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Abstract—This letter analyzes the coverage probability of a
cooperative non-orthogonal multiple access (NOMA) millimeter
wave (mmWave) network consisting of source (S) and destination
(D) pair without a direct link. A cooperative relay (R), which
is selected from a set of active users, helpsD to receive its
data. The transmission from S to R is based on NOMA, by
which R can receive its own data andD’s data simultaneously.
Two relay selection schemes are developed. For each scheme,the
favorable users that meet a rate threshold are selected to bein the
decoding set. Then from the decoding set, a relay is selectedthat
is nearest toS (in the 1st selection scheme), or nearest toD (in
the 2nd selection scheme). For both schemes, we characterize the
spatial density (location dependent) of decoding sets and derive
the coverage probability. Both schemes outperform orthogonal
multiple access. We also derive the coverage of randomly picking
a relay (i.e., no selection) to quantify the benefits of relayselection
in mmWave NOMA.

Index Terms—Cooperative communications, millimeter wave
(mmWave), non-orthogonal multiple access (NOMA), relay, 5G.

I. I NTRODUCTION

The wireless networks will experience huge data traffic
increase with a compound annual growth rate being 46%
from 2018 to 2022. To meet this growth, fifth generation (5G)
wireless may utilize non-orthogonal multiple access (NOMA)
[1]. It is a paradigm shift from traditional orthogonal multiple
access (OMA). NOMA permits a single resource block to
be utilized simultaneously by two or more users. Although
this allows for inter-user interference, spectral efficiency is
enhanced. NOMA may be implemented via power domain
multiplexing and successive interference cancellation (SIC)
decoding [1], [2]. Compared to OMA, NOMA offers higher
sum rates, lower outage and improved fairness [3].

Another 5G candidate is millimeter wave (mmWave), which
is above the sub-6 GHz spectrum [4]. Since the marrying of
NOMA and mmWave facilitates higher spectral efficiency and
an abundance of spectrum, their coverage and rate performance
with beam misalignment [5] and outage performance with
random beamforming [6] have been analyzed. On the other
hand, compared to sub-6 GHz communications, mmWave
communications are more likely to experience very weak
link or even no link due to the much higher path losses
and blockage losses in mmWave, which largely shrinks the
mmWave coverage area [7]. In general, the coverage can
be improved by the use of relays [8]–[10]. Again due to
the large chance for a source-destination pair to experience
very weak link or no link, densely deployed relays may be
needed to guarantee coverage. Thus, it may be costly to use
dedicated relays. A feasible solution is to employ existing
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users as potential relays. As an incentive, a user also gets
some service rate if it provides relaying for another user
(destination). This can be achieved by using NOMA, i.e., the
source sends to the relay both the destination’s signal and
the relay’s signal by using superposition coding, and then
the relay forwards the destination’s signal to the destination.
This is referred to ascooperative mmWave NOMA, which
enhances both spectral efficiency and coverage in mmWave
communications. Although sub-6 GHz cooperative NOMA
has been studied extensively (see [11], [12] and references
therein), the mmWave version has remained un-analyzed thus
far. This letter fills this gap.

The critical challenges of mmWave propagation include
high path losses (diffraction and penetration losses up to 40
dB), atmospheric absorption, blockages and beam alignment
issues [4]. Thus, some users may have no signal reception
(e.g., cell-edge users). We thus consider such a user,D, which
has no coverage from the sourceS. In this network, relayR
is selected from a pool of active user nodes (e.g., cell users
near the base station). SoS-D link is non-existent whileS-R
andR-D links are good. The selected user of the pool will
act asR. TheR-to-D channel is analogous to a direct device-
to-device channel [13].

Therefore, we consider a fading block for communications
fromS toD. As relaying is needed, the fading block is divided
into two equal-duration time slots. In the first time slot,S
transmits toR only (as theS-D link does not exist). Via
the power principle of NOMA, the transmit signal will be a
weighted signal consisting of data signals of bothR andD. At
the end of the first time slot,R will apply SIC demodulation
and recover both types of data. In the second time slot,R will
transmit the decoded data toD. The rate requirement ofD is
RD. For the selected relayR, a “bonus" rateRR is promised.

For this simple yet prototypical network, we characterize
the ability of destination (D) to achieve a sufficient signal-to-
noise ratio (SNR) and the ability of both relay (R) andD to
meet the rate requirements.

Comparisons to OMA: Recall thatS has separate data
symbols to transmit to bothR andD. For this, OMA would
require a total of three time slots: one time slot to transmitR’s
data, and two time slots to transmitD’s data viaR. In contrast,
when NOMA is used, superimposed data ofR andD can be
transmitted in the first time slot, andR can transmitD’s data
in the next slot, decreasing the required number of time slots
from three to two, which improves spectral efficiency.

II. SYSTEM MODEL

Consider a source (denoted asS), a destination (denoted as
D), as well as a set of users that are distributed in a circular
disc D of radiusR as a homogeneous Poisson point process
(PPP)Φ with a densityλ. We assume no direct link from
S to D, and a relayR is selected from active users that are
receiving data fromS. Here, we only consider relays that are
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in line of sight (LOS) fromS and D because non line of
sight path losses exceed 20 dB or more over LOS links [7]. A
link of lengthd becomes LOS with probability ofe−βd where
β = µE[W ]

π is a blockage parameter in whichµ means the
blockage density, andE[W ] represents the average perimeter
of the blockage objects [4].E[·] andP(·) represent expectation
and probability, respectively.

In this case,S simultaneously transmitsxR and xD, in-
tended forR and D, respectively, using the principle of
NOMA with power scaling factorsaR and aD wherea2R +
a2D = 1. Without loss of generality, we setaR < aD, and
thus,R decodesxD first.1 In the first time-slot,S transmits
the superimposed symbols to the selected relay (relay selection
in Section III). The received signal atR can be written as

yR = hSR (aRxR + aDxD)
√

PSGSGRΨ d
−α/2
SR + wR (1)

wherehSR is small scale fading inS − R link, PS is the
total transmit power atS, GS and GR are the directional
antenna gains atS andR, respectively,Ψ = c

4πf is a path
loss at 1 meter distance andc andf are the speed of light in
free space and the operating mmWave frequency,dSR is the
distance betweenS andR, α is the path loss exponent, and
wR is the additive white Gaussian noise (AWGN) with power
N0 at R. Now, R first decodesxD by treating thexR term
as interference, which will result in the signal to interference-
plus-noise ratio (SINR) of

γR,D =
PSΨGSGR|hSR|2d−α

SRa
2
D

PSΨGSGR|hSR|2d−α
SRa

2
R +N0

. (2)

Next, with error free decoding,R removes thexD term from
yR and decodes its own symbolxR. The SNR atR to decode
xR is thus γR,R = PSΨGSGR|hSR|2d−α

SRa
2
R/N0. Next, R

forwardsxD to D in the second time slot. The received signal
atD is yD = hRDxD

√
PRGRGDΨ d

−α/2
RD +wD, wherehRD

is small scale fading inR−D link, PR is the transmit power
of R, GD is the directional antenna gain atD, dRD is the
distance betweenR andD, andwD is the AWGN atD. Now,
the received SNR atD is given by

γD =
PRΨGRGD|hRD|2d−α

RD

N0
. (3)

Similar to [4], [5], we assume thathSR and hRD are
Nakagami-m distributed for analytical tractability. Thus, chan-
nel power gains|hSR|2 and |hRD|2 are independent Gamma
random variables (r.v.) with shape parameterm ≥ 1 and rate
parameterν > 0.

III. C OVERAGE ANALYSIS

Coverage is the probability that bothR andD meet their
individual data rate requirementsRR and RD, respectively.
Due to the half-duplex relaying, SINR or SNR thresholds of
τR = 22RR−1 andτD = 22RD−1 must be met while decoding
the data ofR andD, respectively. Therefore, coverage depends
on two events: (1) a relay can successfully decode its own
message and the message forD in the first time slot, and (2)
in the second time slot,D successfully decodes its message

1Our analysis can be straightforwardly extended to the case with aR > aD .

from R. The channel coherence time is assumed to be at least
one fading block.

Since multiple nodes are capable of decoding and forward-
ing data toD, selecting the best among them improves cov-
erage. Therefore, we analyze several relay selection strategies
and compare their coverage performances.

1) Selection Scheme 1 (S1): We consider sourceS to be
at origin, andD is at (L, 0) in polar coordinate system and
an arbitrary relay is located at(r, θ). With this, the location
dependent distance between an arbitrary relay toD is dRD =
√

r2 − 2rL cos(θ) + L2 , ρ, and we havedSR = r. This
selection scheme works as follows: first, a set of nodes that
can decodeS’s message toD and successfully transmit it to
D is selected. This set is called the decoding set, which is
an inhomogeneous PPP̂Φ1 because it is a subset ofΦ and
the selection of its members is influenced by path loss and
blockage, i.e., selection is not random. The density function of
the inhomogeneous PPP̂Φ1, λ̂1(r, θ), is described in Lemma
1. Second, from the decoding set, a relay is selected, which
is closest toS (recall that any node in the decoding set can
guarantee the rate requirement ofD, thus, picking a relay
closest toS can maximize the chance of meeting the rate
requirement ofR).

Lemma 1. The density function of the de-
coding set Φ̂1 is characterized by λ̂1(r, θ) =

λe−β(r+ρ)e−ν(ξDrα+ζDρα)
∑m−1

n=0

∑m−1
k=0

νn+k

n!k! ξ
n
DζkD rnα ρkα,

where ξD = τDN0

PSΨGSGR(a2
D
−a2

R
τD)

and ζD = τDN0

PRΨGRGD
.

Proof. A relay in Φ is retained inΦ̂1 if it can decode the
message forD in the first time slot and can successfully deliver
this message toD in the second time slot. Also, since both
S − R andR − D links need to be in LOS condition, their
LOS probabilities are given bye−βr and e−βρ, respectively.
Let P1 be the probability that a relay meets the above criteria,
which can be written mathematically as

P1 = e−β(r+ρ)
P (γR,D ≥ τD , γD ≥ τD)

(a)
= e−β(r+ρ)

P (γR,D ≥ τD) P (γD ≥ τD)

(b)
= e−β(r+ρ)

P
(

|hSR|2≥ ξDrα
)

P
(

|hRD|2≥ ζDρα
)

(c)
= e−β(r+ρ) e−ν(ξDrα+ζDρα)

×
m−1
∑

n=0

m−1
∑

k=0

νn+k

n! k!
ξnDζkD rnα ρkα, (4)

where (a) is due to the independence of two events,(b)
is obtained using (2) and (3), and(c) is obtained using
the complementary cumulative distribution function (CCDF)
of Gamma r.v. with an integer-valued shape parameterm.
We also assumea2D > a2RτD, as otherwise the coverage
probability will be automatically zero. This assumption is
widely used in the analysis of NOMA networks [11], [12].
Now, by thinningΦ with P1, we obtain the density function
shown in Lemma 1. �

The average size of the decoding setΦ̂1 is given by

Λ̂D,1 =

∫ 2π

θ=0

∫ R

r=0

λ̂1(r, θ)rdrdθ. (5)
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To derive coverage probability, distribution of the distance of
the selected relay in̂Φ1 from S is required, which is given in
Lemma 2.

Lemma 2. The probability that a relay in Φ̂1 located at
distance y is closest to S is given by

P 1
nearest = exp

(

−
∫ 2π

θ=0

∫ y

r=0

λ̂1(r, θ)rdrdθ

)

. (6)

Proof. Let y be the distance fromS to the nearest relay in
Φ̂1. This means no relay is located withinC(0, y) (C(0, y)
being a circle centered at originS and with radiusy), which
corresponds to the void probability of the PPP̂Φ1. This
probability is given by

P 1
nearest = P (r > y)

= P {no decoding relays inC(0, y)}
= exp

(

−Λ̂D,1([0, y))
)

(7)

whereΛ̂D,1([0, y)) is the mean number of decoding relays in
C(0, y), which is obtained from (5) by replacingR by y. Now
by substituting the expression ofΛ̂D,1([0, y)) in (7), we obtain
(6). �

Theorem 1. The coverage probability of the selection scheme
S1 is given by

PS1

cov =

(

1− e−Λ̂D,1

)

A

m−1
∑

j=0

m−1
∑

k=0

m−1
∑

n=0

νj+k+n

j! k!n!
ξjRξ

n
DζkD

×
∫ 2π

θ=0

∫ R

r=0

e−β(r+ρ)e−ν((ξD+ξR)rα+ζDρα)rα(j+n)

× ραk exp

(

− λ
m−1
∑

n=0

m−1
∑

k=0

νn+k

n! k!
ξnDζkD

∫ 2π

ω=0

∫ r

z=0

× zαnραkz e−β(z+ρz)e−ν(ξDzα+ζDρα
z )zdzdω

)

rdrdθ,

(8)

where ρz =
√

z2 − 2zL cos(ω) + L2 and A is given by

A =
m−1
∑

k=0

m−1
∑

n=0

νk+n

k!n!
ξnDζkD

∫ 2π

θ=0

∫ R

r=0

e−β(r+ρ)e−ν((ξD)rα+ζDρα)

× rαnραk exp

(

−
∫ 2π

ω=0

∫ r

z=0

λ̂1(z, ω)zdzdω

)

rdrdθ.

(9)

Proof. Here, coverage is the probability that the selected relay
from Φ̂1 meets the SNR thresholdτR. Mathematically,

PS1

cov = P (γR,R ≥ τR) = P

(

|hSR|2≥
τRN0r

α

PSΨGSGR

)

= E



exp (−νξRr
α)

m−1
∑

j=0

νj

j!
(ξRr

α)
j



 (10)

whereξR =
τRN0

PSΨGSGR
. In (10), the expectation needs to be

taken over the PPP̂Φ1. Since the selected relay must be from

Φ̂1 and is closest toS, it also needs to satisfy the probabilities
given in (4) and (6). Therefore, the overall coverage can be
obtained by jointly averaging (10) with these probabilities
over the area of the discD and normalizing with the joint
probability ofP1 andP 1

nearest. Now using the probabilities in
(4) and (6), expression (10) can be written as follows:

PS1

cov =

(

1− e−Λ̂D,1

)

A

∫ 2π

θ=0

∫ R

r=0

[

exp (−νξRr
α)

×
m−1
∑

j=0

νj

j!
(ξRr

α)
j
e−β(r+ρ) e−ν(ξDrα+ζDρα)

×
m−1
∑

n=0

m−1
∑

k=0

νn+k

n! k!
ξnDζkD rnα ρkα

× exp

(

−
∫ 2π

ω=0

∫ r

z=0

λ̂1(z, ω)zdzdω

)

]

rdrdθ, (11)

where the term
(

1− e−Λ̂D,1

)

in the numerator is due to
the coverage probability being zero if no relay is present in
the decoding set andA is the normalization factor given in
(9). Now with some mathematical manipulation of (11), we
obtain (8). The two-fold integrals in (8) can be computed
in MATLAB using trapezoidal method and do not incur
significant computation complexity. �

2) Selection Scheme 2 (S2): To make the analysis tractable,
the origin is shifted to the location ofD so that S is
located at (L, π) in polar coordinates. An arbitrary relay
is located at(l, φ) and its distance fromS is given by
dSR =

√

l2 + 2lL cos(φ) + L2 , δ, and we havedRD = l.
This displacement of origin does not affect the performance
when radiusR of user discD is much larger thanL, and
is used just to aid the tractability of the analysis. Here, a
decoding set is formed again. In this case, the decoding set
includes the nodes that can meet the SINR requirements ofR
andD in the first hop. This means, the conditionsγR,D ≥ τD
andγR,R ≥ τR are met by the decoding set of relays which
forms an inhomogeneous PPP, denoted byΦ̂2 with a density
function λ̂2(l, φ) given in Lemma 3. Next, an LOS relay is
selected fromΦ̂2 that is closest toD. This is equivalent to
selecting a relay that provides the maximum chance to meet
the rate requirement ofD in the second hop.

Lemma 3. The density function of the decoding set Φ̂2 is given
by λ̂2(l, φ) = λ e−βδe−νηδα

∑m−1
n=0

νn

n! η
nδnα, where η = ξD

if
τD

1 + τD
< a2D ≤ τD(1 + τR)

τR(1 + τD)
and η = ξR if

τD(1 + τR)

τR(1 + τD)
≤

a2D < 1.

Proof. Let P2 be the probability that a relay inΦ is in LOS
from S with corresponding LOS probability ofe−βδ and is
retained inΦ̂2, which can be written mathematically as

P2 = e−βδ
P (γR,D ≥ τD , γR,R ≥ τR)

= e−βδ
P
(

|hSR|2≥ ξDδα , |hSR|2≥ ξRδ
α
)

= e−βδ
P
(

|hSR|2≥ δα max{ξD, ξR}
)

. (12)
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Here, closed form expression ofP2 can be derived. Since
we have a2D > a2RτD, aD must satisfya2D >

τD
1 + τD

,

and the coverage is zero for0 ≤ a2D ≤ τD
1 + τD

. It

can be shown by simple mathematical manipulations that

ξD > ξR if aD satisfies
τD

1 + τD
< a2D ≤ τD(1 + τR)

τR(1 + τD)
,

and ξD < ξR if aD satisfies
τD(1 + τR)

τR(1 + τD)
≤ a2D < 1.

Then, using the CCDF of Gamma r.v.,P2 can be written as
P2 = e−βδ exp (−νηδα)

∑m−1
n=0

νn

n! η
nδnα. �

Then, the average number of relays inΦ̂2 is given by

Λ̂D,2 = λ

m−1
∑

n=0

(νη)n

n!

∫ 2π

φ=0

∫ R

l=0

e−βδ−νηδαδnαldldφ. (13)

In Theorem 2, we provide the coverage probability of this
selection scheme.

Theorem 2. The coverage probability of the selection scheme
S2 is given by

PS2

cov =
B1

B2

m−1
∑

j=0

m−1
∑

n=0

νj+n

j!n!
ζjDηn

∫ 2π

φ=0

∫ R

l=0

lαjδαn

× e−ν(ζDlα+ηδα)e−β(l+δ) exp

(

− λ

m−1
∑

n=0

(νη)n

n!

×
∫ 2π

ω=0

∫ l

z=0

e−β(z+δz)e−νηδαz δαnz zdzdω

)

ldldφ, (14)

where δz =
√

z2 + 2zL cos(ω) + L2 and B1 and B2 are
given by

B1 = 1− exp

(

−
∫ 2π

φ=0

∫ R

l=0

e−βlλ̂2(l, φ)ldldφ

)

,

B2 =
m−1
∑

n=0

(νη)n

n!

∫ 2π

φ=0

∫ R

l=0

e−ν(ηδα)e−β(l+δ)lαjδαn

× exp

(

−
∫ 2π

ω=0

∫ l

z=0

e−βzλ̂2(z, ω)zdzdω

)

ldldφ.

Proof. Here, to achieve the coverage, the selected relay from
Φ̂2 must be in LOS fromD and needs to meetγD ≥ τD.
Therefore, we have

PS2

cov = e−βl
P (γD ≥ τD) = e−βl

P

(

|hRD|2≥ τDN0l
α

PRΨGSGR

)

= E



e−βl exp (−νζDlα)
m−1
∑

j=0

νj

j!
(ζDlα)j





=
B1

B2

∫ 2π

φ=0

∫ R

l=0

[

e−βl exp (−νζDlα)

m−1
∑

j=0

νj

j!
(ζDlα)

j

× e−βδ exp (−νηδα)
m−1
∑

n=0

νn

n!
ηnδnα

× exp

(

−
∫ 2π

ω=0

∫ l

z=0

e−βzλ̂2(z, ω)zdzdω

)]

ldldφ

(15)

whereB1 is due to the fact that coverage becomes zero if there
is no LOS relay in the decoding set andB2 is the normalization
factor. Here, we follow the similar technique as in (11), i.e., by
taking the average over the discD of product of probabilities
of a relay being in the decoding set and also being closest toD
and LOS toD. Now with some mathematical manipulations
of (15), we obtain (14). �

3) Selection Scheme 3 (S3): Since the selection schemesS1

andS2 require knowledge of distance or location information,
the immediate question is what the performance loss is if such
information is not available. To answer it, we consider random
relay selection from the decoding set. Coverage probability of
it is given in Theorem 3.

Theorem 3. When a relay is selected at random from Φ̂2, the
coverage probability is given by

PS3

cov =
λ
(

1− e−Λ̂D,2

)

Λ̂D,2

m−1
∑

j=0

m−1
∑

n=0

νn+j

n! j!
ηnζjD

∫ 2π

φ=0

∫ R

l=0

× lαj+1δαne−β(l+δ)e−ν(ηδα+ζDlα)dldφ. (16)

Proof. The proof follows from the proof of Theorem 2 where
the coverage is the probability that a relay meets the SNR
threshold atD and comes from the decoding setΦ̂2. Therefore
the averaging is done only over the probabilityP2, that is

PS3

cov =
λ
(

1− e−Λ̂D,2

)

Λ̂D,2

∫ 2π

φ=0

∫ R

l=0

[

e−βl exp (−νζDlα)

m−1
∑

j=0

× νj

j!
(ζDlα)

j
e−βδ exp (−νηδα)

m−1
∑

n=0

νn

n!
ηnδnα

]

ldldφ,

where the term
(

1− e−Λ̂D,2

)

is due to the coverage being zero

if no relay is present in̂Φ2. Then, with some mathematical
manipulations, we obtain (16). �

Optimal power allocation: For each of the relay selection
schemes, we can use a one-dimensional search to find the
optimal power allocation (i.e., optimalaD and aR), which
maximizes the coverage probability.

Implementation: Recall that the potential relays are other
active users. When serving those potential relays in their own
assigned resource blocks, the channel gain (main lobe gain)
information from the source to those relays can be obtained.
Based on the information, the decoding set can be determined,
and a relay can be selected from it. Then the source aligns its
beam to the selected relay, and the relay aligns its beam to the
destination.

IV. N UMERICAL RESULTS

Here we verify the derived analytical results via105 Monte-
Carlo simulations per run. We set the parameters:GS =
GR = GD = 18 dBi, α = 2,R = 1000 m, L = 200 m, λ =
5 × 10−5/m2, µ = 2× 10−4,E[W ] = 60 m, unless otherwise
specified. The optimal values of the power allocation factors
obtained by one-dimensional search are used in each relay
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Fig. 1: Coverage probability vs transmit power for NOMA using
S1,S2 andS3 and OMA, where the curves (a) are for{RD, RR} =

{1, 3} bps/Hz, and (b) for{RD, RR} = {1.9, 6} bps/Hz.
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Fig. 2: Coverage probability vs relay density for rate thresholds
{RD, RR} = {1, 3} bps/Hz withPS = PR = 0 dB. The curves
(a) are forµ = 2× 10

−4/m2, and (b) are forµ = 5× 10
−4/m2.

selection scheme. For comparison, we also simulate OMA
transmission with same rate requirements atR and D that
uses best-worst relay selection criteria [14].

The two-fold integrals in the analytical results can be
computed using the trapezoidal method and do not incur
significant computational complexity. For instance, to compute
the integral in (8), we use an angular resolution of one degree
and radial resolution of 10 meters resulting the total number
of intervals to be 360×100 = 36,000 and the inner integrals
are computed using integral2 MATLAB function.

In Fig. 1, we plot coverage expressions (8), (14) and (16)
for NOMA and OMA. This figure shows thatS2 scheme
(i.e., closest-to-destination relay selection) providesthe best
coverage followed closely byS1 scheme (i.e., closest-to-source
relay selection). However, with random relay selection, the
coverage probability decreases after an initial increase when
transmit power increases. The reason is that for large transmit
powers, the decoding set has relay nodes farther away fromD.
If such a node is picked randomly, then the resultingR −D
link is less likely to be LOS, reducing coverage atD.

To study the effect of relay density on the coverage,
Fig. 2 plots the coverage probabilities (8), (14) and (16)
versus the relay density for two values of blockage density
µ = {2 × 10−4/m2, 5 × 10−4/m2}. Here, the coverage for
S1, S2 and OMA improve with increasing relay densityλ.
Note also that, these coverage curves shift to lower values
when the blockage densityµ is increased. This suggests that
if µ increases,λ should be increased to maintain the same
coverage. For a random relay, coverage flattens for higherλ
because its selection is independent of density as long as at
least one relay exists in the decoding set.

V. CONCLUSION

This letter derives coverage probability of three
mmWave cooperative NOMA relay selection schemes. Both
closest-to-source and closest-to-destination relay selection
perform closely and both outperform OMA. However,
coverage due to a random relay may be worse than that of
OMA depending on transmit power level and relay density.

This work considers a destination with no direct link from
the source. If a direct link exists, the system may select to
perform direct transmission or cooperative transmission by
using a relay, which can be investigated in future works.
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