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Abstract—We investigate a wireless powered sensor network,
in which multiple sensors generate data and send their data
to a base station (BS) periodically. Each sensor first harvests
energy from the BS via wireless power transfer and then uses
its available energy to transmit to the BS its data. We target
minimal average age of information, by optimizing the energy
harvesting time and the bandwidth allocation during the sensors’
transmissions. The research problem is hard to solve, as some
notations in the problem do not have a closed-form expression. To
optimally solve the problem, we first show that there is a one-to-
one mapping from the energy harvesting time to the bandwidth
allocation. We also develop a method to obtain the bandwidth
allocation vector corresponding to each value of the energy
harvesting time. Then we get the optimal energy harvesting
time by investigating and comparing different sub-regions of
energy harvesting time. Numerical results show optimalityof
our solution and its performance gain over a benchmark scheme
based on the traditional threshold-based method.

Index Terms—Wireless power transfer, energy harvesting, age
of information.

I. I NTRODUCTION

In recent years, the Internet-of-things (IoT) has been grow-
ing quickly, which is very helpful in many applications in-
cluding environmental monitoring, connected and automated
vehicles, smart home, connected health, etc. To facilitate
various IoT applications, wireless sensors are usually deployed
to monitor the environments and then upload the collected
data to a base station (BS) or a fusion center [1]. To power
the wireless sensors, energy harvesting from ambient sources
or from wireless power transfer (WPT) sources is a good
candidate solution, and has been studied extensively in the
literature [2]–[4].

Many IoT applications, such as connected vehicles and
connected health, are delay sensitive [1]. When a destination
receives some information, freshness of the information is
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of importance. Age of information (AoI) is a metric for
information freshness, and has drawn a lot of attention recently
[5]–[7]. Consider a source node and a destination node. At
a moment (sayτ0), some information (a burst of packets) is
generated at the source node; and at momentτ1, the destination
node finishes receiving the information. Then, AoI at instant
t ∈ [τ0, τ1] is defined ast− τ0, which is actually the elapsed
time duration since generation of the information. For delivery
of the information, the end-to-end delay isτ1 − τ0, which
is actually AoI at the moment when the whole information
is delivered. It can be seen that, compared to the end-to-end
delay metric, AoI can measure the freshness of each packet
(or each bit) in the target information. This AoI feature fits
well with delay-sensitive applications, in which freshness of
each packet is a major concern.

Recently, the AoI metric has been widely used in energy-
harvesting wireless sensor networks (WSNs), for system per-
formance analysis and/or optimization of sensing and trans-
mission policies. The works in [8]–[12] consider WSNs that
harvest energy from ambient environments (such as solar,
wind, etc.). The works in [8] and [9] consider a non-fading
channel between a sensor and its sink. Online sensing and
transmission policies are designed for the cases with finite, in-
finite, or one-unit battery capacity. The work in [10] takes into
account instantaneous channel state information of a Rayleigh
fading channel when designing an online transmission policy,
while the work in [11] develops an online sensing policy
considering data erasure due to the wireless fading channel.
In [12], the work is focused on a sensor-sink pair aided by
an energy-harvesting-powered relay node. Both offline and
online transmission policies are developed. The works in [13]–
[15] consider WSNs powered by WPT. In [13], a slave node
harvests energy from a master node that uses WPT, When the
harvested energy at the slave node is more than a threshold, it
uploads its information to the master node. Closed-form AoI
in the information transmission process is derived. In [14],
an external power station is applied to send RF signals to a
wireless sensor. When the sensor is fully charged, its uses all
its harvested energy to transmit a fixed amount of data. Taking
link outages into consideration, AoI of the system is derived
in closed form, and is then minimized by finding the optimal
battery capacity. The work in [15] also considers a sensor-sink
pair using an external power station. A metric termedurgency-
aware AoI (U-AoI) is defined, and then derived in closed form.
The U-AoI of the system is minimized by finding the optimal
waiting time before each sensing.

In this letter, we consider a WSN powered by WPT. The
major difference between our paper and works [13]–[15] lies
in that we consider transmissions of multiple sensors to a
sink while works [13]–[15] consider only one sensor-sink pair.
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In specific, we investigate a system with multiple wireless
sensors that have periodical data to transmit to a BS. Each
sensor first gets energy harvested through WPT from the BS
for a while and then uploads its data to the BS. In such a
framework, when to stop energy harvesting and how to allocate
the bandwidth resources for data uploading are of importance
for minimization of the AoI of the system. An optimization
problem is formulated, which is hard to solve because some
notations in the problem formulation do not have a closed-
form expression. To optimally solve the formulated problem,
which optimizes over variables of energy harvesting time and
bandwidth allocation, we first transform it to an equivalent
problem that optimizes over only the energy harvesting time.
Then we find the optimal solution of the transformed problem,
which is also the optimal solution of the original problem
formulation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless sensor system with one BS andN
sensors. TheN sensors constitute setN , {1, 2, ..., N}.
TheN sensors are used to monitor diverse physical quantities
related to an application scenario and then upload their sensed
data to the BS.1 Each sensor has periodical data generation,
i.e., it generates a burst of information after everyT duration.
For sensori (∈ N ), the amount of data it generates each time
is Di nats. The data generation moments of theN sensors are
different. Without loss of generality, within time interval [0, T ],
the data generation moments of theN sensors ares1, s2, ...,
sN , respectively, with0 ≤ s1 ≤ s2 ≤ ... ≤ sN−1 ≤ sN ≤ T .

None of theN sensors have stable power supply. Thus, they
are all wireless-powered by the radio frequency signals from
the BS. Energy harvesting and data transmission are performed
alternatively. Specifically, time is divided into frames, and each
frame has durationT . In each frame, a time duration oft0 ≥ 0
is firstly used for wireless power transfer from the BS to all
sensors, and then a time duration oft1 ≥ 0 is used for data
transmission, in which sensori (i ∈ N ) will uploadDi nats to
the BS. Consider the time frame from moment 0 to momentT .
Suppose the ending moment of wireless charging, i.e.,t0, lies
betweensn andsn+1. Thus, at the frame (and each subsequent
frame), sensors1, 2, ..., n upload data generated in the current
frame, while sensorsn+1, n+2, ..., N upload data generated
in the preceding frame. An illustration of the charging and data
transmission process over multiple frames is given in Fig. 1.

Denote the channel gain from the BS to sensori asgi and
the channel gain from sensori to the BS ashi. Both gi andhi

keep unchanged fori ∈ N within the duration ofT . This setup
is reasonable when the sensors make observations frequently
or the channels are slow-fading.

The BS has transmit powerpT . The energy conversion
efficiency of the sensors’ energy harvesters isη. Then within
durationt0, the energy harvested by sensori can be written
as Ei(t0) = pT ηgit0, ∀i ∈ N . For data transmission of

1A typical application is health monitoring network, in which multiple
sensors are implemented separately on the body of one personto collect the
blood pressure, respiratory rate, heart rate, moving speed, etc., for the purpose
of monitoring the person’s health status. The sensors may also perform fall
detection as well as activity classification for older persons.

theseN sensors, a total bandwidthwT is available. Denote
wi ≥ 0 as the allocated bandwidth for sensori. Then we have
N
∑

i=1

wi = wT . Given that the available energy of sensori is

Ei(t0), to uploadDi nats within time durationt1, the transmit
power is Ei(t0)

t1
. Then according to the Shannon capacity

formula, we have

Di = t1wi log

(

1 +
Ei(t0)hi

t1wiσ2

)

, ∀i ∈ N , (1)

in which σ2 is noise power spectrum density. According to
(1), t1 can be denoted as a function oft0 andΞi, expressed as
t1(t0,Ξi), whereΞi represents information related to sensori
(such asDi, wi, hi, gi). Note thatt1(t0,Ξi) has no closed-form
expression. Since all the sensors use the same duration, i.e.,
t1, for transmission to the BS,t1(t0,Ξi) should be the same
for all sensors. Thus, we havet1(t0,Ξi) = t1(t0), ∀i ∈ N .

In a frame, the total time for wireless charging and data
transmission istT = t0 + t1(t0), which is actually a function
of t0 (written as tT (t0)). Since wireless charging and data
transmission should happen within a frame, we havetT (t0) =
t0 + t1(t0) ≤ T.

Consider a frame with duration from moment 0 to moment
T . For sensori, i = 1, 2, ..., n, its generated data in this frame
are uploaded to the BS in this frame. Thus, the associated
AoI at time t(t ∈ [si, tT (t0)]) can be written ast− si and the
sensor’s accumulated AoI in the frame isΘi =

∫ tT (t0)

si
(t −

si)dt =
1
2 (tT (t0)− si)

2.
For sensori, i = n+1, n+2, ..., N , its AoI has two parts:
• Data generated in the previous frame are transmitted in

the current frame. The associated AoI in the current
frame, i.e., at timet(t ∈ [0, tT (t0)]), can be written
as t − si + T . The corresponding accumulated AoI in
the current frame isΦi =

∫ tT (t0)

0 (t − si + T )dt =
1
2

(

(tT (t0) + T − si)
2 − (T − si)

2
)

.

• Data generated in the current frame will be transmitted in
the next frame. The associated AoI in the current frame,
i.e., at timet(t ∈ [si, T ]) can be written ast − si. The
corresponding accumulated AoI in the current frame is
Ψi =

∫ T

si
(t− si)dt =

1
2 (T − si)

2
.

Overall, in the current frame, the average AoI of the system
is expressed as̃∆ = 1

T
(
∑n

i=1 Θi +
∑N

i=n+1[Φi +Ψi]).
In this letter, our target is to minimize the average AoI∆̃.

To achieve this goal, we need to optimizet0 andwi, ∀i ∈ N .
Specifically, the following optimization problem is formulated.

Problem 1:

min
t0,n,{wi|i∈N}

∆̃

s.t. 0 < t0 < T ; tT (t0) ≤ T ; (2a)

sn ≤ t0 ≤ sn+1; n ∈ {0}
⋃

N ; (2b)

t1(t0,Ξi) = t1(t0), ∀i ∈ N ; (2c)
N
∑

i=1

wi = wT ; wi ≥ 0, ∀i ∈ N (2d)

wheres0 andsN+1 are defined as0 andT , respectively, for
the ease of presentation.
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Fig. 1: Illustration of time frames.

III. O PTIMAL SOLUTION OF PROBLEM 1

In Problem 1, the functionst1(t0,Ξi) and t1(t0) do not
have a closed-form expression, which brings a big challenge
to solve Problem 1. Next, we will develop a method to get the
optimal solution of Problem 1.

A. Problem Transformation

In Problem 1, the variables to be optimized aret0, n, and
{wi|i ∈ N}. We first try to transform Problem 1 to another
problem that optimizes overt0 andn only. We achieve this
by representingwi as a function oft0.

Define functionzi(Di, t0) such that

Di = zi(Di, t0) log

(

1 +
pT ηgihit0
zi(Di, t0)σ2

)

, ∀i ∈ N . (3)

Then from (1), it can be seen thatt1(t0)wi = zi(Di, t0), ∀i ∈
N . Therefore, combining the fact in (2d), we have

t1(t0) =

N
∑

i=1

t1(t0)wi

wT

=

N
∑

i=1

1

wT

zi(Di, t0). (4)

In addition, fromt1(t0)wi = zi(Di, t0), we have

wi =
zi(Di, t0)

t1(t0)

from (4)
=

wT zi(Di, t0)
N
∑

i=1

zi(Di, t0)

, ∀i ∈ N . (5)

To get the expression ofwi in (5), we need to find
the expression ofzi(Di, t0) for i ∈ N . The function
zi(Di, t0) is actually the inverse function offi(x, t0) ,

x log
(

1 + pT ηgihit0
xσ2

)

with x for i ∈ N . By checking the

first-order derivative, it can be proved thatfi(x, t0) is mono-
tonically increasing withx when x > 0. Hence the inverse
function of fi(x, t0), i.e., zi(Di, t0), is also a monotonically
increasing function. On the other hand, ifzi(Di, t0) goes to
infinity, we have

lim
zi(Di,t0)→∞

zi(Di, t0) log

(

1 +
pT ηgihit0
zi(Di, t0)σ2

)

=
pT ηgihit0

σ2

(6)
which, together with (3), imposes a lower bound ont0,
expressed as

t0 >
Diσ

2

pT ηgihi

, ∀i ∈ N . (7)

For the ease of following presentation, we definetmin
0 ,

max
i∈N

{

Diσ
2

pT ηgihi

}

. Therefore, for a givent0 ∈ (tmin
0 , T ), the

value of zi(Di, t0) can be searched by a bisection search
method such that (3) holds. With the value ofzi(Di, t0),
we can further get the value ofwi by using (5). In other
words, for a givent0 ∈ (tmin

0 , T ), we can find the values of
w1, w2, ..., wN . Thus, for Problem 1, we only need to optimize
over variablest0 andn.

The objective function of Problem 1 is re-written as

∆̃ = 1
2T

(

∑n

i=1

(

t2T (t0)− 2tT (t0)si + s2i
)

+
∑N

i=n+1

[

t2T (t0) + 2tT (t0)(T − si) + (T − si)
2]
)

= 1
2T Y (tT , n)

with

Y (tT , n) , Nt2T (t0)− 2tT (t0)
∑N

i=1 si + 2(N − n)T tT (t0)

+
n
∑

i=1

s2i +
N
∑

i=n+1

(T − si)
2
.

Thus, Problem 1 is equivalent to the following optimization
problem

Problem 2:

min
t0,n

Y (tT , n)

s.t. tmin
0 < t0 < T ; tT (t0) ≤ T, (8a)

sn ≤ t0 ≤ sn+1; n ∈ {0}
⋃

N . (8b)

B. Optimal Solution of the Transformed Problem

In Problem 2,tT (t0) appears in both the objective func-
tion and constraints. Thus, it is necessary to characterize
tT (t0). Recalling thattT (t0) = t0 + t1(t0) and t1(t0) =
1

wT

∑N

i=1 zi(Di, t0) from (4), we will first investigate a feature
of zi(Di, t0) in Lemma 1.

Lemma 1: With Di given, zi(Di, t0) is decreasing and
convex witht0 for i ∈ N .

Proof: We first prove the monotonicity ofzi(Di, t0) with
t0. For t†0 < t‡0, according to (3), we have

Di = fi(zi(Di, t
†
0), t

†
0) = fi(zi(Di, t

‡
0), t

‡
0), ∀i ∈ N . (9)

Supposezi(Di, t
†
0) ≤ zi(Di, t

‡
0). It can be also checked

that the functionfi(x, t0) is increasing with bothx and
t0. Hence we havefi(zi(Di, t

†
0), t

†
0) < fi(zi(Di, t

‡
0), t

‡
0),

which contradicts the fact in (9). Therefore, we should have
zi(Di, t

†
0) > zi(Di, t

‡
0) for i ∈ N , i.e.,zi(Di, t0) is decreasing

with t0.
Next we turn to prove the convexity ofzi(Di, t0) with

t0 for i ∈ N . Considert†0 and t‡0 such thatt†0 6= t‡0. Note
that the functionfi(x, t0) is a concave function with(x, t0)T

(here(·)T means transpose operation), which can be proved
by checking that the Hessian matrix of−fi(x, t0) is semi-
definite. Hence for∀α ∈ [0, 1], we have

Di = αDi + (1− α)Di

= αfi

(

zi(Di, t
†
0), t

†
0

)

+ (1− α)fi

(

zn(Di, t
‡
0), t

‡
0

)

≤ fi
(

αzi(Di, t
†
0) + (1− α)zi(Di, t

‡
0), αt

†
0 + (1− α)t‡0

)

.
(10)

The inequality in (10) indicates thatαzi(Di, t
†
0) + (1 −

α)zi(Di, t
‡
0) is larger than thex′ value such thatDi =
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f(x′, αt†0 + (1 − α)t‡0), i.e., x′ = zi(Di, αt
†
0 + (1 − α)t‡0).

Considering the increasing monotonicity off(x, t0) with x
and t0, we have

αzi(Di, t
†
0) + (1− α)zi(Di, t

‡
0) ≥ zi

(

Di, αt
†
0 + (1− α)t‡0

)

,

which proves functionzi(Di, t0) is convex witht0 (i ∈ N ).

Remark: tT (t0) = t0 + t1(t0) and t1(t0) =
1

wT

∑N

i=1 zi(Di, t0). Thus, from Lemma 1, we can see that
tT (t0) is also a convex function witht0.

SincetT (t0) is a convex function witht0, when t0 varies
from 0 toT , the minimal value oftT (t0), denoted ast§T , can
be found by using a golden-section search method (which is
able to return the minimum value of a one-dimensional convex
function), and we denote the correspondingt0 value ast§0.

Next we turn to solve Problem 2. Recall that the feasible
region oft0 is (tmin

0 , T ). Supposetmin
0 satisfiessk−1 < tmin

0 <
sk. Then the feasible region oft0 consists of the following
N − k + 2 sub-regions:(tmin

0 , sk], [sk, sk+1], [sk+1, sk+2],
..., [sN−1, sN ], [sN , T ). To solve Problem 2, we can find the
optimal objective function value over each sub-region, andget
N − k+2 objective function values, and then we pick up the
minimal value.

Now we show how to get the optimal objective function
value of Problem 2 over a sub-region oft0, denoted as[tL0, t

R
0 ]

(here superscript L and R stand for “left” and “right”). We first
get the feasible region oftT , denoted as[tLT , t

R
T ] when t0 is

within the sub-region. Recall thattT (t0) is a convex function
with t0.

• If t§0 ∈ [tL0, t
R
0 ], then tLT = t§T , and tRT =

max{tT (tL0), tT (t
R
0 )};

• Otherwise, tLT = min{tT (tL0), tT (t
R
0 )}, and tRT =

max{tT (tL0), tT (t
R
0 )}.

SinceY (tT , n) (objective function of Problem 2) is a quadratic
function of tT , it is easy to get the minimal value ofY (tT , n)
in closed form fortT ∈ [tLT , t

R
T ].

The above gives how to find the optimal solution of Problem
2, which is also optimal solution of Problem 1, since the two
problems are equivalent.

Complexity Analysis: We can see that to find the optimal
t0 value, we need to first find the value oft§0, and then
solve Problem 2 forN − k + 2 sub-regions oft0. The
value of t§0 is found by using a golden-section search, the
complexity of which isO(log(1/ǫ2)), whereǫ2 is the error
tolerance for golden-section search. In each iteration of the
golden-section search with a specifict0 value, we need to
calculatezi(Di, t0) for i ∈ N by using a bisection search,
the complexity of which isO(N log(1/ǫ1)), with ǫ1 the error
tolerance for the bisection search. Thus, the complexity in
getting the value oft§0 is O (N log(1/ǫ1) log(1/ǫ2)). For each
sub-region oft0, optimal solution of Problem 2 can be found
in closed form, with complexityO(1). Thus, complexity of
solving Problem 2 over allN − k + 2 sub-regions oft0
is O(N). Further, after the optimalt0 value for Problem 2
is found, we can get the corresponding optimalwi values
(i ∈ N ) by using a bisection method, with complexity
O(N log(1/ǫ1)). Overall, the complexity in solving Problem
1 is O (N log(1/ǫ1) log(1/ǫ2) +N +N log(1/ǫ1)).

IV. N UMERICAL RESULTS

Numerical results are presented next to show the perfor-
mance of our proposed method. Unless otherwise specified, we
have the following system parameter setting.N = {1, 2, 3, 4}.
The carrier frequency is 500MHz,σ2 = −140dBm, pT=1W,
wT = 1MHz, andη = 0.5. Both gi andhi i ∈ N experience
free-space attenuation with path loss component being 3 at a
distance of 50m, as well as Rayleigh fading with mean being
1. The length of one frame isT = 0.1s. The amount of data
generated in each frame isDi = 800 nats fori ∈ N .

In Fig. 2, average AoI is plotted for eacht0 value within
(tmin

0 , T ), with s1 = 0.1T, s2 = 0.4T, s3 = 0.6T, s4 = 0.8T .
As analyzed in the preceding section, the feasible region of
t0 consists of multiple sub-regions. Fig. 2 also shows our
analytically obtained optimalt0 value. It can be seen that the
analytically obtained optimalt0 value indeed minimizes the
average AoI, thus verifying the optimality of our solution.

From our discussion in Sections II and III, for a sensor (say
sensori), if its data generation momentsi is aftert0, then its
generated data in the current frame will be transmitted in the
next frame, leading to longer AoI. Thus, it may look intuitive
that AoI can be shortened if all thesi’s are shifted to the
beginning portion of a frame. To check this, we design the
following simulation. ForN sensors, consider(0, Tmax) as
the window for alls1, s2, ...sN . Without loss of generality, we
consider thats1, s2, ..., sN are evenly placed betweenTmax

N
and

(N−1)Tmax

N
, i.e.,s1 = Tmax

N
, sN = (N−1)Tmax

N
. Thus, a smaller

Tmax means that thesi’s are closer to the beginning moment
of each frame. Fig. 3 shows the minimal average AoI obtained
by our proposed solution for differentN andTmax values. We
have a counter-intuitive observation: a smallerTmax does not
guarantee smaller AoI. The reason is as follows. Consider a
specificTmax. Suppose we can find two sensors, say sensorj
and sensork, with sj smaller than the optimalt0 andsk larger
than the optimalt0. So sensorj’s generated data in a frame can
be transmitted in the current frame, while sensork’s data need
to be transmitted in the next frame. WhenTmax decreases,
indeed it is likely thatsk may be smaller than the optimal
t0, and thus sensork’s generated data in a frame may be
transmitted in the current frame, which reduces sensork’s AoI.
However, with a smallerTmax, sensorj’s sj moves towards
the beginning moment of the frame, which increases sensor
j’s AoI. Thus, overall, with a smallerTmax, the average AoI
of the system may decrease or increase.

Now we compare our proposed solution with a bench-
mark scheme. The benchmark scheme borrows the idea of
threshold-based transmission in [13], and thus, is referred to
as threshold-based scheme. In specific, when the harvested
energy level of the sensors are all more than a threshold, the
sensors stop energy harvesting and start data transmissions.
During transmissions, the bandwidth allocation to the sensors
is optimized so as to achieve the minimal AoI. Fig. 4 shows
average AoI of our proposed solution and the threshold-
based scheme when the threshold varies. It can be seen
that when the threshold increases, the average AoI of the
threshold-based scheme fluctuates. It can also be seen that our
proposed solution outperforms the threshold-based schemeas
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our solution has a lower average AoI.
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V. CONCLUSION

We investigate energy harvesting and bandwidth allocation
in a WPT-based WSN. Our target is minimal AoI by optimiz-
ing the energy harvesting timet0 and the bandwidth allocation
for data transmissions from the sensors. To solve the research
problem, we first discover a one-to-one mapping fromt0 to
the bandwidth allocation, i.e., for eacht0 value, there is a
corresponding bandwidth allocation vector for the sensors. We
also develop a method to find the corresponding bandwidth
allocation vector. Based on this finding, our research problem
is transformed to another problem that minimizes average AoI
by optimizing t0. Closed-form solution of the transformed
problem is obtained for each sub-region oft0, and the best
solution among allt0’s sub-regions is the optimal solution of
our research problem. Our proposed solution has complexity
linear to the number of sensors, and thus, is appropriate fora
low-complexity WSN.

REFERENCES

[1] M. R. Palattella et al., “Internet of Things in the 5G era: Enablers,
architecture, and business models,”IEEE J. Sel. Areas Commun., vol. 34,
no. 3, pp. 510–527, Mar. 2016.

[2] P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V.C. M. Leung,
and Y. L. Guan, “Wireless energy harvesting for the Internetof Things,”
IEEE Commun. Mag., vol. 53, no. 6, pp. 102–108, Jun. 2015.

[3] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless
networks with RF energy harvesting: A contemporary survey,” IEEE
Commun. Surveys Tuts., vol. 17, no. 2, pp. 757–789, 2nd Quart., 2015.

[4] Q. Gu et al., “Mobile edge computing via wireless power trans-
fer over multiple fading blocks: An optimal stopping approach,”
IEEE Trans. Veh. Technol., early access, Jun. 29, 2020, doi:
10.1109/TVT.2020.3005406.

[5] A. Kosta, N. Pappas, and V. Angelakis, “Age of information: A new
concept, metric, and tool,”Found. Trends Netw., vol. 12, no. 3, pp. 162–
259, 2017.

[6] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, andN. B. Shroff,
“Update or wait: How to keep your data fresh,”IEEE Trans. Inf. Theory,
vol. 63, no. 11, pp. 7492–7508, Nov. 2017.

[7] R. D. Yates and S. K. Kaul, “The age of information: Real-time status
updating by multiple sources,”IEEE Trans. Inf. Theory, vol. 65, no. 3,
pp. 1807–1827, Mar. 2019.

[8] X. Wu, J. Yang, and J. Wu, “Optimal status update for age ofinformation
minimization with an energy harvesting source,”IEEE Trans. Green
Commun. Netw., vol. 2, no. 1, pp. 193–204, Mar. 2018.

[9] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor, “Age-minimaltransmission
for energy harvesting sensors with finite batteries: Onlinepolicies,” IEEE
Trans. Inf. Theory, vol. 66, no. 1, pp. 534–556, Jan. 2020.

[10] A. Hentati, J. F. Frigon, and W. Ajib, “Energy harvesting wireless sensor
networks with channel estimation: Delay and packet loss performance
analysis,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1956–1969,
Feb. 2020.

[11] S. Feng and J. Yang, “Age of information minimization for
an energy harvesting source with updating erasures: With and
without feedback,” 2018, arXiv:1808.05141. [Online]. Available:
http://arxiv.org/abs/1808.05141

[12] A. Arafa and S. Ulukus, “Timely updates in energy harvesting two-hop
networks: Offline and online policies,”IEEE Trans. Wireless Commun.,
vol. 18, no. 8, pp. 4017–4030, Aug. 2019.

[13] Y. Dong, Z. Chen, and P. Fan, “Uplink age of information of unilaterally
powered two-way data exchanging systems,” inProc. IEEE INFOCOM
Workshops, Apr. 2018, pp. 559—564.

[14] I. Krikidis, “Average age of information in wireless powered sensor
network,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 628–632,
Apr. 2019.

[15] Y. Lu, K. Xiong, P. Fan, Z. Zhong, and K. B. Letaief, “Optimal
online transmission policy in wireless powered networks with urgency-
aware age of information,” 2019,arXiv:1901.09232. [Online]. Available:
http://arxiv.org/abs/1901.09232


