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Rate-Energy Tradeoff in Simultaneous Wireless Information and Power Transfer over Fading
Channels with Uncertain Distribution

Qi Gu, Gongpu Wang, Rongfei Fan, Zhangdui Zhong, Kai Yang, and Hai Jiang

Abstract—This paper investigates the tradeoff between informa-
tion rate and harvested energy in a simultaneous wireless infor-
mation and power transfer system (SWIPT) under power splitting
(PS) scheme and time switching (TS) scheme. A single-input-
multiple-output (SIMO) transmitter-receiver pair is considered.
For the channel from the transmitter to the receiver, only the mean
and covariance matrix are known, but the instantaneous channel
information or the channel gain distribution is unknown. We
define robust outage capacity that applies for all possible channel
distributions with the given mean and covariance matrix, and study
the tradeoff between the robust outage capacity and harvested
power level. By solving optimization problems, we find the PS ratio
setting for PS scheme and TS ratio setting for TS scheme to achieve
the outer boundary of robust outage capacity-energy region (which
includes all possible pairs of achievable robust outage capacity
and harvested power level). The PS and TS ratio setting are fixed
over fading blocks, and thus, can avoid communication overhead
and computation overhead over each fading block, and facilitate
a simple implementation in a practical system. We also prove that
the robust outage capacity-energy regions in PS scheme and TS
scheme are both convex. Further, we prove that the PS scheme
outperforms the TS scheme in terms of the rate-energy tradeoff.
Numerical results are also presented to verify the correctness of
our theoretical results.

Index Terms—Energy harvesting, rate-energy region, simulta-
neous wireless information and power transfer, outage capacity.

I. INTRODUCTION

Simultaneous wireless information and power transfer
(SWIPT) is a promising technology for energy-constrained
wireless networks, which allows wireless terminals to use ra-
dio frequency (RF) signals to simultaneously transmit wire-
less power (for receivers to perform energy harvesting [EH])
and information signals (for receivers to perform information
decoding [ID]). To achieve SWIPT, power splitting (PS) and
time switching (TS) are two practical receiver designs [1]. In
a PS scheme, the receiver splits the received RF signals to
two parts, for energy harvesting and for information decoding,
respectively. In a TS scheme, energy harvesting and information
decoding are performed in different time portions at the receiver.
For PS scheme (or TS scheme), if we allocate more power
(or time) portion, called PS ratio (or TS ratio), for information
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decoding, the receiver can achieve a larger information rate, at
the cost of a lower level of harvested power. Thus, in SWIPT,
a tradeoff exists between information rate and harvested power,
referred to as rate-energy tradeoff. In an X-Y plane, the rate-
energy region of a SWIPT system is defined as the region that
includes all possible pairs of achievable information rate and
harvested power level. The outer boundary of the rate-energy
region can be found by finding the maximal harvested power
level for any given information rate, or by finding the maximal
information rate for any given harvested power level. The outer
boundary can clearly demonstrate the rate-energy tradeoff [2].

The issue of rate-energy tradeoff in SWIPT systems has been
investigated in the literature, with focuses on achieving the
outer boundary of rate-energy region by performing resource
allocation and on investigating the shape of rate-energy region.
For a single-input-single-output (SISO) system, the work in [3]
considers the symbol training phase and data transmission phase
in a PS scheme and derives optimal PS ratio for both phases.
For SISO with TS and PS scheme, the work in [4] and the work
in [5] maximize the ergodic capacity over fading channels, by
finding the optimal transmission power as well as TS and PS
ratio, respectively. The shape of rate-energy region of a SISO
system with PS and TS scheme is investigated in [2] (which uses
channel capacity to represent information rate) and [6] (which
considers M -array modulation rate as information rate). For a
single-input-multiple-output (SIMO) system with a PS scheme,
the work in [7] derives the optimal PS ratio, and the work in
[5] studies ergodic capacity maximization by optimal setting of
transmission power and PS ratio. For a multiple-input-multiple-
output (MIMO) system, the works in [8] and [9] study the
precoder design for both PS and TS schemes, and the work in
[10] considers nonlinearity of the energy harvesting process and
jointly designs the precoder and the PS ratio for a PS scheme
(or the TS ratio for a TS scheme). For a multiple-user system
with a single-antenna transmitter and multiple single-antenna
receivers, the work in [11] designs the optimal time and power
allocation over multiple slots as well as the switching rule over
each slot.

In the above works, to achieve optimal resource allocation
(e.g., transmission power or precoding matrix design) and
system parameter configuration (e.g., PS ratio and TS ratio),
accurate and timely channel state information (CSI) in every
fading block is assumed. This may be costly to achieve in
a real network, as communication overhead (such as training
sequence and feedback between the transmitter and the receiver)
is required. Further, inaccurate instantaneous CSI may degrade
the system performance.

In this paper, we investigate the rate-energy tradeoff without
instantaneous CSI knowledge in every fading block. Specifi-
cally, we consider a SIMO system in which only mean and
covariance matrix of the channel gains are known, but the
instantaneous CSI or channel gain distribution is unknown.
We find the optimal PS ratio and optimal TS ratio for a
PS and TS scheme, respectively. Our PS and TS ratio are
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robust in the following sense: i) They can guarantee an outage
capacity for whatever channel gain distribution with the given
mean and covariance matrix; ii) Since instantaneous CSI is not
needed, our work is robust to inaccurate instantaneous CSI
that happens in other existing works. Other benefits of our
robust setting include: i) the communication overhead to get
the instantaneous CSI is avoided; ii) the PS and TS ratio are
fixed as long as the channel mean and covariance matrix do
not change, which avoids computation overhead in each fading
block and also facilitates a simple implementation of PS and
TS scheme in a practical system (i.e., we do not need to adapt
the PS and TS ratio frequently).1 The contributions of this
work are summarized as follows. 1) We formulate optimization
problems to achieve the outer boundary of the robust outage
capacity-energy region for PS and TS schemes (the definition
of robust outage capacity is given in Section II), and by using
some mathematical manipulations, we transform the formulated
problems to convex problems; 2) We prove the convexity of
the robust outage capacity-energy regions in the PS and TS
schemes; 3) We theoretically prove that the PS scheme achieves
a better performance than the TS scheme.

II. SYSTEM MODEL

Consider a point-to-point SWIPT SIMO system, in which the
transmitter is equipped with a single antenna and the receiver is
equipped with N antennas denoted as 1, 2, ..., N , respectively.2

The transmission power of the transmitter is P . The channel
gains between the transmitter and the N antennas at the receiver
are denoted as h1, h2, ..., hN , respectively. Block fading is as-
sumed, i.e., h1, h2, ..., hN keep unchanged within a time slot (a
fading block), and may change independently across time slots.
Denote h = (h1, h2, ..., hN )

T , where (·)T means transpose
operation. Neither the transmitter nor the receiver knows h
in every fading block. Denote the probability density function
(PDF) of h as f(h), which is unknown. Mean and covariance
matrix of h are known, expressed as µ = (µ1, µ2, ..., µN )

T

and C, respectively.3 Each antenna at the receiver experiences
circularly symmetric complex Gaussian (CSCG) noise with zero
mean and variance σ2.

1 As a popular robust optimization method, the Ben-Tal’s approach [12]
can be used to deal with channel estimation uncertainty by assuming that 1)
the channel estimation error is always within a predefined region, or 2) the
channel estimation error’s probability density function (PDF) is known. When
the Ben-Tal’s approach is applied in our system, channel estimation is needed.
Different from the Ben-Tal’s approach, in this paper, we deal with uncertainty
of channel estimation from another perspective: we eliminate the process of
channel estimation (and thus, we do not need to reserve some time portion in
each time slot for channel estimation), and investigate the outage capacity.

2Here we consider multiple antennas at the receiver as more energy can
be harvested from multiple antennas. On the other hand, we do not consider
multiple antennas at the transmitter. This is because the focus of this paper is
to characterize the impact of PS/TS ratio and find out insights, while including
multiple antennas at the transmitter will lead to a problem of joint PS/TS ratio
setting and precoder design at the multiple transmitter antennas. As the first
research that deals with the tradeoff between robust outage capacity and energy,
we select a SIMO model and focus on optimal PS/TS ratio setting. A MIMO
case can be treated as follows. Different from our SIMO case where the non-
closed-form robust outage capacity constraints (2) and (4) can be transformed to
closed-form constraints, the MIMO-version robust outage capacity constraints
are difficult to be transformed to closed-form ones, and thus, the research
problem is difficult to solve. A method could be to select the transmitter antenna
with the best performance, and thus, the research problem is simplified to the
SIMO case problem.

3The motivation for this setting is as follows. It may be difficult to get the
accurate distribution for a practical wireless channel. Rather, it is not difficult
to get the mean and covariance matrix, for example, by using sampling.

In PS scheme, for antenna n ∈ {1, 2, ..., N}, denote the por-
tion of received signal used for ID and EH as αn and (1− αn),
respectively. Note that to achieve the maximal flexibility and
maximal utility, αn can be different from each other. In addition,
uniform αn will lead to less utility, which will be shown in (22).
Define α = (α1, α2, ..., αN )

T .
Since instantaneous CSI is not assumed, transmission outage

may happen, and we focus on outage capacity. According to
[13], the outage capacity is the maximal R such that the
probability that the channel capacity falls below R is not more
than a predefined threshold ε, expressed as

Pr

(
log2

(
1 +

P ·αTh

σ2

)
≤ R

)
≤ ε, (1)

in which Pr(·) means probability. To evaluate the left-hand side
of (1), information of f(h) (PDF of h) is necessary. However,
as we do not know f(h), and we only know the mean and
covariance matrix of h, we focus on robust outage capacity,
defined as the maximal Rp

4 such that, for whatever channel
PDF f(h), as long as the mean and covariance matrix of h
are µ and C, respectively, the probability that the channel
capacity falls below Rp is not more than a predefined thresh-
old ε. Mathematically, denote D(h) = {f(h)|Ef(h) {h} =

µ,Ef(h)

{
(h− µ) (h− µ)

T
}
= C} as the set of all possible

f(h) whose mean is equal to µ and whole covariance matrix is
the same as C, where Ef(h) {·} means expectation over variable
h with PDF f(h). Then we have

sup
f(h)∈D(h)

Pr

(
log2

(
1 +

P ·αTh

σ2

)
≤ Rp

)
≤ ε. (2)

For EH in PS scheme, according to [2], the average harvested
power is expressed as

γp = ηP · (1−α)
T
µ (3)

in which η ∈ (0, 1) is the energy conversion efficiency.
In TS scheme, at the transmitter side, portion (1−β) of each

time slot is used for EH purpose, and portion β of each time
slot is used for ID purpose. Thus, all the antennas at the receiver
should be synchronized to this setting, i.e., perform EH within
time portion (1 − β), and perform ID within time portion β.
Similar to the PS scheme, the robust outage capacity of TS
scheme, denoted as Rt in which the subscript t means “time
switching,” satisfies

sup
f(h)∈D(h)

Pr

(
β log2

(
1 +

P · 1Th

σ2

)
≤ Rt

)
≤ ε (4)

in which 1 is a vertical vector with all N elements equal to 1.
And the average harvested power in TS scheme is expressed as
[2]

γt = ηP (1− β) · 1Tµ. (5)

III. TRADEOFF BETWEEN ROBUST OUTAGE CAPACITY AND
AVERAGE HARVESTED POWER

A. Problem Formulation and Transformation

According to [2], the robust outage capacity-energy region
for PS scheme and TS scheme can be given as

Rp =
∪

α,0≼α≼1

{(R, γ)|R ≤ Rp, γ ≤ γp} (6)

4Here the subscript ‘p′ denotes “power splitting”.
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and
Rt =

∪
β,0≤β≤1

{(R, γ)|R ≤ Rt, γ ≤ γt} , (7)

respectively, in which 0 is a vertical vector whose all N
elements are equal to 0. The outer boundary of Rp and Rt

define the limit of EH and ID capability under PS scheme and
TS scheme, respectively. To achieve the outer boundary of Rp

(or Rt), γp in PS scheme (or γt in TS scheme) should be
maximized for given Rp (or Rt). Specifically, the following
optimization problem should be solved for a given Rp under
PS scheme5

Problem 1:

max
α

ηP · (1−α)
T
µ

s.t. 0 ≼ α ≼ 1, (8)
Constraint (2),

and the following optimization problem should be solved for a
given Rt under TS scheme

Problem 2:

max
β

ηP (1− β) · 1Tµ

s.t. 0 ≤ β ≤ 1,

Constraint (4) . (9)

It can be seen that the constraints (2) and (4) are not in closed-
form, which makes Problem 1 and Problem 2 hard to solve. The
following lemma shows how to transform the non-closed-form
constraints to equivalent closed-form expressions.

Lemma 1: The constrains (2) and (4) are equivalent to

αTµ−
√

1

ε
− 1 ·

√
αTCα ≥ σ2

P

(
2Rp − 1

)
(10)

and

β ≥ Rt

log2

(
1 + P

σ2

(
1Tµ−

√
1
ε − 1 ·

√
1TC1

)) , (11)

respectively.
Proof: We first show the equivalence between constraint

(2) and constraint (10). Constraint (2) can be rewritten as

sup
f(h)∈D(h)

Pr
(
αTh ≤ (2Rp − 1)σ2

P

)
≤ ε. (12)

According to [14, Theorem 3.3], the left-hand side of (12) can
be written as

αTCα

αTCα+
(
αTµ− σ2

P (2Rp − 1)
)2 (13)

when αTµ ≥
(
σ2/P

) (
2Rp − 1

)
.6 Substituting the left-hand

side of (12) with the term in (13) and after some mathematical
manipulations, constraint (12) can be transformed equivalently
to (10).

5For any specific Rp, by solving Problem 1 we can get the optimal vector α
and maximal average harvested power γp. The pair (Rp, γp) corresponds to one
point on the outer boundary of Rp, and can be achieved by the optimal vector
α. By varying the specific Rp value, we can get the whole outer boundary of
Rp. The case with the TS scheme can be treated similarly.

6When αTµ < σ2

P

(
2Rp − 1

)
, the left-hand side of constraint (12) is equal

to 1 and thus, constraint (12) never holds since ε < 1.

By using the same method, constraint (4) can be proved to
be equivalent to (11). For brevity, the proof is omitted.

According to Lemma 1, by replacing constraint (2) with
constraint (10), replacing constraint (4) with constraint (11), and
omitting the constant coefficient ηP in the objective function,
Problem 1 can be rewritten as

Problem 3:

W (Rp, ε) , max
α

(1−α)
T
µ

s.t. 0 ≼ α ≼ 1, (14a)
Constraint (10), (14b)

and Problem 2 is equivalent to
Problem 4:

Z(Rt, ε) , max
β

(1− β) · 1Tµ

s.t. 0 ≤ β ≤ 1,

Constraint (11).

Both Problem 3 and Problem 4 are convex problems.
In the following, we present special features of the two

problems. For presentation simplicity, we omit the subscript of
Rp and Rt in W (Rp, ε) and Z(Rt, ε), respectively, and thus,
W (Rp, ε) and Z(Rt, ε) are written as W (R, ε) and Z(R, ε),
respectively.

B. Analytical Results of W (R, ε) and Z(R, ε)

For the PS scheme, the function W (R, ε) defined in Problem
3 has the following feature.

Theorem 1: W (R, ε) is non-increasing and concave with R
for a given ε, and is non-decreasing with ε for a given R.

Proof: We first prove W (R, ε) is concave with R for
given ε. For two specific R values: R† and R‡, assume
the vectors α achieving W (R†, ε) and W (R‡, ε) are α† =(
α†
1, α

†
2, ..., α

†
N

)T
and α‡ =

(
α‡
1, α

‡
2, ..., α

‡
N

)T
, respectively.

Then W (R†, ε) =
∑N

n=1

(
1− α†

n

)
µn and W (R‡, ε) =∑N

n=1

(
1− α‡

n

)
µn. For vector α taking a new specific value

equal to
(
θα† + (1− θ)α‡) with θ ∈ (0, 1), we have(

θα† + (1− θ)α‡)T µ

−
√

1
ε − 1 ·

√
(θα† + (1− θ)α‡)

T
C (θα† + (1− θ)α‡)

(a)
≥

(
θα† + (1− θ)α‡)T µ

−
√

1
ε − 1 ·

(
θ
√
(α†)TCα† + (1− θ)

√
(α‡)TCα‡

)
(b)
≥ σ2

P

((
θ2R

†
+ (1− θ)2R

‡
)
− 1
)

(c)
≥ σ2

P

(
2(θR

†+(1−θ)R‡) − 1
)

(16)
where (a) comes from the convexity of function

√
αTCα

with α, (b) holds since α† and α‡ satisfy constraint (14b)
for Rp = R† and Rp = R‡, respectively, and (c) is
due to the convexity of function 2R with R. Inequality
(16) shows that

(
θα† + (1− θ)α‡) satisfies constraint (14b)

for Rp = (θR† + (1 − θ)R‡), and thus, is a feasible
point of Problem 3 when Rp = (θR† + (1 − θ)R‡),
with corresponding objective function of Problem 3 given as(
1−

(
θα† + (1− θ)α‡))T µ. Apparently, this objective func-

tion is not more than W
((
θR† + (1− θ)R‡) , ε), the maximal
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objective function of Problem 3 when Rp = (θR†+(1−θ)R‡).
Then, we have

W
((
θR† + (1− θ)R‡) , ε) ≥ (1−

(
θα† + (1− θ)α‡))T µ

= θW (R†, ε) + (1− θ)W (R‡, ε),
(17)

which shows the concavity of function W (R, ε) with R for
given ε.

Next we prove that W (R, ε) is non-increasing with R. It
can be checked that when R increases, the feasible region of
Problem 3 shrinks according to (14b), and thus, Problem 3
cannot achieve a higher objective function. Therefore, function
W (R, ε) is non-increasing with R for a given ε.

Similarly, for a given R, when ε increases, the feasible region
of Problem 3 is enlarged. Thus, function W (R, ε) is non-
decreasing with ε for a given R.

Remark: Theorem 1 shows that for a given ε, region Rp

(robust outage capacity-energy region for PS scheme) is convex,
since the outer boundary of Rp, which is represented by
W (R, ε), is non-increasing and concave when R grows.

Next we analyze function Z(R, ε) for Problem 4 for TS
scheme. For a given ε, denote β∗ as the optimal β that achieves
Z(R, ε) (i.e., the optimal point of Problem 4).

Define U(ε) =
(

P
σ2

) (
1Tµ−

√(
1
ε

)
− 1 ·

√
1TC1

)
. Then

constraint (11) can be re-written as

β ≥ R

log2 (1 + U(ε))
. (18)

When U(ε) ≥
(
2R − 1

)
, we have

(
R

log2(1+U(ε))

)
≤ 1.

Thus, the feasible region of Problem 4 is β ∈ [ R
log2(1+U(ε)) , 1]

according to (18), and we can get

β∗ =
R

log2 (1 + U(ε))
(19)

and Z(R, ε) =
(
1− R

log2(1+U(ε))

)
1Tµ. Note that if U(ε) =(

2R − 1
)
, Z(R, ε) = 0.

When U(ε) <
(
2R − 1

)
, we have

(
R

log2(1+U(ε))

)
> 1, and

Problem 4 becomes infeasible according to (18) (noting that we
require β ∈ [0, 1]). In this case, we can write Z(R, ε) = 0.

In summary, for Problem 4, we have

Z(R, ε) =

{ (
1− R

log2(1+U(ε))

)
1Tµ, if U(ε) >

(
2R − 1

)
0, if U(ε) ≤

(
2R − 1

)
.

(20)
The following theorem is in order.

Theorem 2: for Problem 4, when Z(R, ε) > 0,
• Z(R, ε) is linearly decreasing with R for a given ε.
• Z(R, ε) is monotonically increasing with ε for a given R.

Proof: When Z(R, ε) > 0, we have U(R, ε) >
(
2R − 1

)
,

and from (20) we have Z(R, ε) =
(
1−

(
R

log2(1+U(ε))

))
1Tµ,

from which it can be seen that 1) Z(R, ε) is linearly decreasing
with R for given ε, and 2) Z(R, ε) is monotonically increasing
with ε for a given R since the function U(ε) is an increasing
function with ε.

Remark: Theorem 2 shows that, for a given ε, the region Rt

(robust outage capacity-energy region for TS scheme) is convex
and has a shape of triangle, since the outer boundary of region
Rt, which is represented by Z(R, ε), is a linear decreasing
function with R.

C. Comparison between W (R, ε) and Z(R, ε)

In this subsection, we compare W (R, ε) and Z(R, ε). Specif-
ically, the following theorem can be expected.

Theorem 3: Given ε fixed, W (R, ε) ≥ Z(R, ε) for any R.
Proof: We first consider adding an additional constraint

α1 = α2 = ... = αN = α to Problem 3. The additional
constraint means that all the antennas at the receiver use the
same PS ratio for information decoding. With the additional
constraint, Problem 3 becomes

Problem 5:

V (R, ε) , max
α

(1− α) · 1Tµ

s.t. 0 ≤ α ≤ 1, (21a)

α ≥ 2R−1
U(ε) (21b)

in which constraint (21b) is from constraint (10) together with
the additional constraint α1 = α2 = ... = αN = α.

Apparently we have

W (R, ε) ≥ V (R, ε) (22)

because Problem 5 imposes an additional constraint on Problem
3. Similar to the derivation of (20), we have

V (R, ε) =

{ (
1−

(
2R−1
U(ε)

))
1Tµ, if U(ε) >

(
2R − 1

)
0, if U(ε) ≤

(
2R − 1

)
.
(23)

Next we prove that V (R, ε) ≥ Z(R, ε). We first consider the
case that U(ε) ≤

(
2R − 1

)
. In this case, from (20) and (23),

we have V (R, ε) = Z(R, ε) = 0.
In the following, we consider the case that U(ε) >

(
2R − 1

)
.

In this case, from (20) and (23), we have

Z(R, ε) =

(
1−

(
R

log2 (1 + U (ε))

))
1Tµ, (24)

V (R, ε) =

(
1−

((
2R − 1

)
U(ε)

))
1Tµ. (25)

For Problem 4, we already derived (19). We have the following
equivalent expressions for (19).

β∗ = R
log2(1+U(ε)) ⇐⇒ 1 =

(
2

R
β∗ −1

)
U(ε) ⇐⇒

β∗ =
β∗

(
2

R
β∗ −1

)
U(ε) ⇐⇒ R

log2(1+U(ε)) =
β∗

(
2

R
β∗ −1

)
U(ε) .

(26)

Using the last equivalent expression, Z(R, ε) in (24) can be
re-written as

Z(R, ε) =

(
1−

β∗ (2R/β∗ − 1
)

U(ε)

)
1Tµ. (27)

From (25) and (27), to prove V (R, ε) ≥ Z(R, ε), it suffices
if we prove H(β∗, R) ≥ 0, where H(β,R) , β(2R/β − 1) −
(2R − 1).

Looking into H(β,R), we have ∂H(β,R)
∂β = −1 +

(2R/β(β−R ln(2)))
β and ∂2H(β,R)

∂2β =
(R2 ln2(2)2R/β)

β3 ≥ 0. As
∂2H(β,R)

∂2β ≥ 0, ∂H(β,R)
∂β is increasing with β. When β = 1,

define y(R) , ∂H(β,R)
∂β |β=1 = −1 + 2R (1−R ln(2)) . Then

we have ∂y(R)
∂R = −2RR ln2(2) ≤ 0, which indicates that

y(R) is a decreasing function with R. Since it can be easily
checked that y(R)|R=0 = 0, we have y(R) ≤ 0 when
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R ≥ 0. In other words, ∂H(β,R)
∂β |β=1 ≤ 0 since R always

satisfies R ≥ 0. Combining with the fact that ∂H(β,R)
∂β is

increasing with β, we have ∂H(β,R)
∂β ≤ 0 when β lies in [0, 1],

which means that H(β,R) is a non-increasing function with
β ∈ [0, 1]. Together with the fact that H(β,R)|β=1 = 0, it
can be concluded that H(β,R) ≥ 0 for β ∈ [0, 1]. Since
β∗ = R

log2(1+U(ε)) ∈ (0, 1), we have H(β∗, R) ≥ 0. This
completes the proof for V (R, ε) ≥ Z(R, ε).

Combining the fact that V (R, ε) ≥ Z(R, ε) and W (R, ε) ≥
V (R, ε) in (22), we have W (R, ε) ≥ Z(R, ε).

Remark: Theorem 3 implies that, for a given ε, we have
Rp ⊇ Rt since the outer boundary of Rp (represented by
ηPW (R, ε)) is not smaller than the outer boundary of Rt

(represented by ηPZ(R, ε)). Theorem 3 also indicates that PS
scheme can achieve better performance than TS scheme.

IV. NUMERICAL RESULTS

Here numerical results are presented. Consider the number of
antennas at the receiver as N = 3, and the outage probability
as ε = 0.1 (unless otherwise specified). Similar to [2], the
transmission power is P = 1 W (unless otherwise specified),
noise variance σ2 is −70 dBmW, the carrier frequency is
900 MHz, the radio signal bandwidth is 10 MHz, the energy
conversion efficiency is η = 0.5, and the distance between
the transmitter and receiver is 1 m. The wireless channel
experiences free space path loss and Nakagami fading, and
accordingly, the channel gain is Gamma distributed, with shape
parameter and scale parameter set as 10 and 0.1, respectively.
The channel’s mean vector and covariance matrix are estimated
from 1000 channel gain realizations.

Fig. 1 plots ηPW (R, ε) (average harvested power in PS
scheme) and ηPZ(R, ε) (average harvested power in TS
scheme) under different transmission power P . The regions
under the ηPW (R, ε) and ηPZ(R, ε) curves are the robust
outage capacity-energy regions Rp and Rt, respectively. It
can be seen that ηPW (R, ε) is a non-increasing and concave
function with R and ηPZ(R, ε) is a linear decreasing function
with R, which is consistent with Theorem 1 and Theorem 2,
respectively. It can be also seen that ηPW (R, ε) is always
larger than ηPZ(R, ε), which verifies Theorem 3. In addition, it
can be observed that the functions ηPW (R, ε) and ηPZ(R, ε)
increase with P for a given robust outage capacity R, due
to the following reasons: 1) Both functions ηPW (R, ε) and
ηPZ(R, ε) include P in their multiplication expressions; 2)
From (10) and (11), a larger P leads to a larger feasible region of
Problem 3 and Problem 4, and thus larger W (R, ε) and Z(R, ε),
respectively.

Fig. 2 illustrates how ηPW (R, ε) and ηPZ(R, ε) vary with
outage probability ε under different robust outage capacity R.
It shows that both ηPW (R, ε) and ηPZ(R, ε) grow when ε
increases, which is consistent with Theorem 1 and Theorem
2, respectively. This is because when ε increases, the feasible
region of α in Problem 3 and β in Problem 4 are larger,
according to (10) and (11), respectively. It is also observed that
when ε increases, ηPW (R, ε) and ηPZ(R, ε) increase fast in
small ε region, and increase slowly in large ε region. This is
because when ε increases, the term

√(
1
ε

)
− 1 in constraints

(10) and (11) decreases fast in small ε region, and decreases
slowly in large ε region.
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Fig. 1. Average harvested power versus robust outage capacity.

To demonstrate the impact of energy harvesting, Fig. 3 shows
how ηPW (R, ε) and ηPZ(R, ε) vary with energy conversion
efficiency η under different robust outage capacity R. When
energy conversion efficiency η grows from 0.3 to 0.5, the
average harvested power grows, which is intuitive.

Fig. 3 also shows the impact of energy harvesting
nonlinearity. For a nonlinear energy harvester, the out-
put denoted EO is given [10, eq. (2)] as EO =(

M

(1+e−a(EI−b))
− M

(1+eab)

)
/
(
1− 1

(1+eab)

)
where EI is the

harvester’s received power, M is the saturation power (the
maximal output of the energy harvester), and a and b are
parameters for the nonlinearity. Here we follow the same setting
as in [10]: a = 1500, b = 0.0022. Similar to Section III-A, we
can formulate optimization problems that maximize harvested
power given Rp under PS scheme and given Rt under TS
scheme, and transform the formulated problems to convex ones.
Fig. 3 shows that, with a higher saturation power M , more
average harvested power is achieved.

Fig. 4 shows average harvested power versus achievable
capacity in our method (using legend “robust”) and the method
in [4], [5] that measures instantaneous CSI and solves an opti-
mization problem to get the optimal PS/TS ratio configuration
in every fading block (using legend “full CSI”). The method
with full CSI can achieve a not-significant performance gain
over our method, which is because more channel information
is utilized.7 However, our method has significant advantages in
communication overhead (we do not need to estimate instan-
taneous CSI in every fading block), computation overhead (we
do not need to solve an optimization problem in every fading
block), and complexity (we do not need to configure the PS/TS
ratio in every fading block).

V. CONCLUSION AND FURTHER DISCUSSION

We have studied the rate-energy tradeoff for a SIMO SWIPT
system under PS and TS schemes with only information of mean
and covariance matrix of the channel. Our target is to maximize
the average harvested power for a given robust outage capacity.
We have transformed the formulated optimization problems to
convex ones. We have proved the convexity of robust outage

7The performance of the method with full CSI shown in Fig. 4 does not
include the impact of communication overhead that is needed to obtain instan-
taneous CSI. If communication overhead is taken into account, the achieved
capacity should be lower.
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Fig. 2. Average harvested power versus outage probability.
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Fig. 3. Impact of energy conversion efficiency and energy harvesting nonlin-
earity.

capacity-energy region under PS and TS schemes. We have also
proved that the PS scheme outperforms the TS scheme.

In this research, we have investigated a single transmitter-
receiver pair. When multiple transmitter-receiver pairs are active
simultaneously, the mutual interference among the multiple
pairs will impair the information decoding (negative effect), but
can also help the receivers to harvest more energy (positive
effect). The tradeoff between the positive and negative effects
should be taken into account.
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