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Abstract—This paper considers joint optimization of spec-
trum sensing, channel probing and transmission power control
for a single-channel secondary transmitter that operates with
harvested energy from ambient sources. At each time slot, to
maximize the expected secondary throughput, the transmitter
needs to decide whether or not to perform the operations of
spectrum sensing, channel probing, and transmission, according
to energy status and channel fading status. First, we model this
stochastic optimization problem as a two-stage continuous-state
Markov decision process, with a sensing-and-probing stageand a
transmit-power-control stage. We simplify this problem bya more
useful after-state value function formulation. We then propose a
reinforcement learning algorithm to learn the after-state value
function from data samples when the statistical distributions of
harvested energy and channel fading are unknown. Numerical
results demonstrate learning characteristics and performance of
the proposed algorithm.

Index Terms—Cognitive radio, energy harvesting, power con-
trol, reinforcement learning, spectrum sensing.

I. I NTRODUCTION

Energy harvesting and cognitive radio aim to improve en-
ergy and spectral efficiency, respectively, of wireless networks.
Wireless energy harvesting may prolong the battery lifetime
of a wireless node, paving the way to greener communications
[2]. Cognitive radio relieves the problems of scarcity and
underutilization of spectrum [3]. Specifically, although the
spectrum has been more or less fully allocated, temporarily
unused spectrum slots of licensed or primary users (PUs)
at specific locations result in spectrum holes. Therefore,
unlicensed users (also called cognitive or secondary users
[SUs]) sense the environment, detect spectrum holes, and
opportunistically access the spectrum holes for their data
transmission. Thus, one can get the best of both worlds
by combiningenergy harvesting and cognitive radio[4].
However, the randomness of the energy harvesting process and
the uncertainty of spectrum holes introduce unique challenges
in optimal design of such systems.

Specifically, rapid and reliable identification of spectrum
holes is essential for cognitive radio. Furthermore, when
accessing spectrum holes, an SU must adapt its transmit power
depending on channel fading status, which is indicated by
channel state information (CSI) [5], [6]. The CSI estimation
process is referred to as channel probing: i.e., the SU transmits
a pilot sequence (see [7]–[9] and references therein for pilot
designs), which enables its receiver to evaluate the channel
and provide CSI feedback. Note that this channel probing
should take place on an identified spectrum hole. But due to
spectrum sensing errors, the SU may mistakenly estimate a
channel (which is actually busy) to be available. This generates
interference on PUs during both the channel probing and
secondary data transmission stages. Thus, SU must minimize
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interference on PUs during all of its operations including
spectrum sensing, channel probing and data transmission.

An energy harvesting SU may not perform all operations
described above. For instance, if the PU channel is very likely
to be occupied, the SU may skip sensing to save energy. In
a deep fading channel, the SU may skip data transmission.
Furthermore, since these three operations consume the har-
vested energy, they are coupled. Thus, in energy harvesting
cognitive radio, it is important to jointly control the processes
of sensing, probing and transmitting, by considering fading
status, PU channel occupancy, and energy status.

A. Related Works

Sensing and/or transmission policies for energy harvesting
cognitive radios have been extensively investigated [10]–[22],
which are categorized and summarized below.

1) Optimal Sensing Design:Optimal sensing is investigated
in [10]–[14] (without optimizing data transmission). Sensing
policy (i.e., to sense or not) and energy detection threshold are
derived for single-channel systems under an energy causality
constraint in [10], [11]. Specifically, in [10], for a static(non-
fading) channel, optimal sensing policy and energy detection
threshold are derived by using the tool of Markov decision
process (MDP), taking a collision constraint into account.In
[11], sensing duration and energy detection threshold over
a static channel are jointly optimized by using an MDP for
a greedy sensing policy. Reference [12] considers multi-user
multi-channel systems where the SUs harvest energy from PU
signals. Balancing the goals of harvesting more energy (from
busy channels) and gaining more access opportunities (from
idle channels), the optimal SU scheduling problem (which
schedules SUs to sense different channels) is investigated
over fading channels, by using decentralized learning. In
cooperative spectrum sensing, the joint design of sensing
policy, selection of cooperating SUs, and optimization of
the sensing threshold is studied in [13] by using MDP. A
similar problem is solved in [14] by using convex optimization,
where the SUs harvest energy from both radio frequency and
conventional (solar, wind and others) sources and different SUs
have different sensing accuracy levels.

2) Optimal Transmission Control:This topic is considered
in [15], [16]. Specifically, the work in [15] considers data
rate adaptation and channel allocation for an energy-harvesting
cognitive sensor node where channel availability status is
provided by a third party (which does not deplete energy from
the sensor node). Lyapunov optimization is used. Reference
[16] uses convex optimization to jointly optimize time slot
assignment and transmission power control in a time division
multiple access system, assuming that the CSI between SUs
and PUs is known. Here, the SUs use the underlay mode (i.e.,
they can transmit even if the PU spectrum is occupied, with a
condition that the SUs’ interference on PUs is not more than
a certain threshold [23]).



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2

3) Joint Optimization With Static (Non-Fading) Channels:
Joint sensing and transmission design for static wireless chan-
nels is considered in [17]–[20]. Specifically, sensing policy,
sensing duration and transmit power are jointly optimized
by using an MDP in [17]. Similarly, sensing energy, sensing
interval and transmit power are jointly designed by using an
MDP in [18]. Reference [19] assumes an energy half-duplex
constraint (i.e., sensing or transmitting is not allowed during
energy harvesting). To balance energy harvesting, sensing
accuracy and data throughput, a convex optimization method
is used to jointly optimize the durations of harvesting, sensing,
and transmission. Reference [20] considers that SUs harvest
energy from PU signals. Durations of harvesting, sensing, and
transmission are optimized by using convex optimization.

4) Joint Optimization With Fading Channels:The joint
optimization of sensing and transmission with fading channels
is studied in [21], [22]. Reference [21] investigates a heteroge-
neous secondary network that consists of energy-harvesting-
powered spectrum sensors and battery-powered data sensors,
which are jointly optimized (by using convex optimization)
for maximizing overall energy efficiency and performance.
Specifically, spectrum sensors are assigned over channels for
maximizing the detected transmission opportunities. Given
CSI of detected free channels, the data sensors determine
the channels (to be used) and their transmission durations
and transmission power levels over the channels, to minimize
the overall energy consumption. Note that, in this work, the
availability of CSI is assumeda priori. In [22], CSI acquisition
is considered in a single-SU system. To this end, the SU
probes CSI whenever energy is sufficient. Given probed CSI,
the SU uses an MDP to decide which channel(s) to sense
and whether to transmit or not if channel(s) are sensed free.
Since the SU probes channels before spectrum sensing, the
risk of probing busy channels exists. When this happens, the
channel estimation pilots will be corrupted by PU signals, and
the pilots may cause interference to primary receivers.

B. Motivations, Problem Statement and Contributions

Joint optimization of energy harvesting, channel sensing,
probing, and transmission, especially over fading channels has
not been reported widely. For instance, to adapt the transmit
power according to fading status, channel probing is necessary,
which can be conducted only if the PU channel is idle. Thus,
the SU does not know its fading status when it decides whether
or not to perform spectrum sensing. However, thissensing-
before-probing constrainthas not been captured before.

To fill this gap, we investigate a single-channel energy
harvesting cognitive radio system. If the single channel is
occupied by PUs, then the SU has no access. At each time
slot, the SU decides whether to sense or not, and if the channel
is sensed to be free, the SU may probe the channel. After a
successful probing, the SU obtains CSI. With that, the SU
needs to decide the transmit power level. To maximize long-
term data throughput, we consider the joint optimization of
sensing-probing-transmitting actions over a sequence of time
slots.

In order to carry out optimal actions, the SU must track and
exploit energy status, channel availability and fading status.
These variables change randomly and are also affected by

the previous sensing, probing and transmitting actions. We
cast this stochastic dynamic problem under the framework
of MDP [24] and reinforcement learning (RL) [25]. MDP is
a mathematical tool for modeling stochastic optimal control.
MDPs determine an optimal policy that maps each system state
to an optimal action by considering the action’s immediate
reward and future effects. RL can solve the optimal policy of
an MDP via exploiting samples collected from random rewards
and state transitions. This is particularly useful when theexact
model of the MDP is unknown or only partially known.

Although MDP and RL are standard tools, they should be
carefully adapted for our problem. Specifically, due to the
sensing-before-probing constraint, the SU cannot decide on its
transmission power level (via adapting to CSI) when deciding
whether or not to sense, since at the moment of making sensing
decision, the SU has not obtained its CSI yet.

To incorporate the above feature in formulating and solving
the optimal sensing-probing-transmitting policy, this paper
makes the following contributions:

1) We devise a time-slotted protocol, where spectrum sens-
ing, channel probing, and data transmission are conducted
sequentially. We formulate the optimal decision problem
as a two-stage MDP. The first stage deals with sensing
and probing, while the second deals with the control of
transmit power level. To the best of our knowledge, this
is the first paper that separates the sensing-probing stage
and the transmitting stage in MDP formulation for an
energy harvesting SU.

2) Via exploiting the structure of the two-stage MDP, the
optimal policy is developed based on anafter-state(also
called post-decision state) value function. The use of the
after-state function confers three advantages. First, the
solution of the original two-stage MDP presents practical
and theoretical difficulties (Remarks 1 and 2 in Section
III). The after-state value function can address these diffi-
culties and derive the optimal policy (Remarks 3 - 5 and
Corollary 1 in Section IV). Second, memory requirements
to represent the optimal policy are minimized. Third, it
enables the development of learning algorithms.

3) The SU often lacks the statistical distributions of har-
vested energy and channel fading. Thus, it must learn the
optimal policy without this information. To achieve this,
we propose an RL algorithm, which exploits samples of
energy harvesting and channel fading in order to learn
the after-state value function. The theoretical basis and
performance bounds of the algorithm are also provided.

Notation convention: Meanings of important symbols are
as follows. a: action; b: battery energy level;C: channel
availability status;d/x: endogenous/exogenous component of
a state;fY (·): probability density function (pdf) of random
variable (r.v.)Y ; EH/eH : harvested energy (r.v./realization);
H/h: channel gain (r.v./realization);J∗(·): after-state value
function; p: belief; r: reward; s: state; Θ: sensing result;
γ: discounting factor;β: after-state;ǫ: exploration rate. In
subscripts and superscripts,t, S, P, T mean time slot index,
“sensing”, “probing”, and “transmitting”, respectively.A vari-
abley′ denotes the notation ofy after one state transition in
an MDP model.
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Fig. 1: Structure of a time slot.

Fig. 2: FSM for sensing, probing, and transmitting of the SU.

II. SYSTEM MODEL

We consider a single PU channel and one SU. The PU
channel is shared by multiple PUs. All the PUs and the SU
follow a time-slotted synchronous communication. Over the
PU channel, the collective occupancy of the PUs across time
slots is modeled as an on-off Markov process. StatesC = 1
and C = 0 denote that the PU channel is available and
busy, respectively. The probability of state transition from state
i ∈ {0, 1} at a slot to statej ∈ {0, 1} at the next slot is denoted
as pij . It is assumed that the SU knows the state transition
probability matrix, which can be estimated with long-term
sensing measurements (see [26]). Note that the true stateC
is unknown by the SU. So the SU makes decisions based
on all observed information (e.g., sensing results and others).
All such information can be summarized as a scaled metric,
known as the belief variablep ∈ [0, 1], which represents the
SU’s belief in the channel’s availability [27].

The SU always has data to send. A block fading model is
applied. The channel gain between the SU and its receiver is
H , which is an independent and identically distributed (i.i.d.)
r.v. across time slots, with pdffH(·). This pdf is unknown to
the SU.

The SU harvests energy from sources such as wind, solar,
thermoelectric and others [28]. An energy package arrives
at the beginning of each time slot (which was harvested
throughout the previous time slot and stored in a temporal
energy storage device [29], [30]). The energy amountEH in
the package is an i.i.d. r.v. across time slots, with pdffE(·).
The SU does not know this pdf. The SU is equipped with a
finite battery, with capacityBmax. Let b denote the amount of
energy stored in the SU’s battery.

For the SU, each time slot is partitioned to three phases
with τS , τP and τT for sensing, probing, and transmitting,
respectively, shown in Fig. 1. In Fig. 1,eH is the energy
amount in the energy package that arrives at the beginning
of the time slot, andeS , eP , eT denote energy consumption in
the three phases, respectively. Next we elaborate on the three
phases of time slott. A finite step machine (FSM) (see Fig. 2)

is used to show the operations of the SU.
Sensing Step:At the beginning of the sensing phase of slott,

the SU, initially with battery levelbSt , beliefpSt , and harvested
energyeHt (eHt means the amount of energy in the energy
package that arrives at the beginning of slott), needs to decide
whether to sense or not. If the SU chooses not to sense (i.e.,
action aS = 0 in transition (1.1) of Fig. 2), it remains idle
until the beginning of slott+ 1 (i.e., the FSM transits to the
sensing step of slott+1), at which time it has battery energy
bSt+1 = φ(bSt + eHt), whereφ(b) is defined as:

φ(b) , max{min{b, Bmax}, 0},

and the belief on channel availability changes topSt+1 =
ψ(pSt ), whereψ(p) is defined as:

ψ(p) , prob{Ct+1 = 1|pt = p} = p · p11 + (1− p) · p01,

which represents the SU’s belief of next time slot given its
belief of current time slot asp. Further, at the beginning of slot
t+ 1, an energy package arrives with energy amounteHt+1.

If the SU decides to sense at slott (i.e., actionaS = 1),
then during the sensing phase, it senses the PU channel, by
using the energy detection method [31]. The sensing operation
consumes a fixed amount of energyeS . The sensing result
is denoted asΘ: Θ = 0 and Θ = 1 mean that the SU
estimates the PU channel to be busy and free, respectively.
The performance of energy detector is characterized by a
false alarm probabilitypFA , Pr{Θ = 0|C = 1} and a
miss-detection probabilitypM , Pr{Θ = 1|C = 0}. Here
Pr{·} means probability. Furthermore,pD , 1 − pM and
pO , 1 − pFA represent the probability of correct detection
of PU activities and the probability of a spectrum access
opportunity, respectively. The values ofpFA and pM are
known to the SU.

We have the following observations for the sensing result.
1) The SU gets a negative sensing result (i.e.,Θ = 0) with

probability 1 − G1(p
S
t ) (see transition (1.2) of Fig. 2),

whereG1(p) represents the probability of getting sensing
resultΘ = 1 given initial beliefp, i.e.,

G1(p) , Pr{Θ = 1|p} = p · pO + (1− p) · pM .

Then the SU will remain idle until the beginning of slot
t + 1, and we havebSt+1 = φ(φ(bSt + eHt) − eS), and
pSt+1 = ψ(G2(p

S
t )), whereG2(p) means the probability

that the channel is indeed idle given initial beliefp and
negative sensing result, i.e.,

G2(p) , Pr{C = 1|p,Θ = 0} =
p · pFA

p · pFA + (1− p) · pD
.

2) The SU gets a positive sensing result (Θ = 1) with
probabilityG1(p

S
t ) (see transition (1.3) of Fig. 2). Then

the SU proceeds to the probing phase. At the beginning
of the probing phase, the battery level isbPt = φ(φ(bSt +
eHt)−eS), and the belief transits topPt = G3(p

S
t ), where

G3(p) is the probability that the channel is indeed idle,
given initial beliefp and positive sensing result, i.e.,

G3(p) = Pr{C = 1|p,Θ = 1} =
p · pO

p · pO + (1− p) · pM
.

Probing Step:At the beginning of the probing phase, with
information(pPt , b

P
t ), the SU decides whether or not to probe
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the channel.1 If it decides not to probe (i.e., actionaP = 0,
see transition (2.1) of Fig. 2), the SU keeps inactive until the
beginning of slott + 1 (i.e., FSM transits to sensing step of
slot t+1), and the battery level remains the samebSt+1 = bPt ,
and the belief becomespSt+1 = ψ(pPt ). If the SU decides to
probe (i.e., actionaP = 1), it transmits channel estimation
pilots (with energy consumptioneP ) to the receiver.

1) There is probability(1− pPt ) that the channel at slott is
busy (see transition (2.2) of Fig. 2). If this happens, the
pilots will collide with primary activities, and will not
be correctly received by the receiver. Thus, there will be
no feedback (FB) from the receiver, denoted asFB = 0.
Then the SU remains idle until the beginning of slott+1
with batterybSt+1 = φ(bPt − eP ) and beliefpSt+1 = p01.

2) There is probabilitypPt that the channel at slott is idle,
and the SU can get FB (denoted asFB = 1) and obtain
the channel gain information,ht ≥ 0 (see transition (2.3)
of Fig. 2). The SU then proceeds to the transmitting step.
At this moment, the SU knows that the PU channel is
free, i.e.,pTt = 1, and the remaining energy isbTt =
φ(bPt − eP ).

Transmitting Step:In transmitting step, actionaT is the
amount of energyeT to use for transmission during the trans-
mitting phase.eT is selected from a finite setET of energy
levels. Note that ifeT = 0, there will be no transmission.
After data transmission, it goes to the beginning of slott+ 1
with battery levelbSt+1 = φ(bTt − eT ) and beliefpSt+1 = p11
(see transition (3) of Fig. 2).

III. T WO-STAGE MDP FORMULATION

A. Two-Stage MDP

Based on the FSM, we will use an MDP, shown in Fig. 3,
to model the control problem. Withs denoting a “state”,
a denoting an “action”, an MDP is fully characterized by
specifying the 4-tuple (S, {A(s)}s, f(·|s, a), r(s, a)), namely
state space, allowed actions at different states, state transition
kernel, and reward associated with each state-action pair,
which are described as follows.

Fig. 3: Two-stage MDP.

To reduce the state space, we merge the sensing and probing
steps into one stage (superscriptSP ) via jointly deciding these
actions at the beginning of the sensing phase. We also observe
that, at the transmitting step, the belief is always equal to1,
and thus, it is not necessary to represent it. Therefore, the
state spaceS is divided into two classes: 1) sensing-probing
statesSP = [bSP , pSP , eH ], with bSP ∈ [0, Bmax], pSP ∈

1When the available energy is low, the SU may select to sense inthe sensing
phase but not to probe in the probing phase. By sensing, the SUcan update
its belief about channel availability, which can benefit itsfuture decisions.
As the available energy is low (e.g., the energy is insufficient to support a
transmission), the SU may select not to probe, to save energy.

[0, 1] andeH ∈ [0,∞); and 2) transmitting statesT = [bT , h],
with bT ∈ [0, Bmax] and channel gainh ∈ [0,∞). Note that,
physically, bSP and pSP denote the battery level and belief
value, respectively, at the beginning of a sensing phase. That
is, at slott, bSP

t = bSt andpSP
t = pSt .

At a sensing-probing statesSP , the full set of available
actions are “not to sense” (action ‘00’), “to sense but not to
probe” (action ‘10’), and “to sense and to probe if possible”
(action ‘11’). Here for action ‘yz’, ‘ y’ and ‘z’ mean the
sensing decision and probing decision, respectively. So, we
haveaSP ∈ A(sSP ) = {00, 10, 11}. At a transmitting state
sT , the available actions are “transmission energy levels to
use”, i.e.,aT ∈ A(sT ) = ET. As shown in Fig. 3, from a
sensing-probing state, action ‘00’ and ‘10’ make a transition to
a sensing-probing state (in next slot), while action ‘11’ makes
a transition to a transmitting state if the channel is sensed
free andFB = 1, or to a sensing-probing state (in next slot)
otherwise. From a transmitting state, it always transits toa
sensing-probing state in the next slot.
f(·|s, a) is the pdf of the next states′ over S given

initial state s and the taken actiona. Denote δ(·) as the
Dirac delta function, which is used to generalizef(·|s, a)
to include discrete transition components. We can derive
the state transition kernel following the description of the
FSM. Starting fromsSP

t = [pSP
t , bSP

t , eHt], it may transit
to sSP

t+1 = [pSP
t+1, b

SP
t+1, eHt+1] or sTt = [bTt , ht] depending

on chosen actions2, with f(·|sSP
t , aSP ) shown in (3), (4), (5)

and (6) (on the top of next page). From transmitting state
sTt = [bTt , ht], it can only transit tosSP

t+1 = [pSP
t+1, b

SP
t+1, eHt+1],

with f(·|sTt , aT ) shown in (7) (on the top of next page). Note
that we treatfH(·) andfE(·) as generalized pdf’s, which cover
discrete or mixed r.v. models forH andEH .

At a sensing-probing state, because no data transmission has
occurred yet, the reward is set to 0, i.e.,

r(sSP
t , aSP ) = 0. (1)

At a transmitting state, the reward is the amount of transmitted
data, which is modeled (via the Shannon formula) as

r(sTt , aT = eT ) = τTW log2(1 +
eTht

τTN0W
)1(bTt ≥ eT ), (2)

whereW is the PU channel bandwidth,N0 is the thermal noise
power spectrum density and1(·) is an indicator function.

We next place a technical restriction on the r.v.H .

Assumption 1. Given any battery levelbT and any transmis-
sion energyeT , E[r(sT , eT )] andE[r2(sT , eT )] exist and are
bounded by some constantsL1 andL2, respectively, withE[·]
being the expectation operation over r.v.H .

Comparing with one-stage MDP: Here, we clarify the
difference between our proposed two-stage MDP and the one-
stage MDPs of [17], [18], [22]. In these one-stage MDPs,

2During the transition from statesSP
t

= [pSP
t
, bSP

t
, eHt], if probing is

not carried out, the battery level and belief value are updated once; if probing
is carried out, the battery level and belief are updated two times. For example,
if action is ‘11’ and the channel is sensed to be free(Θ = 1) (which means
the SU will probe) and the channel is indeed free (C = 1), then 1)bSP

t
first

becomesA = φ(φ(bSP
t

+eHt)−eS) due to sensing operation, and becomes
φ(A−eP ) due to probing operation, leading tobT

t
= φ(φ(φ(bSP

t
+eHt)−

eS) − eP ), and 2)pSP
t

first becomesG3(pSP
t

) due to sensing operation,
and becomes1 due to probing operation, leading topT

t
= 1.
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f(sSP
t+1|s

SP
t , aSP = 00) = δ(pSP

t+1 − ψ(p
SP
t ))δ(bSP

t+1 − φ(b
SP
t + eHt)) fE(eHt+1), (3)

f(sSP
t+1|s

SP
t , aSP = 10) = [(1 −G1(p

SP
t ))δ(pSP

t+1 − ψ(G2(p
SP
t ))) +G1(p

SP
t )δ(pSP

t+1 − ψ(G3(p
SP
t )))]

× δ(bSP
t+1 − φ(φ(b

SP
t + eHt)− eS)) fE(eHt+1), (4)

f(sSP
t+1|s

SP
t , aSP = 11) = G1(p

SP
t )(1 −G3(p

SP
t ))δ(pSP

t+1 − p01)δ(b
SP
t+1 − φ(φ(b

SP
t + eHt)− eS − eP ))

× fE(eHt+1) + (1−G1(p
SP
t ))δ(pSP

t+1 − ψ(G2(p
SP
t )))δ(bSP

t+1 − φ(φ(b
SP
t + eHt)− eS)) fE(eHt+1), (5)

f(sTt |s
SP
t , aSP = 11) = G1(p

SP
t )G3(p

SP
t )δ(bTt − φ(φ(b

SP
t + eHt)− eS − eP )) fH(ht). (6)

f(sSP
t+1|s

T
t , aT = eT ) = δ(pSP

t+1 − p11)δ(b
SP
t+1 − φ(b

T
t − eT )) fE(eHt+1). (7)

states are defined as available information before performing
spectrum sensing, where the sensing and transmission decision
are made simultaneously. This is possible, as CSIh is assumed
to be available before sensing the channel in [17], [18], [22].
Specifically, the works in [17], [18] assume a static channel
(i.e.,h = 1); while the work in [22] performs channel probing
before spectrum sensing, which is, however, an unusual order.

In our problem, due to the sensing-before-probing con-
straint, one-stage MDP does not apply, and we need to divide
the state space into two subspaces, one for sensing-probingde-
cision making, and the other for transmission decision making,
i.e., a two-stage MDP. This formulation naturally tracks and
represents information-decision flow bothacross time slots
(from sSP

t to sSP
t+1) andwithin a time slot (fromsSP

t to sTt ).
It enables us to apply generic MDP theory (Section III-B)
to define the optimal policy. In addition, the solving of the
optimal policy via after-state technique (Section IV) and RL
algorithm (Section V) relies on analyzing the structure of the
two-stage model.

B. Optimal Control via State Value FunctionV ∗

Let Π denote all stationary deterministic policies, which are
mappings froms ∈ S to A(s). We limit the control withinΠ.
For anyπ(·) ∈ Π, we define a functionV π(·) : S → R for
π(·) as follows,

V π(s) , E[

∞
∑

τ=0

γτr(sτ , π(sτ ))|s0 = s], (8)

wheresτ denotes the state of timeτ , γ ∈ [0, 1) is a constant
known as discounting factor3, and the expectation is defined4

by the state transition kernel (3)-(7). Therefore, by setting γ
to a value that is close to 1,V π(s) can be (approximately)
interpreted as the expected data throughput achieved by policy
π(·) over infinite time horizon with initial states.

Among Π, there is an optimal policyπ∗(·) ∈ Π such that
V π∗

(s) = sup
π(·)∈Π

{V π(s)}, ∀s, i.e., π∗(·) is able to maximize

expected throughput for any initial state. In addition,π∗(·) can
be identified by the Bellman equation [24, p. 154], which is
defined as follows,

V (s) = max
a∈A(s)

{r(s, a) + γE[V (s′)|s, a]}, (9)

3The discounting factor is used to ensure the infinite summation in (8) is
bounded, and therefore,V π(s) is well defined.

4The expectation is taken over the random states{sτ}∞τ=1
with the

distribution ofsτ determined byf(·|sτ−1, π(sτ−1)).

where s′ means the random next state given current states
and the taken actiona. The state value functionV ∗(s) is the
solution to (9). GivenV ∗(s), the optimal policyπ∗(s) can be
defined as

π∗(s) = argmax
a∈A(s)

{r(s, a) + γE[V ∗(s′)|s, a]}. (10)

Furthermore, it is shown [24, p. 152] that

V ∗(s) = V π∗

(s), ∀s. (11)

Therefore,V ∗(s) andV π∗

(s) are used interchangeably.

Remark 1. Although the optimal policyπ∗(s) can be obtained
from the state value functionV ∗(s), there are two practical
difficulties for using (9) and (10) to solve our problem. First,
the SU does not know the pdf ’sfE(·) and fH(·). Themax{·}
operation in (9), which is performed over theE[·] operation,
makes it difficult to estimate5 V ∗(s) by using samples. Second,
E[·] operation in (10) makes it difficult to get the optimal
action, even ifV ∗(s) is known.

Remark 2. In addition, there is another theoretical difficulty.
In discounting MDP theory, the existence ofV ∗(s) is usually
established from the contraction theory, which requires the
reward functionr(s, a) to be bounded for alls and all a [24,
p. 143]. However, this is not satisfied in our problem, since
we allow the channel gainh to take all positive values, and
hence,r(s, a) is unbounded over the state space. Therefore,
in this case, the existence ofV ∗(s) is not easy to establish.

As we will show in Section IV, both the practical and
theoretical difficulties can be solved by transforming the value
function into an after-state setting. Moreover, this transforma-
tion reduces space complexity via eliminating the explicitneed
for representingEH andH processes.

IV. A FTER-STATE REFORMULATION

Here, Section IV-A first analyzes the structure of the two-
stage MDP. Then Section IV-B reformulates the optimal
control in terms of after-state value functionJ∗. Finally,

5 This difficulty can be illustrated with a simpler task. GivenV 1 andV 2

are two r.v.s, suppose that we wish to estimatemax{E[V 1],E[V 2]}. And
we can only observe a batch of samples{max{v1

i
, v2

i
}}L

i=1
, wherev1

i
and

v2
i

are realizations ofV 1 andV 2, respectively. However, the simple sample
average of the observed information is not able to provide anunbiased es-
timation ofmax{E[V 1],E[V 2]}, sincelimL→∞

1

L

∑
L

i=1
max{v1

i
, v2

i
} ≥

max{E[V 1],E[V 2]}.
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TABLE I: Structured state transition model
d x a ∈ A(d, x) N (a) Observation pi(d, a) d′ = ̺i([d, x], a) fX(x′|̺i)

sSP [b, p] eH

00 1 none 1 [ψ(p), φ(b+ eH)] fE(·)

10 2 Θ = 1 G1(p) [ψ(G3(p)), φ(φ(b+ eH)− eS)] fE(·)
Θ = 0 1−G1(p) [ψ(G2(p)), φ(φ(b+ eH)− eS)] fE(·)

11 3
Θ = 1, FB =1 G1(p)G3(p) φ(φ(b + eH )− eS − eP ) fH (·)
Θ = 1, FB =0 G1(p)(1 −G3(p)) [p01, φ(φ(b+ eH)− eS − eP )] fE(·)

Θ = 0 1−G1(p) [ψ(G2(p)), φ(φ(b+ eH)− eS)] fE(·)
sT b h eT 1 none 1 [p11, φ(b− eT )] fE(·)

the solution ofJ∗, and its relationships with the state value
functionV ∗ are given in Section IV-C.

A. Structure of the MDP

The structural properties of the MDP given in the 4-tuple
(S, (A(s))s, f(·|s, a), r(s, a)) are as follows.

1) We divide each state into endogenous and exogenous
components. Specifically, for a sensing-probing statesSP , the
endogenous and exogenous components aredSP = [pSP , bSP ]
andxSP = {eH}, respectively. All possibledSP andxSP are
defined asDSP andXSP , respectively.

Similarly, for a transmitting statesT , the endogenous and
exogenous components aredT = {bT } andxT = {h}, respec-
tively. All possibledT andxT areDT andXT , respectively.

Finally, let d ∈ D = D
SP ∪ D

T andx ∈ X = X
SP ∪ X

T .
2) The number of available actionsA(s) at each states is

finite.
3) Checking the state transition kernel (3), (4), (5), (6) and

(7), we can see that, given states = [d, x], and actiona ∈
A(s), the transition to next states′ = [d′, x′] has following
properties.

• The stochastic model ofd′ is fully known. Specifically,
after applying an actiona taken at states = [d, x],
we haveN (a) possible cases depending on SU’s ob-
servations (e.g., sensing-probing outcomes after applying
certainaSP ). This leads toN (a) possible values ofd′.
And at the ith case, which happens with probability
pi(d, a), the value ofd′ takes the value̺i(s, a). Functions
N (·), ̺i(·, ·) and pi(·, ·) are known, and listed in Table
I for different d, x, a and observations.

• The x′ is a r.v. whose distribution depends on̺i(s, a),
i.e., if ̺i(s, a) ∈ D

SP , x′ has pdffE(·); and if ̺i(s, a) ∈
D

T , x′ has pdffH(·) (see Table I). This relationship is
described by conditional pdffX(x′|̺i(s, a)).

With these notations, the state transition kernelf(s′|s, a) can
be rewritten as:

f(s′|s, a) = f((d′, x′)|(d, x), a)

=

N (a)
∑

i=1

pi(d, a)δ(d
′ − ̺i(s, a)) fX(x′|̺i(s, a)). (12)

4) The rewardr([d, x], a) is deterministic, defined via (1)
and (2).

B. Introducing After-State Based Control

Based on the above structural properties, we now show that
optimal control can be developed based on so-called “after-
states”. Physically, an after-state is the endogenous component
of a state. However, for ease of presentation, we consider it
as a “virtual state” appended to the original MDP (Fig. 4).

Fig. 4: Augmented MDP model with after-state.

Specifically, after an actiona applied on a states = [d, x],
the state randomly transits to an after-stateβ. The number of
such transitions isN (a). At the ith transition, the after-state
is β = ̺i([d, x], a) with probabilitypi(d, a). Fromβ, the next
state iss′ = [d′, x′] with d′ = β andx′ has pdffX(·|β).

We next introduce after-state based control. The main ideas
are as follows. Fromβ, the next states′ = [d′, x′] only
depends onβ (i.e.,d′ = β, and the pdf ofx′ is conditioned on
β). Therefore,starting from an after-state β, the maximum
expected discounted reward only depends on β, and is
denoted as anafter-state value functionJ∗(β). The key is
that if J∗(β) is known for allβ, the optimal action at a state
s = [d, x] can be determined as

π∗([d, x]) =argmax
a∈A([d,x])

{r([d, x], a)

+

N (a)
∑

i=1

pi(d, a)J
∗(̺i([d, x], a))}. (13)

The expression in (13) is intuitive: the optimal action at a state
s = [d, x] is the one that maximizes the sum of the immediate
reward r([d, x], a) and the expected maximum future value
∑N (a)

i=1 pi(d, a)J
∗(̺i([d, x], a)). The solving ofJ∗(·) and the

formal proof of (13) are provided in Section IV-C.

Remark 3. Unlike (10), ifJ∗(·) is known, generating actions
with (13) is easy, sinceN (a) and|A(s)| are finite, andpi(d, a)
and̺i([d, x], a) are known. Furthermore, the space complexity
of J∗(·) is lower than that ofV ∗(·), sinceX does not need to
be represented inJ∗(·).

C. Establishing After-State Based Control

The development of this subsection is as follows. First, we
define a so-called after-state Bellman equation as

J(β) = γ E
X′|β

[

max
a′∈A([β,X′])

{r(β,X ′, a′)

+

N (a′)
∑

i=1

pi(β, a
′)J(̺i([β,X

′], a′))}

]

, (14)

where E
X′|β

[·] means taking expectation over r.v.X ′, which

has pdffX(·|β). Note thatX ′ means the random exogenous
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variable of the next state given that the current after-state isβ
(see Fig. 4). Then, Theorem 1 shows that (14) has a unique
solutionJ∗(·), and also provides a value iteration algorithm for
solving it. Note that, at this moment, the meaning ofJ∗(·) is
unclear. Finally, Theorem 2 and Corollary 1 show thatJ∗(·) is
exactly the after-state value function defined in Section IV-B,
and the policy defined with (13) is equivalent with (10), and
therefore, is the optimal policy.

Theorem 1. Given Assumption 1, there is a uniqueJ∗(·) that
satisfies (14). AndJ∗(·) can be calculated via a value iteration
algorithm: with J0(·) being an arbitrary bounded function,
the sequence of functions{Jl(·)}Ll=0 defined by the following
iteration equation: for allβ ∈ D,

Jl+1(β)← γ E
X′|β

[ max
a′∈A([β,X′])

{r([β,X ′], a′)

+

N (a′)
∑

i=1

pi(β, a
′)Jl(̺i([β,X

′], a′))}], (15)

converges toJ∗(·) whenL→∞.

Proof. See Appendix A.

Remark 4. Unlike the classical Bellman equation(9), in the
after-state Bellman equation(14), the expectation is outside of
the reward function. While the reward function is unbounded,
its expectation is bounded due to Assumption 1. Therefore, the
solution to(14) can be established by contraction theory.

Remark 5. Comparing with (9), equation (14) exchanges the
order of (conditional) expectation and maximization opera-
tors. And inside the maximization operator, functionsr(s, a),
N (a), pi(d, a), and ̺i(s, a) are known. These are crucial in
developing a learning algorithm that uses samples to estimate
the after-state value functionJ∗(·).

Theorem 2. The existence of a solutionV ∗(s) to (9) can be
established fromJ∗(β). In addition, their relationships are

V ∗([d, x]) = max
a∈A([d,x])

{

r([d, x], a)

+

N (a)
∑

i=1

pi(d, a)J
∗(̺i([d, x], a))

}

(16)

and
J∗(β) = γ E

X′|β
[V ∗([β,X ′])] . (17)

Proof. See Appendix B.

Corollary 1. J∗(·) is the after-state value function, and the
policy defined with(13) is optimal.

Proof. From (17) and the physical meaning ofV ∗(·) (see
(11)), J∗(β) represents the maximum expected discounted
sum of rewards, starting from after-stateβ. Therefore,J∗(·)
is the after-state value function.

The expression in (13) can be derived from the optimal
policy (10) as follows: first decompose the expectation with
(12), and then plug in (17). Therefore, (13) is the optimal
policy.

Corollary 1 shows that optimal control can be achieved
equivalently through value functionJ∗(·). And Theorem 1

establishes the existence ofJ∗(·) and also provides a value
iteration algorithm for solvingJ∗(·). To obtainJ∗(·) using
the value iteration algorithm, we have two observations. 1)
The after-state spaceD is continuous. Thus, after-state space
discretization is needed. 2) The computation ofE

X′|β
[·] requires

the knowledge offE(·) and fH(·), which is unknown in our
setting. Thus, RL can be used to learn a (near) optimal policy
via sample averaging, instead of taking expectation. Details
are given in the next section.

V. REINFORCEMENTLEARNING ALGORITHM

In this section, we first discretize the after-state space
into finite clusters,6 which is discussed in Section V-A. In
addition, a learning algorithm is proposed in Section V-B,
which learns a (near) optimal policy given data samples
of energy harvesting and wireless channel. Furthermore, the
algorithm’s convergence guarantee and performance bounds
are analyzed in Section V-C. Finally, the algorithm is modified
in Section V-D, for achieving simultaneous data sampling,
learning and control.

A. After-State Space Discretization

We divide the continuous after-state spaceD into a finite
number of portions or clustersK, which defines a mapping
ω(·) : D → K. In addition, all after-states assigned into the
same cluster are mapped into one representative after-state.
Mathematically, letD(k) , {β ∈ D|ω(β) = k} denote the
set of after-state assigned to clusterk ∈ K. Thus, we use
q(k) ∈ D(k) to represent all after-states ofD(k).

As an example, in Fig. 5, two-dimensionalDSP is uni-
formly discretized into 9 clustersKSP = {1, ..., 9}. The one-
dimensional after-state spaceDT is uniformly discretized into
3 clustersKT = {10, 11, 12}. The association from an after-
stateβ to the clusterk is denoted byk = ω(β). And the
after-states assigned to the same cluster are represented by its
central point,q(k).

Fig. 5: An example of after-state space discretization.

B. Learn Optimal Policy With Data Samples

With this discretization, we design an RL algorithm that
learns near optimal policy from the samples ofEH andH .

6In addition to discretization, other methods can also be used, such as tile
coding or radial basis functions [25, Chapter 8.3], which may accelerate the
learning.
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The idea is to learn a functiong(k), for k ∈ K, such that
g(ω(β)) is close toJ∗(β) for all β ∈ D. Then a near-optimal
policy can be constructed as

π̂([d, x]|g) = argmax
a∈A([d,x])

{r([d, x], a)

+

N (a)
∑

i=1

pi(d, a)g(ω(̺i([d, x], a))}.
(18)

Comparing (18) with (13), we observe that ifg(ω(β)) approx-
imatesJ∗(β) accurately,̂π(·|g) is close toπ∗(·).

The functiong(k) is learned by iteratively updating with
data samples. Each update uses only one data sample. This
facilitates the tailoring of the algorithm for online applications
(Section V-D). Next, we present the algorithm and some
intuitive reasons.

1) Algorithm: Initially we have arbitrary bounded function
g0(k). We calculategl+1(k) from gl(k) and xl, the lth data
sample. Sincexl can be either an energy or fading sample,
there are two cases:

• if xl is a sample ofEH , randomly chooseN non-repeated
clusters fromK

SP ;
• if xl is a sample ofH , randomly chooseN non-repeated

clusters fromK
T .

HereN is a parameter to balance learning speed and computa-
tion load. For either case, we denote the set of chosen clusters
asK̄l. Givenxl andK̄l, we have the updating rule as

gl+1(k) =

{

(1− αl(k)) · gl(k) + αl(k) · δl(k), if k ∈ K̄l;

gl(k), otherwise,
(19)

whereαl(k) ∈ (0, 1) is the step size of clusterk for the lth
iteration, andδl(k) is constructed withxl as

δl(k) , γ max
a∈A([q(k),xl])

{r([q(k), xl], a)

+

N (a)
∑

i=1

pi(q(k), a)gl(ω(̺i([q(k), xl], a)))}.
(20)

Section V-C will show that with proper setting of the step
size αl(k), the sequence of functions{gl(k)}∞l=1 converges
such thatg∞(ω(β)) is close toJ∗(β), and the policŷπ(·|g∞)
defined in (18) is close toπ∗(·).

Algorithm 1 Learning of control policy

Input: Data samples{xl}l
Output: Learned control policŷπ(s|gL)

Initialize g0(k) = 0, ∀k
for l from 0 to L− 1 do

if xl is a data sample ofEH then
ChooseN clusters fromK

SP and getKl

else if xl is a data sample ofH then
ChooseN clusters fromK

T and getKl

end if
Generategl+1(·) by executing (19) with (xl, Kl)

end for
With gL(·), construct control policŷπ(·|gL) through (18)

The above algorithmic pieces are summarized in Algo-
rithm 1. For a sufficiently large number (L) of iterations,
the learning process can be considered complete. The learned

policy π̂(s|gL) can then be used for sensing, probing and
transmission control, just as in Algorithm 2 in Section V-D.

2) Intuition: Algorithm 1 is a stochastic approximation
algorithm [32], which is intuitive generalization of the value
iteration algorithm (15). Specifically, it is known from (15)
that, given the value functionJl(·) of the l-th iteration, a noisy
estimation ofJl+1(β) can be constructed as

max
a′∈A([β,x′])

{r([β, x′], a′) +

N (a′)
∑

i=1

pi(β, a
′)Jl(̺i([β, x

′], a′))},

(21)
with x′ sampled fromfX(·|β), i.e., x′ is a realization ofEH

if β ∈ D
SP , andx′ is a realization ofH if β ∈ D

T .
Therefore, by comparing (21) with (20), we seeδl(k) as

an estimate ofgl+1(k) for k ∈ K̄l (with ω(·) introduced for
discretization,β approximated withq(k), andJl(·) replaced
with gl(·)). Hence, withδl(k), equation (19) updatesgl+1(·)
for chosen clusters within̄Kl by sample averaging. Note that,
theoretically, we can set̄Kl toK

SP orKT (xl is energy or fad-
ing sample), which could accelerate learning speed. However,
large |KSP | or |KT | leads to increased computations. Hence,
the parameterN is introduced to control the computational
burden. Section VI-B1 gives an example to show impact of
N .

C. Theoretical Soundness and Performance Bounds

In this part, we formally state the convergence requirements
and performance guarantees for Algorithm 1.

First, for ∀ k ∈ K, we defineM(k) = {l ∈ {0, 1, ..., L −
1}|k ∈ K l}, which presents the set of iteration indices where
k is chosen during learning. In addition, we define

ξ , max
k
{ sup
β∈D(k)

|J∗(β)− J∗(q(k))|}, (22)

which describes the “error” introduced by the after-state space
discretization. Finally, in order to evaluate the performance of
a policyπ(·) from after-states’ point of view, we define

Jπ(β) = γ E
X′|β

[V π([β,X ′])] , (23)

whereV π(·) is defined in (8).
Given the definitions ofM(k), ξ and Jπ(β), we have

following theorem.

Theorem 3. Given that Assumption 1 is true, and also
assuming that, in Algorithm 1, asL→∞,

∑

l∈M(k)

αl(k) =∞, ∀k (24)

∑

l∈M(k)

α2
l (k) <∞, ∀k (25)

then we have:
(i) the sequence of functions{gl(·)}Ll=0 generated in(19)

converge to a functiong∞(·) with probability 1 asL→
∞;

(ii) ||J∗ − J∞|| ≤
ξ

1−γ
, with

J∞(β) , g∞(ω(β)), (26)

and || · || denoting the maximum norm;
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(iii) ||J∗ − Jπ∞ || ≤ 2γξ
(1−γ)2 , with π∞(·) , π̂(·|g∞).

Proof. See Appendix C.

Remark 6. Statement (i) of Theorem 3 demonstrates the
convergence guarantee of Algorithm 1. Statement (ii) shows
that the learned functiong∞(·) is close toJ∗(·), and their
difference is controlled by the errorξ caused by after-state
space discretization. Statement (iii) claims that asymptomati-
cally, the performance of policies{π̂(·|gl)}l approaches that
of the optimal policyπ∗(·), and that the performance gap is
proportional to the errorξ.

Remark 7. Condition (24) requires |M(k)| = ∞, where
|M(k)| denotes the size ofM(k). In other words, energy
harvesting and wireless fading processes need to be sampled
infinitely often in{xl}

L−1
l=0 , asL→∞.

In order to satisfy
∑

l∈M(k) α
2
l (k) < ∞, the sequence of

step size{αl(k)}l∈M(k) should start to decay after certainl
with sufficient decay rate. However, the decay rate should not
be too large, in order to satisfy

∑

l∈M(k) αl(k) =∞.

D. Simultaneous Sampling, Learning and Control

Algorithm 1 operates offline — the policy is learned with
given data samples, and a learned policy cannot be used
until learning is complete. However, for some applications,
an online learning scheme may be more desirable. In online
case, sequential data is used to update the best learned policy
at each step.

One intuitive idea to tailor Algorithm 1 for online learning
is as follows. Supposing that current learned function isgl(·),
we can useπ̂(·|gl) to generate actions and interact with
the environment in real-time. Thus, we can collect a data
sample from energy harvesting or channel fading, which can
be further used to generategl+1(·). As the loop continues,gl(·)
approachesg∞(·), and the policyπ̂(·|gl) approachesπ∞(·),
which implies that generated actions during the process will be
more and more likely to be optimal. In this way, simultaneous
sampling, learning and control can be achieved.

However, the problem is that the above method cannot
guarantee to sample the wireless fading process infinitely-often
(i.e., cannot satisfy assumptions (24) and (25) of Theorem 3).
Note that the wireless fading process can be sampled only if
π̂(·|gl) choosesaSP = 11. But the above method may enter
a deadlock such thataSP = 11 will never be chosen. The
deadlock can be caused by: (1) insufficient battery energy
that results from the learned policy’s consistent aggressive
use of energy; and/or (2) persistently locking inaSP = 00
or aSP = 10. In order to break this possible deadlock during
the learning process, with some small probabilityǫ (named as
the exploration rate), we force the algorithm to deviate from
π̂(·|gl) to exploring the environment by either accumulating
energy (aSP = 00) or probing channel gain information
(aSP = 11).

Based on the above points, Algorithm 2 is provided for
sampling, learning and control. Here, we argue thatgl(·) gen-
erated by Algorithm 2 converges tog∞(·) whent→∞. First,
at each time slot, there is probabilityǫ/2 that the algorithm
will chooseaSP = 00 to accumulate energy. Therefore, given

Algorithm 2 Simultaneous sampling, learning and control

Note:βSP
t ∈ D

SP presents an after-state in slott. βT
t is defined

similarly.
1: Initialize: batteryb0, channel beliefp0, and after-stateβSP

0 =
[b0, p0]

2: Initialize: g0(k) = 0, ∀k, and setl = 0
3: for t from 1 to∞ do
4: Observe arriving harvested energy amounteHt

5: Setxl = eHt and chooseKl with N clusters fromK
SP

6: Generategl+1(·) by executing (19) with (xl, Kl)
7: l← l + 1
8: Construct statesSP

t = [βSP
t−1, eHt]

9: Generate sensing-probing decisionaSP
t = π̂(sSP

t |gl) via (18)

10: if random() ≤ ǫ then ⊲ Exploration
11: if random() ≤ 1/2 then
12: aSP

t = 00
13: else if bSP

t ≥ eS + eP then ⊲ Energy sufficiency
14: aSP

t = 11
15: end if
16: end if
17: Apply sensing and probing actions based onaSP

t

18: if aSP
t = 11 & Θ = 1 & FB = 1 then

19: Observe the channel gainht from FB
20: Set xl = ht, and constructKl by choosingN clusters

from K
T

21: Generategl+1(·) by executing (19) with (xl, Kl)
22: l← l + 1
23: Derive after-stateβT

t with sSP
t via Table I

24: Construct statesTt = [βT
t , ht]

25: Generate transmit decisionaT
t = π̂(sTt |gl) via (18)

26: Set transmission power based onaT
t , and transmit data

27: Derive after-stateβSP
t from (sTt , a

T
t ) via Table I

28: else
29: Derive after-stateβSP

t with sSP
t and aSP

t , Θ and FB
via Table I

30: end if
31: end for

the battery levelbSP
t of slot t, we can7 find a finiteT such

that prob{bSP
t+T ≥ eS + eP } > 0. In other words, at any slot

t ≥ T , we haveprob{bSP
t ≥ eS + eP } > 0. Thus, having

sufficient energy for sensing and probing, the algorithm will
chooseaSP = 11 with probabilityǫ/2. In addition, at any time
slot, the PU channel will be free with a non-zero probability.
Therefore, the algorithm can reach the transmitting stage with
a non-zero probability. Thus, the wireless fading process can
be sampled infinitely often fort → ∞. In summary, the
assumptions (24) and (25) of Theorem 3 are satisfied (under
properly decayed step size), and{gl(·)}l converges tog∞(·)
asymptotically.

1) Complexity Analysis of Algorithm 2:For eacht, major
computations are the two embedded function updates forgl(·)
(line 6 and line 21). Each update needs to compute (20)N
times. And each computation requires|N (a)| multiplications,
|N (a)| summations, and one maximization over a set.

2) Choices of Exploration Rate:Although the convergence
is guaranteed for anyǫ ∈ (0, 1), the choice ofǫ affects the
performance of the algorithm. Largeǫ helps to accelerate the
learning process. But too largeǫ may cause big loss of the
achievable performance. See Section VI-B2 for examples.

7If this condition cannot be satisfied, the underlying energyharvesting
process is not sufficient to power the SU.
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VI. SIMULATION RESULTS

A. Simulation Setup

We use simulation to evaluate the performance of the
proposed algorithms. The simulation is set up as follows.

The PU channel occupancy Markov model is described by
p00 = 0.9 and p11 = 0.9. For spectrum sensing, we have
pFA = 0.2 andPD = 0.9. The time slot durationτS+τP +τT
(Fig. 1) of the SU is 12 ms (which is synchronized to the PU
channel). We setτS = τP = 1ms.8 Hence, within each time
slot, we haveτT = 10 ms for data transmission.

Energy is harvested from wind power. Thus,EH is well
characterized by the Weibull distribution [33], with shapeand
mean parameterskE = 1.2 andµE = 1 (in Sections VI-C and
VI-D, other values ofµE are considered).

The SU signal channel gainh consists of path losshs and
Rayleigh fadinghf . hs is distance-dependent and is assumed
to be fixed.hf has pdff(x) = e−x, x ≥ 0.

Then, with above channel model, the amount of trans-
mitted data can be rewritten asτTW log2(1 +

eT hshf

τTN0W
) =

τTW log2(1 +
eThf

η
) where η , τTN0W/hs with W = 1

MHz. We normalizeη as η = 1 (for energy normalization).
Normalizing with respect toη, we set battery capacityBmax =
10, sensing energyeS = 1, probing energyeP = 2, and the
set of transiting energy levelsET = {0, 3, 4, 5, 6}.

Finally, simple uniform grid is used for discretization
with 10 levels for both belief and battery dimensions. Thus,
|KSP | = 100 and |KT | = 10. We set the discounting factor
γ as 0.9, and the learning step size rule asαl(k) = 104

l+104 ,
wherel is the index of updating iteration in Algorithm 1 and
Algorithm 2.

B. Characteristics of Learning Algorithm

1) Offline Learning Under VariousN : Here, we study the
learning speed of our offline algorithm (Algorithm 1) under
differentN . We set the updating iteration budgetL = 106,
andxl has equal probability to be sampled fromEH andH .
5 values ofN ∈ {1, 2, 3, 5, 10} are considered. Fig. 6 with
logarithmic time index shows the achieved average data rate
when the sensing-probing-transmitting control is learnedby
Algorithm 1.

In Fig. 6, it can be observed that for differentN values,
Algorithm 1 converges to the same limit. As expected, larger
N requires fewer learning steps to converge, which suggests
a trade-off between computational load and learning speed.
We also notice that there are turning points in all learning
curves, explained as follows. An optimal algorithm expectsto
maximize the sum of immediate reward at the current slot and
the expected reward in the future. Recall that, in Algorithm1,
we initially setg0(k) = 0, ∀k. This means that at the beginning
learning steps of Algorithm 1, the expected future reward
is deemed zero. Thus, Algorithm 1 advises to maximize
the immediate reward, i.e., act greedily for transmitting as

8There exists a tradeoff in settingτS andτP . With largerτS andτP , more
accurate spectrum sensing and more accurate channel gain estimation can be
achieved, at the cost of less time for transmission. As this paper focuses on
design and analysis of a learning algorithm for the decisionmaking process
of the SU, we setτS = τP = 1 ms. Nevertheless, optimal selection ofτS
and τP is an interesting research topic, which can be investigatedin future
research work.

many packets as possible. After a number of learning steps,
expected future reward starts to take effect in Algorithm 1,
and thus, the algorithm stops greedily sending packets and
starts to jointly learn the sensing-probing-transmissionpolicy.
This causes temporal performance loss (as the algorithm may
explore the system rather than transmitting as many packetsas
possible), but leads to the optimal performance asymptotically.
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Fig. 6: Learning curves of Algorithm 1 under variousN values.

2) Online Learning Under Various Exploration Rate
ǫ: With N = 1, we investigate the learning char-
acteristics of Algorithm 2 for exploration rateǫ ∈
{10−4, 10−3, 10−2, 10−1, 0.5} and for ǫ adapted tot as ǫ =
√

1/t. The average data rate is shown in Fig. 7.
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Fig. 7: Learning curves of Algorithm 2 under various exploration
rates.

From Fig. 7, we see that largerǫ tends to speed up learning.
It is because largerǫ implies more updates of CSI. However,
too large ǫ can cause performance loss due to aggressive
exploration. On the other hand,ǫ =

√

1/t, which starts with
large value and decreases over time, provides fast start-upand
also almost-lossless asymptotic performance.
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(a) Sensing-probing sub-policy. (b) Transmitting sub-policy.
Fig. 8: Learned sensing-probing and transmitting sub-policies.

C. Structure of Learned Policy

After a learning algorithm converges, we can obtain a
sensing-probing-transmitting policy from the learned function
gL(·). Specifically, givengL, a policy is fully specified via
a pair of sensing-probing ‘sub-policy’̂π([b, p, eH ]|gL) and
transmitting ‘sub-policy’π̂([b, h]|gL) (recalling that(π̂(·|gL)
is defined in (18)).

For µE = 5, the learned sub-policies are shown in Fig. 8(a)
and Fig. 8(b). Noting that the sensing-probing sub-policy is
also a function ofeH , Fig. 8(a) shows the sensing-probing sub-
policy with eH = 0, for presentation simplicity. Whenb > 7,
or when b is between 6 and 7 and beliefp is more than a
threshold, the optimal sensing-probing sub-policy is ‘11’ (i.e.,
to sense and to probe whenever possible). The sensing-probing
action ‘10’ (sense but not probe) is selected when beliefp is
close to 0.4 and the battery level is less than 6, explained
below. When beliefp is close to 0.4, the SU is unsure about
the channel availability, and thus, it is optimal to sense the
channel to gain the channel availability knowledge and guide
future decisions. On the other hand, the SU will not decide to
probe, because when the battery level is less than 6, if the SU
decides to probe, the total energy left for transmitting is less
than6−eS−eP = 6−1−2 = 3 (in other words, the SU will
not be able to transmit, since the minimal transmit power level
is 3 in our setting). For the transmitting sub-policy, higher
battery level and/or higher channel gainh result in higher
transmit power level, which is intuitive.

D. Performance Comparison

We next investigate the performance of learned policy. As
the one-stage MDPs of [17], [18] are the most relevant works
(see Section I), we compare our learned policy with a policy
that is derived from a one-stage MDP. Since the works in [17],
[18] assume static CSI, we implement the one-stage MDP of
[17], [18] over a static channel with fixed channel gain being
the average channel gain in our system.

We consider two baseline policies, namely “G-SPT” and
“G-SP”. G-SPT is a purely greedy policy. Whenever the
energy is sufficient, it senses and probes channel, and transmits
at maximum power level. G-SP takes greedy action at sensing-
probing stage, but adapts the transmit power based on probed
CSI (i.e., G-SP is actually our proposed method in which there
exists only one action ‘11’ for sensing-probing.)

We compare how these policies perform under different
values of µE . First, we consider the ability of a policy
to exploit channel access opportunities. This is measured

by channel access probability, which is the probability that
the channel is free while a sensing action is chosen. As a
benchmark, this probability is upper bounded by the channel’s
idle probability p01/(p01 + p10) = 0.1/0.2 = 0.5. Fig. 9
shows the measured channel access probabilities of different
policies, in which “1-stage” means one-stage MDP used in
[17], [18]. Fig. 10 shows the data rate achieved by different
policies, which is upper-bounded byτT /(τS + τP + τT ) ·
p01/(p01 + p10) · pO · E[W log2(1 + eMT hf )] ≈ 0.78 Mbps,
whereeMT = max{ET} = 6.
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Fig. 9: Channel access probability under differentµE .
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Fig. 10: Data rates for differentµE .

It can be seen that, whenµE increases, all the policies have
more channel access opportunities and higher data rates. And
with a high enough energy supply, channel access probabilities
of all the policies achieve the upper bound.

Note that G-SPT and G-SP are efficient at exploiting
channel access opportunities because they are aggressive in
sensing and probing. However, their greedy actions may result
in a lack of energy for data transmission, especially when
harvested energy is limited. Therefore, whenµE is small, their
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achieved data rates are small. Nevertheless, G-SP’s data rate
is higher than that of G-SPT. The main reason is that G-SP
adapts transmit power based on channel fading status, and
therefore, uses energy more efficiently for data transmitting
than a purely greedy policy.

As for one-stage MDP, it achieves higher data rate than G-
SP, whenµE < 5; but is slightly inferior to G-SP whenµE >
5. That is because, when energy is limited, making proper
sensing and probing decision to save energy for transmission
is more important. However, given a largeµE , energy expenses
due to greedy sensing and probing action are marginal relative
to the available energy, while properly selecting transmission
energy is of more importance. Therefore, with a largeµE , G-
SP, which makes transmission decision based on instantaneous
CSI, demonstrates better performance than one-stage MDP.

With full adaptation and a two-stage decision scheme, our
proposed method achieves favorable energy tradeoff between
sensing-probing and transmission stages, and thus, achieves
the best data rate.

VII. C ONCLUSIONS

This paper studied the optimal sensing, probing and power
control problem for an energy harvesting SU operating in a
fading channel. The problem was modeled as a two-stage con-
tinuous state MDP and then simplified via the after-state value
function. The SU learns this function without knowledge of
statistical distributions of the wireless channel and the energy
harvesting process. For this learning process, we developed a
reinforcement learning algorithm and investigated its learning
characteristics and performance via simulation.

Our work can be extended to the following scenarios.
Multiple-channel scenario:With multiple channels, the SU

can maintain a belief value for availability of each channel.
When the SU decides to sense, it needs to decide which
channel to sense. Similar to our work, a two-stage MDP can
be developed, and after-state formulation can be used to find
the optimal policy.

Multiple-SU scenario:With multiple SUs, if an SU decides
to probe the channel, it applies a contention procedure such
as carrier sense multiple access. If it wins the contention,
it probes the channel; otherwise, it keeps idle until the next
time slot. Accordingly, by adding a probability of successful
contention into our two-stage MDP, our algorithms can be
applied to get optimal policy for each SU.

Bursty-traffic scenario:Now the data buffer fluctuates ran-
domly. Therefore, not only the amount of transmitted data, but
also the reduction of packet losses due to data buffer overflow
is of interest. Thus, we can include the occupancy of data
buffer into our definition of “state”, and redefine the reward
function as a weighted combination of sent data with a positive
weight and data buffer occupancy with a negative weight (such
a reward definition is also considered in [34]). We can then
formulate a two-stage MDP, and use after-state value function
to find the optimal policy.

APPENDIX A
PROOF OFTHEOREM 1

Theorem 1 is proved with the use of contraction theory.
Specifically, we show the solution to (14) uniquely exists, and

it is the fixed point of a contraction mapping. Furthermore,
the value iteration algorithm (15) converges to the fixed point.

First, define the set of bounded functionsJ : D→ R asF.
Then, letT ∗ be an operator onF, and for anyJ ∈ F, T ∗J is
another function with domainD, whose value atβ is defined
as

(T ∗J)(β) = γ E
X′|β

[ max
a′∈A([β,X′])

{r([β,X ′], a′)

+

N (a′)
∑

i=1

pi(β, a
′)J (̺i([β,X

′], a′))}].

By Assumption 1, it is easy to check that, givenJ is bounded,
T ∗J is bounded (i.e.,T ∗J ∈ F). Therefore,T ∗ is a mapping
fromF toF. It is shown in [35, p. 211] thatF is complete under
the maximum norm. Furthermore, as shown in the following,
T ∗ is a contraction mapping under the maximum norm with
modulusγ. Therefore, the contraction theory applies toT ∗.

Due to the contraction theory [35, p. 209], there exists a
unique fixed point forT ∗, denoted asJ∗, such thatT ∗J∗ =
J∗, i.e., functionJ∗ does not change under operatorT ∗. Note
that equationT ∗J∗ = J∗ is exactly the after-state Bellman
equation (14). Therefore, we have shown that there is a unique
solution to (14).

In addition, the contraction theory [35, p. 209] states that,
for arbitrary functionJ0 ∈ F, lim

l→∞
T ∗lJ0 = J∗. Note that

T ∗lJ0 means the function that is generated by, starting from
J0, iteratively applying operatorT ∗ on previously generated
function forl times, which exactly describes the value iteration
algorithm (15). This has proved the value iteration algorithm
(15) converges toJ∗.

Hence, there only remains to show thatT ∗ is a contraction
mapping. Given any two functionsJ1, J2 ∈ F, for β that
satisfies(T ∗J1)(β) ≥ (T ∗J2)(β), we have

0 ≤ (T ∗J1)(β) − (T ∗J2)(β)

= γ E
X′|β

[

max
a1∈A([β,X′])

{

r([β,X ′], a1)

+

N (a1)
∑

i=1

pi(β, a1)J1(ρi([β,X
′], a1))

}

− max
a2∈A([β,X′])

{

r([β,X ′], a2)

+

N (a2)
∑

i=1

pi(β, a2)J2(ρi([β,X
′], a2))

}

]

≤ γ E
X′|β

[

r([β,X ′], a∗1) +

N (a∗

1
)

∑

i=1

pi(β, a
∗
1)J1(ρi([β,X

′], a∗1))

− r([d,X ′], a∗1)−

N (a∗

1
)

∑

i=1

pi(β, a
∗
1)J2(ρi([β,X

′], a∗1))

]

= γ E
X′|β

[N (a∗

1
)

∑

i=1

pi(β, a
∗
1)

×
(

J1(ρi([β,X
′], a∗1))− J2(ρi([d,X

′], a∗1))
)

]

≤ γ E
X′|β

[N (a∗

1
)

∑

i=1

pi(a
∗
1)||J1 − J2||

]

= γ||J1 − J2||, (27)
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where

a∗1 = argmax
a1∈A([β,X′])

{r([β,X ′], a1)

+

N (a1)
∑

i=1

pi(β, a1)J1(ρi([β,X
′], a1))},

and || · || is the maximum norm.
For β that satisfies(T ∗J1)(β) < (T ∗J2)(β), we can get

0 < (T ∗J2)(β) − (T ∗J1)(β) ≤ γ||J1 − J2||, (28)

following similar procedure by replacingJ1 to J2, and vice
versa. Therefore, combining (27) with (28) gives|(T ∗J1)(β)−
(T ∗J2)(β)| ≤ γ||J1 − J2|| for all β ∈ D, i.e., ||T ∗J1 −
T ∗J2|| ≤ γ||J1 − J2||. It has proved thatT ∗ is a contraction
mapping onF with modulusγ. And the proof of Theorem 1
is completed.

APPENDIX B
PROOF OFTHEOREM 2

With s = [d, x], define a function

G(s) , max
a∈A(s)

{

r(s, a) +

N (a)
∑

i=1

pi(d, a)J
∗(̺i(s, a))

}

. (29)

ExpandingJ∗(̺(s, a)) from equation (14) gives

G(s) = max
a∈A([d,x])

{

r(s, a) +

N (a)
∑

i=1

pi(d, a)×

γ E
X′|̺i(s,a)

[

max
a′∈A([̺i(s,a),X′])

{r(̺i(s, a), X
′, a′)

+

N (a′)
∑

j=1

pj(d
′, a′)J(̺j(̺i(s, a), X

′, a′))}
]

}

= max
a∈A([d,x])

{

r(s, a)

+ γ

N (a)
∑

i=1

pi(d, a) E
X′|̺i(s,a)

[G(̺i(s, a), X
′)]

}

= max
a∈A([d,x])

{

r(s, a) + γE [G(S′)|s, a]
}

, (30)

where the definition ofG implies the second equality, and
(12) implies the last equality. Note that (30) is exactly the
state Bellman equation (9). Therefore, functionG = V ∗ solves
(9), and the relationship (16) is established. Finally, with (29)
and the definition of the after-state Bellman equation (14),the
relationship (17) is established, which completes the proof.

APPENDIX C
PROOF OFTHEOREM 3

For Algorithm 1, we define two operatorsH and Ĥ . Let
H be an operator on functionsK 7→ R. Applying H on a
function g, i.e., Hg, gives another function with domainK,
and its value atk is defined as

(Hg)(k) = γ E
X′|q(k)

[ max
a′∈A([q(k),X′])

{r([q(k), X ′], a′)

+

N (a′)
∑

i=1

pi(q(k), a
′)g(ω(̺i([q(k), X

′], a′)))}].

Similarly, define another operator on functionsK 7→ R as

(Ĥg)(k) = γ max
a′∈A([q(k),X′])

{r([q(k), X ′], a′)

+

N (a′)
∑

i=1

pi(q(k), a
′)g(ω(̺i([q(k), X

′], a′)))},

whereX ′ is a r.v. with pdffX(·|q(k)). Note that the outcome
of Ĥg is random, and depends on the realization ofX ′.

Note that, in Algorithm 1, at any iterationl, gl(k) does
not change fork /∈ K̄l. Therefore, the step size valueαl(k),
∀k /∈ K̄l, does not affect the algorithm. By definingαl(k) = 0,
∀k /∈ K̄l, and with the operatorsH andĤ, the updating (19)
can be rewritten as,∀k ∈ K:

gl+1(k) = (1−αl(k))gl(k)+αl(k)((Hgl)(k)+wl(k)) (31)

wherewl(k) = (Ĥgl)(k)− (Hgl)(k).

A. Proof of Statement (i):

From [36, Proposition 4.4], we have following lemma.

Lemma 1. Given following conditions,
(a) H is a contraction mapping under maximum norm;
(b) for all k,

∑∞
l=0 αl(k) =∞, and

∑∞
l=0 α

2
l (k) <∞;

(c) for all k and l, E[wl(k)|gl] = 0;
(d) there exist constantC1 andC2 such thatE[w2

l (k)|gl] ≤
C1 + C2||gl||2;

the sequence of functions{gl}l generated from iteration (31)
converges to a functiong∞ with probability 1, and the limiting
functiong∞ satisfyingHg∞ = g∞.

We prove the statement (i) of Theorem 3 by checking the
four conditions of Lemma 1 as follows. First, the contraction
mapping condition (a) ofH can be established in a similar
procedure as the proof of Theorem 1, and is omitted here.
Then, due to assumptions (24) and (25) of Theorem 3, the
condition (b) aboutαl is satisfied. In addition, we have
E[wl(k)|gl] = 0 via the definition ofH and Ĥ. Therefore,
the condition (c) is satisfied. Finally, we have to prove the
condition (d): the bounded variance property ofwl. For given
k and l, we define a function as

I(x) =γ max
a′∈A([q(k),x])

{r([q(k), x], a′)

+

N (a′)
∑

i=1

pi(q(k), a
′)gl(ω(̺i([q(k), x], a

′)))}.

With the notationI(x), we have

E[w2
l (k)|gl] = E

X′|q(k)

[(

I(X ′)− E
Y ′|q(k)

[I(Y ′)]

)2∣
∣

∣

∣

gl

]

= E
X′|q(k)

[(

E
Y ′|q(k)

[I(X ′)− I(Y ′)]

)2∣
∣

∣

∣

gl

]

≤ E
X′|q(k)

[(

E
Y ′|q(k)

[2max{
∣

∣I(X ′)
∣

∣,
∣

∣I(Y ′)
∣

∣}]

)2∣
∣

∣

∣

gl

]

≤ E
X′|q(k)

[(

E
Y ′|q(k)

[2|I(X ′)
∣

∣]

)2∣
∣

∣

∣

gl

]

+ E
X′|q(k)

[(

E
Y ′|q(k)

[2
∣

∣I(Y ′)
∣

∣]

)2∣
∣

∣

∣

gl

]
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1©
≤ E

X′|q(k)

[(

2
∣

∣I(X ′)
∣

∣

)2∣
∣gl

]

+ E
X′|q(k)

[(

2L1 + 2||gl||
)2∣
∣gl

]

2©
≤ 8L2 + 8||gl||

2 + 8L2
1 + 8||gl||

2 = 8(L2 + L2
1) + 16||gl||

2,

where the inequalities1© and 2© hold from Assumption 1
and the fact that(x + y)2 ≤ 2x2 + 2y2 for any real value
x and y. Therefore, it is proven thatE[w2

l (k)|gl] is bounded
by 8(L2 + L2

1) + 16||gl||2, which completes the proof of the
statement (i) of Theorem 3.

B. Proof of Statement (ii):

First, define a partial order for functionsK 7→ R as follows.
If g1(k) ≤ g2(k), ∀k, we sayg1 ≤ g2. It is easy to check that,
given any two functionsg1 andg2 satisfyingg1 ≤ g2, we have
Hg1 ≤ Hg2.

Then, define a function̄g(k) , inf
β∈D(k)

J∗(β)+ ξ
1−γ

. Apply-

ing H on ḡ gives

(Hḡ)(k) = γ E
X′|q(k)

[

max
a′∈A([q(k),X′])

{

r([q(k), X ′], a′)

+

N (a′)
∑

i=1

pi(q(k), a
′)ḡ(ω(̺i([q(k), X

′], a′)))
}

]

3©
≤ γ E

X′|q(k)

[

max
a′∈A([q(k),X′])

{

r([q(k), X ′], a′)

+

N (a′)
∑

i=1

pi(q(k), a
′)
(

J∗(̺i([q(k), X
′], a′)) +

ξ

1− γ

)}

]

4©
= J∗(q(k)) +

γξ

1− γ

5©
≤ inf

β∈D(k)
J∗(β) + ξ +

γξ

1− γ
= ḡ(k),

where inequality3© is due to the definition of̄g(k), equality
4© comes from the after-state Bellman equation (14), and
inequality 5© is due to the definition ofξ in (22). Therefore,
we have(Hḡ)(k) ≤ ḡ(k) for all k, i.e.,Hḡ ≤ ḡ.

Combining the fact thatHg1 ≤ Hg2, if g1 ≤ g2, with
the fact thatHḡ ≤ ḡ, we haveHkḡ ≤ ḡ, whereHk means
applyingH operatork times. Then, due to Lemma 1 in the
proof of statement (i), we havelim

k→∞
Hkḡ = g∞ ≤ ḡ, which

meansg∞(k) ≤ inf
β∈D(k)

J∗(β) + ξ
1−γ

, ∀ k. Therefore, we get

J∗(β) ≥ g∞(ω(β))− ξ
1−γ

, ∀β. From the definition ofJ∞ in

(26), J∗(β) − J∞(β) ≥ − ξ
1−γ

, ∀β, follows.
On the other hand, definingg(k) = sup

β∈D(k)

J∗(β) − ξ
1−γ

and following the similar procedure, we can proveHg ≥ g,
and therefore, getJ∗(β) ≤ g∞(ω(β)) + ξ

1−γ
. In turn, it

implies J∗(β) − J∞(β) ≤ ξ
1−γ

, which completes the proof
of statement (ii) in Theorem 3.

C. Proof of Statement (iii):

For any policyπ, define an operatorT π on F (F is defined
in Appendix A) as

(T πJ)(β) =γ E
X′|β

[r([β,X ′], π)

+

N (π)
∑

i=1

pi(β, π)J (̺i([β,X
′], π))], (32)

with π inside r, N , pi and ̺i denoting π([β,X ′]).
And from the state transition kernel (12),Jπ∞

as defined by (23) can be recursively rewritten
as Jπ∞(β) = γ E

X′|β
[r([β,X ′], π∞) +

∑N (π∞)
i=1 pi(β, π∞)Jπ∞(̺i([β,X

′], π∞))]. By comparing
this expression withT π in (32), we have

T π∞Jπ∞ = Jπ∞ . (33)

In addition, similar to the proof of Theorem 1,T π is a
contraction mapping with modulusγ, which means

||T π∞J1 − T
π∞J2|| ≤ γ||J1 − J2|| (34)

for any J1 and J2. Besides, from the definitions of̂π(·|g∞)
(i.e., π∞) in (18) andJ∞ in (26), we have (T ∗ defined in
Appendix A)

T π∞J∞ = T ∗J∞. (35)

Furthermore, from statement (ii) of Theorem 3, we have

||J∗ − J∞|| ≤
ξ

1− γ
. (36)

Finally, it is shown in the proof of Theorem 1 that

T ∗J∗ = J∗, (37)

||T ∗J1 − T
∗J2|| ≤ γ||J1 − J2||, for any J1 andJ2. (38)

By combining the above results, we have

||Jπ∞ − J∗||
6©
= ||T π∞Jπ∞ − J∗||

7©
≤ ||T π∞Jπ∞ − T π∞J∞||+ ||T

π∞J∞ − J
∗||

8©
≤ γ||Jπ∞ − J∞||+ ||T

∗J∞ − T
∗J∗||

9©
≤ γ||Jπ∞ − J∗||+ γ||J∗ − J∞||+ γ||J∞ − J

∗||

A©
≤ γ||Jπ∞ − J∗||+

2γξ

1− γ
, (39)

where 6© is from (33); 7© is the triangle inequality;8© is from
(34), (35) and (37);9© is from the triangle inequality and (38),
and A© is from (36). Finally, from (39), we have||Jπ∞−J∗|| ≤

2γξ
(1−γ)2 , which proves statement (iii) of Theorem 3.
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