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Abstract—In a multihop wireless network, the traffic at each
node and the channel over each link may fluctuate with time.
Thus, traditional optimal resource allocation needs to be computed
for each moment with instantaneous information of channel states
over all links and the traffic rates at all nodes, leading to
huge communication overhead and computation cost. To solve
this challenge, in this correspondence, we propose to use robust
resource allocation, in which the only needed information is the
mean and variance of the wireless channels and the traffic rates. In
the formulated problem, there are probabilistic constraints, which
are difficult to handle. Effective methods are provided that can
transform the probabilistic constraints to convex constraints. As
the resource allocation does not need instantaneous channel state
information or instantaneous traffic rate information, it is robust
to channel and traffic variations, with very little communication
and computation overhead.

Index Terms—Multihop wireless networks, resource allocation,
robustness.

I. INTRODUCTION

For a multihop wireless network, allocation of resources
(power, data rate, bandwidth, etc.) is essential to guarantee
quality-of-service and to maximize the network utility. To
achieve this, traditionally instantaneous channel state informa-
tion (CSI) of all the links in each fading block is obtained,
and then resource allocation is found by optimizing a defined
objective function. The work in [1] considers one fading block.
It jointly optimizes flow rates of the source-destination pairs
and transmission power levels of the nodes so as to maximize a
network utility function, defined as a function of the flow rates,
in the fading block. The work in [2] considers an ergodic process
of fading blocks. Each source-destination pair communicate
with a fixed flow rate over the ergodic process of multiple fading
blocks. Transmission power levels of the nodes in the network
over fading blocks are jointly optimized with the flow rates of
the source-destination pairs, to maximize the difference of the
network utility function (i.e., flow rates) and the cost function
(i.e., power consumption). The work in [3] also considers an
ergodic process of multiple fading blocks, with network utility
defined as a function of average flow rates of the source-
destination pairs. For a fading block, flow rates of the source-
destination pairs and nodes’ transmission power are determined
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based on CSI information of the fading block and long-term
time-averaging throughput of the flows over prior fading blocks.
In works [1]–[3] and many others, all links’ instantaneous CSI
is required, which means that for dynamic wireless fading chan-
nels, resource allocation should be updated frequently, leading to
high communication and computation complexity. To overcome
this problem, resource allocation approaches robust to channel
fluctuations are investigated in [4], [5]. The approaches are
robust in that the resource allocation does not need to be updated
when the wireless channels fluctuate. Only statistical CSI is
needed. As the resource allocation is not based on instantaneous
CSI, rate outage (i.e., the data rate over a link is more than the
instantaneous link capacity) may happen. Accordingly, a rate
outage probability bound is set.

The aforementioned works assume that the route for each
source-destination pair is predefined. Actually routing design is
also critical to improve system performance in multihop net-
works. The work in [6] designs a routing strategy in which the
minimum flow rate of the source-destination pairs is maximized
by using physical-layer signal processing techniques such as
successive interference cancellation, superposition coding, etc.
Energy consumption is also a consideration in routing design
in multihop networks [7]–[10]. The works in [7], [8] both
jointly optimize routing strategy, transmission power, and link
rates with a target of total energy consumption minimization.
The work [7] considers that the total network throughput is
given, while the work [8] considers fixed end-to-end flow rates
and approximates the non-linear channel capacity function as a
linear function. In [9], routing strategy and transmission power
are designed sequentially such that the total energy consumption
is minimized with a constraint on the spectral efficiency. The
work in [10] considers fixed transmission power levels of the
nodes. Routing strategy is designed to minimize total energy
consumption, by exploiting the broadcasting nature of wireless
signals, i.e., a wireless signal may be received by multiple nodes
over a route and thus, maximal ratio combining can be used to
improve signal reception quality at those nodes.

In a practical multihop wireless network, each node has its
own traffic arrival pattern, and the traffic arrival rate may be
time-varying, which means that the routing strategy should be
updated upon any change of the traffic arrival rates of the nodes.
In the literature, routing robust to variations of traffic rates
has been investigated for generic (wired) multihop networks.
Oblivion routing [11] is based on limited information of the
traffic fluctuation pattern of the nodes, and can achieve a static
routing strategy for the network when the traffic rates fluctuate.
By assuming that the amount of traffic (rather than the rate of
traffic) between multiple pairs of nodes in a wireless network
is transportable by nodes’ available energy, the work in [12]
develops oblivious routing strategy to deliver any traffic in a
defined interval and at the same time, minimize the energy
consumption rate (the ratio of consumed energy to total energy
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of a node). By assuming that the traffic arrival rates are support-
able given the existing link capacity, the work in [13] designs
robust routing and scheduling strategy that minimizes the worst
congestion level. By assuming that the traffic arrival rates follow
a hose model, the work in [14] designs robust routing that
targets system throughput maximization. Note that in the above
surveyed works on traditional and robust routing designs, fixed
link capacities are assumed, and thus, the strategies cannot be
applied in a wireless environment with channel fading.

In this correspondence, we investigate resource allocation
robust to both time-varying channels and time-varying traffic
arrival rates. The contributions of this correspondence are sum-
marized as follows. First, we develop a framework of resource
allocation that involves power allocation, bandwidth allocation,
link rate setting, and routing, which is robust to time-varying
channel states and traffic rates. In specific, as long as the
channel states and traffic rates fluctuate with a fixed mean and
fixed variance, we use a static resource allocation. Second, we
do not require instantaneous CSI or instantaneous traffic rate
information. Thus, it is possible that outages may happen in the
network. Accordingly, we set up constraints for probabilities
of outages,1 which makes the research problem challenging
because closed-form expressions of the probabilistic constraints
for outages are lacking. To overcome this problem, we develop
a method that transforms the probabilistic constraints to closed-
form equivalences. We subsequently prove that the problem with
the transformed equivalent constraints is convex, and thus, can
be solved by traditional convex optimization methods. Third,
we demonstrate that for the case when the means and variances
of the traffic rates and channel states are unknown and should
be estimated based on sampling, robust resource allocation can
still be achieved.

The rest of this correspondence is organized as follows. The
system model is presented in Section II, as well as formulation
of our research problem. Our robust resource allocation solution
is derived in Section III. The case when we only know the
sampled means and sampled variances of traffic rates and
channel states is investigated in Section IV. Performance of our
robust resource allocation is evaluated in Section V, and our
conclusion remarks are provided in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multihop wireless network with N nodes. Denote
the set of all nodes as N , {1, 2, ..., N}. When two nodes
can communicate directly, we say a link exists between them.
Denote the set of all links as L. For link l ∈ L, at a specific
moment, denote its channel gain as hl, its transmission power
as Pl, its transmission bandwidth as wl, and its transmission
rate as rl. Then the signal-to-noise ratio (SNR) on link l is:
SNRl =

Plhl

wlσ2 , with σ2 being the noise power spectrum density,
and the capacity of link l is: Cl = wl log (1 + SNRl) =

wl log
(
1 + Plhl

wlσ2

)
.

1Link outage probability issues have been studied extensively in device-to-
device (D2D) networks as shown in [15]–[20], all of which assume that the
distributions of wireless channel gains are known. Different from the works
in D2D networks, our work only assumes knowledge of channel gains’ mean
and variance, rather than the distributions of channel gains. It is much easier to
obtain mean and variance of the channel gains in a practical network (e.g., by
using sampling).

For a node n ∈ N , denote the set of outgoing links as O(n),
and the set of incoming links as I(n). Denote the maximal
allowable transmission bandwidth and power of node n as WT

n

and PT
n , respectively. Thus, we have the following constraints:∑

l∈O(n)

Pl ≤ PT
n ,∀n ∈ N , (1)

∑
l∈O(n)

wl ≤ WT
n ,∀n ∈ N , (2)

Pl ≥ 0, wl ≥ 0,∀l ∈ L. (3)

If a node has traffic to be sent to another node that may be
one or more hops away, we say there is a traffic flow between
the two nodes. Denote the data rate of traffic flow from node
i to node j as ti,j . A traffic flow can be delivered by different
paths in parallel and simultaneously, i.e., each path carries a
portion of the traffic flow. For traffic flow i → j with rate ti,j ,
denote fi,j(l) as the percentage of traffic that is delivered over
link l. Thus, set {fi,j(l)|i, j ∈ N , l ∈ L} is the routing strategy
for the network, which has the following constraints:

0 ≤ fi,j(l) ≤ 1,∀l ∈ L,∀i, j ∈ N , i ̸= j. (4)

∑
l∈O(k)

fi,j(l)−
∑

l∈I(k)
fi,j(l) =


0 if k ̸= i, j

1 if k = i

−1 if k = j

,

∀l ∈ L,∀i, j, k ∈ N , i ̸= j.

(5)

In (5), for flow i → j, the term
∑

l∈I(k) fi,j(l) means
the percentage of i → j flow over node k’s incoming links,
and the term

∑
l∈O(k) fi,j(l) means the percentage of i → j

flow over node k’s outgoing links. When k = i (i.e., k is
the source of the flow), we have

∑
l∈I(k) fi,j(l) = 0 (as the

source node of the flow, node k does not get traffic of the flow
from other nodes; rather, it generates the flow traffic itself),
and

∑
l∈O(k) fi,j(l) = 1 (which means that all flow traffic

generated by node k is sent out over its outgoing links). When
k = j (i.e., k is the destination of the flow i → j), we have∑

l∈I(k) fi,j(l) = 1, and
∑

l∈O(k) fi,j(l) = 0 (i.e., destination
of the flow does not send the flow traffic out over its outgoing
links). When k ̸= i, j, for node k, the amount of incoming
i → j flow and outgoing i → j flow should be equal, and thus,∑

l∈O(k) fi,j(l)−
∑

l∈I(k) fi,j(l) = 0.
In the system, the channel gains hl’s of the links and traffic

flow rates ti,j’s are all random variables. Our target is to design
a robust resource allocation strategy over the links. Our target
robustness lies in that: our resource allocation strategy is static
(i.e., does not need to update over time) if hl fluctuates following
any distribution with fixed mean denoted as µhl

and fixed
variance denoted as Σhl

and if ti,j fluctuates following any
distribution with fixed mean denoted as µti,j and fixed variance
denoted as Σti,j . Assume that µhl

, Σhl
, µti,j , and Σti,j are

known. Let f(x) denote distribution of a random variable x,
and let P denote the collection of all probability distribution
functions. Denote SI(hl) = {f |Ef [hl] = µhl

,Ef [(hl−µhl
)2] =

Σhl
, f ∈ P} as the set of all possible f(hl) that have mean

equal to µhl
and variance equal to Σhl

, and denote SI(ti,j) =
{f |Ef [ti,j ] = µti,j ,Ef [(ti,j − µti,j )

2] = Σti,j , f ∈ P} as the
set of all possible f(ti,j) that have mean equal to µti,j and
variance equal to Σti,j , in which Ef [·] means expectation with



3

respect to the distribution function f . To guarantee quality of
the communication, we set the following constraints.

• Each link has a target SNR denoted as γ. Probability of
SNR outage (i.e., the SNR of a link falls below γ) should
be bounded by a threshold ε1, i.e.,

sup
f(hl)∈SI(hl)

Pr (SNRl ≤ γ) ≤ ε1,∀l ∈ L, (6)

in which Pr(·) means probability of an event.
• The probability of rate outage (i.e., the transmission rate

of a link exceeds the link capacity) should be bounded by
a threshold ε2, i.e.,

sup
f(hl)∈SI(hl)

Pr (rl ≥ Cl) ≤ ε2,∀l ∈ L. (7)

• With the constraints in (6) and (7), the effective
data transmission rate (i.e., the data rate without out-
age) of link l is rl (1− ε1) (1− ε2). Denote Tl =∑

i∈N
∑

j∈N\{i} ti,jfi,j(l) as the total traffic load on link
l. Probability of traffic outage (i.e., for link l, total load
Tl exceeds the effective data transmission rate) should be
bounded by a threshold ε3, i.e.,

sup
f(ti,j)∈SI(ti,j),i∈N ,j∈N\{i}

Pr(Tl≤rl (1− ε1) (1− ε2))

≥ (1− ε3) ,∀l ∈ L.
(8)

To improve the efficiency of energy and spectrum resource
utilization, we minimize a cost function that is a weighted sum
of the total transmission power

∑
l∈L

Pl and total transmission

bandwidth
∑
l∈L

wl. Therefore, an optimization problem is for-

mulated as follows.
Problem 1:

min
{Pl},{wl},{rl},{fi,j(l)}

α
∑
l∈L

Pl + β
∑
l∈L

wl

s.t. Constraints (1) – (8)
(9)

where α and β are the weights associated with power consump-
tion and bandwidth consumption, respectively.

Remarks: In this work, we assume knowledge of mean and
variance of channel gains and traffic flow rates. The motivations
of this setting are as follows. 1) It is hard or costly in a practical
network to get the exact distribution functions of channel gains
and traffic flow rates. But it is much easier to obtain mean
and variance information of channel gains and traffic flow rates,
e.g., by using the sampling method to be introduced in Section
IV. 2) For a network with knowledge of distribution functions
of channel gains and traffic flow rates, it is hard to solve
the research problem (i.e., minimize the cost function subject
to bounded SNR outage probability, rate outage probability,
and traffic outage probability) for the following reason. Recall
that for a link l ∈ L, its total traffic load is expressed as
Tl =

∑
i∈N

∑
j∈N\{i} ti,jfi,j(l), in which ti,j is the rate of

traffic flow from node i to node j. Distribution of ti,j is known.
However, the distribution of Tl should be the convolution of
the distributions of the random variables ti,jfi,j(l), which is
hard to derive in closed form. Without closed-form expression
of Tl’s distribution, the research problem is hard to solve. On
the other hand, by only assuming knowledge of mean and
variance of channel gains and traffic flow rates, we successfully
transform our robustness constraints (6), (7), and (8) to closed-

form expressions, and subsequently find an optimal solution of
the research problem, as shown in the subsequent section.

III. SOLUTIONS OF PROBLEM 1

Looking into Problem 1, one major challenge lies in that the
left hand-side of constraints (6), (7), and (8) are not closed-form
expressions, and thus, Problem 1 cannot be solved by existing
numerical optimization methods. To solve the challenge, next
we provide a method to transform constraints (6), (7), and (8)
into closed-form expressions, which facilitates the solving of
Problem 1.

Lemma 1: Given SI(hl) for l ∈ L, constraints (6) and (7) are
equivalent to (10) and (11), respectively, as follows.µhl

−

√
(1− ε1)

ε1
Σhl

Pl ≥ γσ2wl,∀l ∈ L. (10)

µhl
−

√
(1− ε2)

ε2
Σhl

Pl ≥ σ2wl

(
e

rl
wl − 1

)
,∀l ∈ L. (11)

Proof: We first prove that constraint (6) is equivalent to
constraint (10). By replacing SNRl with Plhl

wlσ2 , constraint (6) is
equivalent to the following constraint

sup
f(hl)∈SI(hl)

Pr

(
hl ≤

γwlσ
2

Pl

)
≤ ε1,∀l ∈ L. (12)

Consider random variable X with distribution f(X) ∈ S(X) =
{f |Ef{X} = µX ,Ef{(X − µX)2} = ΣX , f ∈ P}. For any
threshold value s > 0, from the Chebyshev-Cantelli inequality
[21], [22], we have

sup
f(X)∈S(X)

Pr (X − µX ≤ −s) =
ΣX

ΣX + s2
, (13)

sup
f(X)∈S(X)

Pr (X − µX ≥ s) =
ΣX

ΣX + s2
. (14)

Following (13) and replacing X with hl and s with(
µhl

− γwlσ
2

Pl

)
, we have

sup
f(hl)∈SI(hl)

Pr

(
hl ≤

γwlσ
2

Pl

)
=

Σhl

Σhl
+
(
µhl

− γwlσ2

Pl

)2 .
(15)

Recall that equation (13) holds on condition s > 0. Thus, s > 0
is also a condition for equation (15) to hold. Since s is replaced
by
(
µhl

− γwlσ
2

Pl

)
, the condition is

µhl
− γwlσ

2

Pl
> 0,∀l ∈ L, (16)

which is equivalent to

Pl >
γwlσ

2

µhl

,∀l ∈ L. (17)

Based on (15), to guarantee that constraint (12) holds, we need
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to set
Σhl

Σhl
+(µhl

− γwlσ
2

Pl
)2

≤ ε1

⇐⇒
(
µhl

− γwlσ
2

Pl

)2
≥ (1−ε1)

ε1
Σhl

(a)⇐⇒
(
µhl

−
√

(1−ε1)
ε1

Σhl

)
Pl ≥ γσ2wl

(18)

where (a) holds because of (16).
Combining (17) and the inequality in the last line of (18), we

can get the constraint shown in (10).
Similarly, constraint (7) can be shown to be equivalent to

constraint (11).
Lemma 2: Given SI(ti,j) for i ∈ N , j ∈ N\{i}, constraint

(8) is equivalent to√
(1−ε3)

ε3
·
√∑

i∈N

∑
j∈N\{i}

Σti,j (fi,j(l))
2

+
∑
i∈N

∑
j∈N\{i}

µti,jfi,j(l) ≤ rl (1− ε1) (1− ε2) ,∀l ∈ L.

(19)
Proof:

Take
∑
i∈N

∑
j∈N\{i}

ti,jfi,j(l) as a new random variable.

It can be verified that the new random variable has
mean being

∑
i∈N

∑
j∈N\{i}

µti,jfi,j(l) and variance being∑
i∈N

∑
j∈N\{i}

Σti,j (fi,j(l))
2, due to the independence of ti,j for

i ∈ N , j ∈ N\{i} [23]. Following a similar proof to that
of Lemma 1 and using equation (14), constraint (8) can be
proved to be equivalent to constraint (19) given SI(ti,j) for
i ∈ N , j ∈ N\{i}.

Lemma 3: Constraints (10), (11) and (19) are convex con-
straints.

Proof: It is easy to see that constraint (10) is linear with
the vector [Pl, wl]

T (with superscript [·]T denoting transpose
operation) for l ∈ L, and thus, is a convex constraint.

To prove that constraint (11) is a convex constraint, we need
to verify that the function

G
(
[Pl, wl, rl]

T
)

= σ2wl

(
e

rl
wl − 1

)
−
(
µhl

−
√

(1−ε2)
ε2

Σhl

)
Pl

is convex with respect to the vector [Pl, wl, rl]
T . Note that

function G
(
[Pl, wl, rl]

T
)

is separable and linear with Pl. Thus,

to prove the convexity of G
(
[Pl, wl, rl]

T
)

, we only need to

prove the term σ2wl

(
e

rl
wl − 1

)
is convex with [wl, rl]

T . The

Hessian matrix of the term σ2wl

(
e

rl
wl − 1

)
, denoted as H, with

respect to [wl, rl]
T can be calculated as

H =
σ2erl/wl

w3
l

·
[

r2l −rlwl

−rlwl w2
l

]
(20)

with eigenvalues 0 and
σ2erl/wl(r2l +w2

l )
w3

l
. With all the eigenvalues

being non-negative, the matrix H is a semi-definite matrix.
Therefore, the term σ2wl

(
e

rl
wl − 1

)
is convex with respect to

vector [wl, rl]
T .

In (19), the term
√∑

i∈N

∑
j∈N\{i}

Σti,j (fi,j(l))
2 can be rewrit-

ten as
√∑

i∈N

∑
j∈N\{i}

(√
Σti,jfi,j(l)

)2
, which is a norm func-

tion. Since a norm function is convex, the left-hand-side function
of constraint (19) is convex, and thus, constraint (19) is convex.

Since constraints (10), (11) and (19) are convex, it can be
seen that, Problem 1 with (6), (7), and (8) replaced by (10),
(11), and (19), respectively, is a convex problem, and thus, can
be solved optimally by existing numerical methods [24].

IV. CASE WHEN WE ONLY KNOW SAMPLED MEANS AND
VARIANCES OF CHANNEL STATES AND TRAFFIC RATES

In this section, we consider that means (i.e., µhl
, µti,j ) and

variances (i.e., Σhl
, Σti,j ) of channel state hl and traffic rate

ti,j are unknown in advance, but need to be estimated by
sampling. Suppose we take Q samples of hl and ti,j , denoted
as hl,1, hl,2, ..., hl,Q and ti,j,1, ti,j,2, ..., ti,j,Q, respectively, for
l ∈ L and i ∈ N , j ∈ N\{i}. Denote µ̂hl

= 1
Q

∑Q
q=1 hl,q ,

µ̂ti,j = 1
Q

∑Q
q=1 ti,j,q, Σ̂hl

= 1
(Q−1)

∑Q
q=1 (hl,q − µ̂hl

)2 and
Σ̂ti,j = 1

(Q−1)

∑Q
q=1 (ti,j,q − µ̂ti,j )

2 as the sampled means and
sampled variances.

Define

SII(hl) =
{
f |Êf{hl} = µ̂hl

, Êf{(hl − µ̂hl
)2} = Σ̂hl

, f ∈ P
}

and

SII(ti,j)

=
{
f |Êf{ti,j} = µ̂ti,j , Êf{(ti,j − µ̂ti,j )

2} = Σ̂ti,j , f ∈ P
}

for l ∈ L and i ∈ N , j ∈ N\{i}, where Êf{X} means the
estimated expectation (by samples) of a random variable X

with the distribution function f and Êf

{(
X − Êf{X}

)2}
is

the unbiased estimation (by samples) of variance of a random
variable X with the distribution function f . Then we should
solve Problem 1 with SI(hl) and SI(ti,j) replaced by SII(hl)
and SII(ti,j), respectively.

For a set of random samples, X1, X2, ..., XQ with sampled
mean as µ̂X and sampled variance as Σ̂X and any threshold
value s > 0, it is proved in [25] that

Pr (Xq − µ̂X ≥ s) ≤ Σ̂X

Σ̂X + Q
Q−1s

2
, q = 1, 2, ..., Q. (21)

Similarly, we can have

Pr (Xq − µ̂X ≤ −s) ≤ Σ̂X

Σ̂X + Q
Q−1s

2
, q = 1, 2, ..., Q. (22)

With the aid of inequalities (21) and (22), and by following a
similar proof to those of Lemma 1 and Lemma 2, the following
lemma can be expected.

Lemma 4: Given SII(hl) for l ∈ L and SII(ti,j) for i ∈
N , j ∈ N\{i}, constraint (6) holds if constraint (23) holds,
constraint (7) holds if constraint (24) holds, and constraint (8)
holds if constraint (25) holds, where constraints (23), (24), and
(25) are given as follows(

µ̂hl
−

√
(1− ε1) (Q− 1)

ε1Q
Σ̂hl

)
Pl ≥ γσ2wl,∀l ∈ L, (23)
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TABLE I
WORST OUTAGE PROBABILITY OF ALL THE LINKS.

Q=50 Q=500 Q=5000 Perfect Statistics
ε1=ε2=ε3=0.1 1.21× 10−4 1.03× 10−5 5.82× 10−6 3.54× 10−6

ε1=0.1, ε2=0.2, ε3=0.1 4.35× 10−4 5.23× 10−5 7.65× 10−6 4.43× 10−6

Fig. 1. Network topology.

(
µ̂hl

−

√
(1− ε2) (Q− 1)

ε2Q
Σ̂hl

)
Pl ≥ σ2wl

(
e

rl
wl − 1

)
,

∀l ∈ L, (24)√
(1−ε3)(Q−1)

ε3Q
·
√∑

i∈N

∑
j∈N\{i}

Σ̂ti,j (fi,j(l))
2

+
∑
i∈N

∑
j∈N\{i}

µ̂ti,jfi,j(l) ≤ rl (1− ε1) (1− ε2) ,∀l ∈ L.

(25)
Similar to the proof of Lemma 3, constraints (23), (24)

and (25) are convex constraints. Therefore, Problem 1 with
constraints (6)-(8) replaced by constraints (23)-(25) is a convex
optimization problem and can be solved optimally by existing
numerical methods.

V. PERFORMANCE EVALUATION

Consider a multihop wireless network with 6 nodes and 12
directed links as shown in Fig. 1. The distance between two
connected nodes is 2000m. Each wireless channel includes
path loss attenuation (with path loss exponent being 4) and
Nakagami fading (with shape parameter as 15 and spread
parameter as 1). The maximal allowable transmission power
of every node, PT

n ,∀n ∈ N , is 3W. The carrier frequency is
at 2.4GHz. The maximal allowable transmission bandwidth of
every node, WT

n ,∀n ∈ N , is 1MHz. The threshold of received
SNR, γ, is set as 5dB. The weights in the cost function of
Problem 1 are set as α = 1 unit per Watt and β = 1 unit per
MHz. Channel reciprocity is assumed. The traffic flow rates
between nodes pairs (1, 6), (2, 1), (2, 3), (2, 6), (3, 2), (3, 5),
(4, 3), (4, 5), (4, 6), (5, 1), (5, 4), (5, 6), (6, 1), (6, 3), and
(6, 4) are uniform random variables with mean and standard
deviation (in the form of mean/standard deviation ×103 bps)
as 75.50/26.19, 53.17/33.76, 51.90/32.55, 75.81/32.76,
87.61/32.88, 65.69/33.50, 94.38/32.01, 86.15/32.69,
97.30/33.12, 77.05/28.24, 80.36/32.07, 78.58/26.45,
83.84/30.60, 59.48/28.94, and 77.03/31.48, respectively.
There are no traffic flows between any other node pair.

A. Performance of the Proposed Resource Allocation

Fig. 2 illustrates the cost function of Problem 1 when one of
ε1, ε2 and ε3 changes and the other two are fixed at 0.1. The
“Perfect Statistics” stands for the results of Problem 1 when
means and variances of channel states and traffic rates are known
in advance. The results when sampled means and variances of
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Fig. 2. Cost function when one of ε1, ε2, and ε3 changes while the other two
keep unchanged (i.e., fixed at 0.1).

channel states and traffic rates are known are shown as “Q =
50”, “Q = 500”, and “Q = 5000”, where Q is the number
of samples for channel states and traffic rates. When ε1 grows,
the cost function increases. This is because a higher ε1 has
two effects: make constraint (6) looser and make constraint (8)
tighter, and the latter effect dominates. When ε2 grows, the cost
function first decreases, and then increases, for the following
reason. A higher ε2 has two effects: make constraint (7) looser
and make constraint (8) tighter. The former effect dominates
with a small ε2, while the latter effect dominates with a large ε2.
When ε3 grows, the cost function always decreases, as a larger
ε3 means that constraint (8) is looser. Additionally, Fig. 2 also
shows that when Q increases, the cost function decreases and
gets closer to the results with perfect statistics. The is because
more samples contribute to more accurate estimation of means
and variances of channel states and traffic rates.

In Problem 1, constraints (6), (7), and (8) are for three
outages: SNR outage, rate outage, and traffic outage. To verify
the robustness of our solutions, Table I shows the worst outage
probability (i.e., the maximal of the SNR outage probability,
rate outage probability, and traffic outage probability) of all
links for setting (ε1=0.1, ε2=0.1, ε3=0.1) and setting (ε1=0.1,
ε2=0.2, ε3=0.1). It can be seen that the worst outage probability
is smaller than ε1, ε2, or ε3, which means that our solutions are
conservative in outage performance. This also means that we
can be very flexible in setting ε1, ε2, and ε3 (i.e., we can set up
relatively large ε1, ε2, and ε3). For our example in Fig. 2, we
can implement the robust resource allocation for setting (ε1=0.1,
ε2=0.2, ε3=0.1), which has cost function value around 6.6. The
achieved worst outage probability shown in Table I is in the
order of 10−4, which is acceptable.

B. Comparison with a Dynamic Resource Allocation Method

Here we make a comparison with a traditional dynamic
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optimal resource allocation in which the power, bandwidth,
and link rates are adjusted according to instantaneous CSI
and instantaneous traffic rates. The dynamic optimal resource
allocation is actually Problem 1 with constraints (6), (7), and
(8) replaced by the following three constraints: SNRl ≥ γ; rl ≤
Cl;Tl ≤ rl,∀l ∈ L.

Cost Function: By running Monte Carlo simulation, the
average cost function of the dynamic optimal resource allocation
is 1.7341. As aforementioned, when we set (ε1=0.1, ε2=0.2,
ε3=0.1), our robust resource allocation has cost function value
around 6.6. It can be concluded that our robust resource allo-
cation does not increase the cost function too much.

Communication Overhead: Recall that the number of nodes
in the network is N . Then the maximal number of traffic
flows is N(N − 1), which is used in evaluating overhead.
Denote the number of links as L. The dynamic optimal resource
allocation needs communication overhead to get instantaneous
CSI of L links and instantaneous traffic rates of N(N − 1)
flows for each fading block (for example, in the time scale of
millisecond). On the other hand, our robust resource allocation
needs communication overhead to get mean and variance of
channel gains of L links and traffic rates of N(N − 1) flows.
After the information is obtained, our robust resource allocation
does not need communication overhead any more for a long
period (for example, tens of seconds or even hundreds of
seconds) in which mean and variance of channel gains and
traffic flow rates do not change.

Computation Overhead: For Problem 1 in our robust re-
source allocation, there are K , 3L+ LN(N − 1) variables

• L variables in each of {Pl}, {wl}, and {rl}
• LN(N − 1) variables in {fi,j(l)},

and M , 4L+ 2N + LN(N − 1)(N + 1) constraints
• N constraints in (1) and N constraints in (2)
• L constraints in each of (3), (10), (11), and (19)
• LN(N−1) constraints in (4), and LN(N−1)N constraints

in (5).
Note that M > K. For a long period, our robust resource
allocation needs to solve Problem 1 once, with complexity
O(M3.5) [26]. On the other hand, for the dynamic optimal
resource allocation, an optimization problem with computation
complexity O(M3.5) needs to be solved for every fading block.

Overall, the effects of our robust resource allocation lie in the
significantly reduced communication and computation overhead
with a not-significantly increased cost function.

VI. CONCLUSION

In this paper, we investigate resource allocation for multihop
wireless networks that is robust to variations of channel states
and traffic rates. For the cases with known and sampled statistics
(mean and variance) of channel states and traffic rates, opti-
mization problems subject to constraints on SNR outage, rate
outage, and traffic outage are formulated. We provide methods
to transform probabilistic constraints to closed-form constraints.
The transformations are proved to make the problems convex,
and thus, the problems can be solved by existing convex opti-
mization methods. Compared with dynamic optimal resource
allocation, our proposed strategy has a higher cost function
(in the same order as that of the dynamic optimal resource
allocation), but with much less communication and computation
overhead.
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