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Abstract—We consider a cognitive radio system, in which a
secondary transmitter harvests energy from a primary trans-
mitter’s RF signal. The secondary transmitter, which provides
decode-and-forward relaying service for the primary system,
transmits its own data by using downlink non-orthogonal mul-
tiple access (NOMA). A time-switching protocol is used by the
secondary transmitter to harvest energy and decode the primary
transmitter’s information. Our objective is to achieve maximal
secondary throughput, by optimally selecting the time portion
used for energy harvesting and the secondary transmitter’s power
allocation in NOMA transmission. Two optimization problems
are formulated, in which the secondary receiver performs or
does not perform successive interference cancellation (SIC),
respectively. Although the two problems are nonconvex, we
devise a method to transform the problems into equivalent
problems under difference cases. Then we theoretically prove
that the objective functions of the equivalent problems are
quasiconcave, based on which we develop two-level bisection
search algorithms to solve the equivalent problems. Interestingly,
we show that performing SIC at the secondary receiver does not
always guarantee a higher secondary throughput than the case
without performing SIC. Computer simulation demonstrates that
our algorithm performs better than an equal power allocation
algorithm and an orthogonal multiple access algorithm.

Index Terms—Cognitive radio, cooperation, relay, decode-and-
forward, non-orthogonal multiple access, energy harvesting.

I. INTRODUCTION

Communications over wireless channels are technically re-
stricted by the bottleneck of spectrum efficiency, on which
research efforts have been made for decades, and many
state-of-the-art techniques have been devised. Among the
techniques, cognitive radio (CR) and non-orthogonal multi-
ple access (NOMA) are quite promising. CR alleviates the
conflict between explosively increased mobile applications
and scarce frequency resources, and significantly improves
the spectrum efficiency mainly in three ways of spectrum
access: interweave, underlay, and overlay [2]–[6]. As a novel
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paradigm of transmission, NOMA is recognized to be a key
enabling technology to further improve spectrum efficiency in
5G and beyond [7]–[12]. NOMA does not have the limitation
of transmitting only one user’s signal in one resource block
over traditional orthogonal multiple access (OMA) systems.
The power domain, treated as a new degree of freedom
of resource management, is inherently exploited in NOMA
systems. Specifically, at the transmitter side, different users’
signals are assigned with distinctive power levels to enable
concurrent transmissions. At the receiver side, successive
interference cancellation (SIC) is adopted to perform user
information recovery.

Naturally, the interaction of NOMA with CR, termed cog-
nitive NOMA, yields even more spectrum-efficient commu-
nications [13]–[20]. The CR inspired NOMA is conceptu-
ally introduced in [13], in which two users with different
priorities are paired on one resource block. The weak user
who undergoes poor channel gain from the transmitter has
a higher priority, and thus, is deemed as the primary user
(PU) with a target reception quality. The strong user who
experiences good channel gain from the transmitter has a
lower priority, and thus, is deemed as the secondary user
(SU). Under the condition that the PU’s target reception
quality is guaranteed, the transmitter uses NOMA to send
simultaneously to the PU and SU. The work in [14] extends
the CR inspired NOMA concept to the scenario with multiple
PUs and one single SU, in which the SU, having better channel
gain than those of the PUs, is served together with all the PUs
simultaneously by using NOMA. The transmission strategy
of the multiple-antenna transmitter is designed such that the
energy efficiency is maximized. By further extending CR
inspired NOMA with multiple PUs and multiple SUs, the work
in [15] proposes a distributed matching method, which pairs
an SU with a PU and assigns transmit power levels for them,
targeting system throughput maximization. In [16], underlaid
with the primary network, the secondary network sets up an
interference guard zone to limit the primary interference, and
transmits information from one secondary transmitter (ST) to
multiple secondary receivers (SRs) by employing NOMA. For
secondary transmissions, the outage performance and diversity
order are analyzed. A two-user underlay cognitive NOMA
system is investigated in [17], in which a dedicated full-duplex
relay is resorted to help a far user to forward information
from the base station (BS). The power allocation, beamformer
design and the outage performance are investigated. The work
in [18] considers an overlay cognitive NOMA system, in which
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the primary network is assisted by the secondary network that
applies NOMA principe in its transmissions. In the first phase,
a primary transmitter (PT) transmits signals to its primary
receiver (PR) and an ST, while in the second phase, the
ST cooperatively transmits the PR’s and the SRs’ signals
utilizing NOMA. The outage performance of the primary
and secondary systems are characterized. The work in [19]
considers an overlay cognitive NOMA system with a number
of STs, in which one ST is scheduled to use NOMA to forward
primary signals and send its own signals to its receivers.
Two scheduling schemes, targeting reliability and fairness,
respectively, are proposed. A survey of cognitive NOMA
techniques and future research trends is given in [20].

Energy efficiency is another major concern in wireless
communications. Conventional wireless devices, powered by
batteries, may experience energy depletion and inconvenience
of battery replacement. Energy harvesting provides a promis-
ing and viable solution [21], [22], in which energy from
various sources is harvested and used for transmissions. Apart
from natural energy sources (such as wind and solar), wireless
RF signal is a widely studied energy source since it can be
obtained almost everywhere and at any time. Moreover, the si-
multaneous wireless information and power transfer (SWIPT)
technique has the advantage of transferring energy and deliver-
ing information simultaneously [22]–[24]. To achieve SWIPT,
two typical implementation protocols, time-switching (TS) and
power-splitting (PS), are designed [24].

By integrating SWIPT into cognitive NOMA framework, a
greener and more sustainable communication is expected. In
the literature, some research efforts on SWIPT-based cognitive
NOMA are conducted, such as [25], [26]. The work in
[25] studies an underlay cognitive NOMA system, in which
multiple STs harvest energy from one energy transmitter and
transmit to one common BS by using NOMA. The secure
energy efficiency maximization problem for secondary system
is investigated. The work in [26] can be viewed as a CR
inspired NOMA system enhanced with SWIPT. To serve a
weak user, a strong user uses PS protocol to harvest energy
from the transmitter’s signals and decode its own and the
weak user’s information during the first phase. Afterwards,
during the second phase, the strong user forwards the weak
user’s information. With a condition that the reception quality
of the weak user is satisfied, the strong user’s throughput is
maximized, by optimally designing the beamformers of the
multiple-antenna transmitter and the PS ratio at the strong user.

In this paper, we investigate an overlay cognitive NOMA
scenario equipped with SWIPT, in which an ST uses TS
protocol for energy harvesting and information decoding, and
uses NOMA to help a PT and deliver its own information. The
optimal solution, deriving the time ratio for energy harvesting
as well as the NOMA power allocation of the ST, is provided
in our paper. Our main contributions are summarized as
follows. 1) A new SWIPT-enhanced cognitive NOMA frame-
work: In the literature, SWIPT is integrated with underlay
cognitive NOMA in [25], and with CR-inspired NOMA in
[26]. However, SWIPT-enhanced overlay cognitive NOMA
is not investigated in the literature, and its performance is
unclear. To address this research gap, we investigate a SWIPT-

Primary Transmitter (PT)

Primary Receiver (PR)

Secondary Transmitter (ST)

Secondary Receiver (SR)

hss , gss 

hsp , gsp hps , gps 

htt , gtt 

hpp , gpp 

Fig. 1. System model (‘h’ means channel coefficient, and ‘g’ means channel
gain).

enhanced overlay cognitive NOMA framework. 2) Optimal
solution: The formulated problems are nonconvex, and are
generally hard to solve. We devise a method to transform the
formulated problems to equivalent problems under different
cases. We theoretically prove that the objective functions of
the equivalent problems are quasiconcave. We then develop an
effective algorithm, by using a two-level bisection search, to
find the optimal solution of each equivalent problem. We also
develop a method that could reduce the number of iterations in
the inner bisection search. 3) Interesting insights: Interestingly,
different from existing NOMA works in which SIC is always
applied, performing SIC in our work does not guarantee a
better performance than the scenario without performing SIC.
The insight behind this observation is also discussed.

II. SYSTEM MODEL

We consider a cognitive system, consisting of one pair of
PT and PR, and one pair of ST and SR, as depicted in Fig. 1.
The spectrum is licensed to the primary system. The PT has a
stable power supply, which transmits data with a fixed transmit
power Pp. The ST is powered by harvested energy from RF
signals transmitted by the PT. The ST opportunistically gains
spectrum access opportunities in an overlay mode, i.e., when
the link from the PT to the PR is not good enough, the ST
could help forward the PT’s signal and send its own signal to
the SR as well by using NOMA.

The system is time slotted, and each time slot has a unit
length. The channel coefficients between PT and PR, PT
and SR, ST and PR, and ST and SR are denoted as hpp,
hps, hsp, and hss, respectively. In subscript of the channel
coefficients, the first symbol p or s means the primary or
secondary transmitter, and the second symbol p or s means
the primary or secondary receiver. In addition, the channel
coefficient between PT and ST is denoted as htt. Accordingly,
the channel gains (square of channel coefficient magnitude)
of those channels are denoted as gpp, gps, gsp, gss, and gtt,
respectively. Block fading is assumed, which means that all
the channel gains keep unchanged in each time slot and may
change independently from slot to slot.
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Fig. 2. The slotted structure of the energy harvesting cognitive NOMA
system.

Basically, in a particular time slot, the system works in one
of two transmission modes:

• Direct primary transmission mode
• Cooperative transmission mode.

A. Direct Primary Transmission Mode

We assume that the PT and ST always have enough informa-
tion to be transmitted to the PR and SR, respectively. The PT
has a target throughput1, denoted as γT , for each time slot.
At a slot, the achievable throughput of the direct link from
the PT to the PR is expressed as log(1 +

Ppgpp
σ2 ), where σ2

is variance of the background additive white Gaussian noise
(AWGN).

If the achievable throughput is not less than the PT’s
target throughput γT (which equivalently means that the
channel gain of the direct primary link PT→PR satisfies
gpp ≥ (2γ

T − 1)σ2/Pp), then the system works in direct
primary transmission mode. In this mode, the PT transmits
data to the PR during the whole slot, whereas the ST is not
allowed to access the spectrum. Thus, the ST harvests energy
during the whole slot, which yields the battery energy at the
end of the slot as max{E0 + ηPpgtt − Ec, 0},2 where E0 is
the ST’s battery energy at the beginning of the slot, η ∈ (0, 1)
is the energy conversion efficiency, and Ec means the energy
expenditure in a time slot due to circuit operation and channel
estimation.

B. Cooperative Transmission Mode

If the achievable throughput log(1 +
Ppgpp
σ2 ) of the direct

primary link PT→PR is lower than the PT’s target throughput
γT (which equivalently means that gpp < (2γ

T − 1)σ2/Pp),
the ST is requested to help to forward the PT’s message to
PR by using decode-and-forward (DF) relaying. The ST can
simultaneously send its own message to the SR based on
downlink NOMA. In other words, the system works in the
cooperative transmission mode.

In this mode, the slot is partitioned into three phases, as
shown in Fig. 2. The first phase has length ρ ∈ [0, 1], while the
second and third phases both have length (1−ρ)/2, where the
value of ρ is a designed parameter, to be optimized hereafter.

1In this paper, “throughput” is defined as the amount of information bits
that can be transmitted in a target slot.

2This amount of energy is also the battery energy at the beginning of the
next slot.

1) The First Phase: During the first phase, the PT transmits
wireless RF signals with power Pp, from which the ST har-
vests energy.3 Then the ST’s battery energy, after harvesting,
has the form of Eh = E0+ηρPpgtt. If Eh is less than Ec, then
the ST is not able to help the PT, and thus, the system has to
work in the direct primary transmission mode. Therefore, for
the system to work in the cooperative transmission mode, we
should have Eh ≥ Ec, which leads to ρ ≥ max{Ec−E0

ηPpgtt
, 0}.

2) The Second Phase: During the second phase, the PT
transmits its information signal xp with power Pp, which is
received by the PR and ST, as well as the SR.

At the PR, the received signal in the second phase of the
slot is represented by

√
Pphppxp + npr, in which npr is the

AWGN at the PR.
The received signal at the ST in the second phase of the slot

is written as
√
Pphttxp+nst, in which nst is the AWGN at the

ST. The achievable information rate for the transmission from
the PT to the ST in the second phase of the slot is expressed as
Rtt =

1−ρ
2 log(1+

Ppgtt
σ2 ). As the ST needs to decode the PT’s

signal, the achievable information rate Rtt should be not less
than the target throughput γT of the primary system. Thus,
we should have constraint Rtt ≥ γT , based on which we have

constraint ρ ∈ A1 ,
[
max{Ec−E0

ηPpgtt
, 0}, 1− 2γT

log(1+
Ppgtt

σ2 )

]
.

At the SR, the received signal in the second phase of the
slot is represented by

√
Pphpsxp + nsr, in which nsr is the

AWGN at the SR.
3) The Third Phase: During the third phase, the PT trans-

mits a copy of the primary signal xp with power Pp. The ST
applies downlink NOMA to transmit a superimposed signal
consisting of the PT’s signal xp and the ST’s own signal xs,
by using the harvested energy in a greedy manner, i.e., it uses
up all the available energy stored in battery in this phase.4 In
specific, the ST transmits xst =

√
αPexp +

√
(1− α)Pexs,

where α, a parameter to be optimized, is the power ratio for
xp, (1 − α) is the power ratio for xs, and Pe is the transmit
power of ST, shown as

Pe =
2(Eh − Ec)

1− ρ
=

2(ηρPpgtt + E0 − Ec)

1− ρ
. (1)

Accordingly, the received signal at the PR in the third
phase is

√
Pphppxp + hspxst + npr. As the PR receives the

PT’s signal xp in the second phase (from the PT) and the
third phase (from the PT and ST), the PR employs maximal
ratio combining (MRC) to combine the received PT’s signal
portions, which yields the overall throughput of the PT’s signal
xp (also called the throughput of the primary system) in the
time slot as

Rpp =
1− ρ
2

log

(
1 +

Ppgpp
σ2

+
Ppgpp + αPegsp

(1− α)Pegsp + σ2

)
. (2)

3Note that in the first phase, the wireless RF signals can actually be
information signals of the PT for the PR. In other words, in the first phase,
from the PT’s signals, the ST tries to harvest energy while the PR tries to
decode information. This portion of information for the PR will be investigated
in Section III-F.

4Note that our method can be straightforwardly extended to the case when
there exists a limit for the energy level that the ST can use in the third phase
of the slot (i.e., there is some energy left at the end of the slot).
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In the third phase, the received signal at the SR is yss =√
Pphpsxp+hssxst+nsr. In the received signal yss, the PT’s

signal portion xp is interference to the SR’s own signal xs.
Thus, similar to NOMA works in the literature, the SR can
use SIC, i.e., it first decodes the PT’s signal xp, removes xp
from yss, and then decodes its own signal xs.

When the SR decodes the PT’s signal portion xp, the
achievable information rate is given as

Rps =
1− ρ
2

log

(
1 +

Ppgps
σ2

+
Ppgps + αPegss

(1− α)Pegss + σ2

)
, (3)

where MRC is used to combine the received PT’s signal
portions in the second and third phases. When performing
SIC at the SR, ρ and α should be set up such that Rps ≥ γT ,
which means that the SR can successfully decode xp, and
perform SIC to remove xp in yss. Subsequently, the achiev-
able throughput of the secondary signal xs (also called the
secondary system’s throughput) can be written as

Rss =
1− ρ
2

log

(
1 +

(1− α)Pegss
σ2

)
. (4)

Our objective is to maximize the secondary system’s
throughput while guaranteeing that the throughput of the
primary system is not smaller than γT . Thus we formulate
the following optimization problem.

Problem P1:

max
α,ρ

Rss =
1− ρ
2

log

(
1 +

(1− α)Pegss
σ2

)
(5a)

s.t. ρ ∈ A1;min{Rpp, Rps} ≥ γT ; 0 ≤ α ≤ 1. (5b)

In Problem P1, to perform SIC at the SR, we have constraint
Rps ≥ γT . If the SR does not perform SIC, interference from
the PT’s signal is not cancelled, which harms the secondary
throughput. On the other hand, if the SR does not perform SIC,
the constraint Rps ≥ γT can be removed, and we can have a
larger feasible region of α and ρ, which benefits the secondary
throughput. It is not clear whether the overall effect of not
performing SIC is beneficial or harmful. Thus, we should also
investigate an optimization problem, in which the SR does not
perform SIC.

When the SR does not perform SIC, the achievable through-
put of the secondary system is

Rw/o
ss =

1− ρ
2

log

(
1 +

(1− α)Pegss
αPegss + Ppgps + σ2

)
, (6)

in which superscript (·)w/o stands for “without performing
SIC.” Accordingly, the following optimization problem can be
formulated.

Problem P2:

max
α,ρ

Rw/o
ss =

1− ρ
2

log

(
1 +

(1− α)Pegss
αPegss + Ppgps + σ2

)
(7a)

s.t. ρ ∈ A1;Rpp ≥ γT ; 0 ≤ α ≤ 1. (7b)

As a summary, the optimal solution of the system is the
better one between the optimal solutions of Problems P1 and
P2, which has larger secondary throughput.5

III. OPTIMAL SOLUTION OF PROBLEM P1

Problem P1 is non-convex since the objective and the
constraint functions are not jointly concave. Generally, it is
hard to solve such a problem. In this work, we provide an
efficient method to solve our Problem P1.

By careful inspection, there exists the following useful
lemma.

Lemma 1: When the optimality of Problem P1 is achieved,
constraint min{Rpp, Rps} ≥ γT should be active, i.e., we
should have min{Rpp, Rps} = γT .

Proof: We use proof by contradiction. Suppose that
when the optimality of Problem P1 is achieved, we have
min{Rpp, Rps} > γT .

From (2) and (3), we know that Rpp and Rps both are
increasing functions of α. Furthermore, when α = 0, we
have min{Rpp, Rps}|α=0 ≤ Rpp|α=0 = 1−ρ

2 log
(
1+

Ppgpp
σ2 +

Ppgpp
Pegsp+σ2

)
< γT , in which the last inequality comes from the

fact that

1− ρ
2

log
(
1 +

Ppgpp
σ2

+
Ppgpp

Pegsp + σ2

)
≤ 1− ρ

2
log(1 +

2Ppgpp
σ2

) ≤ 1

2
log(1 +

Ppgpp
σ2

)2

= log
(
1 +

Ppgpp
σ2

)
< γT . (8)

In (8), the last inequality comes from the fact that the system
works in the cooperative transmission mode when the achiev-
able throughput log(1+ Ppgpp

σ2 ) of the direct primary link from
the PT to the PR is less than the PT’s target throughput γT .

Thus, from the optimality point of Problem P1, we can de-
crease the value of α such that we still have min{Rpp, Rps} ≥
γT but we have a larger objective function Rss (noting that
Rss is a decreasing function of α according to (4)). This is a
contradiction.

This completes the proof.
Lemma 1 indicates that, at optimality of Problem P1, either

Rpp or Rps should be equal to γT .
If Rpp = γT , then from (2), we can see that α can be

expressed by a function of ρ as

α = Fp(ρ) ,
µp(Pegsp + σ2)− Ppgpp

(µp + 1)Pegsp
(9)

with
µp , 2

2γT

1−ρ − Ppgpp
σ2

− 1. (10)

Note that by using (8), we can see µp > 0.
When α is expressed as a function of ρ as in (9), the

constraint 0 ≤ α ≤ 1 should be satisfied. Note that α > 0 is
satisfied automatically, since from (8), we have 1−ρ

2 log(1 +
2Ppgpp

σ2 ) < γT , based on which we have µpσ
2 − Ppgpp > 0,

5If both Problems P1 and P2 are infeasible, which means the cooperative
transmission mode cannot make the throughput of the primary system be at
least γT , then the system will work in direct primary transmission mode.
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yielding α > 0. Thus, only α ≤ 1 is considered here, which
is equivalent to

ρ ∈ A2 ,
{
ρ|ρ ≥ 0 and Pegsp − µpσ

2 + Ppgpp ≥ 0
}
. (11)

Lemma 2: SetA2 is a closed interval of ρ, with closed-form
starting and ending points.

Proof: The proof is similar to the proof in Appendix A
in [1] (conference version of this paper), and thus, is omitted
due to space limit.

If Rps = γT , then from (3), we can see that α can be
expressed as a function of ρ, as

α = Fs(ρ) ,
µs(Pegss + σ2)− Ppgps

(µs + 1)Pegss
(12)

with µs , 2
2γT

1−ρ − Ppgps
σ2 − 1.

When α is expressed as a function of ρ as in (12), the
constraint 0 ≤ α ≤ 1 is equivalent to

ρ ∈ A3 ,
{
ρ|ρ ≥ 0 and µs(Pegss + σ2)− Ppgps ≥ 0

}
∩
{
ρ|ρ ≥ 0 and Pegss − µsσ

2 + Ppgps ≥ 0
}
. (13)

In A3, set {ρ|ρ ≥ 0 and µs(Pegss+σ
2)−Ppgps ≥ 0} comes

from α ≥ 0, which is a closed interval, since µs(Pegss +
σ2)−Ppgps is an increasing function of ρ. Similar to set A2,
set {ρ|ρ ≥ 0 and Pegss−µsσ

2 +Ppgps ≥ 0} is also a closed
interval. Thus, A3 is a closed interval.

Afterwards, by comparing (2) and (3), we have the follow-
ing four cases for Problem P1.

A. Case 1: When gpp ≤ gps and gsp ≤ gss
For a specific value of ρ, Rpp in (2) and Rps in (3) can be

viewed as functions of α.
1) Intersections of Curves Rpp vs. α and Rps vs. α over

α ∈ [0, 1]: By considering two curves: Rpp vs. α and Rps

vs. α over α ∈ [0, 1], we have the following lemma.
Lemma 3: For a specific value of ρ, the two curves Rpp

vs. α and Rps vs. α over α ∈ [0, 1] have up to two
intersections.

Proof: For a given ρ, from (2) and (3), if we set Rpp =
Rps, we can obtain

L1P
2
e (1− α)2 +

[
L1(

σ2

gss
+
σ2

gsp
) +

Ppgps
gss
− Ppgpp

gsp

σ2

gss
− σ2

gsp

+ 1

]
Pe(1− α) + 2L1

σ4

gssgsp
− Pe = 0, (14)

where L1 =
Ppgps

σ2 −Ppgpp

σ2

σ2

gss
− σ2

gsp

< 0. Considering the left hand-side

of (14) as a function of α, the two roots of (14) are

ROOT1 = 1− −L2 +
√
L2
2 − 4L1L3

2L1Pe
, (15)

ROOT2 = 1− −L2 −
√
L2
2 − 4L1L3

2L1Pe
, (16)

Rps Rpp

α

R

αeq,1

Req,2

Rps Rpp

α

R

αeq,1

Req,1

Rps Rpp

α

R

αeq,2

Req,1

(a) (b) (c)

Fig. 3. An illustration of two curves Rpp vs. α and Rps vs. α (for a specific
ρ) in Case 1, in which the two curves have up to two intersections.

in which L2 = L1(
σ2

gss
+ σ2

gsp
) +

Ppgps
gss

−Ppgpp
gsp

σ2

gss
− σ2

gsp

+ 1 and L3 =

2L1
σ4

gssgsp
− Pe < 0. Note that when L2 < 0, both ROOT1

and ROOT2 are larger than 1 and infeasible.
To make ROOT1 shown in (15) feasible, we should have

0 ≤ ROOT1 ≤ 1, which equivalently means that ρ ∈ A4 ,
{ρ|0 ≤ ρ ≤ 1, L2 ≥ 0, L2

2 − 4L1L3 ≥ 0, 2L1Pe + L2 −√
L2
2 − 4L1L3 ≤ 0}.6 The set A4 is a closed interval of ρ.

To make ROOT2 shown in (16) feasible, we should have
0 ≤ ROOT2 ≤ 1, which equivalently means ρ ∈ A5 ,
{ρ|0 ≤ ρ ≤ 1, L2 ≥ 0, L2

2 − 4L1L3 ≥ 0, 2L1Pe + L2 +√
L2
2 − 4L1L3 ≤ 0}. The set A5 is an interval of ρ, and is a

subset of A4.
Overall, for any specific ρ, if ρ ∈ Ā4 , [0, 1]\A4, then the

two curves Rpp vs. α and Rps vs. α do not have intersection; if
ρ ∈ A4\A5, then the two curves have one intersection denoted
as (αeq,1, Req,1), with αeq,1 = ROOT1; if ρ ∈ A5, then the
two curves have two intersections denoted as (αeq,1, Req,1)
and (αeq,2, Req,2), with αeq,1 = ROOT1 and αeq,2 = ROOT2.
An illustration is given in Fig. 3.

This completes the proof.
Below we show some features of Req,1 and Req,2.
Req,1 is expressed as

Req,1 = Rpp|α=ROOT1

=
1− ρ
2

log

[
1 +

Ppgpp
σ2

+
Pp

gps
gss
− Pp

gpp
gsp

σ2

gss
− σ2

gsp

+ L1

(
−L2 +

√
L2
2 − 4L1L3

2L1
+
σ2

gss

)]
. (17)

The second order derivative of Req,1 is given by

d2Req,1

dρ2
=

1

(ln 2)H1(ρ)

L1√
L2
2 − 4L1L3

(1− ρ
2

d2Pe

dρ2
−dPe

dρ

)
− 1− ρ

2(ln 2)
(
H1(ρ)

)2 L2
1

L2
2 − 4L1L3

(
dPe

dρ
)2

− 1− ρ
(ln 2)H1(ρ)

L2
1(

L2
2 − 4L1L3

) 3
2

(
dPe

dρ
)2, (18)

6L2 is not a function of ρ. By including “L2 ≥ 0” in the expression of
A4, we mean that A4 will be a null set if L2 < 0.
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where

H1(ρ) = 1 +
Ppgpp
σ2

+
Pp

gps
gss
− Pp

gpp
gsp

σ2

gss
− σ2

gsp

+ L1

(−L2 +
√
L2
2 − 4L1L3

2L1
+
σ2

gss

)
,

and {
dPe

dρ =
2(ηPpgtt+E0−Ec)

(1−ρ)2 ,
d2Pe

dρ2 =
4(ηPpgtt+E0−Ec)

(1−ρ)3 .
(19)

From (18), since 1−ρ
2

d2Pe

dρ2 − dPe

dρ = 0, d2Pe

dρ2 > 0 and dPe

dρ >

0, one can obtain that d2Req,1

dρ2 < 0, which indicates that Req,1

is a concave function of ρ.
Req,2 is expressed as

Req,2 = Rpp|α=ROOT2

=
1− ρ
2

log

[
1 +

Ppgpp
σ2

+
Pp

gps
gss
− Pp

gpp
gsp

σ2

gss
− σ2

gsp

+ L1

(
−L2 −

√
L2
2 − 4L1L3

2L1
+
σ2

gss

)]
. (20)

The second order derivative of Req,2 is given by

d2Req,2

dρ2
=

−1
(ln 2)H2(ρ)

L1√
L2
2 − 4L1L3

(1− ρ
2

d2Pe

dρ2
−dPe

dρ

)
− 1− ρ

2(ln 2)
(
H2(ρ)

)2 L2
1

L2
2 − 4L1L3

(
dPe

dρ
)2

+
1− ρ

(ln 2)H2(ρ)

L2
1(

L2
2 − 4L1L3

) 3
2

(
dPe

dρ
)2, (21)

where

H2(ρ) = 1 +
Ppgpp
σ2

+
Pp

gps
gss
− Pp

gpp
gsp

σ2

gss
− σ2

gsp

+ L1

(−L2 −
√
L2
2 − 4L1L3

2L1
+
σ2

gss

)
.

Recall that intersection (αeq,2, Req,2) exists only when ρ ∈
A5. By observing (21), it can be seen that 1) when ρ ∈ A6 ,
A5∩{ρ|H2(ρ)− 1

2

√
L2
2 − 4L1L3 ≥ 0}, we have d2Req,2

dρ2 ≥ 0,
which indicates that Req,2 is a convex function of ρ over A6;
2) when ρ ∈ A7 , A5 ∩ {ρ|H2(ρ) − 1

2

√
L2
2 − 4L1L3 < 0},

we have d2Req,2

dρ2 < 0, which indicates that Req,2 is a concave
function of ρ over A7. Note that A6 and A7 both are closed
intervals of ρ.

2) Problem P1 with Case 1: From Lemma 3, when ρ ∈
Ā4, the two curves Rpp vs. α and Rps vs. α do not have
intersection, which means that we always have Rpp < Rps,
as shown in Fig. 3(a). Thus, at optimality of Problem P1, we
should have Rpp = γT . Then Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (22a)

s.t. ρ ∈ A1 ∩ A2 ∩ Ā4, (22b)

with Rss|α=Fp(ρ) =
1−ρ
2 log

(
1 +

(Pegsp−µpσ
2+Ppgpp)gss

(µp+1)gspσ2

)
.

When ρ ∈ A4\A5, the two curves have one intersection
at (αeq,1, Req,1). It is interesting to point out that we further
have two scenarios, as follows.

• If Req,1 ≥ γT , then at optimality of Problem P1 (i.e.,
when min{Rpp, Rps} = γT ), we have Rps ≤ Rpp, and
thus, we have Rps = γT at optimality of Problem P1.
Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (23a)

s.t. ρ ∈ A1 ∩ A3 ∩ [(A4\A5) ∩ A8] (23b)

in which Rss|α=Fs(ρ) =
1−ρ
2 log

(
1+

Pegss−µsσ
2+Ppgps

(µs+1)σ2

)
and A8 , {ρ|Req,1 ≥ γT }. As aforementioned, Req,1 is
a concave function of ρ. Thus, A8 is a closed interval of
ρ.

• If Req,1 ≤ γT , then at optimality of Problem P1 (i.e.,
when min{Rpp, Rps} = γT ), we have Rpp ≤ Rps, and
thus, we have Rpp = γT at optimality of Problem P1.
Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (24a)

s.t. ρ ∈ A1 ∩ A2 ∩ [(A4\A5) ∩ Ā8] (24b)

in which Ā8 = [0, 1]\A8. As A8 is a closed interval,
Ā8 is the union of two closed intervals.

When ρ ∈ A5, the two curves have two intersections at
(αeq,1, Req,1) and (αeq,2, Req,2). It is also interesting to point
out that we further have two scenarios, as follows.

• If Req,1 ≤ γT or Req,2 ≥ γT , then at optimality of
Problem P1 (i.e., when min{Rpp, Rps} = γT ), we have
Rpp ≤ Rps, and thus, we have Rpp = γT at optimality
of Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (25a)

s.t. ρ ∈ A1 ∩ A2 ∩ A5 ∩ [Ā8 ∪ A9] (25b)

in whichA9 = {ρ|Req,2 ≥ γT and ρ ∈ A6}∪{ρ|Req,2 ≥
γT and ρ ∈ A7}. As Req,2 is convex over A6 and con-
cave over A7, A9 is the union of three closed intervals.

• If Req,1 ≥ γT and Req,2 ≤ γT , then at optimality of
Problem P1 (i.e., when min{Rpp, Rps} = γT ), we have
Rps ≤ Rpp, and thus, we have Rps = γT at optimality
of Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (26a)

s.t. ρ ∈ A1 ∩ A3 ∩ A5 ∩ A8 ∩ Ā9 (26b)

in which Ā9 = {ρ|Req,2 ≤ γT and ρ ∈ A6}∪{ρ|Req,2 ≤
γT and ρ ∈ A7}, being the union of three closed inter-
vals.

As a summary, for Case 1, the maximal objective function
of Problem P1 is the largest one among the maximal objec-
tive functions of Problem (22), Problem (23), Problem (24),
Problem (25) and Problem (26).
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B. Case 2: When gpp > gps and gsp > gss

Similar to Lemma 3, when ρ ∈ Ā4, the two curves do not
have intersection, which means that we always have Rps ≤
Rpp. Thus, at optimality of Problem P1, we should have Rps =
γT . Then Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (27a)

s.t. ρ ∈ A1 ∩ A3 ∩ Ā4. (27b)

When ρ ∈ A4\A5, the two curves have one intersection at
(αeq,1, Req,1). We further have two scenarios, as follows.

• If Req,1 ≥ γT , then at optimality of Problem P1 (i.e.,
when min{Rpp, Rps} = γT ), we have Rpp ≤ Rps, and
thus, we have Rpp = γT at optimality of Problem P1.
Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (28a)

s.t. ρ ∈ A1 ∩ A2 ∩ [(A4\A5) ∩ A8]. (28b)

• If Req,1 ≤ γT , then at optimality of Problem P1 (i.e.,
when min{Rpp, Rps} = γT ), we have Rps ≤ Rpp, and
thus, we have Rps = γT at optimality of Problem P1.
Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (29a)

s.t. ρ ∈ A1 ∩ A3 ∩ [(A4\A5) ∩ Ā8]. (29b)

When ρ ∈ A5, the two curves have two intersections
at (αeq,1, Req,1) and (αeq,2, Req,2). We further have two
scenarios, as follows.

• If Req,1 ≤ γT or Req,2 ≥ γT , then at optimality of
Problem P1 (i.e., when min{Rpp, Rps} = γT ), we have
Rps ≤ Rpp, and thus, we have Rps = γT at optimality
of Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (30a)

s.t. ρ ∈ A1 ∩ A3 ∩ A5 ∩ [Ā8 ∪ A9]. (30b)

• If Req,1 ≥ γT and Req,2 ≤ γT , then at optimality of
Problem P1 (i.e., when min{Rpp, Rps} = γT ), we have
Rpp ≤ Rps, and thus, we have Rpp = γT at optimality
of Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (31a)

s.t. ρ ∈ A1 ∩ A2 ∩ A5 ∩ A8 ∩ Ā9. (31b)

As a summary, for Case 2, the maximal objective function
of Problem P1 is the largest one among the maximal objec-
tive functions of Problem (27), Problem (28), Problem (29),
Problem (30) and Problem (31).

C. Case 3: When gpp ≤ gps and gsp > gss

Similar to the previous two cases, we also try to decide
which one between Rpp and Rps should be equal to γT .

Lemma 4: For a specific value of ρ, the two curves Rpp

vs. α and Rps vs. α over α ∈ [0, 1] have at most one

intersection at (αeq,1, Req,1), with Req,1 being a concave
function of ρ.

Proof: The proof is similar to Lemma 3. The major
difference is L1 > 0 and L2 > 0, which makes ROOT2 in (16)
larger than 1 and infeasible, yielding at most one intersection.

Note that we have Rpp|α=0 = 1−ρ
2 log(1 +

Ppgpp
σ2 +

Ppgpp
Pegsp+σ2 ) < Rps|α=0 = 1−ρ

2 log(1 +
Ppgps
σ2 +

Ppgps
Pegss+σ2 ).

Thus, the two curves Rpp vs. α and Rps vs. α have one
intersection over α ∈ [0, 1] if and only if Rpp|α=1 ≥
Rps|α=1, which equivalently means that ρ ∈ A4 =[
max

{
1− ηPpgtt+E0−Ec

ηPpgtt+
Ppgps−Ppgpp

gsp−gss

, 0

}
, 1

]
.

Similar to Lemma 3, when ρ ∈ Ā4 , [0, 1]\A4, the two
curves do not have intersection, which means that we always
have Rpp < Rps. Thus, at optimality of Problem P1, we should
have Rpp = γT . Then Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (32a)

s.t. ρ ∈ A1 ∩ A2 ∩ Ā4. (32b)

When ρ ∈ A4, the two curves have one intersection at
(αeq,1, Req,1). We further have two scenarios, as follows.

• If Req,1 ≥ γT , then at optimality of Problem P1 (i.e.,
when min{Rpp, Rps} = γT ), we have Rpp ≤ Rps, and
thus, we have Rpp = γT at optimality of Problem P1.
Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (33a)

s.t. ρ ∈ A1 ∩ A2 ∩ A4 ∩ A8. (33b)

• If Req,1 < γT , then at optimality of Problem P1 (i.e.,
when min{Rpp, Rps} = γT ), we have Rps < Rpp, and
thus, we have Rps = γT at optimality of Problem P1.
Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (34a)

s.t. ρ ∈ A1 ∩ A3 ∩ A4 ∩ Ā8. (34b)

As a summary, for Case 3, the maximal objective function
of Problem P1 is the largest one among the maximal objective
functions of Problem (32), Problem (33), and Problem (34).

D. Case 4: gpp > gps and gsp ≤ gss
Similar to Case 3, we can also prove that Lemma 4 holds

in Case 4. Different from Case 3, here we have Rpp|α=0 =
1−ρ
2 log(1 +

Ppgpp
σ2 +

Ppgpp
Pegsp+σ2 ) > Rps|α=0 = 1−ρ

2 log(1 +
Ppgps
σ2 +

Ppgps
Pegss+σ2 ). Thus, the two curves Rpp vs. α and Rps

vs. α have one intersection over α ∈ [0, 1] if and only if
Rpp|α=1 ≤ Rps|α=1, which equivalently means that ρ ∈ A4.7

When ρ ∈ Ā4, the two curves do not have intersection,
which means that we always have Rpp > Rps. Thus, at

7In Case 3, Rpp|α=1 ≥ Rps|α=1 is equivalent to ρ ∈ A4, while in
Case 4, Rpp|α=1 ≤ Rps|α=1 is equivalent to ρ ∈ A4. This is because we
have gpp ≤ gps and gsp > gss in Case 3, while we have gpp > gps and
gsp ≤ gss in Case 4.
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optimality of Problem P1, we should have Rps = γT . Then
Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (35a)

s.t. ρ ∈ A1 ∩ A3 ∩ Ā4. (35b)

When ρ ∈ A4, the two curves have one intersection at
(αeq,1, Req,1). We have two scenarios as follows.

• If Req,1 ≥ γT , then at optimality of Problem P1 (i.e.,
when min{Rpp, Rps} = γT ), we have Rps ≤ Rpp, and
thus, we have Rps = γT at optimality of Problem P1.
Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (36a)

s.t. ρ ∈ A1 ∩ A3 ∩ A4 ∩ A8. (36b)

• If Req,1 < γT , then at optimality of Problem P1 (i.e.,
when min{Rpp, Rps} = γT ), we have Rpp < Rps, and
thus, we have Rpp = γT at optimality of Problem P1.
Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (37a)

s.t. ρ ∈ A1 ∩ A2 ∩ A4 ∩ Ā8. (37b)

As a summary, for Case 4, the maximal objective function
of Problem P1 is the largest one among the maximal objective
functions of Problem (35), Problem (36), and Problem (37).

In Cases 1∼4, all the equivalent problems are in the format
of max

ρ
Rss|α=Fp(ρ) or max

ρ
Rss|α=Fs(ρ) under a constraint

that ρ is within a closed interval (i.e., such as equivalent
problems (23), (28), (32) and (35)) or within a union of
multiple closed intervals (i.e., such as equivalent problems
(25), (30), (34) and (37)). We have two observations:

• If ρ is within a union of multiple closed intervals, we can
first get the optimal solution over each interval and pick
up the best optimal solution.

• Rss|α=Fp(ρ) and Rss|α=Fs(ρ) can be expressed in a
unified form as

Rss,n =
1− ρ
2

log

(
1 +

(Pegsn − µnσ
2 + Ppgpn)gss

(µn + 1)gsnσ2

)
(38)

with n ∈ {p, s}. Here we have Rss|α=Fn(ρ) = Rss,n.
Therefore, in what follows, we focus on maximizing Rss,n,
n ∈ {p, s} over ρ ∈ B with B being a closed interval.

E. Solving max
ρ

Rss,n s.t. ρ ∈ B

The objective function Rss,n is not a concave function.
However, it is a quasiconcave function [27], as theoretically
shown in the following theorem.

Theorem 1: The objective function Rss,n is quasiconcave
with respect to ρ ∈ B.

Proof: See Appendix A.
As shown in [27], super-level sets of a quasiconcave func-

tion can be represented by inequalities of concave functions.
As reference [27] does not provide methods to find the
inequalities of concave functions, here we develop a method
to find the inequalities of concave functions that can represent

super-level sets of our quasiconcave function Rss,n. As a
result, we have the following theorem.

Theorem 2: For any t ≥ 0, inequality Rss,n ≥ t and
inequality ξt,n ≥ 0 are equivalent, in which ξt,n is given as

ξt,n = (λn − 2
2t

1−ρ )(1− ρ)(µn + 1), (39)

where

λn = 1 +
(Pegsn − µnσ

2 + Ppgpn)gss
(µn + 1)gsnσ2

. (40)

Proof: It is readily checked that Rss,n ≥ t is equivalent
to λn − 2

2t
1−ρ ≥ 0.

Since 1− ρ and µn + 1 are larger than 0, multiplying two
positive numbers to λn− 2

2t
1−ρ will not change its sign. Then

we can see that Rss,n ≥ t is equivalent to ξt,n ≥ 0.
This completes the proof.
From Theorem 2, identifying the maximized Rss,n in ρ ∈ B

is equivalent to finding the maximal possible value of t such
that there exists ρ ∈ B that makes Rss,n ≥ t, which is further
equivalent to finding the maximal possible value of t such that
there exists ρ ∈ B that makes ξt,n ≥ 0. For a value of t, if
there exists ρ ∈ B that makes ξt,n ≥ 0, then we say that the t
value is feasible. Thus, max

ρ
Rss,n s.t. ρ ∈ B is equivalent to

finding the maximal feasible t value, which can be done by
using a bisection search over t ∈ [0, log(1 + Pegss

σ2 )] (noting
that from (4) and (6), it can be seen that an upper bound of
Rss,n is log(1 + Pegss

σ2 )).
In the bisection search over t, we need to decide whether

or not a checked t value is feasible. For this purpose, the
following theorem, which gives a feature of ξt,n, is helpful.

Theorem 3: For a given nonnegative value of t, the function
ξt,n is concave with respect to ρ ∈ B.

Proof: The proof is similar to the proof in Appendix C
in [1] (conference version of this paper), and thus, is omitted
due to space limit.

In the bisection search over t, if a checked t value is
feasible, this equivalently means that for the checked t value,
the maximal value of ξt,n over ρ ∈ B is nonnegative. Thus,
from Theorem 3, we can use a bisection search over ρ ∈ B,
to find the maximal value of ξt,n.8 If any searched ρ makes
ξt,n ≥ 0, then the checked t value is feasible, and we can
terminate the bisection search of ρ. If the found maximal
value of ξt,n is negative, then the checked t value is infeasible.
Thus, we have two levels of bisection search, and we call the
bisection search over t as outer bisection search, and call the
bisection search over ρ as inner bisection search.

Generally, each inner bisection search may need to be done
over ρ ∈ B. Next we reduce the number of iterations in inner
bisection search.

For a t value, define Rt,n = {ρ|ξt,n ≥ 0, ρ ∈ B}. So Rt,n

is a set of ρ that makes ξt,n ≥ 0. Consider two t values: t1
and t2, with t1 < t2. We have

Rt2,n
(i)
= {ρ|Rss,n ≥ t2}

(ii)
⊆ {ρ|Rss,n ≥ t1}

(iii)
= Rt1,n, (41)

8In the bisection search, we try to find a value of ρ that makes dξt,n
dρ

= 0
(which means the maximal value of ξt,n is achieved over ρ ∈ B). Note that
other methods can also be used here to find the maximal value of ξt,n over
ρ ∈ B, such as gradient descent method and Newton’s method.
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in which steps (i) and (iii) are from Theorem 2, and step (ii)
is from t1 < t2.

From (41), we can see that, if we know that t1 is feasible,
then when deciding whether or not t2 is feasible, we only need
to search ρ over Rt1,n, or over an interval of ρ that includes
Rt1,n as a subset. Denote F , [f1, f2] as the interval of ρ
over which the inner bisection search is performed. So F is
initially set to be B. In the outer bisection search, for a checked
t value (say t†), if t† is feasible, we get an updated F (which
is a subset of the previous F , and includes Rt†,n as a subset).
Then, in the outer bisection search, when we check feasibility
of higher t values,9 we only need to search ρ over the updated
interval F (rather than over B) in the inner bisection search,
referred to as feasible region shrinking.

Based on this observation, we have Algorithm 1 for our
inner bisection search. In Algorithm 1, the expression of ξt,n
is given in (39), while expression of dξt,n

dρ is given as

dξt,n
dρ

= (
gss
gsn
− 1)

(
µn − (1− ρ)dµn

dρ

)
+

2ηPpgttgss
σ2

− 1

− Ppgpngss
gsnσ2

−
(
(µn+1)

(2(ln 2)t
1− ρ

−1
)
+(1−ρ)dµn

dρ

)
2

2t
1−ρ .

(42)

Algorithm 1: Inner Bisection Search
Input: value of t to be checked for feasibility, and two

end points of the interval F : f1 and f2
Output: Feasibility of value t, updated f1 and f2

1 if ξt,n|ρ=f1 ≥ 0 or ξt,n|ρ=f2 ≥ 0 then
2 t is feasible. Terminate the algorithm;

3 if dξt,n
dρ |ρ=f1 ×

dξt,n
dρ |ρ=f2 ≥ 0 then

4 t is infeasible. Terminate the algorithm;

5 fBS
1 ← f1, f

BS
2 ← f2;

6 f new
1 ← f1, f

new
2 ← f2;

7 if |fBS
2 − fBS

1 | < ϵρ then
8 t is infeasible. Terminate the algorithm;

9 fmid ← (fBS
1 + fBS

2 )/2;
10 if ξt,n|ρ=fmid ≥ 0 then
11 t is feasible; f1 ← f new

1 , f2 ← f new
2 ; Terminate the

algorithm;

12 if dξt,n
dρ |ρ=fmid = 0 then

13 t is infeasible. Terminate the algorithm;

14 if dξt,n
dρ |ρ=fmid > 0 then

15 fBS
1 ← fmid; f new

1 ← fmid;Go to Step 7;

16 if dξt,n
dρ |ρ=fmid < 0 then

17 fBS
2 ← fmid; f new

2 ← fmid;Go to Step 7;

In Steps 1 and 2 of Algorithm 1, we check whether ρ = f1
or ρ = f2 makes ξt,n nonnegative. If yes, then the checked
t value is feasible and we terminate the algorithm. If we
proceed to Step 3, then we know that ξt,n|ρ=f1 < 0 and

9Note that since t† is feasible, we do not need to check t values lower than
t† in the outer bisection search.

ξt,n|ρ=f2 < 0. In Step 3, we check whether dξt,n
dρ |ρ=f1 and

dξt,n
dρ |ρ=f2 are both nonpositive or both nonnegative. If they are

both nonpositive or both nonnegative, then ξt,n is a decreasing
or increasing function with respect to ρ ∈ F , and thus, we
can conclude that the checked t value is infeasible. So when
we proceed to Step 5, we should have dξt,n

dρ |ρ=f1 > 0 and
dξt,n
dρ |ρ=f2 < 0. Then we try to search the maximal point

of ξt,n over ρ ∈ [f1, f2], by using inner bisection search of
dξt,n
dρ until dξt,n

dρ = 0. In the inner bisection search, [fBS
1 , fBS

2 ]
represents the subinterval after bisecting the original interval
of ρ, and [f new

1 , f new
2 ] represents the updated interval F . In the

inner bisection search, if a searched ρ value makes ξt,n ≥ 0,
then we know that the checked t value is feasible, and we
update F (we can see that the updated F satisfies Rt,n ⊆ F ),
and terminate the algorithm (Steps 10–11). If the subinterval
[fBS

1 , fBS
2 ] is sufficiently small (i.e., less than a threshold value

ϵρ) and no searched ρ value makes ξt,n ≥ 0, then we know the
checked t value is infeasible, and we do not update F (Steps
7–8).

The detailed algorithm for the outer bisection search is
straightforward, and thus, is omitted here, for presentational
simplicity.

Complexity: According to [28], the computational com-
plexity of a bisection search is O(log( 1ϵ )), where ϵ is the
pre-defined tolerance for convergence. Thus, the complexity
of the proposed two-level bisection search is expressed as
O
(
log( 1

ϵt
) log( 1

ϵρ
)
)
, in which ϵt and ϵρ are pre-defined con-

vergence tolerance for the outer bisection search over t and
the inner bisection search over ρ.

Impact of parameters ϵt and ϵρ: Denote t∗ as the maximal
feasible t value, and denote ρ∗ as the corresponding ρ that
achieves t∗. Denote t̂ as the t value found by our proposed
algorithm.

For the outer bisection search over t, when it converges, we
get a region of t, denoted as [l, u] with u− l < ϵt. Then t̂ = l
is the t value found by our algorithm.

If the inner bisection search (which does feasibility check
for a specific t value) is always accurate, then when the
outer bisection search converges, t = l is feasible, t = u
is infeasible, and t∗ falls within [l, u]. Thus, the gap between
t∗ and t̂(= l) is less than ϵt.

However, when the inner bisection search checks the feasi-
bility of a value, say t†, close to t∗, it may not be accurate.
It is possible that the inner bisection search may claim that t†

is infeasible, but actually t† is feasible. If this happens, then
when the outer bisection search converges at a region of t
denoted as [l, u], actually t = l and t = u are both feasible,
and we have l < u < t∗ (in other words, t∗ does not fall
within [l, u]). Recall that our objective function Rss,n is a
quasiconcave function, i.e., when the first order derivative is
0, the second order derivative is nonpositive. Thus, we can
treat the quasiconcave function Rss,n as a concave function
at the neighborhood of ρ∗. Based on this, |t∗ − u| is less
than

∣∣∣dRss,n

dρ |ρ=ρ∗−ϵρ

∣∣∣ϵρ. Accordingly, the gap between t∗ and

t̂(= l) is less than ∆ , ϵt +
∣∣∣dRss,n

dρ |ρ=ρ∗−ϵρ

∣∣∣ϵρ.
For Rss,n, its first-order derivative at ρ = ρ∗ is zero, i.e.,
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dRss,n

dρ |ρ=ρ∗ = 0. Since Rss,n can be viewed as a concave
function at the neighborhood of ρ∗ and ϵρ is small, we can
see that

∣∣∣dRss,n

dρ |ρ=ρ∗−ϵρ

∣∣∣ is close to zero. Thus, ∆ is small
for small values of ϵt and ϵρ.

F. Further Discussion: When Primary Information is Sent
during the First Phase

In the first phase, the wireless RF signals can actually be
information signals of the PT for the PR. In other words, in the
first phase, from the PT’s signals, the ST tries to harvest energy
while the PR tries to decode information. Thus, the primary
system has an additional throughput expressed as ρ log(1 +
Ppgpp
σ2 ). It also means that the target throughput of the primary

system during the second and third phase is γT − ρ log(1 +
Ppgpp
σ2 ). Therefore, in Problem P1, we should replace γT with

γT −ρ log(1+ Ppgpp
σ2 ), and accordingly, we have the following

revised Problem P1:
Revised Problem P1:

max
α,ρ

Rss =
1− ρ

2
log

(
1 +

(1− α)Pegss
σ2

)
(43a)

s.t. ρ ∈ Ã1; 0 ≤ α ≤ 1 (43b)

min{Rpp, Rps} ≥ γT − ρ log(1 +
Ppgpp
σ2

) (43c)

in which

Ã1 ,[
max{Ec − E0

ηPpgtt
, 0}, 1−

2
(
γT − log(1 +

Ppgpp
σ2 )

)
log(1 +

Ppgtt
σ2 )− 2 log(1 +

Ppgpp
σ2 )

]
.

Similar to Lemma 1, we should have either Rpp =

γT − ρ log(1 +
Ppgpp
σ2 ) or Rps = γT − ρ log(1 +

Ppgpp
σ2 )

at optimality of the revised Problem P1. Accordingly, when
Rpn = γT − ρ log(1 +

Ppgpp
σ2 ), n ∈ {p, s}, we can see

that α can be expressed in terms of ρ as α = F̃n(ρ) ,
µ̃n(Pegsn+σ2)−Ppgpn

(µ̃n+1)Pegsn
with µ̃n , (1+

Ppgpp
σ2 )22

2γ̃T

1−ρ − Ppgpn
σ2 −1,

in which γ̃T = γT − log(1 +
Ppgpp
σ2 ).

Afterwards, for each of the four cases defined in Section
III-A∼III-D, the revised Problem P1 is equivalent to maxi-
mizing

Rss|α=F̃n(ρ)
=

1− ρ
2

log
(
1 +

(Pegsn − µ̃nσ
2 + Ppgpn)gsn

(µ̃n + 1)gsnσ2

)
(44)

over closed intervals.
Then similar to Theorem 1, we can still prove that

Rss|α=F̃n(ρ)
is quasiconcave over each closed interval, and

thus, a two-level bisection search can be used to find the
optimal solution.

For presentation simplicity, in the sequel, we consider that
the PT does not send information to the PR during the first
phase of each slot in the cooperative transmission mode.

IV. OPTIMAL SOLUTION FOR PROBLEM P2

Similar to Problem P1, when Problem P2 achieves the
optimality, the constraint Rpp ≥ γT should take equality,

Our System

Problem P1

(With SIC)

Problem P2

(Without SIC)

Case 1 Case 2 Case 3 Case 4

Problems 

(22)-(26)

Problems 

(27)-(31)

Problems

 (32)- (34) 

Problems

(35) - (37) 

Lemma 4 Lemma 4

Lemma 1,2

Optimal 

Solution

Optimal 

Solution

Lemma 1,2 and 

Theorem 4,5

Theorem 1,2,3

Lemma 3 Lemma 3

Fig. 4. Flow chart of the procedure for finding optimal solution of the
considered system.

which means α = Fp(ρ), as given in (9). Accordingly,
Problem P2 is equivalent to

max
ρ

Rw/o
ss |α=Fp(ρ) (45a)

s.t. ρ ∈ A1 ∩ A2 (45b)

with Rw/o
ss |α=Fp(ρ) =

1−ρ
2 log λw/o, where

λw/o = 1+(Pegsp−µpσ
2+Ppgpp)gss

{[
µp(Pegsp+σ

2)−

Ppgpp
]
gss + (Ppgps + σ2)(µp + 1)gsp

}−1

. (46)

We have the following theorem for the objective function
of Problem (45).

Theorem 4: The objective function Rw/o
ss |α=Fp(ρ) is quasi-

concave with respect to ρ ∈ [0, 1].
Proof: See Appendix B.

Since Rw/o
ss |α=Fp(ρ) is quasiconcave, similar to Theorem 2,

for any t ≥ 0, inequality R
w/o
ss |α=Fp(ρ) ≥ t is equivalent to

ξ
w/o
t ≥ 0, with

ξ
w/o
t , (λw/o − 2

2t
1−ρ )(1− ρ)

{[
µp(Pegsp + σ2)−

Ppgpp
]
gss + (Ppgps + σ2)(µp + 1)gsp

}
. (47)

The following theorem gives a feature of ξw/o
t .

Theorem 5: For a given nonnegative value t, the function
ξ
w/o
t is concave with respect to ρ ∈ [0, 1].

Proof: See Appendix C.
Therefore, a two-level bisection search similar to that in

Section III-E can be used to find the optimal solution for
Problem P2. The details are omitted here.

Overall, Fig. 4 shows the procedure for finding optimal
solution of the considered system.

Remark: Interestingly, we have an observation that the
maximal secondary throughput of Problem P1 may not guar-
antee to be larger than that of Problem P2. The reason is as
follows. For specific α and ρ, the objective function value of
Problem P1 is indeed larger than that of Problem P2. However,
compared to Problem P2, Problem P1 has one more constraint
Rps ≥ γT , which makes the feasible region of Problem P1
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be a subset of the feasible region of Problem P2. Thus, in a
larger feasible region, it is possible that the maximal secondary
throughput of Problem P2 is larger than that of Problem P1.

A numerical example is also given here, which has the
following parameter setting as: gtt = 7.15 × 10−3, gpp =
2.69 × 10−5, gps = 2.65 × 10−6, gsp = 1.1 × 10−1,
gss = 2.88 × 10−2, Pp = 15 dBm, E0 = 3.41 × 10−5 J,
Ec = 1.5 × 10−6 J, σ2 = −25 dBm, and γT = 0.5 bps/Hz.
In this specific example, the optimal solution of Problem P2
is 0.1448 bps/Hz, which is larger than the optimal solution of
Problem P1, 0.0321 bps/Hz.

V. NUMERICAL RESULTS

We use Matlab simulation to evaluate the performance
of our proposed algorithm10. Similar to [16], the channel
power gain gi is further represented as gi = g̃i

1+d
κi
i

, where
i ∈ M = {tt, pp, ps, sp, ss}, g̃i is exponentially distributed
with parameter 1, di is the distance of link i, and κi is the path
loss exponent of link i. The distance values are: dpp = 12 m,
dtt = dps = dsp = dss = 8 m. The background noise variance
is σ2 = −25dBm and the energy conversion efficiency is
η = 0.5. The energy expenditure in a time slot due to circuit
operation and channel estimation is Ec = 1.5×10−6 J. In our
simulation, a minimum throughput requirement 0.15 bps/Hz
is set up at the ST. If the ST cannot achieve this throughput at
a slot, our system works in direct primary transmission mode.

First we evaluate the chance of ST to access the channel.
Three events, D1, D2 and D3, are considered. Specifically,
event D1 is defined as gpp < (2γ

T − 1)σ2/Pp, which means
that the PT needs help. Event D2 is defined as gtt ≥ (22γ

T −
1)σ2/Pp, which means that it is possible to set up a ρ such
that Rtt ≥ γT (i.e., the ST is able to decode information from
the PT in the second phase). Event D3 is defined as the event
that the PT needs help (i.e., gpp < (2γ

T − 1)σ2/Pp) and at
least one of Problems P1 and P2 is feasible11. Clearly, when
event D3 happens, events D1 and D2 should also happen.
And the probability of event D3 is exactly the probability of
the ST to access the channel. By setting γT = 0.25 bps/Hz
and 0.5 bps/Hz, κpp = 4, κi = 2, i ∈ M\{pp} and varying
Pp from 0 dBm to 30 dBm, the occurrence probabilities of
three events, P (D1), P (D2), and P (D3), are shown in Fig. 5.
Probabilities P (D1) and P (D2) are decreasing and increasing
functions, respectively, of Pp, which is intuitive. Moreover,
we get higher P (D1) and lower P (D2) through increasing
γT from 0.25 bps/Hz to 0.5 bps/Hz. This is because a higher
target rate γT means that the PT needs more help and the
ST needs better channel gain gtt to decode information from
the PT. At low Pp, P (D1) is close to 1 (i.e., the PT almost
always needs help from the ST), and thus, the curve of P (D3)
follows the trend of the curve of P (D2), i.e., increases when

10In the sequel, by “our proposed algorithm,” we mean the algorithm that
takes the better solution of Problem P1 and Problem P2 if both problems
are feasible, and takes the solution of Problem P2 if only Problem P2 is
feasible. Note that if Problem P2 is infeasible, then Problem P1 should also
be infeasible.

11Note that in cooperative transmission mode, when Problem P1 is feasible,
Problem P2 is always feasible. Thus, “at least one of Problems P1 and P2 is
feasible” is equivalent to “Problem P2 is feasible.”
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Fig. 5. The probabilities of three events D1, D2, and D3.

Pp increases or γT decreases. At high Pp, P (D2) is close to
1, and thus, the curve of P (D3) follows the trend of the curve
of P (D1), i.e., decreases when Pp increases or γT decreases.

Next we show by how much chance the performance of
Problem P2 is better than that of Problem P1 (i.e., the maximal
secondary throughput without SIC is higher than that with
SIC). We set γT = 0.1, 0.25, 0.5, 0.75, and 1 bps/Hz, and
Pp = 0 dBm and 10 dBm. For each (γT , Pp) pair, we run
simulations for 106 time slots. In Table I, the numbers after
slash are numbers of time slots in which both Problems P1 and
P2 are feasible, while the numbers before slash are numbers of
time slots when the maximal secondary throughput of Problem
P2 is larger than that of Problem P1. It can be seen that, in most
time slots when both problems are feasible, Problem P1 has
better performance. However, it is still possible (with a small
probability) that Problem P2 performs better. Therefore, when
both problems are feasible, if we directly take the solution of
Problem P1, we have a very large chance to get the overall
optimal solution, to be verified below.

We compare our proposed algorithm with its two variants:
an SIC-if-possible algorithm that takes the solution
of Problem P1 when both Problem P1 and Problem P2 are
feasible, and a Never-SIC algorithm that always takes
the solution of Problem P2 even if both Problem P1 and
Problem P2 are feasible. Fig. 6 shows secondary throughput
performance of our proposed algorithm and the two variants
for γT = 0.25 bps/Hz and 0.5 bps/Hz. It can be seen that
the throughput of our proposed algorithm has similar trend
as the channel access probability (the curve of P (D3) as
shown in Fig. 5). By comparing Fig. 5 and Fig. 6, when
Pp increases beyond 20 dBm, the channel access probability
and throughput of the secondary system in the proposed
algorithm both decrease, but the decrease rate of the channel
access probability is higher, explained as follows. When Pp

is high, the channel access probability is low, which means
the ST has more chance to accumulate energy. Thus, at a slot,
when the system works in cooperative transmission mode, the
energy level of the ST is high, leading to high throughput
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TABLE I
THE NUMBER OF TIME SLOTS IN WHICH THE MAXIMAL SECONDARY

THROUGHPUT OF PROBLEM P2 IS LARGER THAN THAT OF PROBLEM P1,
AND THE NUMBER OF TIME SLOTS WHEN BOTH PROBLEMS ARE FEASIBLE.

Pp = 0 dBm Pp = 10 dBm
γT = 0.1 134/111690 20/219865
γT = 0.25 150/74603 79/260055
γT = 0.5 57/46421 89/218943
γT = 0.75 5/31032 25/171037
γT = 1 0/21085 1/132606
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Fig. 6. Secondary throughput of the proposed algorithm, the
SIC-if-possible algorithm, and the Never-SIC algorithm.

at the slot. Thus, when Pp increases beyond 20 dBm, the
decrease rate of secondary system throughput is not as high
as that of the channel access probability. From Fig. 6, the
SIC-if-possible algorithm achieves almost the same
performance as that of our proposed algorithm. This verifies
our statement that when both Problem P1 and Problem P2 are
feasible, if we directly take the solution of Problem P1, we
have a very large chance to get the overall optimal solution.
From Fig. 6, it can also be seen that there is a gap between
the performance of the Never-SIC algorithm and that of
our proposed algorithm. This is because it is with a very large
probability (for example, more than 90% based on simulation
results in Table I) that the case with SIC performs better than
the case without SIC.

Remark: The above observations do not mean that our
Problem P2 is useless. This is because it is possible that
Problem P1 is infeasible but Problem P2 is feasible, in which
scenario we have to take the solution of Problem P2.

In our proposed algorithm, we use two levels of bisection
search. In the inner bisection search, we keep shrinking the
feasible region as shown in Algorithm 1.12 To show the benefit
of this, we compare two scenarios: our proposed algorithm is
implemented with and without shrinking the feasible region
in inner bisection search. Recall that the bisecting in the
inner bisection search may not be implemented in Algorithm

12Algorithm 1 is for the case with performing SIC. For the case without
performing SIC, we also keep shrinking the feasible region in the inner
bisection search.
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shrinking.

1 (for example, when ξt,n|ρ=f1 ≥ 0 or ξt,n|ρ=f2 ≥ 0,
Algorithm 1 terminates at Step 2, and thus, the bisecting is not
implemented). Thus, in the comparison, we only consider the
time slots when the bisecting in the inner bisection search is
carried out (e.g., Algorithm 1 proceeds to Step 5). The average
number of inner-bisecting iterations in a two-level bisection
search algorithm is shown in Fig. 7, with the tolerance of
convergence for bisection search being ϵt = ϵρ = 10−3 and
ϵt = ϵρ = 10−4. It can be seen that shrinking feasible region
in inner bisection search reduces the number of iterations in
the inner bisection search by around 10%.

Now we try to compare our proposed algorithm with other
algorithms. Since no existing work in the literature considers
overlay cognitive NOMA enhanced with TS-based SWIPT,
here we compare with two algorithms: an OMA algorithm
that partitions one time slot into one harvesting phase and
three equal-length information transmission phases for links
PT→ST&PR, ST→PR, and ST→SR, respectively, and an
equal power allocation (EPA) algorithm that allocates equal
amount of energy for transmitting the PT’s signal and the ST’s
signal in the third phase of a time slot. Fig. 8 shows secondary
throughput of our proposed algorithm, and the OMA and
EPA algorithms. Clearly, our proposed algorithm outperforms
the EPA and OMA algorithms in terms of higher secondary
throughput. Moreover, performance gap of our algorithm with
the EPA and OMA algorithms shrink at high Pp, explained as
follows. At high Pp, the probability that the PT needs help is
low (as observed in Fig. 5). So at time slots when the PT does
not need help, the ST will only accumulate energy. Thus, at a
time slot when the PT needs help, the ST has a large chance to
have high energy, leading to high signal-to-noise ratio (SNR)
at the SR. The throughput is a logarithm function of the SNR.
The logarithm function is a concave function, i.e., at high SNR,
increase of SNR does not lead to much increase in throughput.
Thus, the throughput gap of our algorithm with the EPA and
OMA algorithms shrink at high Pp.

Distance plays a critical role in SWIPT-based systems, since
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Fig. 9. The impact of distance on secondary throughput of our proposed
algorithm, the OMA and the EPA algorithms.

the amount of harvested energy is largely determined by the
distance from the RF transmitter. For the network topology
considered in our simulation, we move the ST along the line
segment of PT–ST, and fix the locations of other nodes. The
secondary throughput is evaluated and illustrated in Fig. 9 for
Pp = 20 dBm. It can be seen that the secondary throughout
decreases with the increase of dtt (distance from the PT to the
ST), due to the decay of harvested energy amount at the ST.

VI. CONCLUSION

We have investigated the secondary throughput maximiza-
tion problem for an overlay cognitive NOMA network aided
by SWIPT. For the research problems with and without SIC
at the SR, we have transformed the problems to equivalent
problems, the objective functions of which are proved to be
quasiconcave. Optimal solutions for the equivalent problems
have been found by two-level bisection search, and a method
has been developed to reduce the number of iterations in

the inner bisection search. Interestingly, the non-SIC case is
possible to achieve a better secondary performance than the
SIC case. Since this happens with a small probability as shown
in our simulation results, if the ST just picks up the solution
of the SIC case for a slot when both cases are feasible, it
has a very large chance to achieve the optimal performance
at the slot. By this method, the ST does not have to solve
two optimization problems at the slot. On the other hand, at
a slot when the non-SIC case is feasible but the SIC case is
infeasible, the ST needs to take the solution of the non-SIC
case.

Our numerical evaluation leads to the following observa-
tions. 1) When the transmit power of the PT increases, the
ST’s channel access probability and throughput first increase
and then decease. The first increase is because when the
PT’s transmit power increases, the ST has a higher chance
to decode the PT’s signal and a higher chance to harvest more
energy. The subsequent decrease of the ST’s channel access
probability and throughput is because a high transmit power
of the PT increases the probability that the PT does not need
help from the ST. 2) Our proposed method can reduce the
number of inner-bisection-search iterations by around 10%. 3)
The distance between the PT and ST has a big effect on the
secondary throughput.

APPENDIX A
THE PROOF OF THEOREM 1

Define λn = 1+
(Pegsn−µnσ

2+Ppgpn)gss
(µn+1)gsnσ2 . The first and sec-

ond order derivatives of objective function Rss,n are derived
as{

dRss,n

dρ = −1
2 log(λn) +

1−ρ
2(ln 2)λn

dλn

dρ ,
d2Rss,n

dρ2 = −1
(ln 2)λn

dλn

dρ + 1−ρ
2(ln 2)λn

(−1
λn

(dλn

dρ )2 + d2λn

dρ2

)
.

(48)
The expression of λn can be rewritten as λn = 1 + λa

λb
,

where λa , (Pegsn−µnσ
2+Ppgpn)gss ≥ 0 and λb , (µn+

1)gsnσ
2 > 0.13 Then the first and second order derivatives of

λn are given by
dλn

dρ = 1
λb
(dλa

dρ −
λa

λb

dλb

dρ ),

d2λn

dρ2 =
−2

dλb
dρ

dλn
dρ

λb
+

λb
d2λa
dρ2

−λa
d2λb
dρ2

λ2
b

,
(49)

where

dλa

dρ = (gsn
dPe

dρ − σ
2 dµn

dρ )gss,
d2λa

dρ2 = (gsn
d2Pe

dρ2 − σ2 d2µn

dρ2 )gss,
dλb

dρ = gsnσ
2 dµn

dρ ,
d2λb

dρ2 = gsnσ
2 d2µn

dρ2 ,

dµn

dρ = 2(ln 2)γT

(1−ρ)2 2
2γT

1−ρ ,

d2µn

dρ2 =
( 2(ln 2)γT

(1−ρ)2

)2
2

2γT

1−ρ + 4(ln 2)γT

(1−ρ)3 2
2γT

1−ρ ,

(50)

with dPe

dρ and d2Pe

dρ2 given in (19).

13From (4), an equivalent form of λn is λn = 1+
(1−α)Pegss

σ2 , which is
always not less than 1. Since λn = 1 + λa

λb
and λb , (µn + 1)gspσ2 > 0

(noting that for ρ ∈ B, we always have µn > 0), we have λa ≥ 0.
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According to [27, page 101], for a function over an interval,
if its second order derivative is nonpositive when its first order
derivative is 0, then the function is quasiconcave over the in-
terval. Thus, next, we will show Rss,n is strictly quasiconcave,
that is, d2Rss,n

dρ2 < 0 when dRss,n

dρ = 0. So in the rest of this
proof, we only consider what happens when dRss,n

dρ = 0.

Based on the first equation of (48), dRss,n

dρ = 0 is equivalent
to

−λn log(λn) +
1− ρ
(ln 2)

dλn
dρ

= 0. (51)

As λn is always not less than 1, λn log(λn) is nonnegative.
Together with (51), we have dλn

dρ ≥ 0. From the second

equation of (49), we have d2λn

dρ2 =
−2

dλb
dρ

dλn
dρ

λb
+ω ≤ ω, where

ω =
λb

d2λa
dρ2

−λa
d2λb
dρ2

λ2
b

. Here the inequality is because dλb

dρ > 0

(from (50)), dλn

dρ ≥ 0, and λb > 0 (from definition of λb).

Using d2λn

dρ2 ≤ ω,, we can obtain the following for the
second order derivative of Rss,n

d2Rss,n

dρ2
=
−(1− ρ)(dλn

dρ )2

2(ln 2)(λn)2
+

(1− ρ)d
2λn

dρ2 − 2dλn

dρ

2(ln 2)λn

≤
−(1− ρ)(dλn

dρ )2

2(ln 2)(λn)2
+

(1− ρ)ω − 2dλn

dρ

2(ln 2)λn
,

(52)

in which the first equality is from (48). Apparently, for the
right hand side of the inequality in (52), the first term is
nonpositive. Next we show that the second term is negative.
The numerator of the second term can be rewritten as

(1− ρ)ω − 2dλn

dρ =

(
(1−ρ) d2λa

dρ2
−2 dλa

dρ

)
λb

λ2
b

−
(
(1−ρ)

d2λb
dρ2

−2
dλb
dρ

)
λa

λ2
b

.

(53)

For the two terms on the right hand-side of (53), we have

(1− ρ)d
2λa

dρ2 − 2dλa

dρ = (1− ρ)(gsn d2Pe

dρ2 − σ2 d2µn

dρ2 )gss

−2(gsn dPe

dρ − σ
2 dµn

dρ )gss

= −
(
(1− ρ)d

2µn

dρ2 − 2dµn

dρ

)
σ2gss

(iv)
< 0

(1− ρ)d
2λb

dρ2 − 2dλb

dρ =
(
(1− ρ)d

2µn

dρ2 − 2dµn

dρ

)
gsnσ

2

(v)
> 0,

(54)
in which steps (iv) and (v) come from the fact that

(1− ρ)d
2µn

dρ2
− 2

dµn

dρ

(vi)
=

(
2(ln 2)γT

)2
(1− ρ)3

2
2γT

1−ρ > 0 (55)

with step (vi) from (50).
Thus, the numerator of the second term on the right hand-

side of the inequality in (52) is negative, and accordingly, we
have d2Rss,n

dρ2 < 0 when dRss,n

dρ = 0. Therefore, Rss,n is a
quasiconcave function. This completes the proof.

APPENDIX B
THE PROOF OF THEOREM 4

Denote λw/o = 1 +
λa|n=p

λc
, where λa|n=p and its first and

second order derivatives are given in Appendix A, and λc and
its first and second order derivatives are expressed as

λc = [µp(Pegsp + σ2)− Ppgpp]gss
+ (Ppgps + σ2)(µp + 1)gsp,

dλc

dρ = (Pegsp + σ2)gss
dµp

dρ + µpgspgss
dPe

dρ

+ (Ppgps + σ2)gsp
dµp

dρ ,
d2λc

dρ2 = (Pegsp + σ2)gss
d2µp

dρ2 + 2gspgss
dµp

dρ
dPe

dρ

+ µpgspgss
d2Pe

dρ2 + (Ppgps + σ2)gsp
d2µp

dρ2 ,
(56)

with dµp

dρ and d2µp

dρ2 given in (50), and dPe

dρ and d2Pe

dρ2 given in
(19).

The proof for quasiconcavity of Rw/o
ss is similar to that in

Appendix A if we replace λb in Appendix A by λc. The only
difference is that we need to prove (1 − ρ)d

2λc

dρ2 − 2dλc

dρ > 0
instead of the second equation of (54) in Appendix A. Base
on (56), we have

(1− ρ)d
2λc
dρ2

− 2
dλc
dρ

(vii)
=

(
(1− ρ)d

2µp

dρ2
− 2

dµp

dρ

)
×

(
(Pegsp + σ2)gss + (Ppgps + σ2)gsp

)
+ 2(1− ρ)gspgss

dµp

dρ

dPe

dρ

(viii)
> 0, (57)

in which step (vii) uses (56) and d2Pe

dρ2 = 2
1−ρ

dPe

dρ , and step
(viii) uses (55), dµp

dρ > 0 from (50), and dPe

dρ > 0 from (19).

APPENDIX C
PROOF OF THEOREM 5

ξ
w/o
t given in (47) can be rewritten as

ξ
w/o
t = (1− ρ)(µp + 1)(Pegss + Ppgps + σ2)gsp−

(1− ρ)
{
[µp(Pegsp + σ2)− Ppgpp]gss+

(Ppgps + σ2)(µp + 1)gsp
}
2

2t
1−ρ .

Defining χ , 2(ηPpgtt + E0 − Ec) and ψ , 2ηPpgtt, Pe

given in (1) can be represented as

Pe =
1

(1− ρ)
(
χ− (1− ρ)ψ

)
. (58)

Using (58) and applying some math manipulations, ξw/o
t can

be expressed as

ξ
w/o
t = ϕa + ϕb − ϕc − ϕd − ϕe, (59)

in which

ϕa =
(
χ− (1− ρ)ψ

)
(2

2γT

1−ρ − Ppgpp
σ2 )gssgsp,

ϕb = (1− ρ)(2
2γT

1−ρ − Ppgpp
σ2 )(Ppgps + σ2)gsp,

ϕc =
(
χ− (1− ρ)ψ

)
(2

2γT

1−ρ − Ppgpp
σ2 − 1)gssgsp2

2t
1−ρ ,

ϕd = (1− ρ)(2
2γT

1−ρ − 2Ppgpp
σ2 − 1)gssσ

22
2t

1−ρ ,

ϕe = (1− ρ)(2
2γT

1−ρ − Ppgpp
σ2 )(Ppgps + σ2)gsp2

2t
1−ρ .

(60)
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The first order derivative of ξw/o
t is expressed by

dξ
w/o
t

dρ
=

dϕa
dρ

+
dϕb
dρ
− dϕc

dρ
− dϕd

dρ
− dϕe

dρ
, (61)

where

dϕa

dρ =
(
ψ(µp + 1) + (1− ρ)Pe

dµp

dρ

)
gssgsp,

dϕb

dρ =
(
− µp − 1 + (1− ρ)dµp

dρ

)
(Ppgps + σ2)gsp,

dϕc

dρ =
(
ψµp + (1− ρ)Pe

(dµp

dρ + µp
2(ln 2)t
(1−ρ)2

))
gssgsp2

2t
1−ρ ,

dϕd

dρ =
(
(1− ρ)dµp

dρ + (µp − Ppgpp
σ2 )

( 2(ln 2)t
1−ρ − 1

))
× gssσ22

2t
1−ρ ,

dϕe

dρ =
(
(1− ρ)dµp

dρ + (µp + 1)
( 2(ln 2)t

1−ρ − 1
))

(Ppgps

+ σ2)gsp2
2t

1−ρ .
(62)

Define two functions G(y) and K(y) over y ≥ 0 as G(y) =(
2(ln 2)y

)2

(1−ρ)3 and K(y) = 4(ln 2)y
(1−ρ)3 +

(
2(ln 2)y

)2

(1−ρ)4 , respectively. We
have

G(γT + t) = G(γT ) +G(t) +
8(ln 2)2γT t

(1− ρ)3
≥ G(γT ) +G(t),

(63)

K(γT + t)=K(γT )+K(t)+
8(ln 2)2γT t

(1− ρ)4
≥ K(γT ) +K(t).

(64)
Then using G(y) and K(y), the second order derivatives

of (1 − ρ)2
2y

1−ρ and 2
2y

1−ρ are written as d2((1−ρ)2
2y

1−ρ )
dρ2 =

G(y)2
2y

1−ρ and d2(2
2y

1−ρ )
dρ2 = K(y)2

2y
1−ρ . Using this, we have



d2ϕa

dρ2 =
(
χK(γT )− ψG(γT )

)
gssgsp2

2γT

1−ρ ,

d2ϕb

dρ2 = G(γT )(Ppgps + σ2)gsp2
2γT

1−ρ ,

d2ϕc

dρ2 =
((
χK(γT + t)− ψG(γT + t)

)
2

2(γT +t)
1−ρ

−
(
χK(t)− ψG(t)

)
(
Ppgpp
σ2 + 1)2

2t
1−ρ

)
gssgsp,

d2ϕd

dρ2 = G(γT + t)gssσ
22

2(γT +t)
1−ρ

−G(t)( 2Ppgpp
σ2 + 1)gssσ

22
2t

1−ρ ,

d2ϕe

dρ2 = G(γT + t)(Ppgps + σ2)gsp2
2(γT +t)

1−ρ

−G(t)Ppgpp
σ2 (Ppgps + σ2)gsp2

2t
1−ρ .

(65)
In the expressions for d2ϕa

dρ2 and d2ϕc

dρ2 , both of them contain
the item χK(y) − ψG(y), where y takes the value γT , t, or
(γT + t). By checking χK(y)−ψG(y), it can be represented
as the following

χK(y)− ψG(y) = χ
( 4(ln 2)y
(1−ρ)3 +

(
2(ln 2)y

)2

(1−ρ)4

)
− ψ

(
2(ln 2)y

)2

(1−ρ)3

= 4(ln 2)y
(1−ρ)3

(
χ+ (ln 2)yPe

)
,

(66)
in which the last equality uses (58).

Then d2ϕa

dρ2 − d2ϕc

dρ2 is expressed as

d2ϕa

dρ2 − d2ϕc

dρ2

=
(
χK(γT )− ψG(γT )

)
gssgsp2

2γT

1−ρ

−
((
χK(γT + t)− ψG(γT + t)

)
2

2(γT +t)
1−ρ

−
(
χK(t)− ψG(t)

)
(
Ppgpp
σ2 + 1)2

2t
1−ρ

)
gssgsp

= −
(

4(ln 2)γT

(1−ρ)3

(
χ+ (ln 2)γTPe

)
(2

2t
1−ρ − 1)2

2γT

1−ρ

+ 4(ln 2)t
(1−ρ)3

(
χ+ (ln 2)tPe

)
µp2

2t
1−ρ

+ 8(ln 2)2γT t
(1−ρ)3 Pe2

2(γT +t)
1−ρ

)
gssgsp ≤ 0,

(67)

in which the first equality is from (65), and the second equality
is from the first equality of (63), the first equality of (64), (10),
(66), and (58).

Moreover, we have

d2ϕb

dρ2 − d2ϕe

dρ2

(ix)
= −

(
G(γT + t)2

2(γT +t)
1−ρ −G(γT )2

2γT

1−ρ

−G(t)Ppgpp
σ2 2

2t
1−ρ

)
(Ppgps + σ2)gsp

(x)
≤ −

(
G(γT )(2

2t
1−ρ − 1)2

2γT

1−ρ

+G(t)(µp + 1)2
2t

1−ρ

)
(Ppgps + σ2)gsp ≤ 0,

(68)
in which (ix) is from (65), and (x) is from G(γT + t) ≥
G(γT ) +G(t) and (10).

From (65) and G(γT + t) ≥ G(γT ) +G(t), we have

d2ϕd
dρ2

≥
(
G(γT ) +G(t)

)
gssσ

22
2(γT +t)

1−ρ

−G(t)
(2Ppgpp

σ2
+ 1

)
gssσ

22
2t

1−ρ

= G(γT )gssσ
22

2(γT +t)
1−ρ +G(t)(µp−

Ppgpp
σ2

)gssσ
22

2t
1−ρ > 0.

(69)

Combining (59), (67), (68), and (69), it can be seen that
d2ξ

w/o
t

dρ2 < 0, namely, ξw/o
t is a strictly concave function.
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