices with limited computation capacity and/or limited en-
ergy supply [6], [7]. To help the mobile devices to complete the
computation tasks, mobile edge computing (MEC) can serve
as a promising solution. In an MEC system, computation tasks
of a mobile device with limited computation capability can be
sent to a nearby base station (BS) with strong computation
capability, and then the BS completes the computation tasks,
and tells the mobile device the computation results [8]–[13].

On the other hand, it may also be hard for a mobile device in
an IoT network to get stable energy supply. Thus, motivated
by the idea of wireless power transfer (in which a receiver
can harvest energy from radio frequency signals transmitted
by a transmitter [14]), wireless-powered MEC is proposed
and investigated in the literature [15]–[17]. In the system, a
mobile device first harvests energy from the radio frequency
signals sent by a nearby BS and then offloads all or part of
its data to the BS for computing. The BS then sends back the
computation results to the mobile device.

There are two open questions for wireless-powered MEC.
1) Most of the existing works [18]–[20] for data offloading in
MEC assume that the whole data offloading process can be
completed within a single fading block, and thus, during the
whole data offloading process, the wireless channel gain does
not change. However, the length of one fading block can be
only at the scale of 2ms [21], while the maximal allowable de-
lay of some applications, such as wearable devices, industrial
Internet, smart farming, etc., can be at the scale of dozens of
milliseconds or even longer [1], [5], [22]. Thus, it may needa
number of fading blocks to complete the data offloading. For
this case, existing offloading schemes that assume offloading
over a single fading block do not work anymore, because it
is difficult for a mobile device to predict the channel gains of
forthcoming fading blocks for offloading. 2) In a wireless-
powered MEC system, the energy harvesting and the data
offloading processes alternate in time. A mobile device first
harvests some energy, and then it stops harvesting energy and
starts data offloading. It is unclear when it is optimal to stop
the energy harvesting process and start the data offloading.
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In this paper, we will focus on the above two open ques-
tions. Specifically, we consider one target mobile device in
a multiple-user system. The mobile device is first wireless
powered by a BS, and then offloads all or part of its compu-
tation tasks to the BS for computing. The energy harvesting
process and the data offloading process span over multiple
fading blocks. We target maximal data processing rate. To
achieve this, we find out the optimal moment when the energy
harvesting process should be stopped and the optimal number
of fading blocks that the data offloading process should
occupy.

The main contributions of our work are as follows.

• The formulated problem involves the optimization of
a stopping rule and the number of fading blocks for
data offloading. This problem is hard to solve. To find
the solution of the formulated problem, we decompose
the problem into two levels. In the lower level, the
optimal stopping rule for energy harvesting is found for
a given number of fading blocks in data offloading. In
the upper level, the optimal number of fading blocks in
data offloading is found.

• In the lower-level optimization problem, we find some
interesting properties of the problem. Based on these
properties and after some math manipulations, the op-
timal strategy is derived.

• In the upper level, we theoretically prove that the optimal
number of fading blocks in data offloading should not be
infinite. Based on this, the optimal number is found by a
one-dimensional search.

The rest of this paper is organized as follows. In Section II,
related literature is surveyed. Section III introduces thedata of-
floading system over multiple fading blocks and formulates an
optimization problem. Section IV and Section V discuss how
to solve the lower-level problem and the upper-level problem,
respectively. Numerical results are discussed in Section VI,
and the conclusion is given in Section VII.

II. RELATED WORKS

The idea of powering IoT by MEC has been investigated in
the literature [23], [24]. In [23], edge computing is proposed
to assist IoT devices to run deep learning applications, such
as feature extraction from voice or image. In [24], edge
computing is utilized to perform channel assignment via deep
learning methods so as to improve transmission quality in
IoT delivery networks. Resource allocation for MEC IoT
networks is investigated in [25]–[27]. In [25], network power
consumption is minimized with a consideration of IoT devices’
traffic and mobility. In [26], energy consumption of multiple
IoT devices is minimized via adjusting the bandwidth allocated
to every IoT device. In [27], the number of activated edge
computing BSs is minimized with a consideration of multiple
IoT devices’ spacial distribution and mobility. In [28], a
scalable deployment solution is given for a massive number
of IoT devices in 6G wireless networks by using a machine
learning approach.

The works mentioned above study MEC powered IoT
networks from the network layer. Wireless fading is not con-

sidered. In the following, we survey works on MEC powered
IoT networks over wireless fading channels.

It is considered in [18] that a computation task of a mobile
device can be computed jointly by the mobile device and a BS.
The ratio of data for offloading and the wireless transmission
power level are optimized. In [19], it is assumed that the CPU
state of an edge-computing BS switches between “busy” and
“idle” and the BS’s CPU-idling profile (i.e., the time windows
when the BS’s CPU is idle in the future) is known. The most
energy-saving strategy is designed by optimizing the offloaded
data amount. The authors in [20] investigate the case when
both the mobile device and the BS are equipped with multiple
antennas.

It is assumed in [18]–[20] that the whole data offloading
process can be completed within a single fading block, and
thus, during the whole data offloading process, the wireless
channel gain does not change. Considering that the tolerable
delay in many IoT applications [1], [5], [22] is much larger
than a fading block duration (which is at scale of 2 ms [21]),
data offloading should experience varying wireless channel
gains over multiple fading blocks, and thus, the methods in
[18]–[20] do not work anymore.

The work in [29] considers that data offloading occurs
within a number of fading blocks. A mobile device either
performs all the computation itself, or offloads all its datato
a BS, whichever consumes less energy of the mobile device.
If offloading happens, the most energy efficient strategy is
designed by optimally distributing data over multiple fading
blocks, based on a two-state channel modeling. The work in
[30] also investigates the case when data offloading occurs
within a number of fading blocks, by using a general channel
modeling.

The aforementioned works consider that the mobile devices
have constant power supply. To the best of our knowledge, the
works in [16], [17] are the only technical research efforts in the
literature that investigate wireless-powered MEC. The work
in [16] considers data offloading over a single fading block,
with a BS, a near mobile device, and a far mobile device.
The two mobile devices first harvest energy from the BS, and
then offload their data to the BS. The near mobile device
sends its data to the BS, and also provides relaying service
for the far mobile device’s data offloading. The work in [17]
considers offloading of a mobile device to a BS over a number
of fading blocks, referred to asoffloading fading blockshere.
At the beginning of the offloading process, the mobile device
is assumed to know the channel state information (CSI) of
all future offloading fading blocks. Two working modes are
considered: fully offloading and fully local computing. For
fully offloading mode, in every fading block, the mobile device
first gets charged by RF signals from the BS, and then offloads
its data to the BS. The fraction of time for energy harvesting
in every fading block and the amount of data to be offloaded
in every fading block are optimized so as to maximize the total
amount of saved energy. For fully local computing mode, an
energy-efficient strategy is designed, which decides the amount
of data for processing in each fading block.

In this paper, we investigate the problem of wireless-
powered MEC over multiple fading blocks. The major differ-
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TABLE I: Notations used

Symbols Description
c0 number of required CPU cycles for computing a data nat
C energy capacity of the battery
DE amount of offloaded data nats in partial offloading
DL amount of locally computed data nats in partial offloading
Df (y,M) the maximal amount of data nats that can be processed in

theM offloading fading blocks at the mobile device
with energy levely in fully offloading mode

Dp(y,M) the maximal amount of data nats that can be processed in
theM offloading fading blocks at the mobile device
with energy levely in partial offloading mode

e(d, g) the energy consumption within the fading block with
channel gain beingg for offloadingd nats

E(N) the total available energy in the battery of mobile device
by the end of EH fading blockN

f(x) channel gain distribution between BS and mobile device
gn the channel gain from mobile device to BS in

offloading fading blockn
g (gM , gM−1, ..., g1)

T

hn the channel gain from BS to mobile device in EH
fading blockn

h1→n {h1, h2, ..., hn}
I the set of integers
Jm(d) minimum energy amount that the mobile device expects

to consume for offloadingd data nats when the device
is at the beginning of offloading fading blockm but
has not measured the channel gaingm yet

k parameter related to mobile device’s CPU features
M the number of fading blocks for data offloading
N the number of fading blocks for EH
PE transmit power of BS
η energy conversion efficiency
ΛM (D) the minimum energy needed to processD data nats inM

offloading fading blocks under partially offloading mode
σ2 noise power spectrum density
τ length of one fading block
τN,M the total time duration forN EH fading blocks and

M offloading fading blocks

ence between our work and [17] lies in the system assumption.
The work in [17] assumes that the mobile device knows CSI of
future fading blocks in the data offloading process. We assume
that the mobile device knows only CSI of its current fading
block, while the CSI of future fading blocks is assumed to be
unknown.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, system model will be introduced, includ-
ing the model for energy harvesting, computing and data
offloading. Then our optimization problem will be formulated.
Important notations used in this work are given in Table I.

A. System Model

Consider an MEC system, in which there are one BS and
multiple mobile devices. Every mobile device always has data
(i.e., computation tasks) to process, and is allocated withone
channel which has a bandwidth ofw. On each channel, the
associated mobile device is charged by the BS via wireless
power transfer (WPT) technique, and then offloads all or part
of its data to the BS for computing, in order to save its energy
consumption. After the BS finishes computing the offloaded
data, it tells the mobile device the computation results. When

the mobile device offloads part of its data, it performs local
computing for the rest of its data. In this research, we consider
only a target channel and the associated mobile device, as the
derived solution for the associated mobile device can also be
applied by other mobile devices. Fig. 1 shows the BS and the
mobile device on the target channel.

The wireless charging (i.e., energy harvesting) and data
offloading alternate in time. In one round of energy harvesting
and data offloading, the mobile device first harvests energy
from zero to some level, and then stops harvesting energy and
uses up all the available energy to offload data and/or execute
local computing. This charging-offloading process is repeated
round by round. In this research, we investigate the optimal
performance that can be achieved in a round.

Base 

station 

(BS)

Target

mobile 

device

Wireless power 

transfer

Data offloading

Fig. 1: Illustration of our system with a BS and the target
mobile device.

τ

Energy harvesting

...

τ

Data offloading

EH fading 

block 1

EH fading 

block N

Offloading 

fading block M

Offloading 

fading block 1

Totally N EH fading blocks Totally M offloading fading blocks

Fig. 2: One round of energy harvesting and data offloading
processes.

In the system, the channel gain between the BS and the
mobile device is block-faded, i.e., the channel gain keeps
stable in one fading block and changes randomly from fading
block to fading block. The duration of each fading block is
τ . The channel gain of the fading blocks are independent
and identically distributed, which is subject to the distribu-
tion function f(x) and upper bounded byhu, i.e., we have
f(x) = 0 for x ≥ hu. Both energy harvesting and data
offloading may span over multiple fading blocks.

In one round of energy harvesting and data offloading,
denoteN andM as the number of fading blocks in energy
harvesting and data offloading, respectively, as shown in Fig. 2.
We call the N fading blocks for energy harvesting (EH)
as EH fading blocks, indexed as EH fading block 1, EH
fading block 2, ..., EH fading blockN , with channel gains
(from the BS to the mobile device) denoted ash1, h2, ..., hN ,
respectively. We call theM fading blocks for data offloading
asoffloading fading blocks, indexed as offloading fading block
M , offloading fading blockM−1, ..., offloading fading block
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1, with channel gains (from the mobile device to the BS)
denoted asgM , gM−1, ..., g1, respectively. In other words, for
presentation simplicity, the beginning fading block in data
offloading is called offloading fading blockM , while the
ending fading block in data offloading is called offloading
fading block 1.

Energy harvesting is performed over multiple fading blocks.
At the beginning of EH fading block 1, the energy level of the
mobile device is 0, and then the mobile device starts to harvest
energy. Denote the transmit power of the BS asPE , and the
energy conversion efficiency of the energy harvester at the
mobile device asη. Then the harvested energy in EH fading
block n(n ∈ {1, 2, ..., N}) is ηPEτhn. Assume the maximal
energy capacity of the battery of the energy harvester isC.
By the end of EH fading blockN , the total available energy
in the battery of the mobile device can be written as

E(N) = min

{

ηPEτ

N
∑

n=1

hn, C

}

. (1)

For data offloading, two modes are considered.

• Fully Offloading Mode: The mobile device offloads all
its data to be processed at the BS.

• Partially Offloading Mode: The mobile device offloads
part of its data to be processed at the BS, and computes
the rest of its data locally.

Here we assume that computing time at the BS and the
downlink transmission time of the computation results are
negligible, due to the following reasons. 1) As indicated in
[10], [11], the computing capability of the BS is usually high,
and thus, the computation time at the BS is small; and after the
BS finishes the computing, the amount of computation results
to be sent back to the mobile device is usually of small size. 2)
In our system, the bottleneck resources are the mobile device’s
energy and uplink transmission capacity, and thus, our focus
is to efficiently utilize the two bottleneck resources. In our
system, the mobile device has multiple rounds of operations,
and in each round, the mobile device first harvests energy
and then offloads its data to the BS. Consider Roundj. After
the mobile device finishes offloading data to the BS, the BS
starts to compute the received data, while the mobile device
can start Round(j + 1) immediately (i.e., the mobile device
does not need to wait until the computation results are sent
back). So the computing at the BS and the mobile device’s
operations in Round(j + 1) can happen in parallel. For
example, in Round(j + 1)’s EH fading blocks (in which
the mobile device harvests energy), the BS can compute the
data it received in Roundj, and then send back computation
results by using a downlink channel. In other words, the BS’s
computing and computation result feedback do not consume
the system’s bottleneck resources (the mobile device’s energy
and uplink transmission capacity). Thus, the BS’s computing
of data received in Roundj and the subsequent computation
result feedback can happen in Round(j + 1) or even beyond
Round(j + 1).

1) Fully Offloading Mode: In this mode, all available
energy is used for offloading.

By the end of EH fading blockN , the available energy
in total for the mobile device isE(N) given in (1). For the
fully offloading mode, denoteDf(E(N),M) as the maximal
amount of data nats that can be processed (i.e., offloaded)
in the M offloading fading blocks at the mobile device
with energy levelE(N). Here subscript ‘f’ stands for fully
offloading mode.

In an offloading fading block, say offloading fading block
m (m ∈ {1, 2, ...,M}), if the channel gain isgm, then the
amount of data nats that can be offloaded in the fading block
is expressed as [21]

dm = wτ ln
(

1 +
pmgm
wσ2

)

, (2)

wherepm is transmit power of the mobile device in offloading
fading block m, and σ2 is noise power spectrum density.
Looking into (2), transmit powerpm can be expressed as a
function of dm andgm as

pm (dm, gm) =

(

e
dm
wτ − 1

)

wσ2

gm
. (3)

Hence the energy consumption within the offloading fading
block for offloadingdm data nats is given by

e (dm, gm) = pm (dm, gm) τ

=

(

e
dm
wτ −1

)

wσ2τ

gm
.

(4)

Next we try to characterizeDf(E(N),M). For this purpose,
we denoteJm(d) as follows. Consider that the mobile device
is at the beginning of offloading fading blockm but has not
measured the channel gaingm yet. For the mobile device to
offload d data nats within the remaining offloading fading
blocks (i.e., from the current offloading fading block until
offloading fading block 1), denoteJm(d) as the minimum
amount of energy that the mobile device expects to consume. It
is straightforward to see thatDf(E(N),M) = J−1

M (E(N)ε),
where ε ∈ (0, 1) is the efficiency of the amplifier at the
transmitter of the mobile device, andJ−1

M (·) is the inverse
function of JM (·). Thus, to characterizeDf(E(N),M), we
should characterizeJM (·), by following a similar procedure
to that in [30].

When the mobile device is at the beginning of offloading
fading blockm and has measured the channel gaingm, denote
Qm(d, gm) as the minimum amount of energy that the mobile
device expects to consume for offloadingd data nats within
the remaining offloading fading blocks (i.e., from the current
offloading fading block until offloading fading block 1). Then
we have

JM (d) =

∫ ∞

0

QM (d, gM )f(gM )dgM .

For energy consumptionQM (d, gM ), it contains two por-
tions: the energy used in offloading fading blockM , and
the energy used in subsequent offloading fading blocks (i.e.,
offloading fading blocksM − 1,M − 2, ..., 2, 1). Denoted′

as the offloaded data amount in offloading fading blockM .
Then the energy used in offloading fading blockM can be
expressed ase(d′, gM ), and the energy used in subsequent
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offloading fading blocks can be expressed asJM−1(d − d′).
As QM (d, gM ) is theminimum expectedenergy consumption,
we have

QM (d, gM ) = min
0≤d′≤d

{e(d′, gM ) + JM−1(d− d′)} .

In the above expression, we need to characterizeJM−1(·).
We can follow the same procedure as we treatJM (·). This
procedure is repeated until offloading fading block 1.

To summarize the procedure from offloading fading block
M until offloading fading block 1, we have

Jm(d) =

∫ ∞

0

Qm(d, gm)f(gm)dgm,

∀m = M,M − 1, ..., 2, 1, (5)

Qm(d, gm)

=

{ min
0≤d′≤d

{e(d′, gm) + Jm−1(d− d′)} ,
∀m = M,M − 1, ..., 3, 2

e(d, g1), m = 1.

(6)

It can be seen that the recursive procedure shown in
(5) and (6) is actually a dynamic programming proce-
dure [29]–[31]. By using dynamic programming approaches,
JM (·) can be characterized. And as aforementioned, we have
Df(E(N),M) = J−1

M (E(N)ε).
2) Partially Offloading Mode:In this mode, the available

energy at the mobile device is used for both offloading and
local computing. Recall that by the end of EH fading block
N , the available energy in total for the mobile device isE(N)
given in (1). DenoteDp(E(N),M) as the maximal amount
of data nats that can be offloaded and locally computed in the
M offloading fading blocks at the mobile device with energy
level E(N). Here subscript ‘p’ stands for partially offloading
mode.

To characterizeDp(E(N),M), we try to find out the
minimum energy needed to process (i.e., offload and locally
compute)D data nats inM offloading fading blocks, denoted
asΛM (D). We can see that

Dp(E(N),M) = Λ−1
M (E(N)ε), (7)

whereΛ−1
M (·) is the inverse function ofΛM (·).

Now we try to find outΛM (D). For the D data nats,
denoteDL andDE as the amount of data nats to be locally
computed at the mobile device and to be offloaded to the BS,
respectively. Here subscript ‘L’ and ‘E’ stand for “local” and
“external”, respectively. Then we have

D = DL +DE. (8)

For the mobile device to locally computeDL data nats, the
consumed energy can be written as [18]

EL(DL , T ) =
kc30D

3
L

T 2
, (9)

wherek is a parameter related to the features of the mobile
device’s CPU,c0 is the number of required CPU cycles for
computing a data nat, andT is the computation time.

Thus,ΛM (D) can be given as

ΛM (D) = min
DE

EL(D −DE,Mτ) + JM (DE)

s.t. 0 ≤ DE ≤ D.
(10)

By using (10),ΛM (D) can be found off-line via a one-
dimensional exhaustive search. WithΛM (D), Dp(E(N),M)
can be expressed as in (7).

B. Problem Formulation

When the mobile device stops energy harvesting at the end
of EH fading blockN , the amount of data nats that can be
processed isDi(E(N),M) for i ∈ {f, p}, and the total time
duration for energy harvesting and offloading is

τN,M = Nτ +Mτ. (11)

HereN is called thestopping time, which is a random variable
with values in{1, 2, ....}. In optimal stopping theory,N is also
calledstopping rule.

At an EH fading block (say EH fading blockl), after the
energy is harvested in the fading block, the mobile device
needs to decide whether to continue energy harvesting or
to stop energy harvesting. If the mobile device decides to
stop energy harvesting (i.e.,N = l), then it processes (i.e.,
offloads and/or locally computes) its data in the subsequent
M offloading fading blocks. If the mobile device decides
to continue energy harvesting, it harvests energy in the next
fading block and makes a decision again (i.e., to continue or
to stop energy harvesting).

When the stopping ruleN is applied repeatedly forK times,
there areK independent and identically distributed stopping
time moments{N1, N2, ..., NK}. Thus, average processed
data amount in unit time withK rounds (each round con-
taining one energy harvesting process and one offloading pro-
cess) is given as

(

∑K
k=1 Di(E(Nk),M)

)

/
(

∑K
k=1 τNk,M

)

for i ∈ {f, p}. WhenK goes to infinity, the average processed
data amount in unit time can be written as

lim
K→∞

∑

K
k=1

Di(E(Nk),M)
∑

K
k=1

τNk,M
= E[Di(E(N),M)]

E[τN,M ] (12)

almost surely. HereE[·] means expectation. Our research goal
is to design the optimal stopping ruleN and selectM so as
to maximize the average processed data amount in unit time.
Specifically, the optimization problem is given as follows.

Problem 1:

max
N∈QM ,M∈I,M≥1

E[Di(E(N),M)]

E[τN,M ]
(13)

whereQM , {N |N ≥ 1,E[τN,M ] < ∞} is the set of all
stopping rules,i ∈ {f, p}, andI is the set of integers.

To solve Problem 1, we decompose it into two levels.
Specifically, in the lower-level problem, we find the optimal
stopping rule for a givenM value. Accordingly, the lower-
level problem is

Problem 2:

R(M) , max
N∈QM

E[Di(E(N),M)]

E[τN,M ]
. (14)
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In the upper-level problem, we try to find the optimal value
of M . Accordingly, the upper-level problem is

Problem 3:
max

M∈I,M≥1
R(M). (15)

Next, we first solve the lower-level problem (Problem 2) in
Section IV. Then based on the optimal solution of Problem 2,
we solve the higher-level problem (Problem 3) in Section V.

IV. SOLUTION OF THE LOWER-LEVEL PROBLEM:
PROBLEM 2

To solve Problem 2 optimally, some features of functions
Df(y,m) andDp(y,m) are characterized first in the following
lemmas (the proofs are given in Appendix A and Appendix
B).

Lemma 1:Df(y,m) is an increasing and concave function
with respect toy.

Lemma 2:Dp(y,m) is an increasing and concave function
with respect toy.

According to the optimal stopping theory [32], solving Prob-
lem 2 is equivalent to findingλ∗ such thatV ∗

i (λ
∗,M) = 0,

whereV ∗
i (λ,M) is defined as

Problem 4:

V ∗
i (λ,M) = sup

N∈QM

E[Di(E(N),M)− λτN,M ], λ > 0.

(16)

For givenλ, to get the optimal solution of Problem 4, the
following lemma can be expected.

Lemma 3:The optimal stopping rule for Problem 4 is the
myopic stopping rule, i.e., definezi,n = Di(E(n),M) −
λτn,M for i ∈ {f, p}, the optimal stopping time is given as

N∗
i (λ,M) = min{n : zi,n ≥ E[zi,n+1|h1→n]} (17)

whereh1→n = {h1, h2, ..., hn}.
Proof: According to [32], for Problem 4, the myopic rule

is optimal if three conditions can all be met:

(i) We can expresszi,n in the form of zi,n = vi,n − ui,n.
HereE[supn |vi,n|] is less than infinity, and the nonneg-
ative componentui,n is nondecreasing almost surely;

(ii) lim
n→∞

zi,n = zi,∞ almost surely;
(iii) Problem 4 is a monotone problem.

Firstly, zi,n = Di(E(n),M) − λτn,M = Di(E(n),M) −
λ(nτ + Mτ), whereλ(nτ + Mτ) is nonnegative and non-
decreasing with respect ton and E[sup

n
|Di(E(n),M)|] ≤

E[Di(C,M)] < ∞, whereC is the maximal energy capacity
of the mobile device’s battery. Thus Condition (i) is satisfied.

Secondly,zi,n = Di(E(n),M) − λτn,M . When n →
∞, τn,M → ∞, and E(n) ≤ C < ∞, thus we have
lim sup
n→∞

zi,n → −∞. Due to the fact thatlim inf
n→∞

zi,n ≤
lim sup
n→∞

zi,n = −∞, we have

lim
n→∞

zi,n = lim inf
n→∞

zi,n = lim sup
n→∞

zi,n = −∞. (18)

Hence Condition (ii) is satisfied.

Finally, we try to prove Condition (iii). DefineAi,n ,

{zi,n ≥ E[zi,n+1|h1→n]}. A monotone problem means that
Ai,0 ⊆ Ai,1 ⊆ . . . ⊆ Ai,n. Namely, if there is

zi,n ≥ E[zi,n+1|h1→n], (19)

then the following inequality always holds:

zi,n+1 ≥ E[zi,n+2|h1→(n+1)]. (20)

For zi,n, we have

zi,n = Di (min {C, ηPEτ(h1 + h2 + ...+ hn)} ,M)

− λ(nτ +Mτ). (21)

Substitute (21) into (19) and (20) respectively, (19) is equiv-
alent to

Di (min {C,Bn} ,M) ≥ E [Di (min {C,Bn+1} ,M)]− λτ,
(22)

and (20) is equivalent to

Di (min{C,Bn+1},M) ≥ E [Di (min{C,Bn+2},M)]− λτ
(23)

whereBn = ηPEτ(h1 + h2 + ... + hn). It is straightforward
to see that

Bn ≤ Bn+1. (24)

Thus, we only need to prove that when (22) holds, (23) also
holds.

To complete this proof, three possible cases need to be
considered, as follows.

(a) C ≤ Bn ≤ Bn+1. In this case,Bn+2 ≥ Bn+1 ≥ C, thus
min {C,Bn+1} = min {C,Bn+2} = C, which indicates
the holding of (23) naturally.

(b) Bn ≤ C ≤ Bn+1. In this case, the same proof for the
case in (a) also works.

(c) Bn ≤ Bn+1 < C. In this case, we need to prove that

Di(Bn,M) ≥ E[Di(min{C,Bn+ηPEτhn+1},M)]−λτ
(25)

can lead to

Di(Bn+1,M) ≥E[Di(min(C,Bn+1 + ηPEτhn+2),M)]

− λτ. (26)

This can be proved by showing that

E[Di(min{C, x+ ηPEτhn},M)]−Di(x,M)

=

∫

Di(min{C, x+ ηPEτh},M)f(h)dh

−
∫

Di(x,M)f(h)dh (27)

is a decreasing function with respect tox whenx < C,
which is equivalent to showing that

Di(min{C, x+ ηPEτh},M)−Di(x,M) (28)

is a decreasing function with respect tox.
We considerx1 ≤ x2 < C:

• When x2 + ηPEτh < C: Define the first-order
derivative function ofDi(x,M) with x asGi(x,M).
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SinceDi(x,M) is an increasing and concave function
according to Lemma 1 and Lemma 2,Gi(x,M) is a
decreasing function with respect tox. Hence we have

Gi(x1 +∆,M) ≥ Gi(x2 +∆,M), ∆ ∈ [0, ηPEτh]

(29)

⇒
∫ x1+ηPEτh

x1

Gi(x,M)dx

≥
∫ x2+ηPEτh

x2

Gi(x,M)dx (30)

⇒ Di(x1 + ηPEτh,M)−Di(x1,M)

≥ Di(x2 + ηPEτh,M)−Di(x2,M), (31)

which proves that the expression in (28) decreases
with respect tox.

• When x2 + ηPEτh ≥ C: We have Di(x2 +
ηPEτh,M) ≥ Di(C,M). Combining (31), we have

Di(x1 + ηPEτh,M)−Di(x1,M)

≥Di(C,M)−Di(x2,M), (32)

which proves that the expression in (28) decreases
with respect tox.

Therefore, the inequality (26) is proved.
To this end, we can state that (23) holds, which indicates that
Problem 4 is monotone.

This completes the proof.
Lemma 3 offers the following insight. To find out the

optimal stopping rule that achieves the maximal utility of
Problem 4 for a givenλ, the mobile device only needs to do
an easy on-line computing. At every EH fading block, say EH
fading blockn, the mobile device should comparezi,n with
E [zi,n+1|h1→n]. If zi,n is larger, then the mobile device stops
energy harvesting and starts data offloading; otherwise, the
mobile device proceeds to the next fading block and repeats
the procedure again.

To find the optimal solution of Problem 2, i.e., to find theλ∗

such thatV ∗
i (λ

∗,M) = 0, a bisection search method can be
utilized. In the bisection search, we need to know the values
of V ∗

i (λ,M) for some particularλ values. This can be done
off-line by using Monte Carlo method with the help of Lemma
3, as shown in Algorithm 1.

Algorithm 1 Calculation ofV ∗
i (λ,M) for a givenλ value.

1: Suppose the number of Monte Carlo simulation runs isQ
and setq = 1.

2: while q < Q do
3: Set n = 1. Randomly generatehn according to the

distributionf(h). EvaluateE [zi,n+1|h1→n].
4: while zi,n < E [zi,n+1|h1→n] do
5: Randomly generatehn+1 according to the distribu-

tion f(h).
6: n = n+ 1.

Record the presentzi,n.
7: q = q + 1.
8: V ∗

i (λ,M) is evaluated as the statistical mean of all the
recordedzi,n.

To this end, how to find the optimal stopping ruleN for
Problem 2 has been presented. As a summary, the compu-
tational complexity to solve Problem 2 is composed of the
following three components: 1) Bisection search ofλ∗ such
that V ∗

i (λ
∗,M) = 0 for i ∈ {f, p}; 2) The calculation

of Algorithm 1 for everyλ. 3) The evaluation of function
Di(E(N),M) for i ∈ {f, p} in expression ofzi,n when
running Algorithm 1.

• For the computational complexity ofDi(E(N),M) for
i ∈ {f, p}, we use dynamic programming, whose com-
putational complexity is in the order ofO(eM ).

• For the computational complexity of Algorithm 1, we
haveQ Monte Carlo simulation runs. In each simulation
run, the complexity is proportional to the number ofn
values searched. However, it is hard to predict when
to stop searching (i.e., whenzi,n ≥ E [zi,n+1|h1→n])
since the channel gainsh1, h2, ..., hn are all random.
Even with the distribution function ofh1, h2, ..., hn, the
distribution of stopping time is also hard to characterize
since we have no closed-form expression ofDi(x,M) for
i ∈ {f, p} (Di(x,M) is a component inzi,n expression).
Therefore, it is hard to give an analytical expression for
the complexity of Algorithm 1. In Section VI, we plot the
average stopping time versus the mean of channel gain in
Fig. 10. This figure would be helpful for evaluating the
complexity of Algorithm 1.

• For the bisection search ofλ∗, supposeλ∗ is searched
betweenλmin and λmax, and the error tolerance ofλ∗

is δ. Then the computational complexity of the bisection
search isO(log

(

λmax−λmin

δ

)

).
Note that the above three computation components can

all be done off-line. In a real application, to achieve the
maximal utility of Problem 2 for a givenM , the mobile device
only needs to do a simple on-line computing enlightened by
Lemma 3. Specifically, withλ∗ calculated off-line, at every EH
fading block, say EH fading blockn, the mobile device stops
when zi,n ≥ E [zi,n+1|h1→n] and proceeds to the next EH
fading block otherwise. In other words, a simple comparison
is needed for each EH fading block. The online computation
complexity isO(1).

V. SOLUTION OF THE UPPER-LEVEL PROBLEM: PROBLEM

3

For Problem 3, we have some analytical results as follows
(proofs are given in Appendix C, Appendix D, and Appendix
E).

Lemma 4:With d fixed,Jm(d) is monotonically decreasing
with m.

Lemma 5:With d fixed,Λm(d) is monotonically decreasing
with m.

Lemma 6:With the stopping timeN fixed, both the function
E[Di(E(N),M)] and the functionE[τN,M ] are monotonically
increasing functions withM for i ∈ {f, p}.

According to Lemma 6, both the numerator and the de-
nominator of Problem 1’s objective function are monotonically
increasing withM . Hence it is hard to say whether the optimal
solution of Problem 3 is finite or infinite. The following lemma
addresses this issue.
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Lemma 7:The optimal solution of Problem 3 is finite.
Proof: To prove this claim, it is sufficient to show that

the optimal solution ofM does not happen atM = ∞, which
will hold if

lim
M→∞

E[Di(E(N),M)]

E[τN,M ]
= 0 (33)

for any given stopping timeN . With stopping timeN given,
it can be seen thatE [τN,M ] increases withM linearly. Thus
to prove the claim in this lemma, we only need to show
that E [Di(E(n),M)] grows withM sublinearly asM goes
to infinity by L’Hospital’s rule, which is equivalent to the
following condition

lim
M→∞

Di(E(n),M)

M
= 0 (34)

for i ∈ {f, p}.
Define notationg = (gM , gM−1, ..., g1)

T with (·)T repre-
senting transpose operation, and denotef(g) as the joint prob-
ability density function (PDF) ofg, i.e.,f(g) =

∏M
m=1 f(gm).

For i = f, define

Ef(d, g) , min
{dm|m∈{1,2,...,M}}

M
∑

m=1
e(dm, gm)

s.t.
M
∑

m=1
dm = d,

dm ≥ 0, ∀m ∈ {1, 2, ...,M}.
(35)

Also defineEf(d) ,
∫

Ef(d, g)f(g)dg. It can be seen that
Ef(d) is calculated by assuming thatg1, g2, ..., gM are known
in advance at the beginning of the data offloading phase. From
(5), it can be seen thatJM (d) is calculated by assuming that
only channel gain information of the current offloading fading
block is known. Thus, it is apparent that we have

JM (d) > Ef(d). (36)

Then by following the similar proof method in Lemma 6, it
can be inferred that

Df(E(n),M) = J−1
M (E(n)ε) < E−1

f (E(n)ε) (37)

whereE−1
f (·) is the inverse function ofEf(·).

For the functione(dm, gm) in (35), it can be derived that

e(dm, gm) ≥ σ2

6w2τ2gm
d3m, (38)

because the first order derivative of
(

e(dm, gm)− σ2

6w2τ2gm
d3m

)

with respect to dm is larger

than zero. DefineEf, lb(d, g) as

Ef, lb(d, g) , min
{dm|m∈{1,2,...,M}}

M
∑

m=1

σ2

6w2τ2gm
d3m

s.t.
M
∑

m=1
dm = d, (39a)

dm ≥ 0, ∀m ∈ {1, 2, ...,M} (39b)

in which subscript ‘lb’ stands for “lower bound”. From (38),
we know thatEf, lb(d, g) is a lower bound ofEf(d, g).

It can be checked thatEf, lb(d, g) is the optimal objective
function of the convex optimization problem shown in (39).
By resorting to the KKT condition [33], the optimal objective

functionEf, lb(d, g) can be derived as follows. Setλ(g) to be
the Lagrange multiplier associated with the constraint (39a),
then the optimal solution of the convex optimization problem
shown in (39) should satisfy the following equality

σ2

2w2τ2gm
d2m = λ(g), ∀m ∈ {1, 2, ...,M} (40)

which indicates

dm =
√

λ(g)

√

2w2τ2gm
σ2

, ∀m ∈ {1, 2, ...,M}. (41)

Then substituting the expression ofdm for m ∈ {1, 2, ...,M}
in (41) into constraint (39a), we can derive a closed-form
expression ofλ(g), which is given as

λ(g) =
σ2

2w2τ2









d
M
∑

m=1

√
gm









2

. (42)

Then substituting theλ(g) expression in (41), we have

dm =
d
√
gm

M
∑

m=1

√
gm

, ∀m ∈ {1, 2, ...,M}. (43)

HenceEf, lb(d, g) can be written as

Ef, lb(d, g) =

M
∑

m=1

σ2

6w2τ2
d3
√
gm

(

M
∑

m=1

√
gm

)3 (44)

which indicates that

Ef, lb(d) ,
∫

Ef, lb(d, g)f(g)dg

= d3 σ2

6w2τ2

∫

M
∑

m=1

√
gm

(

M
∑

m=1

√
gm

)3 f(g)dg

= d3 σ2

6w2τ2

∫

(

M
∑

m=1

√
gm

)−2

f(g)dg.

(45)

Therefore, the inverse function ofEf, lb(d) can be given as

E−1
f, lb(E(n)ε)

=















E(n)ε6w2τ2

σ2

1
∫

(

M
∑

m=1

√
gm

)−2

f(g)dg















1

3

≤







E(n)ε6w2τ2

σ2

1
∫

1

M2hu
f(g)dg







1

3

=
(

E(n)ε6w2τ2M2hu

σ2

)
1

3

(46)

wherehu is the upper bound of the channel gaingm since
f(gm) = 0 for gm ≥ hu.
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SinceEf, lb(d, g) is a lower bound of the objective function
of (35), we have

Ef(d, g) ≥ Ef, lb(d, g), (47)

and thereafter
Ef(d) ≥ Ef, lb(d), (48)

which can lead to

E−1
f (E(n)ε) ≤ E−1

f, lb(E(n)ε) (49)

by following the proof method in Lemma 6.
Combining (37), (49), and (46), we have

lim
M→∞

Df(E(n),M)
M

≤ lim
M→∞

E
−1

f, lb (E(n)ε)

M

≤ lim
M→∞

(

E(n)ε6w2τ2hu

Mσ2

)
1

3

= 0.

(50)

For i = p, define

Ep(d, g) ,

min
{dm|m∈{1,2,...,M}}

M
∑

m=1
e(dm, gm) + EL(dL ,Mτ)

s.t.
M
∑

m=1
dm + dL = d,

dm ≥ 0, ∀m ∈ {1, 2, ...,M},
dL ≥ 0.

(51)

Here dL means the amount of data nats that are locally
calculated at the mobile device. Note that in the objective
function shown in (51), the functionEL(dL ,Mτ) is a mono-
mial function of dL with order 3, as shown in (9). Then by
following the similar procedure for the discussion wheni = f,
it can be also derived that

lim
M→∞

Dp(E(n),M)

M
= 0. (52)

This completes the proof.
Remark: Lemma 7 offers the following insight. For any

stopping ruleN , the solutionM = ∞ cannot be optimal for
Problem 3. In other words, we can perform one-dimensional
search ofM in finite steps to get the optimalM . Suppose
the optimalM is searched between 1 andMmax. Then the
computational complexity of solving Problem 3 isO(Mmax).

VI. N UMERICAL RESULTS

Similar to [10], [18], we use the following system param-
eters: the number of CPU cycles for computing one data
nat c0 = 40, the fixed coefficient characterizing the mobile
device’s CPUk = 10−28, the length of one fading block
τ = 1ms, the energy conversion efficiency of the energy
harvesterη = 0.3, the maximal energy capacity of the energy
harvester’s batteryC = 20J, the bandwidth of one channel
w = 1MHz, the noise power spectrum densityσ2 = −140
dBmW/Hz, the transmit powerPE = 0.5 W, the efficiency of
the amplifier at the transmitter of the mobile deviceε = 1.
The channel between the BS and the mobile device experi-
ences Rayleigh fading. Thus, channel gain is exponentially
distributed. The mean of channel gain, denoted asθ, is set
as 10−6, which corresponds to the attenuation at a distance

of 47.7m with a carrier frequency 500MHz in free space. To
save the computation complexity, the number of fading blocks
for data offloadingM would be searched between the interval
[0, 30]. For the ease of presentation, the average processed data
amount in unit time, i.e., the objective function of Problem1
would be written as “Average processing rate” in this section.
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Fig. 3: Verification of Lemma 1.
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Fig. 4: Verification of Lemma 2.

Fig. 3 and Fig. 4 plot the function ofDf(y,m) andDp(y,m)
versusy for m = 10, m = 20 andm = 30, respectively. It
can be seen that both the functionDf(y,m) andDp(y,m) are
increasing and concave function withy for given m. These
results verify the claims that are given in Lemma 1 and Lemma
2.

Fig. 5 and Fig. 6 plot the function ofJm(d) and Λm(d)
versusm when d = 80 nat, d = 800 nat, andd = 1600
nat, respectively. It can be observed that asm increases, both
function Jm(d) and functionΛm(d) go down. These results
verify the claims in Lemma 4 and Lemma 5.
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Fig. 6: Verification of Lemma 5.

In Fig. 7 and Fig. 8, our proposed method is compared with
a threshold strategy, which compares the total harvested energy
∑n

n′=1 PEηhn′τ with a fixed-value threshold and will stop at
the nth fading block if

∑n
n′=1 PEηhn′τ is larger than the

selected threshold. Various threshold values are listed inFig.
7 and Fig. 8. The results show that our method outperforms the
threshold policy, which verifies the advantage of our proposed
method.

In Fig. 9, the average processing rate versus transmit power
PE of the BS is investigated under fully offloading mode and
partially offloading mode. It can be observed that the optimal
solution under partially offloading mode always outperforms
the one under fully offloading mode. This can be explained
by the fact that the fully offloading mode is only a feasible
solution of partially offloading mode, which will be no better
than the optimal solution under partially offloading mode for
sure. As a comparison, two methods in [17] are realized. For
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Fig. 7: Comparison with the threshold policy under fully
offloading mode.
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Fig. 8: Comparison with the threshold policy under partially
offloading mode.

the first method, the harvested energy will be fully utilizedat
local (i.e., offloading is not performed). This method is called
“Local computing” here. For the second method, one round
of charging and fully offloading is performed in every fading
block, which means that in a fading block, the mobile device
first harvests energy and then offloads data for computing. This
method is called “One round in one block” here. To maximize
the processing rate under the setup of the second method in
[17], the optimal charging time is found to beτ3 . From Fig. 9,
it can be observed that as the transmit powerPE increases, the
average processing rate grows in all methods. This is because
the increase ofPE contributes to higher harvested energy
and higher throughput for data offloading in unit time. In
addition, both partially offloading mode and fully offloading
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Fig. 9: Average processing rate versusPE .

mode outperform the local computing method and one round
in one block method, which demonstrates the advantage of our
proposed method.
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Fig. 10: Average stopping time versus mean channel gain.

In Fig. 10, the average number of EH fading blocks (at
stopping) is plotted versus the mean of channel gain under
both partially offloading mode and fully offloading mode with
different λ values. It can be seen that Algorithm 1 usually
stops within 50 steps. It can be also seen that as the mean
of channel gain increases, the average number of EH fading
blocks (at stopping) trends to decrease. This is because a better
channel leads to a higher energy arrival rate, which permits
the mobile device to collect enough energy earlier.

VII. C ONCLUSION

In this paper, we investigate a wireless-powered MEC
system, in which a target mobile device first harvests energy

from radio frequency signals of a BS and then offloads the
data to be processed to the BS. The whole process may span
over multiple fading blocks. For data offloading, both the
fully offloading and partially offloading are considered. The
expected data processing rate is maximized. To achieve the
goal, both the stopping rule for energy harvesting and the
number of fading blocks for offloading are optimized. To solve
the associated optimization problem, we decompose it into two
levels. In the lower level, with the number of fading blocks for
offloading fixed, the optimal stoping rule for energy harvesting
is derived. In the upper level, the number of fading blocks
for offloading is optimized. This research can provide helpful
insights for the implementation of wireless-powered mobile
devices in IoT networks.

In our research, when the partially offloading mode is used,
the mobile device’s local computing is performed only in
offloading fading blocks (i.e., after energy harvesting process
is finished and the available energy amount is known). Based
on (9), it can be seen that the energy used for local computing
is reduced if the local computing time duration increases.
Thus, the system performance can be further improved if the
mobile device can also perform its local computing in EH
fading blocks. Then at each EH fading block, the mobile
device needs to decide how much energy is used in the current
fading block for local computing and how much energy is
reserved for future use (i.e., for offloading and local computing
during the offloading fading blocks). As the mobile device
does not know energy arrival rates in subsequent EH fading
blocks, it is challenging for the mobile device to make an
optimal decision, which deserves further research efforts.

APPENDIX A
PROOF OFLEMMA 1

First, we prove thatJm(d) is an increasing function by
induction method. It can be easily checked thatJ1(d) and
Q1(d, x) are increasing function with respect tod. Suppose
both Jm−1(d) and Qm−1(d, x) are increasing with respect
to d. Denoted∗m(d, x) as the optimal solution ofd′ in the
minimization problem in (6) when there arem fading blocks
left andd data nats to be transmitted for data offloading, and
gm = x. Consider two values ofd: d† > d‡.

When0 ≤ d∗m(d†, x) ≤ d‡, we have

Qm(d†, x) = e(d∗m(d†, x), x) + Jm−1

(

d† − d∗m(d†, x)
)

> e(d∗m(d†, x), x) + Jm−1

(

d‡ − d∗m(d†, x)
)

≥ e(d∗m(d‡, x), x) + Jm−1

(

d‡ − d∗m(d‡, x)
)

= Qm(d‡, x).
(53)

Whend‡ < d∗m(d†, x) ≤ d†, we have

Qm(d‡, x) = e(d∗m(d‡, x), x) + Jm−1

(

d‡ − d∗m(d‡, x)
)

≤ e(d‡, x) + Jm−1

(

d‡ − d‡
)

= e(d‡, x).
(54)
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Then according to (54), we have

Qm(d†, x) = e(d∗m(d†, x), x) + Jm−1

(

d† − d∗m(d†, x)
)

≥ e(d∗m(d†, x), x)
+Jm−1

(

d∗m(d†, x)− d∗m(d†, x)
)

= e(d∗m(d†, x), x)
> e(d‡, x)
≥ Qm(d‡, x).

(55)
Thus, it can be concluded thatQm(d, x) is an increasing
function with respect tod. Based on (5),Jm(d) is also an
increasing function with respect tod.

Finally, we look intoDf(y,m). SinceDf(y,m) = J−1
m (y ·

ε), we have

D′
f (y,m) = ε

dJ−1

m (y·ε)
d(yε)

= ε

J′
m(J−1

m (yε))

= ε
J′
m(Df(y,m))

> 0

(56)

where D′
f (y,m) and J ′

m(·) are the first-order derivative of
Df(y,m) (with respect toy) andJm(·), respectively, and the
inequality holds since the functionJm(·) is increasing and
thus its derivative is always positive. Thus,Df(y,m) is an
increasing function ofy.

In addition, sinceJm(·) is a convex function (which can
be proved by using an induction method, with the aid of [34,
Theorem 5.4]),J ′

m(·) is an increasing function. Recalling that
D′

f(y,m) = ε
J′
m(Df(y,m)) , it can be derived thatD′

f (y,m) is
a decreasing function ofy, which proves the concavity of
Df(y,m) with y.

This completes the proof.
APPENDIX B

PROOF OFLEMMA 2

By following the proof method in Lemma 1, to prove the
increasing monotonicity and concavity ofDp(y,m), we only
need to prove thatΛm(x) is increasing and convex withx.

For the increasing monotonicity, looking into the Problem
in (10). SupposeD† < D‡. Assume the optimal solution of
the Problem in (10) whenD = D† andD = D‡ areD†

E and
D‡

E, respectively. When0 ≤ D‡
E ≤ D†, we have

Λm(D†) = EL(D
† −D†

E,mτ) + Jm(D†
E)

≤ EL(D
† −D‡

E,mτ) + Jm(D‡
E)

< EL(D
‡ −D‡

E,mτ) + Jm(D‡
E)

= Λm(D‡).

(57)

WhenD† < D‡
E ≤ D‡, we have

Λm(D†) = EL(D
† −D†

E,mτ) + Jm(D†
E)

≤ EL(D
† −D†,mτ) + Jm(D†)

= Jm(D†),

(58)

and

Λm(D‡) = EL(D
‡ −D‡

E,mτ) + Jm(D‡
E)

≥ EL(D
‡
E −D‡

E,mτ) + Jm(D‡
E)

= Jm(D‡
E)

> Jm(D†)
≥ Λm(D†)

(59)

in which the last inequality comes from (58). Thus, the
increasing monotonicity ofΛm(D) with D has been proved.

For the convexity, consider two different valuesx† andx‡.
DefineD†

E andD‡
E as the optimal solutions of the Problem in

(10) whenD = x† andD = x‡, respectively. For∀α ∈ [0, 1],
denoteD∗

E as the optimal solution of the Problem in (10) when
D = αx† + (1 − α)x‡. Then we have

αΛm(x†) + (1− α) Λm(x‡)

= αEL(x
† −D†

E,mτ) + (1− α)EL(x
‡ −D‡

E,mτ)

+αJm(D†
E) + (1− α)Jm(D‡

E)
(a)

≥ EL

(

(

αx† + (1− α)x‡
)

−
(

αD†
E + (1− α)D‡

E

)

,mτ
)

+Jm

((

αD†
E + (1− α)D‡

E

))

(b)

≥ EL
((

αx† + (1− α)x‡
)

−D∗
E,mτ

)

+ Jm (D∗
E)

= Λm(αx† + (1− α)x‡)

where (a) holds since both the functionEL(·) and the
function Jm(·) are convex, and (b) is due to the fact that
(

αD†
E + (1− α)D‡

E

)

is a feasible solution of the Problem

in (10) when D =
(

αx† + (1− α)x‡
)

and will have no
better performance compared withD∗

E (recalling thatD∗
E is

the optimal solution of the Problem in (10) whenD =
αx† + (1− α)x‡).

This completes the proof.
APPENDIX C

PROOF OFLEMMA 4

Recalling thatd∗m(d, x) is the optimal solution ofd′ in the
minimization problem in (6) when there arem fading blocks
left andd data nats to be transmitted for data offloading, and
gm = x. There is

Qm(d, x)
= e(d∗m(d, x), x) +

∫∞

0 Qm−1 (d− d∗m(d, x), x′) f(x′)dx′

≤ e(0, x) +
∫∞

0 Qm−1(d− 0, x′)f(x′)dx′

= Jm−1(d),
(60)

in whichx represents a value ofgm, andx′ represents a value
of gm−1. Hence we have

Jm(d) =
∫∞

0
Qm(d, x)f(x)dx

≤
∫∞

0 Jm−1(d)f(x)dx
= Jm−1(d),

(61)

in which x represents a value ofgm.
This completes the proof.

APPENDIX D
PROOF OFLEMMA 5

Supposed∗E(d,m) is the optimal solution of the Problem in
(10) when the amount of data to be processed isd nats (i.e.,
D = d) and there arem fading blocks left for data offloading
(i.e., M = m). For m† < m‡, we have

Λm†(d) = EL(d− d∗E(d,m
†),m†τ) + Jm†(d∗E(d,m

†))
(a)
> EL(d− d∗E(d,m

†),m‡τ) + Jm‡(d∗E(d,m
†))

(b)

≥ EL(d− d∗E(d,m
‡),m‡τ) + Jm‡(d∗E(d,m

‡))
= Λm‡(d)

(62)
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where (a) comes from Lemma 4 and(b) is due to the fact
that bothd∗E(d,m

†) andd∗E(d,m
‡) lie in the interval[0, d] and

no solution lying in[0, d] can achieve better performance than
d∗E(d,m

‡) in the Problem in (10) withM = m‡ andD = d.
This completes the proof.

APPENDIX E
PROOF OFLEMMA 6

It is evident that functionE[τN,M ] is monotonic increasing
with M for givenN .

Next the monotonicity of functionE[Df(E(N),M)] with
M is proved. Supposem† < m‡, for N = n, defined† =
Df(E(n),m†) andd‡ = Df(E(n),m‡). Then we have

εE(n) = Jm†(d†) = Jm‡(d‡). (63)

Combining the fact thatJm†(d) > Jm‡(d) according to
Lemma 4, it can be inferred that

d† < d‡. (64)

Thus, form† < m‡, Df(E(n),m†) < Df(E(n),m‡), which
further indicates thatE[Df(E(n),m†)] < E[Df(E(n),m‡)].

At last, by combing the result in Lemma 5 and following
the proof for the monotonicity of functionE[Df(E(N),M)]
with M , the monotonicity of functionE[Dp(E(N),M)] with
M can be proved.

This completes the proof.
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