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Abstract—This paper considers joint optimization of spec- interference on PUs during all of its operations including
trum sensing, channel probing and transmission power contl  spectrum sensing, channel probing and data transmission.
for a single-channel secondary transmitter that operates Wh An energy harvesting SU may not perform all operations

harvested energy from ambient sources. At each time slot, to . . . . .
maximize the expected secondary throughput, the transmiér described above. For instance, if the PU channel is veryylike

needs to decide whether or not to perform the operations of t0 be occupied, the SU may skip sensing to save energy. In
spectrum sensing, channel probing, and transmission, acating a deep fading channel, the SU may skip data transmission.
to energy status and channel fading status. First, we modehts  Fyrthermore, since these three operations consume the har-
stochastic optimization problem as a two-stage confinuoustate yested energy, they are coupled. Thus, in energy harvesting

Markov decision process, with a sensing-and-probing stagand a iti dio. it is i tant to iointl trol th
transmit-power-control stage. We simplify this problem bya more ~ CO9NIIVE radio, IL1s important to jointly control theé pregses

useful after-state value function formulation. We then prepose a  Of sensing, probing and transmitting, by considering fgdin
reinforcement learning algorithm to learn the after-state value status, PU channel occupancy, and energy status.

function from data samples when the statistical distributons of

harvested energy and channel fading are unknown. Numerical

results demonstrate learning characteristics and performnce of A. Related Works

the proposed algorithm. Sensing and/or transmission policies for energy harvgstin

Index Terms—Cognitive radio, energy harvesting, power con- cognitive radios have been extensively investigated [PZ]};
trol, reinforcement learning, spectrum sensing. which are categorized and summarized below.
1) Optimal Sensing DesigrOptimal sensing is investigated
|. INTRODUCTION in [10]-[14] (without optimizing data transmission). Senp
Energy harvesting and cognitive radio aim to improve efpolicy (i.e., to sense or not) and energy detection threshs
ergy and spectral efficiency, respectively, of wirelesswoeks. derived for single-channel systems under an energy caysali
Wireless energy harvesting may prolong the battery lifetingonstraint in [10], [11]. Specifically, in [10], for a stat{oon-
of a wireless node, paving the way to greener communicatioidsling) channel, optimal sensing policy and energy deiacti
[2]. Cognitive radio relieves the problems of scarcity anthreshold are derived by using the tool of Markov decision
underutilization of spectrum [3]. Specifically, althoughet process (MDP), taking a collision constraint into account.
spectrum has been more or less fully allocated, temporariid], sensing duration and energy detection threshold over
unused spectrum slots of licensed or primary users (PUs)static channel are jointly optimized by using an MDP for
at specific locations result in spectrum holes. Therefor@,greedy sensing policy. Reference [12] considers muéi-us
unlicensed users (also called cognitive or secondary ussmglti-channel systems where the SUs harvest energy from PU
[SUs]) sense the environment, detect spectrum holes, ai@nals. Balancing the goals of harvesting more energyn(fro
opportunistically access the spectrum holes for their ddgsy channels) and gaining more access opportunities (from
transmission. Thus, one can get the best of both worlile channels), the optimal SU scheduling problem (which
by combiningenergy harvesting and cognitive radio[4]. schedules SUs to sense different channels) is investigated
However, the randomness of the energy harvesting process aver fading channels, by using decentralized learning. In
the uncertainty of spectrum holes introduce unique chgéien cooperative spectrum sensing, the joint design of sensing
in optimal design of such systems. policy, selection of cooperating SUs, and optimization of
Specifically, rapid and reliable identification of spectrurthe sensing threshold is studied in [13] by using MDP. A
holes is essential for cognitive radio. Furthermore, whegimilar problemis solved in [14] by using convex optimizetj
accessing spectrum holes, an SU must adapt its transmitrpowbere the SUs harvest energy from both radio frequency and
depending on channel fading status, which is indicated legnventional (solar, wind and others) sources and diftssers
channel state information (CSI) [5], [6]. The CSI estimatiohave different sensing accuracy levels.
process is referred to as channel probing: i.e., the SUrriams  2) Optimal Transmission ControlThis topic is considered
a pilot sequence (see [7]-[9] and references therein far piin [15], [16]. Specifically, the work in [15] considers data
designs), which enables its receiver to evaluate the ctanrate adaptation and channel allocation for an energy-sting
and provide CSI feedback. Note that this channel probiggnitive sensor node where channel availability status is
should take place on an identified spectrum hole. But due peovided by a third party (which does not deplete energy from
spectrum sensing errors, the SU may mistakenly estimatéha sensor node). Lyapunov optimization is used. Reference
channel (which is actually busy) to be available. This gatesr [16] uses convex optimization to jointly optimize time slot
interference on PUs during both the channel probing a@gsignment and transmission power control in a time dimisio
secondary data transmission stages. Thus, SU must minintizeltiple access system, assuming that the CSI between SUs
" _ ed May 3. 2018 revised October 4. 2018 Bagbmb and PUs is known. Here, the SUs use the underlay mode (i.e.,
o pecto e May 8, 2018, eised Ocober &, 20130eckriberfhey can wansmit even f the PU specirum is occupied, with a
the 2017 IEEE International Conference on Communicatiéiasis, France, condition that the SUs’ interference on PUs is not more than
May 2017 [1]. a certain threshold [23]).



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2

3) Joint Optimization With Static (Non-Fading) Channelsthe previous sensing, probing and transmitting actions. We
Joint sensing and transmission design for static wirelaasc cast this stochastic dynamic problem under the framework
nels is considered in [17]-[20]. Specifically, sensing pgli of MDP [24] and reinforcement learning (RL) [25]. MDP is
sensing duration and transmit power are jointly optimizeal mathematical tool for modeling stochastic optimal cdntro
by using an MDP in [17]. Similarly, sensing energy, sensingiDPs determine an optimal policy that maps each system state
interval and transmit power are jointly designed by using @o an optimal action by considering the action’s immediate
MDP in [18]. Reference [19] assumes an energy half-duplesward and future effects. RL can solve the optimal policy of
constraint (i.e., sensing or transmitting is not allowediy an MDP via exploiting samples collected from random rewards
energy harvesting). To balance energy harvesting, sensargl state transitions. This is particularly useful whendkact
accuracy and data throughput, a convex optimization methoadel of the MDP is unknown or only partially known.

is used to jointly optimize the durations of harvesting,sseg, Although MDP and RL are standard tools, they should be
and transmission. Reference [20] considers that SUs hal'V@érefu"y adapted for our problem. Specifically, due to the
energy from PU signals. Durations of harvesting, sensind, asensing-before-probing constraint, the SU cannot deaidéso
transmission are optimized by using convex optimization. {ransmission power level (via adapting to CSI) when degdin

4) Joint Optimization With Fading ChannelsThe joint \yhether or not to sense, since at the moment of making sensing
optimization of sensing and transmission with fading clesin gecision, the SU has not obtained its CSI yet.

is studied in [21], [22]. Reference [21] investigates a hade-
neous secondary network that consists of energy—hargn—:'stin1
powered spectrum sensors and battery-powered data sensg
which are jointly optimized (by using convex optimizationjm
for maximizing overall energy efficiency and performance.1y we devise a time-slotted protocol, where spectrum sens-
Specifically, spectrum sensors are assigned over charotels f * jng channel probing, and data transmission are conducted
maximizing the detected transmission opportunities. Give  gequentially. We formulate the optimal decision problem
CSI of detected free channels, the data sensors determine 55 5 two-stage MDP. The first stage deals with sensing

the channels (to be used) and their transmission durations ang probing, while the second deals with the control of
and transmission power levels over the channels, to migimiz  yansmit power level. To the best of our knowledge, this
the overall energy consumption. Note that, in this work, the s the first paper that separates the sensing-probing stage
availability of CSl is assumea priori. In [22], CSI acquisition and the transmitting stage in MDP formulation for an
is considered in a single-SU system. To this end, the SU gnergy harvesting SU.

probes CSI whenever energy is sufficient. Given probed CSlp) via exploiting the structure of the two-stage MDP, the
the SU uses an MDP to decide which channel(s) to sense’ gptimal policy is developed based on after-state(also
and whether to transmit or not if channel(s) are sensed free. cgjled post-decision state) value function. The use of the
Since the SU probes channels before spectrum sensing, the after-state function confers three advantages. First, the
risk of probing busy channels exists. When this happens, the soution of the original two-stage MDP presents practical
channel estimation pilots will be corrupted by PU signafgja  ang theoretical difficulties (Remarks 1 and 2 in Section
the pilots may cause interference to primary receivers. I11). The after-state value function can address these- diffi
culties and derive the optimal policy (Remarks 3 - 5 and
Corollary 1 in Section V). Second, memory requirements

. L i i to represent the optimal policy are minimized. Third, it
Joint optimization of energy harvesting, channel sensing, epaples the development of learning algorithms.

probing, and transmission, especially over fading chahas  3) The SU often lacks the statistical distributions of har-
not been reported widely. For instance, to adapt the transmi * | asted energy and channel fading. Thus, it must learn the
power according to fading status, channel probing is necgss optimal policy without this information. To achieve this,
which can be conducted only if the PU channel is idle. Thus, ;e propose an RL algorithm, which exploits samples of
the SU does not know its fading status when it decides whether energy harvesting and channel fading in order to learn
or not to perform spectrum sensing. However, t&1sing- the after-state value function. The theoretical basis and

before-probing constraintbhas not been captured before. performance bounds of the algorithm are also provided.
To fill this gap, we investigate a single-channel energy

harvesting cognitive radio system. If the single channel is Notation convention: Meanings of important symbols are
occupied by PUs, then the SU has no access. At each tia® follows. a: action; b: battery energy levelC: channel
slot, the SU decides whether to sense or not, and if the chanasailability statusid/x: endogenous/exogenous component of
is sensed to be free, the SU may probe the channel. Afteaastate; fy (-): probability density function (pdf) of random
successful probing, the SU obtains CSI. With that, the Slariable (r.v.)Y; Ex/eq: harvested energy (r.v./realization);
needs to decide the transmit power level. To maximize lon@F/h: channel gain (r.v./realization)j*(-): after-state value
term data throughput, we consider the joint optimization dfinction; p: belief; r: reward; s: state; ©: sensing result;
sensing-probing-transmitting actions over a sequencara t : discounting factor;3: after-state;e: exploration rate. In
slots. subscripts and superscripts,S, P,7 mean time slot index,

In order to carry out optimal actions, the SU must track arfdensing”, “probing”, and “transmitting”, respectivel. vari-
exploit energy status, channel availability and fadingusta abley’ denotes the notation of after one state transition in
These variables change randomly and are also affected asyMDP model.

To incorporate the above feature in formulating and solving
e optimal sensing-probing-transmitting policy, thisppa
Hkes the following contributions:

B. Motivations, Problem Statement and Contributions
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is used to show the operations of the SU.
Sensing StepAt the beginning of the sensing phase of glot
€s €p er the SU, initially with battery leveb;, beliefp;, and harvested

Sensing Probing Transmitting

Z,aerr;eysted o Ts e Tr energyey; (eg; means the amount of energy in the energy
package package that arrives at the beginning of gjpiheeds to decide
Fig. 1: Structure of a time slot. whether to sense or not. If the SU chooses not to sense (i.e.,
actionas = 0 in transition (1.1) of Fig. 2), it remains idle
Probing step (2.3) Transmiting siep until the beginning of slot + 1 (i.e., the FSM transits to the

sensing step of slat+ 1), at which time it has battery energy
by, = ¢(b7 + en), whereg(b) is defined as:

#(b) £ max{min{b, Bpax},0},

and the belief on channel availability changespt, =
U(pf), wherey)(p) is defined as:

¥(p) £ prob{Ci1 =1lpt = p} =p-p11 + (1 = p) - po1,

which represents the SU’s belief of next time slot given its
Sensing step ’ Sensing step belief of current time slot ag. Further, at the beginning of slot
Fig. 2: FSM for sensing, probing, and transmitting of the SU. ¢ 4 1, an energy package arrives with energy amaypt, ;.
If the SU decides to sense at slof{i.e., actionag = 1),
then during the sensing phase, it senses the PU channel, by
Il. SYSTEM MODEL using the energy detection method [31]. The sensing operati
nsumes a fixed amount of energy. The sensing result
2

We consider a single PU channel and one SU. The P
. . iS denoted a®d: ® = 0 and © = 1 mean that the SU
channel IS shared by multiple PUs. All the .PU$ and the timates the PU channel to be busy and free, respectively.
follow a time-slotted synchronous communication. Over thﬁ]e performance of energy detector is characterized by a
PU channel, the collective occupancy of the PUs across ti%(fse alarm probabilit 2 PO = 0/C = 1} and a
slots is modeled as an on-off Markov process. States 1 miss-detectiopn robagﬁifA A Pr{®_f 1|C’i 0}. Here
and C = 0 denote that the PU channel is available a P Yu — — -

o a4
busy, respectively. The probability of state transitioonirstate r{é} means probability. E urthe[)mlc))_rlg»,p f_ 1=» ]‘é and_

; € {0,1} at a slot to statg¢ € {0, 1} at the next slot is denoted?? _ 1 = pra represent the probability of correct detection
! ’ ’ of PU activities and the probability of a spectrum access

asp;;. Itis assumed that the SU knows the state transiti%n ortunity, respectively. The values @f-4 and are
probability matrix, which can be estimated with Iong-ternﬁggwn 0 the SUp y- Pira bum

sensing measurements (see [26]). Note that the true &tate h he followi b . for th . |
is unknown by the SU. So the SU makes decisions basec}Ne ave the following observations for the sensing resuft.

on all observed information (e.g., sensing results andrsthe 1) The SU gets a neg%tive sensing result (i 0) with
All such information can be summarized as a scaled metric, Probability 1 — G (p;’) (see transition (1.2) of Fig. 2),
known as the belief variablg € [0, 1], which represents the ~ WhereGi(p) represents the probability of getting sensing

SU’s belief in the channel’s availability [27]. result® = 1 given initial beliefp, i.e.,

The SU always has dz_;\ta to send. A block fad_ing moqlel is_ Gi(p) £ Pr{® =1|p} =p-po+ (1 —p)-pun-
applied. The channel gain between the SU and its receiver is ) o ) o
H, which is an independent and identically distributedd()i. Then the SU will remain idle unt;l the beginning of slot
r.v. across time slots, with pdfy (-). This pdf is unknown to t+1, and we havey,, = ¢(¢(by + ent) — es), and
the SU. PP = ¥(G2(pf)), whereGs(p) means the probability

The SU harvests energy from sources such as wind, solar, that the channel is indeed idle given initial beljefand
thermoelectric and others [28]. An energy package arrives negative sensing result, i.e.,
at the beginning of each time slot (which was harvested A D DPFA
throughou? the grevious time slot ané stored in a temporal Ga(p) = Pr{C =1Ip,6 =0} = p-pra+ (1—p) pp
energy storage de\{ige [29], [30]). The energy af.“OEH“” 2) The SU gets a positive sensing resul & 1) with
the package is an i.i.d. r.v. across time slots, with fef). probability G1 (p;') (see transition (1.3) of Fig. 2). Then
The SU does not know this pdf. The SU is equipped with @ = the Sy proceeds to the probing phase. At the beginning
finite battery, with capacityB,,... Let b denote the amount of of the probing phase, the battery levebfs = ¢(6(b5 +

energy stored in the S,U’S batte.ry. N emt)—es), and the belief transits tol = G3(py ), where
[For the SU, each time slot is partitioned to three phases . () is the probability that the channel is indeed idle,
with 75, 7p and rp for sensing, probing, and transmitting,  given initial beliefp and positive sensing result, i.e.,

respectively, shown in Fig. 1. In Fig. kg is the energy .

amount in the energy package that arrives at the beginning Gs(p) =Pr{C =1|p,0 =1} = L .

of the time slot, ands, ep, er denote energy consumption in p-po+(1=p)-pm

the three phases, respectively. Next we elaborate on tke thr Probing Step:At the beginning of the probing phase, with
phases of time slat A finite step machine (FSM) (see Fig. 2)information(p, b’), the SU decides whether or not to probe
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the channet. If it decides not to probe (i.e., actiomp = 0, [0,1] andey € [0, 00); and 2) transmitting state” = b7, k],
see transition (2.1) of Fig. 2), the SU keeps inactive uh# t with b7 € [0, Byax] and channel gaih € [0, 00). Note that,
beginning of slott + 1 (i.e., FSM transits to sensing step ophysically, > and p°” denote the battery level and belief
slott + 1), and the battery level remains the sabg‘fgl =P, value, respectively, at the beginning of a sensing phasat Th
and the belief becomes’, ; = ¥(pl). If the SU decides to is, at slott, 77 = b7 andpy” = p?.

probe (i.e., actioup = 1), it transmits channel estimation At a sensing-probing state°”, the full set of available
pilots (with energy consumptioap) to the receiver. actions are “not to sense” (action ‘00’), “to sense but not to

1) There is probability1 — p!’) that the channel at slatis Probe” (action ‘107), and “to sense and to probe if possible”
busy (see transition (2.2) of Fig. 2). If this happens, th@ction ‘11°). Here for action yz', “y’ and 'z’ mean the
pilots will collide with primary activities, and will not Se€nsing deCIsmg and probing decision, respectively. So, w
be correctly received by the receiver. Thus, there will Beaveasp € A(s*F) = {00,10,11}. At a transmitting state
no feedback (FB) from the receiver, denotedraB = 0. sT, the available actions are “transmission energy levels to
Then the SU remains idle until the beginning of slet1  use”, i.e.,ar € A(s”) = Ex. As shown in Fig. 3, from a
with batterythJrl = ¢(bF — ep) and benefpf+1 =po1. Sensing-probing state, action ‘00’ and ‘10" make a traositd

2) There is probabilitp? that the channel at slatis idle, @ sensing-probing state (in next slot), while action ‘11kes
and the SU can get FB (denoted B = 1) and obtain @ transition to a transmitting state if the channel is sensed
the channel gain informatioh, > 0 (see transition (2.3) free andF'B = 1, or to a sensing-probing state (in next slot)
of Fig. 2). The SU then proceeds to the transmitting steptherwise. From a transmitting state, it always transitsato
At this moment, the SU knows that the PU channel igensing-probing state in the next slot.

free, i.e.,,p! = 1, and the remaining energy i§ = f(-|s,a) is the pdf of the next states’ over S given
o(bF —ep). initial state s and the taken actiom. Denoted(-) as the

Transmitting Stepin transmitting step, actioms is the Dirac delta function, which is used to generali¢g|s,a)

amount of energy to use for transmission during the transt0 include discrete transition components. We can derive

mitting phasecr is selected from a finite sd@r of energy € State transition Ig%rnel foygwigg the description o th
levels. Note that ife; = 0, there will be no transmission.FSNg Startlng fror;wst = [pe7, 07" e, it may transit
eainn i . to sP8 = [pPh, b0, emiyq] or st = [bl, hy] depending
After data transmission, it goes to the beginning of gletl t+1 t+15 Vt+1 sp ¥ o0
with battery levelby ; = ¢(b] — er) and beliefpy ; = p1; N chosen actiofswith £(-|s7"”", asp) shown in (3), (4), (5)
o i and (6) (on the top of next page). From transmitting state
(see transition (3) of Fig. 2). - )
si = [b], hy], itcan only transit tasy [, = [pPF, b7 F, et
with f(:|sI, ar) shown in (7) (on the top of next page). Note
that we treaf ;; (1) andf g (-) as generalized pdf’s, which cover
A. Two-Stage MDP discrete or mixed r.v. models fdi and Ey;.
Based on the FSM, we will use an MDP, shown in Fig. 3, At a sensing-probing state, because no data transmission ha
to model the control problem. Witls denoting a “state”, occurred yet, the reward is set to 0, i.e.,
a denoting an “action”, an MDP is fully characterized by SP _SP\ 1
specifying the 4-tupleS, {A(s)}s, £(-|s,a), r(s,a)), namely r(sy",a”") =0. @
state space, allowed actions at different states, statsiti@n At a transmitting state, the reward is the amount of trartsuhit

kernel, and reward associated with each state-action pgiita, which is modeled (via the Shannon formula) as
which are described as follows.

Ill. TwO-STAGE MDP FORMULATION

erhy
T(S?7GT = eT) = TTW10g2(1 + m)l(b; Z CT), (2)
wherelV is the PU channel bandwidth is the thermal noise
power spectrum density and-) is an indicator function.
We next place a technical restriction on the .

as =00 ag,=11

Assumption 1. Given any battery level” and any transmis-

agp=10 ar=e; sion energyer, E[r(sT, er)] andE[r?(sT, er)] exist and are

Fig. 3: Two-stage MDP. bounded by some constarts and L, respectively, wittE|.]
_ being the expectation operation over ri.
To reduce the state space, we merge the sensing and probmg ) ) _

steps into one stage (supersci§ii) via jointly deciding these ~ Comparing with one-stage MDP: Here, we clarify the
actions at the beginning of the sensing phase. We also absefijference between our proposed two-stage MDP and the one-
that, at the transmitting step, the belief is always equal,to Stage MDPs of [17], [18], [22]. In these one-stage MDPs,

and thus, it is not necessary to represent it. Therefore, tthuring the transition from stateS? — [pS”,bSP 1. if probing is
. L . i I . t = Pt >0 s€HL]

state SSF;DaC§ ISSgIVI%?Dd into tV\_/O Clgﬁses. 1) senS|ngSI|3rob|ng0t carried out, the battery level and belief value are wgatlaince; if probing
states>” = [b°7,p°", en], with 0> € [0, Bpax), P77 € s carried out, the battery level and belief are updated tmes. For example,

if action is ‘11" and the channel is sensed to be f(@e= 1) (which means

1When the available energy is low, the SU may select to sertseisensing the SU will probe) and the channel is indeed frég= 1), then 1)b5' " first

phase but not to probe in the probing phase. By sensing, theaBlipdate becomesd = ¢(¢(b5F +epr) —eg) due to sensing operation, and becomes
its belief about channel availability, which can benefit fiture decisions. #(A—ep) due to probing operation, leading 8 = ¢(d(H(b7F +epre) —
As the available energy is low (e.g., the energy is insuffici® support a es) — ep), and 2)pr first becomesG;;(pr) due to sensing operation,
transmission), the SU may select not to probe, to save energy and becomed due to probing operation, leading frf =1.
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f(Stsfﬂstspa asp = 00) = 5(19545 - w(pfp))é(bfﬁ - ¢(btsp +ent)) fr(enti1), 3
f(sifils? asp = 10) = [(1 = G1(p7 )6 (01 — 0(Ga(pi"))) + G (P ") (5 — ¥(Ga(p™))]
x 575 — d(d(b7F + emr) — es)) flenrya), 4)
f(s7h1s, asp = 11) = Gi(p7 ") (1 = Ga(p7 7)) — por)d (75 — ¢(6(b7” + emr) — es — ep))
X fp(emi) + (1= Gy 7)o (05 — ©(Gai"))6 (07 — d(8(677 + err) — es)) fr(emera), (5)
£(sf |sP" asp = 11) = G1(pP ) Ga(p )3 (6] — (@67 + emr) —es —ep)) fu(he). (6)
f(StSJfﬂS;[a ar =er) = 5(ptsfl —p11)5(bfﬁ - ¢(th —er))fe(emii1). (7)

states are defined as available information before perfagmiwhere s’ means the random next state given current state

spectrum sensing, where the sensing and transmissionatecisind the taken action. The state value functiol*(s) is the

are made simultaneously. This is possible, as £i8lassumed solution to (9). Givenl/*(s), the optimal policyr*(s) can be

to be available before sensing the channel in [17], [18]].[22efined as

Specifically, the works in [17], [18] assume a static channel N .

(i.e., h = 1); while the work in [22] performs channel probing m(s) = az%&gx{r(s’ a) + B[V (s7)]s, al}- (10)

before spectrum sensing, which is, however, an unusuat.orde o
In our problem, due to the sensing-before-probing cofrurthermore, it is shown [24, p. 152] that

straint, one-stage MDP does not apply, and we need to divide V*(s) = v (s), Vs (11)

the state space into two subspaces, one for sensing-praéing .

cision making, and the other for transmission decision mgki Therefore,V*(s) and V'™ (s) are used interchangeably.

i.e., a two-stage MDP. This formulation naturally trackslan

represents information-decision flow bo#trosstime slots

(from s§* to s7[}) andwithin a time slot (froms{ ¥ to s7).

It enables us to apply generic MDP theory (Section 111-B

to define the optimal policy. In addition, the solving of th%

optimal policy via after-state technique (Section 1IV) and R

algorithm (Section V) relies on analyzing the structuretod t

two-stage model.

Remark 1. Although the optimal policy*(s) can be obtained
from the state value functiolr*(s), there are two practical
ifficulties for using (9) and (10) to solve our problem. Eirs
e SU does not know the pdf's(-) andfy (). Themax{-}
peration in (9), which is performed over tfif-] operation,
makes it difficult to estimatd/*(s) by using samples. Second,
E[] operation in (10) makes it difficult to get the optimal
action, even if"*(s) is known.

B. Optimal Control via State Value Functidn* Remark 2. In addition, there is another theoretical difficulty.
Let I denote all stationary deterministic policies, which ar# discounting MDP theory, the existence16f(s) is usually
mappings froms € S to A(s). We limit the control withinII. ~ established from the contraction theory, which requires th

For anyx(-) € II, we define a functio/™(:) : S — R for reward functionr(s, a) to be bounded for alk and all a [24,

7(-) as follows, p. 143]. However, this is not satisfied in our problem, since
- we allow the channel gaih to take all positive values, and
T A ™ _ hence,r(s,a) is unbounded over the state space. Therefore,
VT(s) £ E 7o 7(8r = 3], o e S) ; , .
() [;7 rlsr, m(sr))lso = ] ®) in this case, the existence &f(s) is not easy to establish.

wheres, denotes the state of time v € [0, 1) is a constant As we will show in Section IV, both the practical and
known as discounting factgrand the expectation is defirfed theoretical difficulties can be solved by transforming th&re
by the state transition kernel (3)-(7). Therefore, by sgtty  function into an after-state setting. Moreover, this tfansa-
to a value that is close to 3/ (s) can be (approximately) tion reduces space complexity via eliminating the exptieied
interpreted as the expected data throughput achieved byypofor representingy and H processes.
7(-) over infinite time horizon with initial state.

AmongII, there is an optimal policy*(-) € II such that
V™ (s) = sup {V7(s)}, Vs, i.e., 7*(-) is able to maximize

m(-)€l Here, Section IV-A first analyzes the structure of the two-

expected throughput for any initial state. In addition(-) can - gt35e MDP. Then Section IV-B reformulates the optimal
be identified by the Bellman equation [24, p. 154], which igoniro| in terms of after-state value functiofi*. Finally,
defined as follows,

IV. AFTER-STATE REFORMULATION

V(s) = max {r(s,a) + VE[V(S/HS, al}, 9) 5 This difficulty can be illustrated with a simpler task. Givéf and V2
a€h(s) are two r.v.s, suppose that we wish to estimatex{E[V''],E[V?]}. And
we can only observe a batch of samplesax{v},v?}}£_ |, wherev} and
3The discounting factor is used to ensure the infinite sunamaiti (8) is v? are realizations ol/! and V2, respectively. However, the simple sample
bounded, and therefor& ™ (s) is well defined. average of the observed information is not able to provideuminiased es-

4The expectation is taken over the random stafes}>°, with the timation of max{E[V''], E[V]}, sincelimy o 3+ .5, max{v},v?} >

= 1771

distribution of s, determined byf(-|s,—1,m(sr—1)). max{E[V1],E[V?]}.
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TABLE |: Structured state transition model

d z [ acAldz) | N(a) Observation pi(d, a) & = 0:([d, 2], a) Tx (@27
00 1 none 1 D(p), (b + er)] fz()
10 2 ©=1 Gi(p) ¥(G3(p)), p(#(b+ en) — es) Te()
sSP | b,p] | e ©=0 1 —Gi(p) P(G2(p)), (P + en) — es) ()
.l | en O=1,FB=1]| Gi(p)G3(p) (60 +en) —es —ep) 7710)
11 3 [0=1,FB=0| Gi(p)(I - G3(»)) | [po1, d(@( + en) — es — ep)] ()
©=0 1-Gi(p) D(G2(p)), p(¢(b+en) — es)] [510)
s b [ h er 1 none | 1 (P11, 66— ex)] )
the solution ofJ*, and its relationships with the state value current next

state after-state state

function V* are given in Section IV-C.

A. Structure of the MDP with pdf

The structural properties of the MDP given in the 4-tuple . / fx(2'|B)
(S, (A(s))s, (|5, a),7(s,a)) are as follows. Fig. 4. Augmented MDP model with after-state.

1) We divide each state into endogenous and exogenous
components. Specifically, for a sensing-probing stdte, the

endogenous and exogenous components dfe= [pSF, bS] Specifically, after an action applied on a state = [d, z],
andz>F = {ey}, respectively. All possiblgS? andz5T are the state randomly transits to an after-staterhe number of
defined aDSF and XSP respectively. such transitions isV'(a). At the ith transition, the after-state

Similarly, for a transmitting state”, the endogenous andiS 8 = ¢i([d; 2], a) with probability p;(d, a). Fromj, the next

exogenous components afé = {b7} andz” = {A}, respec- Stat€ iss’ = [d’,2'] with d' = [ andz’ has pdffx (-|5).
tively. All possibled” andz” areD” andX7, respectively. We next introduce after-state based control. The main ideas

Finally, letd € D = DSP UDT andz € X = X5P UXT. are as follows. Froms, the next states’ = [d',z'] only
2) The number of available actions(s) at each state is depends o (i.e.,d’ = 5, and the pdf of:’ is conditioned on
finite. B). Thereforestarting from an after-state g, the maximum

3) Checking the state transition kernel (3), (4), (5), (6)l arexpected discounted reward only depends on 3, and is
(7), we can see that, given state= [d, z], and actions ¢ denoted as amfter-state value function/*(5). The key is
A(s), the transition to next stat¢’ = [d’,2’] has following that if J*(B) is known for all 3, the optimal action at a state

properties. s = [d,z] can be determined as
» The stochastic model of' is fully known. Specifically,  7*([d, z]) =argmax{r(|d, z], a)
after applying an actioru taken at states = [d, z], acA([d,z])
we have N (a) possible cases depending on SU’s ob- N(a)
servations (e.g., sensing-probing outcomes after applyin + > pild,a)J*(0i([d, 2],0))}. (13)
certaina®T). This leads taV(a) possible values ofl'. i1

And at the ith case/, which happens with prob."’lbi"ty'l'he expression in (13) is intuitive: the optimal action atates
pi(d,a), the value of!’ takes the value; (s, a). Functions

N, () andps(-,-) are known, and listed in Table® = [d, z] is the one that maximizes the sum of the immediate
DINZANS VZANE ’

| for differentd, x, a and observations.

o Thez' is a r.v. whose distribution depends en(s, a),
i.e., if 0i(s,a) € D°F, 2/ has pdffg(-); and if o;(s,a) €
DT, 2’ has pdffy(-) (see Table 1). This relationship isRemark 3. Unlike (10), if J*(-) is known, generating actions

Z{(la) pi(d,a)J*(0:([d, x],a)). The solving ofJ*(-) and the
formal proof of (13) are provided in Section IV-C.

described by conditional pdfx (z'|;(s, a)). with (13) is easy, sincA/(a) and|A(s)| are finite, andp;(d, a)
With these notations, the state transition kerf{el|s, a) can ande;([d, z], a) are known. Furthermore, the space complexity
be rewritten as: of J*(-) is lower than that ofi"*(-), sinceX does not need to

be represented iV (-).
f(s's,a) = f((d',2")|(d, ), a) P )
N(a) o
_ Z pi(d,a)d(d — 0i(s,a)) fx(2'|oi(s,a)). (12) C. Establishing After-State Based Control
i=1 The development of this subsection is as follows. First, we
4) The rewardr([d, z],a) is deterministic, defined via (1) define a so-called after-state Bellman equation as
and (2). . .,
J = max r(B, X", a
) 7)<’BL’6A([BJ<’]){ (8 )

B. Introducing After-State Based Control N(a'

)
Based on the above structural properties, we now show that + Z pi(B,a)J(0:([B, X', )}, (14)
optimal control can be developed based on so-called “after- =1

states”. Physically, an after-state is the endqgenous ocoei where E [ means taking expectation over ri’, which

of a state. However, for ease of presentation, we consider’it ™ ~ x|

as a “virtual state” appended to the original MDP (Fig. 4). has pdffx(:|8). Note thatX’ means the random exogenous
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variable of the next state given that the current aftelesgf  establishes the existence gf(-) and also provides a value
(see Fig. 4). Then, Theorem 1 shows that (14) has a uniqteration algorithm for solving/*(-). To obtain J*(-) using
solutionJ*(-), and also provides a value iteration algorithm fothe value iteration algorithm, we have two observations. 1)
solving it. Note that, at this moment, the meaningJo{-) is The after-state spad@ is continuous. Thus, after-state space
unclear. Finally, Theorem 2 and Corollary 1 show thi&-) is  discretization is needed. 2) The computation Bf [-] requires
exactly the after-state value function defined in SectiomB|V X115
and the policy defined with (13) is equivalent with (10), an

g’ue knowledge of z(-) andfg(-), which is unknown in our
therefore, is the optimal policy.

etting. Thus, RL can be used to learn a (near) optimal policy
via sample averaging, instead of taking expectation. Betai
Theorem 1. Given Assumption 1, there is a uniquig(-) that are given in the next section.
satisfies (14). And*(-) can be calculated via a value iteration
algorithm: with J,(-) being an arbitrary bounded function,

the sequence of functiods/;(-)}~, defined by the following V. REINFORCEMENTLEARNING ALGORITHM

iteration equation: for allg € D, In this section, we first discretize the after-state space
" into finite clusters, which is discussed in Section V-A. In

Ji+1(8) FVX],E,ﬁ[a,egggX,]){?‘([ﬁvX ,a’) addition, a learning algorithm is proposed in Section V-B,

N(a,)' which learns a (near) optimal policy given data samples

. / . "o of energy harvesting and wireless channel. Furthermoee, th
+ Z pi(B,a")Jilei([8, X'T, a'))}], (15) algorithm’s convergence guarantee and performance bounds
are analyzed in Section V-C. Finally, the algorithm is maifi
converges to/*(-) whenL — oo. in Section V-D, for achieving simultaneous data sampling,

Proof. See Appendix A. o learning and control.

i=1

Remark 4. Unlike the classical Bellman equatid@), in the . L

after-state Bellman equatiofi4), the expectation is outside ofA- After-State Space Discretization

the reward function. While the reward function is unbounded We divide the continuous after-state spdgdnto a finite

its expectation is bounded due to Assumption 1. Theretoge, humber of portions or cluster®, which defines a mapping
solution to(14) can be established by contraction theory. w(-) : D — K. In addition, all after-states assigned into the

Remark 5. Comparing with (9), equation (14) exchanges th ame clus_ter are mappeid into one representative after-stat
order of (conditional) expectation and maximization operase?tgirg?tgﬁigteleg(sl?)nz d{fo ill}i';(rﬂ ) g lfrifsen\?vf ltgi
tors. And inside the maximization operator, functiofis, a), ) € D(F) 1o re resegnt all after—statees .k '

N(a), pi(d,a), and g;(s,a) are known. These are crucial inq( ) € D(k) P DAk).

- e OrESP -
developing a learning algorithm that uses samples to esm'me% Asl ag_ exatr_nplde,_ Itn g'gi 51[ t\rgglgjliner;swng Trlls uni
the after-state value functiogi*(-). ormly discretized nto = cluste = {1,.... 9}. The one-

dimensional after-state spaf¥€ is uniformly discretized into

Theorem 2. The existence of a solutiovi*(s) to (9) can be 3 clustersk” = {10, 11, 12}. The association from an after-

established fronv*(3). In addition, their relationships are  state 3 to the clusterk is denoted byk = w(8). And the
V*([d,a]) = max ]){T([tﬂ 2,a) after-states assigned to the same cluster are represgnited b

ach([d,z central pointg(k).
N(a)
i d J* i d 16 Representative after-state: 4
+ 3 plda) T (e(dal o)} (16) "
= p 1 2 3
and p i : i k:w@) 4 5 6
J(B) = /YXI};:],B [V*([8,X])] . (17) + + [+ 7 8 9
DSP K5F
Proof. See Appendix B. O b k= w(8)
) _ + [+
Corollary 1. J*(-) is the after-state value function, and the - >0 ]IKIT 12 |
policy defined with(13) is optimal.
. . y D = DSP y DT = K = K5F Y KT
Proof. From (17) and the physical meaning f*(-) (see Fig. 5: An example of after-state space discretization.

(11)), J*(B8) represents the maximum expected discounted
sum of rewards, starting from after-state Therefore,J* ()
is the after-state value function. ) )
The expression in (13) can be derived from the optim8. Learn Optimal Policy With Data Samples

policy (10) as follows: first decompose the expectation with with this discretization, we design an RL algorithm that
(12|.)7 and then plug in (17). Therefore, (13) is the optimaéarns near optimal policy from the samplesf and H.
policy. [l

8|n addition to discretization, other methods can also belusech as tile

Cprollary 1 shows that Optim‘?‘l control can be achievegging or radial basis functions [25, Chapter 8.3], whichyraacelerate the
equivalently through value functiod*(-). And Theorem 1 learning.
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The idea is to learn a functiog(k), for k£ € K, such that policy #(s|gz) can then be used for sensing, probing and
g(w(B)) is close toJ*(B) for all 8 € D. Then a near-optimal transmission control, just as in Algorithm 2 in Section V-D.
policy can be constructed as 2) Intuition: Algorithm 1 is a stochastic approximation
algorithm [32], which is intuitive generalization of thelua

#(ld, zllg) = argma)f{r([d’ 7},a) iteration algorithm (15). Specifically, it is known from (L5

acA([d,x
N(a) (18) that, given the value functiod(-) of the-th iteration, a noisy
i Z pi(d, a)g(w(oi([d, 2], ))}. estimation ofJ;;1(8) can be constructed as
i=1 N(a")

Comparing (18) with (13), we observe thayifu(3)) approx- a,eﬂ%xw,])%([ﬁ,x’], )+ Y pi(B.d)Tilei([8,2),d))},
imates.JJ*(3) accuratelys(-|g) is close tor*(-). ’ i=1 (21)

The functiong(k) is learned by iteratively updating with ith «/ sampled fromi x (-|8), i.e., 2’ is a realization of£;
data samples. Each update uses only one data sample. IS C DSP ands’ is a realiz’at.io'r’1 offl if B DT

facilitates the tailoring of the algorithm for online apgdtions Therefore, by comparing (21) with (20), we ségk) as

_(Se<_:'g|on V-D). Next, we present the algorithm and SOMfh estimate ofy 1 (k) for k € K; (with w(-) introduced for
intuitive reasons.

. . . .__discretization,s approximated withy(k), and J;(-) replaced
1) Algorithm: Initially we have arbitrary bounded funcuonWith a()). Hence?pwithzil(k:), equgktji(orz (19) uéa(d)ate;H(-)

go(k). We calculateg, 1 (k) from g,(k) anda;, the ith data ¢, chosen clusters withi’; by sample averaging. Note that,
sample. Sincer; can be either an energy or fading sampl

&heoretically, we can sek; to KSF or K7 (z; is energy or fad-
there are two cases: - - :
S ing sample), which could accelerate learning speed. Homeve
« if 2; is a sample of;, randomly chooséV non-repeated |arge K7 or |[K”| leads to increased computations. Hence,

plustgrs fromK>”; the parameterV is introduced to control the computational
« if 2; is @ sample ofif, randomly chooséV non-repeated purden. Section VI-B1 gives an example to show impact of
clusters fromK?”. N.

Here N is a parameter to balance learning speed and computa-
tion load. For either case, we denote the set of chosen tusi€. Theoretical Soundness and Performance Bounds
as K;. Givenz; and K;, we have the updating rule as

gi+1(k) = {

In this part, we formally state the convergence requiresient

(1 —oq(k) - qi(k) + ay(k) - 6, (k), if ke Ky; and performance guarantees for Algorithm 1.

a(k), otherwise First, for vk € K, we defineM (k) = {l € {07_1, L=
(19) 1}|k € K}, which presents the set of iteration indices where

wherea(k) € (0,1) is the step size of cluster for the ith k is chosen during learning. In addition, we define

iteration, andj; (k) is constructed with; as €2 max{ sup |[J*(B8) — J*(q(k))|}. (22)
k. peD(k)
a(k) =y max {r(lg(k), 2], a) : : -
a€A([q(k),z1]) which describes the “error” introduced by the after-statece

N(a) (20) discretization. Finally, in order to evaluate the perfonoe of
+ Z pi(q(k), a)gi(w(oi([q(k), 1], a)))}. a policy 7(-) from after-states’ point of view, we define
=1
JT(B) =~ E [V7([8, X"]], (23)
Section V-C will show that with proper setting of the step ®) X/Iﬂ[ ( )

size oy (k), the sequence of functionfy;(k)}i2, converges \herey=(.) is defined in (8).
such thaly. (w(/3)) is close toJ*(3), and the policy?(:|goc) Given the definitions ofM(k), ¢ and J™(3), we have

Algorithm 1 Learning of control policy Theorem 3. Given that Assumption 1 is true, and also
assuming that, in Algorithm 1, ab — oo,

Input: Data sampleqz; };

Output: Learned control policyt(s|gz) Z oy (k) = oo, Vk (24)
Initialize go(k) = 0, Vk ’

for { from0to L — 1 do leM(k)
if x; is a data sample oFy then . 9
ChooseN clusters fromK°? and getK; Z R (k) < 00, Vk (25)
else ifz; is a data sample off then leM(k)
ChooseN clusters fromK” and getK); then we have:
end if

Generatey41(-) by executing (19) withd, K1) (i) the sequence of l‘u_nction@gl(-_)}f:O genglrated in(19)
end for converge to a functiop..(-) with probability 1 asL —

With gz.(-), construct control policyr(-|gr) through (18)

00,
(i) |IJ* = Jooll < £55, with

The above algorithmic pieces are summarized in Algo- 2
rithm 1. For a sufficiently large numberl) of iterations, Joo(B) = goo(w(B)), (26)
the learning process can be considered complete. The tkarne and|| - || denoting the maximum norm;
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(iii) ||J* — J™=|| < % With 750 (1) £ 7(-|goo ). Algorithm 2 Simultaneous sampling, learning and control

0 Note: 82F € DF presents an after-state in stot3; is defined

Proof. See Appendix C. similarly.

. 1: Initialize: batterybo, channel beliefp, and after-statedy” =
Remark 6. Statement (i) of Theorem 3 demonstrates the [p,, p)

convergence guarantee of Algorithm 1. Statement (ii) shows Initialize: go(k) = 0, Vk, and setfl =0

that the learned functio(-) is close toJ*(-), and their
difference is controlled by the errof caused by after-state 4f
space discretization. Statement (iii) claims that asymatid- o
cally, the performance of policie§t(-|g;)}; approaches that .
of the optimal policyr*(-), and that the performance gap is s
proportional to the erroré. 9

Remark 7. Condition (24) requires |M (k)| = oo, where 1q.
|M (k)| denotes the size af/(k). In other words, energy 11:
harvesting and wireless fading processes need to be sampled
infinitely often in{z;}~,', as L — oc. 13:

In order to satisfy}", . ;) @ (k) < oo, the sequence of ﬁf
step size{a;(k)}ien (k) Should start to decay after certaih 4.
with sufficient decay rate. However, the decay rate shoutd ng-

be too large, in order to satisfy ;. /() cu(k) = oo. 18:
19:
20:

D. Simultaneous Sampling, Learning and Control o1

Algorithm 1 operates offline — the policy is learned with22:
given data samples, and a learned policy cannot be us’é”d
until learning is complete. However, for some application 4;
an online learning scheme may be more desirable. In onligg
case, sequential data is used to update the best learneg paly.
at each step. 28:

One intuitive idea to tailor Algorithm 1 for online learning2°:
is as follows. Supposing that current learned functiog, {s), ‘
we can usef(:|¢g;) to generate actions and interact wit (1)j

3: for ¢ from 1 to co do

Observe arriving harvested energy amoupt

Setz; = en: and choosek; with N clusters fromKS?
Generatey;+1(-) by executing (19) with#;, K;)

l+<1+1

Construct statey” = [371], e

Generate sensing-probing decisigh = #(s{*|g;) via (18)

if random() < e then
if random() < 1/2 then

> Exploration

a?t =00
else ifb77 > es + ep then > Energy sufficiency
SP __
a;y” =11
end if

end if
Apply sensing and probing actions basedaii’
if a;” =11& © =18& FB =1 then
Observe the channel gain from FB
Setxz; = ht, and constructk; by choosingN clusters

from KT

Generateg;;1(+) by executing (19) with4;, K;)
l+<1l+1

Derive after-statg8] with s5’* via Table |

Construct state! = [37, Z;%_

Generate transmit decisiaty = 7 (s{ |g;) via (18)

Set transmission power based @n, and transmit data
Derive after-state8;” from (s, ai ) via Table |

else
Derive after-state3?” with s7* and a", © and FB

via Table |

end if

end for

the environment in real-time. Thus, we can collect a data
sample from energy harvesting or channel fading, which can
be further used to generaje 1 (-). As the loop continuegy(+)

TS the battery leveb?” of slot ¢, we carf find a finite 7' such
approachego. (+), and the policyr(-|g:) approachesi (), o prob{by, > es +ep} > 0. In other words, at any slot

which implies that generated actions during the procedswil > T, we haveprob{b5¥ > eg + ep} > 0. Thus, having

more gnd more_llkely to be optimal. In this way, Slmunaneo%su?ﬁcient energy for sensing and probing, the algorithm wil
sampling, learning and control can be achieved.

chooser®” = 11 with probabilitye/2. In addition, at any time

However, the problem s that thg above mgthoq cann&{)t’ the PU channel will be free with a non-zero probability
guarantee to sample the wireless fading process infinitgn herefore, the algorithm can reach the transmitting staiie w

(i.e., cannot satisfy assumptions (24) and (25) of Theorgm on-zero probability. Thus, the wireless fading process c

Note that the wireless fading process can be sampled onl)bg{' sampled infinitely often fot — oc. In summary, the

#(-|g;) choosesz®F = 11. But the above method may enter X g
2 deadlock such thatS? — 11 will never be chosen. The assumptions (24) and (25) of Theorem 3 are satisfied (under

deadlock can be caused by: (1) insufficient battery ener§rOperIy decayed step size), afigh(*)}1 converges tqo. (")

¥ymptotically
that results from the learned policy’s consistent aggvessi : . . ] .
use of energy: andlor (2) persistently lockingdfi” — 00 1) Complexity Analysis of Algorithm Z=or eacht, major

or a°F = 10. In order to break this possible deadlock durin%‘i)nrgpéj tgagnlisn?arezf)]eIévgghenggtiegggggut%nc%%\js;ﬁl(gO)
the learning process, with some small probabitifnamed as : . . L
the exploration ratd, we force the algorithm to deviate fromtlmes' And each computation requirg ()| multiplications,

7(-]g:) to exploring the environment by either accumulatin [V(a)| summations, and one maximization over a set.
Tl SP P d ) y L : 2) Choices of Exploration RateAlthough the convergence
energy @ = 00) or probing channel gain information.

(@SP = 11) is guaranteed for any € (0,1), the choice ofe affects the
e . . . . erformance of the algorithm. Largehelps to accelerate the
Basgd on th? above points, Algorithm 2 is provided f Earning process. But too largemay cause big loss of the
sampling, Iearn!ng and control. Here, we argue 5ef 9€N- achievable performance. See Section VI-B2 for examples.
erated by Algorithm 2 converges o, () whent — co. First,

at_ each time slot, there is probability2 that the algorithm 7If this condition cannot be satisfied, the underlying enehgyvesting
will choosea®” = 00 to accumulate energy. Therefore, givemrocess is not sufficient to power the SU.
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VI. SIMULATION RESULTS many packets as possible. After a number of learning steps,
A. Simulation Setup expected future reward starts to takg effect _in Algorithm 1,
. . and thus, the algorithm stops greedily sending packets and
We use S|m_ulat|on to e_valuat_e the performance of tI%(?arts to jointly learn the sensing-probing-transmisgiolicy.
proposed algorithms. The simulation is set up as fO"O_WS‘ This causes temporal performance loss (as the algorithm may
The PU channel occupancy Markov model is described l%@Qplore the system rather than transmitting as many paekets

poo = 0.9 and p;; = 0.9. For spectrum sensing, we hav ossible), but leads to the optimal performance asymatiyfic
pra = 0.2 andPp = 0.9. The time slot durations +7p + 71 ep ), P P ymiatiy

(Fig. 1) of the SU is 12 ms (which is synchronized to the PU
channel). We sets = 7p = 1ms® Hence, within each time
slot, we haverr = 10 ms for data transmission. 0.16¢

Energy is harvested from wind power. Thusg is well
characterized by the Weibull distribution [33], with shaped
mean parametersy; = 1.2 andug = 1 (in Sections VI-C and
VI-D, other values ofur are considered).

The SU signal channel gail consists of path losa; and
Rayleigh fadingh¢. h, is distance-dependent and is assumed
to be fixed.hs has pdff(z) =e™*, =z >0.

Then, with above channel model, the amount of trans-
mitted data can be rewritten as W log,(1 + erhahyy

o
Fe
e

o
=
N

o
-

o
1=
@

o©
o

Average data rate (Mbps)

h T NoW 0.0 ©-N=1
W log,(1 + <5t) wheren £ 7 NgW/h, with W = 1 BV
MHz. We normalizen asn = 1 (for energy normalization). 0.02r | &o-N=5
Normalizing with respect tg, we set battery capacity,,.x = ‘ | AN=1
10, sensing energys = 1, probing energypr = 2, and the 1° 17 1 1P
set of transiting energy leveBr = {0, 3,4,5,6}. Learning step

Finally, simple uniform grid is used for discretization Fig. 6: Learning curves of Algorithm 1 under varioDs values.
with 10 levels for both belief and battery dimensions. Thus,
|K5P| = 100 and |[K”| = 10. We set the discounting factor

~ as 0.9, and the learning step size rulecagk) = 11%4 2) Online Learning Under Various Exploration Rate
. ) + 1) . . . . .

wherel is the index of updating iteration in Algorithm 1 ang: With N* = 1, we investigate the learning char-

Algorithm 2. acteristics of Algorithm 2 for exploration rate €

{107%,1073,1072,10~%,0.5} and fore adapted tat ase =
. , , \/1/t. The average data rate is shown in Fig. 7.
B. Characteristics of Learning Algorithm

1) Offline Learning Under Variou$V: Here, we study the
learning speed of our offline algorithm (Algorithm 1) under
different N. We set the updating iteration budggt= 10°, 0.16

andx; has equal probability to be sampled frafi); and H. 0.14¢ ii:igfﬁ
5 values of N € {1,2,3,5,10} are considered. Fig. 6 with +fjgj
logarithmic time index shows the achieved average data rate 2 0.12; X:O_s
when the sensing-probing-transmitting control is learbgd

o°
i

Algorithm 1.

In Fig. 6, it can be observed that for different values,
Algorithm 1 converges to the same limit. As expected, larger
N requires fewer learning steps to converge, which suggests
a trade-off between computational load and learning speed.
We also notice that there are turning points in all learning
curves, explained as follows. An optimal algorithm expeots 0.02f
maximize the sum of immediate reward at the current slot and
the expected reward in the future. Recall that, in Algoritbm
we initially setgo(k) = 0, Vk. This means that at the beginning Learning step ¢
learning steps of Algorithm 1, the expected future rewarlg. 7: Learning curves of Algorithm 2 under various exptma
is deemed zero. Thus, Algorithm 1 advises to maximiZétes.
the immediate reward, i.e., act greedily for transmittirgy a

o
o
@

Average data rate (Mbps)
=
SU

o
o
B

8There exists a tradeoff in setting; andrp. With largerrg andrp, more ,From Fig. 7, we S?e th,at largelends to speed up leammg'
accurate spectrum sensing and more accurate channel gamaten can be It iS because larges implies more updates of CSI. However,
achieved, at the cost of less time for transmission. As thjzep focuses on too Iarge € can cause performance loss due to aggressive
design and analysis of a learning algorithm for the decisi@aking process exploration On the other hand = \/1_/15 which starts with
of the SU, we setrs = 7p = 1 ms. Nevertheless, optimal selection 6f ’ T P
and 7p is an interesting research topic, which can be investigateiture  12rge value and decreases over time, provides fast statidp
research work. also almost-lossless asymptotic performance.
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by channel access probability, which is the probabilityt tha
the channel is free while a sensing action is chosen. As a
benchmark, this probability is upper bounded by the chasnel
idle probabilityp01/(p01 + p1o) = 01/02 = 0.5. Fig. 9

ar
S e

0 shows the measured channel access probabilities of differe
0%4 policies, in which “1-stage” means one-stage MDP used in
. 0‘%.201 3450 T [17], [18]. Fig. 10 shows the data rate achieved by different
Belief p 0 01 Battery b CSLA 0 éatteryb policies, which is upper-bounded byr/(rs + 7p + 1) -

, , , » , po1/ (o1 + p10) - Po - E[W logy(1 + e hy)] ~ 0.78 Mbps,
@ _Sensmg-problng su_b-pollcy._ (b) Transmitting sub-pc_)llc_y. wheree:,Af[ = max{Et} = 6.
Fig. 8: Learned sensing-probing and transmitting subejesi

C. Structure of Learned Policy 0.45¢ =

After a learning algorithm converges, we can obtain &
sensing-probing-transmitting policy from the learneddtion
gr(+). Specifically, givengy, a policy is fully specified via
a pair of sensing-probing ‘sub-policy#([b, p, ex]lgr) and
transmitting ‘sub-policy'7 ([, h]|gz) (recalling that(#(-|gz)
is defined in (18)).

For ug = 5, the learned sub-policies are shown in Fig. 8(a)
and Fig. 8(b). Noting that the sensing-probing sub-polgy i
also a function ot g, Fig. 8(a) shows the sensing-probing sub-
policy with e = 0, for presentation simplicity. Whet > 7,
or whenb is between 6 and 7 and beligfis more than a
threshold, the optimal sensing-probing sub-policylit’ (i.e.,
to sense and to probe whenever possible). The sensingagrobi 5 i ‘ ‘ ‘ |
action ‘10’ (sense but not probe) is selected when betie$ 12 3 4 5 6 7 8 9 10
close to 0.4 and the battery level is less than 6, explaine _ Mean of harvested energy
below. When beliep is close to 0.4, the SU is unsure about Fig. 9: Channel access probability under differgnt.
the channel availability, and thus, it is optimal to sense th
channel to gain the channel availability knowledge and guid
future decisions. On the other hand, the SU will not decide tc
probe, because when the battery level is less than 6, if the S
decides to probe, the total energy left for transmittingeissl

©
~
:

0.35

o
w
:

—©—-Proposed
—A-1-Stage o4
——G-SP ‘
-9-G-SPT 10 50 100
——Channle idle probabili

Channel access probability

—©—-Proposeq
—A—1-Stage

]

than6 —eg —ep = 6 —1 —2 = 3 (in other words, the SU will % 0.5f|—G-SP _-%
o L . o --G-SPT .9
not be able to transmit, since the minimal transmit poweellev & —  Max. ratd o
is 3 in our setting). For the transmitting sub-policy, highe 30_4 o7
battery level and/or higher channel gainresult in higher % ’
transmit power level, which is intuitive. p
< 0. —4=9078

D. Performance Comparison %O 0,0’

We next investigate the performance of learned policy. As %:’
the one-stage MDPs of [17], [18] are the most relevant work: ol
(see Section 1), we compare our learned policy with a policy '
that is derived from a one-stage MDP. Since the works in [17] 058 o 04

[18] assume static CSI, we implement the one-stage MDP ¢ ‘ ; ‘
[17], [18] over a static channel with fixed channel gain being to2 8 4 5 6 7 85 9 10
the average channel gain in our system. 1 1ean of harvested energy
Fig. 10: Data rates for differeniz.
We consider two baseline policies, namely “G-SPT” and
“G-SP”. G-SPT is a purely greedy policy. Whenever the It can be seen that, whery increases, all the policies have
energy is sufficient, it senses and probes channel, anditsns more channel access opportunities and higher data rates. An
at maximum power level. G-SP takes greedy action at sensingth a high enough energy supply, channel access prohasilit
probing stage, but adapts the transmit power based on probédall the policies achieve the upper bound.

CSl (i.e., G-SP is actually our proposed method in whichgher Note that G-SPT and G-SP are efficient at exploiting
exists only one action ‘11’ for sensing-probing.) channel access opportunities because they are aggressive i
We compare how these policies perform under differesensing and probing. However, their greedy actions maytresu
values of ug. First, we consider the ability of a policyin a lack of energy for data transmission, especially when

to exploit channel access opportunities. This is measuredrvested energy is limited. Therefore, wheris small, their
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achieved data rates are small. Nevertheless, G-SP’s data itis the fixed point of a contraction mapping. Furthermore,
is higher than that of G-SPT. The main reason is that G-$ife value iteration algorithm (15) converges to the fixechpoi
adapts transmit power based on channel fading status, anéirst, define the set of bounded functiofis D — R asF.
therefore, uses energy more efficiently for data transmgitti Then, let7* be an operator offf, and for anyJ € F, T*J is

than a purely greedy policy. another function with domaif®, whose value apf is defined
As for one-stage MDP, it achieves higher data rate than @s

SP, wheru g < 5; but is slightly inferior to G-SP whepg > (T*N(B) =~ E [ max {r([8,X'],d)

5. That is because, when energy is limited, making proper X'|B a’ €A([B,X"])

sensing and probing decision to save energy for transmissio N(a')

is more important. However, given a large, energy expenses + pi(B,a’)J (0i([8, X'],a’))}].

due to greedy sensing and probing action are marginalvelati im1

to the available energy, while properly selecting transiois By Assumption 1, it is easy to check that, givéris bounded,
energy is of more importance. Therefore, with a largg G- T* J is bounded (i.e.7*J € F). ThereforeT™* is a mapping
SP, which makes transmission decision based on instantanep, v to F. It is shown in [35, p. 211] tha is complete under
CSl, demonstrates better performance than one-stage MDi,o maximum norm. Furthermore, as shown in the following,
With full adaptation and a two-stage decision scheme, o i 5 contraction mapping under the maximum norm with
proposed method achieves favorable energy tradeoff betw?xerodulus'y. Therefore, the contraction theory appliesto.
sensing-probing and transmission stages, and thus, &shiev Due to the contraction theory [35, p. 209], there exists a

the best data rate. unique fixed point forT™*, denoted as/*, such thatl™.J* =
J*, i.e., functionJ* does not change under operaiot. Note
VIl. CONCLUSIONS that equationl™*.J* = J* is exactly the after-state Bellman
This paper studied the optimal sensing, probing and poweguation (14). Therefore, we have shown that there is a eniqu
control problem for an energy harvesting SU operating in ¥olution to (14).
fading channel. The problem was modeled as a two-stage conln addition, the contraction theory [35, p. 209] states that
tinuous state MDP and then simplified via the after-stataevalfor arbitrary functionJo € F, lim T*'Jo = J*. Note that

function. The SU learns this function without knoWledge Oj"*lJO means the function that?soogenerated by, Starting from
StatIStlca| distributions of the Wil’el_ess channel and thergy JOa iterative|y app|y|ng OperatoT* on previous'y generated
harvesting process. For this learning process, we develapefunction for/ times, which exactly describes the value iteration
reinforcement learning algorithm and investigated itsié® algorithm (15). This has proved the value iteration aldnit
characteristics and performance via simulation. (15) converges to/*.

Our work can be extended to the following scenarios. Hence, there only remains to show tHfat is a contraction

Multiple-channel scenariowith multiple channels, the SU mapping. Given any two functions;, J» € F, for 3 that
can maintain a belief value for availability of each channedatisfies(7+.J,)(3) > (T*J>)(3), we have

When the SU decides to sense, it needs to decide which .
channel to sense. Similar to our work, a two-stage MDP c&n< (17J1)(8) — (1" J2)(B)

be developed, and after-state formulation can be used to find o X
the optimal policy. %8| eggflﬁ%x,]){r([ﬂv ,a1)

Multiple-SU scenarioWith multiple SUs, if an SU decides N(a)
to probe the channel, it applies a contention procedure such _ T (i (1. X"
as carrier sense multiple access. If it wins the contention, + ; P 1)1 (pil[B, X} 1))}
it probes the channel; otherwise, it keeps idle until thetnex _ max {r([ﬁ X'), as)
time slot. Accordingly, by adding a probability of successf azeA([B,X']) T
contention into our two-stage MDP, our algorithms can be N(az)
applied to get optimal policy for each SU. + (8, az)Ja(pi (18, X', a }

Bursty-traffic scenarioNow the data buffer fluctuates ran- ; pi(8,02) (i[5, X') a2))}
domly. Therefore, not only the amount of transmitted dats, b N(a})
also the reduction of packet losses due to data buffer overflo E [ X o . T (s X ot
is of interest. Thus, we can include the occupancy of data™ P r(8, X, a1) + P pilB, ai)J1(pi([8, X1, a1))
buffer into our definition of “state”, and redefine the reward N(a?)
function as a weighted combination of sent data with a pasiti noox X noox

. . . . - d, X - AV J (3 aX )
weight and data buffer occupancy with a negative weightt(suc r([d, X7, a1) ; pi(B, 1) 22 (pi([B, X'] al))]
a reward definition is also considered in [34]). We can then N(a®) B
formulate a two-stage MDP, and use after-state value foncti E Z:l (8, a%)
to find the optimal policy. - ’qug — Pl 4

APPENDIXA < (15 X') D)~ a(pu(4, X )|
PROOF OFTHEOREM 1 Nt
ay

Theorem 1 is proved with the use of contraction theory. . & (aWT— Dol =~ — 27
Specifically, we show the solution to (14) uniquely existsda 7X/|/3 P pi(an)llJy = Lol M= Ll @
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where

ai = argmax {r([3,X'],a1)
a1 €A([B,X7])
N(a1)
+ Z pz Baal Jl pz([ﬁ X]
i=1
and|| - || is the maximum norm.
For g that satisfieT™*J1)(8) < (T*J2)(5), we can get

0 < (T"J2)(B) = (T"J1)(B) <l = J2ll,  (28)

following similar procedure by replacing; to J,, and vice
versa. Therefore, combining (27) with (28) givég™* J,)(8)—
(T*12)(B)| < ~||J1 — Jo|| for all 8 € D, ie., ||T*J; —
T*Jo|| < ~||J1 — J2||. It has proved thaf™* is a contraction

)}

mapping onF with modulusy. And the proof of Theorem 1

is completed.

APPENDIXB
PROOF OFTHEOREM 2

With s = [d, z], define a function

szda

a)) from equation (14) gives

N(a)

max < 7(s,a)+ i(d, a)x

2 {rsa + 3 nido
E max r(0:i (s,

’YX’IQi(Sya)[G’GA([Qi(Sya)yX’]){( (

N(a)

3 pj<d’,a’)J(g;-(gi(s,a>7X’,a’>>}}}

(0i(s a))} (29)

G(s) &
(5) % max {r(s,0)

ExpandingJ*(o(s,

G(s

a),X’,d’)

max rs,a
acA([d, m]){ )

N(a)
o Z pi(d x'm(s a)

max rsa—i—EG s,al t,
e {r(s,) £ FE[G(S o}

[G(Qi(sv a)v X/)] }

(30)

where the definition ofG implies the second equality, and
(12) implies the last equality. Note that (30) is exactly the

state Bellman equation (9). Therefore, funct@®n= V* solves
(9), and the relationship (16) is established. Finallyhwi29)
and the definition of the after-state Bellman equation (fl#B,

relationship (17) is established, which completes the fproo

APPENDIXC
PROOF OFTHEOREM 3

For Algorithm 1, we define two operatofd and H. Let
H be an operator on functior€ — R. Applying H on a
function g, i.e., Hg, gives another function with domaik,
and its value af is defined as

(Hg)(k) =~ r([q(k), X'],a)

E [ max
X'|q(k) o’ €A(q(k),X'])
N(a)

+ Z pi(q(k),a")g(w(o

13

Similarly, define another operator on functiois— R as

(Hg)(k) =~ {r(la(k), X'],a")

max
a’€A([q(k),X'])

N(a")

+ Z pila(k),a’

where X' is a r.v. with pdffx (-|¢(k)). Note that the outcome
of Hg is random, and depends on the realizationXdf

Note that, in Algorithm 1, at any iteratioh ¢;(k) does
not change foik ¢ K;. Therefore, the step size value(k),
Vk ¢ K;, does not affect the algorithm. By defining(k) = 0
Vk ¢ K;, and with the operator&l and H, the updating (19)
can be rewritten as7k € K:

gir1(k) = (1 —ay(k))gi(k) +ar (k) ((Hgi) (k) +wi(k)) (31)
wherew, (k) = (Hg)(k) — (Hg) (k).

(w(oi(lg(k), X'],a")))},

A. Proof of Statement (i):
From [36, Proposition 4.4], we have following lemma.

Lemma 1. Given following conditions,
(a) H is a contraction mapping under maximum norm;
(b) for all k, >°;° ) cu(k) = oo, and ;2 af (k) < oo;
(c) for all k andi, E[w;(k)|g1] = 0;
(d) there exist constan®; and Cs such thatE[w? (k)|g)] <

C1 + Collail %

the sequence of functiofg, }; generated from iteration (31)

converges to a functio,, with probability 1, and the limiting
function g, satisfyingH goo = goo-

We prove the statement (i) of Theorem 3 by checking the
four conditions of Lemma 1 as follows. First, the contractio
mapping condition (a) off can be established in a similar
procedure as the proof of Theorem 1, and is omitted here.
Then, due to assumptions (24) and (25) of Theorem 3, the
condition (b) abouta; is satisfied. In addition, we have
E[w;(k)|g:] = 0 via the definition of H and H. Therefore,
the condition (c) is satisfied. Finally, we have to prove the
condition (d): the bounded variance property.qf For given
k andl, we define a function as

!/
1) =, _max  {r(la(k),],a)
N (a)

+ Z pi(q(k),a")gi(w

With the notation/(z

)
Naill = X'lat k)[(

(X' - I(Y’)])

(0i(lg(k), z],a")))}-

y

we have

Efuw} (k

Y/Iq(k)w')])

)

[2 max{|I(X")], \I(Y’)]}])

y
y

2\1@/’)\])2

= E < E
X'|q(k) [ \Y"la(k)

< E < E
X'|q(k) L\Y"|a(k)

r 2
< E ( E [2|I(X’)H)
X'lqtk) [ \Y"]a(k)

(LB,
X'q(k) L\Y"|q(k)
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) SN2 2 with 7 inside », N, p; ; [ !
, N, pi and o; denoting w([8, X']).
= X/\I%(k)[(2’I(X DA +X/\I%(k)[(2Ll +2[laull)”|o1] And from the state transition kernel (12),J7=
@ as defined by (23) can be recursively rewritten
< 8Ly + 8|gil|* + 8LT + 8||aul|* = 8(L2 + LT) + 16||gl[?, as  J™(B) = 7, E (8, X'], moo) +

where the inequalitiesD) and @ hold from Assumption 1 ()

pi(B;moo) S (0i([8, X'], 7 ))]. By ~ comparing

and the fact tha{z + y)? < 222 + 2y? for any real value this expression wit'™ in (32), we have

z andy. Therefore, it is proven thdE[w? (k)|g] is bounded
by 8(La + L?) + 16]|g:||?, which completes the proof of the
statement (i) of Theorem 3.

B. Proof of Statement (ii):

First, define a partial order for functiofis— R as follows.
If g1(k) < g2(k), Vk, we sayg: < go. Itis easy to check that,

In

T JToe = JTee, (33)

addition, similar to the proof of Theorem 1" is a

contraction mapping with modulug which means

[|T7=Jy — T Jo|| < v|[J1 — Jo| (34)

given any two functiong; andg. satisfyingg, < g», we have for any J; and J,. Besides, from the definitions 6f(-|go.)

Hgl S Hgg

Then, define a functiog(k) £ inf J*(8)
_ ) pED(K)
ing H on g gives

(i.e., 7o) In (18) and J, in (26), we have T* defined in
+ 15 Apply- Appendix A)

T Joo = T* Joo. (35)

Furthermore, from statement (ii) of Theorem 3, we have

Hg)(k) = E max r([q(k), X'],d
HOE =7, o [a/emq(k),x']){ (latk), X}, ) 17 = Tl < ——. (36)
N(a,) 1— Yy
4 Z pi(q(k)’a/)g(w(gi([q(k)’X/]7a/)))}:| Finally, it is shown in the proof of Theorem 1 that
3 =t T =J%, (37)
< E k), X'],d *J, —T* —
STE, |:a'eA(I[r;{(iI§,X’]){T([q( ), X'],a") ||[T*Jy — T*Js|| < ~||J1 — Jol|, for any J; and J,.  (38)
N(a') By combining the above results, we have
£ 3 mialh), ) (7 el X)) + )}
= L= e = R — )
@ . € 9 v @
= — <K _— = Too JToo __ T oo oo _T*
J*(q(k)) + = = 55{“ (B)+E&+ T g(k), < ||T™=J T Joo|| + || T™ Joo — J*||

where inequality@) is due to the definition ofj(k), equality
@ comes from the after-state Bellman equation (14), and
inequality ® is due to the definition of in (22). Therefore,
we have(Hg)(k) < g(k) for all k, i.e., Hg < g.

Combining the fact thatt/g, < Hgo, if g1 < go, with
the fact thatHg < g, we haveH*j < g, where H* means

@ T * * *
S AT = el [+ ([T e = T

@ s * * *
S AT = T+ AT = Jooll + [ Joe = T7]

2v¢

®
<Al - T (39)

applying H operatork times. Then, dkl{e to Lemma 1 in theywhere®) is from (33);( is the triangle inequality®) is from
proof of statement (i), we havéim 1"g = go < g, which (34), (35) and (37)9 is from the triangle inequality and (38),
meansg.o (k) < ﬁi%fk)J*(B) i 1§_7 V¥ k. Therefore, we get and@® is from (36). Finally, from (39), we havig/ ™= —J*|| <

€

J*(B) = goo(w(B)) — 155, ¥ 5. From the definition of/. in
(26), J*(8) — Joo(B) > —1=, ¥ 3, follows.
On the other hand, defining(k) sup J*(8) — 1%
B BED(k)
and following the similar procedure, we can prokg > g,

and therefore, get/*(8) < goo(w(B)) + % In turn, it

implies J*(8) — Joo(B8) < 1% which completes the proof
of statement (ii) in Theorem 3. (3]

(1]

(2]

C. Proof of Statement (iii):

For any policyr, define an operatdf'™ onF (F is defined
in Appendix A) as

(T3 =1 B (8. X].7)

N ()

+ > pi(B,m) I (0i((8, X, 7)), (32)
i=1

(4]

(5]

(6]

=S
=)

which proves statement (iii) of Theorem 3.
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