
1

Efficient Data Traffic Forwarding for
Infrastructure-to-Infrastructure
Communications in VANETs

Lijie Huang, Hai Jiang,Senior Member, IEEE, Zhou Zhang, Zhongjiang Yan,Member, IEEE,
and Hongxing Guo,Member, IEEE

Abstract— In this work, we consider roadside infrastructure
to roadside infrastructure communications in a vehicular ad hoc
network. A remote roadside unit (RSU), which does not have
connection to the backbone network, needs to send its data traffic
to a central RSU (which has backbone connection) by using
help from passing-by vehicles. Cost is assigned to information
transmission energy consumption, as well as possible violation of
a soft delay bound. For each passing-by vehicle, the remote RSU
needs to decide whether or not to ask for help from the vehicle,
with a target at minimal rate of cost. We derive an optimal
decision strategy of the remote RSU, which is shown to have a
conditional pure-threshold structure, i.e., when a vehicle arrives
at the remote RSU, if the queuing delay of the data traffic at the
remote RSU is above a threshold, it is optimal for the remote RSU
to ask for help from the vehicle, with a condition that the vehicle’s
speed satisfies a requirement. We also provide a method that can
theoretically derive the threshold. The conditional pure-threshold
structure makes our derived strategy very easy to implementwith
very low computation complexity.

Index Terms— Delay, infrastructure-to-infrastructure (I2I)
communications, vehicular ad hoc network.

I. I NTRODUCTION

A vehicular ad hoc network (VANET) can support the com-
munications among roadside units (RSUs, the infrastructure)
and vehicles. By providing safety messages, road conditions,
and commercial services, VANET is essential to make a safe,
intelligent, and convenient transportation system [1]–[6]. In
the literature, VANET has been well investigated, mainly in
two research directions: vehicle-to-infrastructure (V2I) com-
munications and vehicle-to-vehicle (V2V) communications. It
is in general assumed that all the RSUs are connected to a
backbone network via wired links. However, in some cases,
some RSUs may not be connected to the backbone network.
For example, in remote areas, it is costly to connect all RSUs
to the backbone network. Thoseremote RSUs(i.e, RSUs
without backbone connection) need to send their data traffic
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to central RSUs(i.e., RSUs with backbone connection), and
then the central RSUs forward the data traffic to the back-
bone network. This communication is referred to as roadside
infrastructure-to-roadside infrastructure (I2I) communication.
A cost effective method to achieve I2I communications is to
use passing-by vehicles, which can carry messages from the
remote RSUs and forward them to central RSUs on their path.

For such vehicle-aided I2I communications, the energy con-
sumption of the remote RSUs is an issue. This is because those
RSUs are usually deployed in remote areas, and thus, they do
not have constant power supply. So the remote RSUs are often
equipped with batteries, and the batteries can get recharged
or renewed after a relatively long time (for example, a few
months) [7]. Energy efficient data forwarding in VANETs has
been investigated recently in the literature [8]–[12]. Thework
in [8] targets at energy consumption minimization for an RSU.
A scheduling scheme is provided, which favors passing-by
vehicles with higher velocity and/or shorter distance to the
RSU. The work in [9] considers delivery of packets from
a source to a destination by using relaying service of other
nodes. A delay bound is set for each packet. If a packet cannot
be delivered to the destination within the delay bound, the
packet will be discarded. To maximize the packet delivery
probability subject to an energy consumption constraint, it
is shown that the threshold dynamic policy is optimal. The
works in [10] and [11] take into account the energy for node
discovery process as well as energy for information transmis-
sion, for two-hop routing and epidemic routing, respectively.
Transmission policy is well designed such that packet delivery
probability is maximized. The work in [12] proposes that the
RSU-to-vehicle scheduling can be combined with vehicle-to-
vehicle forwarding, which can largely lower the energy cost
of the RSU.

Although the vehicle-aided I2I communications can tolerate
a certain level of delay, a timely delivery is still preferred [13]–
[15]. In general, the total delay of a data packet at a source
RSU consists of two components: the queuing delay at the
source RSU, and the transit delay (i.e., the time needed by
a helping vehicle to travel to the destination RSU to deliver
its carried data traffic). A tradeoff exists between the queuing
delay and the transit delay. To minimize the transit delay, the
source RSU should wait for fast vehicles, which may result
in larger queuing delay. On the other hand, to minimize the
queuing delay, the source RSU should pick up the first passing-
by vehicle, which may lead to larger transit delay. The work
in [16] considers finite-size traffic case and infinite-size traffic
case. For the former case, the source file at the source RSU has
a number of packets, and the time duration needed to deliver



TABLE I

COMPARISON OFDATA TRAFFIC FORWARDING METHODS IN VANETS.

Work Research Problem, Methodology, and Result

Problem: Minimize energy consumption of an RSU that processes requests from vehicles.

[8] Methodology: Optimization formulation and approximation.

Result: A scheduler based on vehicles’ locations and velocities.

Problem: Maximize the multi-hop packet delivery probability from a source to a destination subject to

an energy consumption constraint.

[9] Methodology: Continuous-time Markov framework.

Result: The threshold dynamic policy is optimal.

Problem: Maximize packet delivery probability in two-hop routing subject to constraints on energy

consumption and relay activation rate, considering energyin information transmission and node discovery.

[10] Methodology: Fluid approximation, optimal control theory.

Result: Optimal two-dimensional threshold policy in closed form for transmission and activation.

Problem: Maximize message delivery probability in epidemic routing subject to total energy consumption

constraint, considering energy in information transmission and node discovery.

[11] Methodology: Continuous-time Markov framework.

Result: Optimal beaconing control solution.

Problem: in RSU-to-vehicle communications, minimize RSU energy consumption by using V2V forwarding.

[12] Methodology: Integer linear programming.

Result: Greedy scheduling algorithms with low complexity.

Problem: For I2I communications using vehicles as relays, minimize the delay for delivering all packets

in a finite-size file, or the average packet delay for a file withinfinite packets.

[16] Methodology: Markov decision process.

Result: Optimal scheduling algorithms and a low-complexity sub-optimal algorithm.

Problem: For I2I communications using vehicles as relays, minimize sum of queuing delay and transit delay.

[17] Methodology: Queuing analysis.

Result: Probabilistic scheduling scheme.

Problem: For I2I communications using vehicles as relays, minimize rate of weighted cost of energy

consumption and queuing delay.

[18] Methodology: Traditional optimal stopping theory.

Result: Optimal pure-threshold strategy.

Problem: For I2I communications (with hard delay bound) using vehicles as relays, minimize rate of

weighted cost of energy consumption, queuing delay, and transit delay.

[19] Methodology: Traditional optimal stopping theory.

Result: Optimal strategy without threshold structure.

Problem: For I2I communications (with soft delay bound) using vehicles as relays, minimize rate of

This weighted cost of energy consumption, queuing delay, and transit delay.

Paper Methodology: New method to solve an optimal stopping problem with forced stop.

Result: Optimal strategy with conditional pure-thresholdstructure.
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all packets is minimized by using a Markov decision process.
For the latter case, the source file has an infinite number of
packets, and the average delay of a packet is minimized by
a Markov decision process. Both queuing delay and transit
delay are considered and well balanced. The work in [17]
assigns each passing-by vehicle a pick-up probability, which
favors faster vehicles. For a vehicle, its assigned probability
is the probability that its arrival moment at the destination is
earlier than its next vehicle‘s expected arrival moment at the
destination.

The work in [18] considers both energy consumption and
queuing delay. As a follow-up of [18], the work in [19] con-
siders energy consumption, queuing delay, and transit delay.
Cost function is assigned to energy consumption as well as
packet dropping (due to delay bound violation). An optimal
scheduling scheme is derived, which minimizes the rate of
cost (i.e., the average cost per unit of time).

For the work in [19], ahard delay boundis used, which
means that if an information unit at the source RSU cannot be
delivered to the destination RSU within the delay bound, the
information unit is considered useless and thus, is droppedat
the source RSU. Different from the work in [19], here we
consider asoft delay bound. In specific, it is desired that
any information unit is delivered within the delay bound.
However, when an information unit cannot be delivered within
the delay bound, the information unit is considered to be
partially useful and is still delivered, and a cost is charged
for the delay bound violation. The rationale behind using
soft delay bound in vehicle-aided I2I communications is as
follows. One typical application of the source RSU is to serve
as gateway for a wireless sensor network that monitors the
environments (fire detection, animal tracking, etc.) in remote
areas. The sensing data of the wireless sensor network are
sent to the source RSU, and are subsequently delivered by the
source RSU to a destination RSU with backbone connection.
Then the destination RSU sends the data to the data center
of the wireless sensor network. It is preferred that the sensing
data are delivered within a delay bound. If the sensing data
are beyond the delay bound, they still have some value (for
example, for later historical studies), and will still be delivered.
A similar soft delay bound model was used in [20], [21].

The contributions of this paper are summarized as follows.
1) Based on the soft delay bound model, we formulate an
optimal stopping problem. In the formulated optimal stopping
problem, a concept of forced stop (the definition of forced
stop is given in Section II) is introduced. Due to the forced
stop, the methods used in the literature to solve traditional
optimal stopping problems, including the method used in [19],
do not work here, and a completely new method is required.
By characterizing the impact of forced stop, we develop a
method to find optimal solution for the formulated problem. 2)
We theoretically prove that it is optimal for the source RSU to
take aconditional pure-threshold strategy. In specific, before
a forced stop, the source RSU should transmit to a passing-by
vehicle if the queuing delay is above a threshold1, conditioned
on that the total delay (queuing delay plus transit delay of the
vehicle) is not more than the delay bound. The conditional
pure-threshold structure can largely facilitate implementation
of the strategy in a VANET. As a comparison, optimal solution

1In the sequel, “threshold” means threshold for queuing delay at the source
RSU.

TABLE II

USED NOTATIONS

Symbol Meaning

a, b Smallest, largest possible transit delay

C The set of all possible stopping strategies

d Distance from S-RSU to D-RSU

D Soft delay bound

FS(x) Cumulative distribution function of

transit delay, given in (1)

Fnr
information of arrival moments and transit

delay of vehicles before Vehiclenr

N †(λ) Optimal stopping strategy of Problem (5)

P Transmission power of RTS, CTS,

DATA, and ACK

R Transmission rate of DATA packets

r Data traffic arrival rate at the S-RSU

Sn The transit delay of thenth vehicle

Tn The arrival moment of thenth vehicle

Un Total cost of using thenth vehicle

(given in (2))

V (λ) Optimal objective function of Problem (5)

vmin Minimal speed of vehicles

vmax Maximal speed of vehicles

Xn Time interval from arrival of vehiclen− 1

to arrival of vehiclen

Zn(λ) Cost function for Problem (5)

1/µ Average duration between two vehicle arrivals

κ Communication overhead duration

between S-RSU and selected vehicle

ω Cost weight for energy consumption

β Cost of violating soft delay bound

in [19] does not have such a conditional pure-threshold feature,
and thus, more computation is needed to make a decision in
optimal solution of [19]. 3) We provide a method that quickly
calculates the threshold off-line.

The following sections are organized as follows. Section
II describes the considered system and formulates the re-
search problem. Section III derives an optimal strategy of
the problem, and proves that the optimal strategy has a
conditional pure-threshold structure. Section IV provides an
efficient method to obtain the threshold. Section V evaluates
our derived strategy. Section VI concludes our paper.

Table I compares existing data traffic forwarding methods
in VANETs and the method proposed in this paper, and Table
II summarizes important notations used in this paper.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model is similar to that in [19], except that a
soft delay bound is used here. A source RSU (S-RSU) has
constant data traffic arrival rater. The S-RSU is a remote
RSU, and needs to send its data traffic to a destination RSU
(D-RSU, which is a central RSU) by using the help of passing-
by vehicles. The distance between the S-RSU and D-RSU isd.
If a vehicle is selected to help, it takes all buffered data traffic
at the S-RSU, and when the vehicle arrives at the D-RSU, it
passes all the carried data traffic to the D-RSU .

At the S-RSU, denote the arrival moment of thenth (n =
1, 2, ...) vehicle asTn. Without loss of generality, we set
T0 = 0. Similar to [16], [17], [22], the arrival process of
vehicles at the S-RSU is a Poisson process with parameterµ,
which means that the vehicle inter-arrival durations, denoted as
Xn = Tn−Tn−1 (n = 1, 2, ...), are independent exponentially-
distributed random variables with mean1/µ. Similar to [23],
the speed of the vehicles are independent random variables that
are uniformly distributed betweenvmin (the minimal speed)
and vmax (the maximal speed). As the transit delay is the
duration for a vehicle to travel from the S-RSU to the D-RSU,
it can be seen that the transit delay has cumulative distribution
function (CDF) given as

FS(x) =















0 if x < a;
b(x−a)
x(b−a) if a ≤ x ≤ b;

1 if x > b.

(1)

Herea = d/vmax is the smallest possible transmit delay, while
b = d/vmin is the largest possible transit delay.

When a vehicle (say thenth vehicle) arrives, the system
state is defined as the arrived vehicles’ arrival moments (i.e.,
T1, T2, ..., Tn) and transit delay (denoted asS1, S2, ..., Sn),
and the S-RSU needs to make a decision between two options,
as follows.

• Option wait: the nth vehicle is skipped, and the S-RSU
waits for later vehicles.

• Option stop: the S-RSU stops waiting, and passes its
buffered traffic to thenth vehicle by using a four-
way handshake RTS-CTS-DATA-ACK. Here RTS means
request-to-send, CTS means clear-to-send, DATA carries
the data traffic, and ACK means acknowledgement. De-
noteP as the transmission power of RTS, CTS, DATA,
and ACK. Denoteκ as the duration of all communication
overhead (including RTS, CTS, ACK, as well as the
medium access control [MAC] header of the DATA
packet). Denote the transmission rate of a DATA packet as
R. Similar to [20], [24], [25], we adopt a weighted cost
structure for energy consumption and delay as follows.
For energy consumption, we assign cost weightω (unit
of cost per Joule). Then the energy consumption cost
if the S-RSU stops at thenth vehicle is expressed as
ωP

(

Tnr/R+ κ
)

, in whichTnr is the amount of buffered
data traffic at the S-RSU. A soft delay boundD is set
for each information unit in the data traffic. If one or
multiple information units of the data traffic have a total
delay (queuing delay plus transit delay2) larger thanD,

2Note that when the S-RSU and a vehicle are exchanging information,
the vehicle is also moving. Thus, the duration of transmissions between the
S-RSU and the vehicle is included in the transit delay.

we say that a soft delay bound violation happens, and a
fixed charge ofβ is set (the reason for a fixed charge
for one or multiple information units with delay bound
violation is given in Appendix A). Therefore, delay cost
if the S-RSU stops at thenth vehicle is expressed as
β1{Tn+Sn>D}, where1{·} is an indicator function (which
is equal to 1 if the event indicated in{·} happens, and
equal to 0 otherwise), andSn is transit delay of thenth
vehicle. Overall, the total cost if the S-RSU stops at the
nth vehicle is given as

Un = ωPκ+
ωrPTn

R
+ β1{Tn+Sn>D}. (2)

Recall that for any vehicle, the transit delay is always not
less thana (the smallest possible transit delay). Thus, if the
queuing delay at the S-RSU is more than(D − a), the total
delay (queuing delay plus transit delay) will be always more
than the delay boundD. Therefore, when its queuing delay is
more than(D − a), the S-RSU is required to stop when the
next vehicle arrives, referred to as aforced stop.3 The index
of the vehicle that is the first arrival after moment(D− a) is
denoted asC , min {n : Tn > D − a}. Thus, if the queuing
delay at the S-RSU is more than(D− a), it will be forced to
stop at theCth vehicle, and the moment of the forced stop is
denoted asTC . The inter-arrival duration between VehicleC
and its previous vehicle is denoted asXC .

DenoteN as index of the vehicle upon arrival of which the
S-RSU stops4. We also useN to denote the corresponding
stopping strategy. We target at the S-RSU’s optimal stopping
strategy with minimal rate of cost (i.e., minimal cost per

unit time). DefineYn
△
= ωPκ + β1{Tn+Sn>D}, and C

△
=

{N : 1 ≤ N ≤ C} is the set of all possible stopping strategies
(i.e., due to the forced stop concept, we exclude stopping rules
which will stop at a vehicle arriving after theCth vehicle).
Similar to [19], to achieve our target, equivalently we should
find

N∗ , arg inf
N∈C

E [UN ]

E [TN ]

= arg inf
N∈C

E [YN ] + ωrPE [TN ]/R

E [TN ]

= arg inf
N∈C

E [YN ]

E [TN ]
, (3)

whereE [·] means expectation.5 As the vehicle inter-arrival
durations are exponentially distributed (which means thatthe
vehicle inter-arrival durations are “memoryless”), we have
E [TC ] = D − a + E [XC ] = D − a + 1/µ < ∞. Thus,
E [TN ] < ∞ for all N ∈ C.

3Reference [21] uses a concept similar to forced stop. In [21], when the
target soft delay bound for a service is crossed, the system must provide the
service when the next chance appears.

4Note that after the S-RSU stops at a vehicle and transmits itsdata traffic,
we denote this stop moment asT0 = 0, and call the next arrival vehicle as
Vehicle 1 again. In other words, the formulated problem is repeated after a
stop.

5Here we minimizeE [UN ]/E [TN ] due to the following reason. Since the
optimal stopping problem is repeated after a stop, we denotethe stopping time
in K stops asTN1

, TN2
, ..., TNK

(which are independent and identically
distributed), and the corresponding cost in theK stops asUN1

, UN2
, ...UNK

(which are independent and identically distributed), respectively. Then the
average cost per unit time is given as(UN1

+ UN2
+ ...+ UNK

)/(TN1
+

TN2
+ ...TNK

), which converges toE [UN ]/E [TN ] by the law of large
numbers [26].
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Remarks:For the formulated problem, there is a tradeoff
between wait and stop. If the S-RSU waits less time and picks
up a vehicle, the selected vehicle can have a larger chance
to deliver all data traffic before delay bound. But it is not
energy efficient, since the S-RSU needs to have information
exchanges with more vehicles in a long term, thus consuming
more energy. If the S-RSU waits longer time, it is energy
efficient as the S-RSU needs to have information exchanges
with fewer vehicles in a long term, but the chance for delay
bound violation is also higher. The major challenge in solving
the problem is due to the forced stop, which makes the
problem different from a traditional optimal stopping problem.
A traditional optimal stopping problem does not have forced
stop, and thus, methods used to solve traditional optimal
stopping problems, including the method used in [19], cannot
be used here. In the sequel, we will develop a completely new
method to solve our optimal stopping problem with forced
stop.

III. A N OPTIMAL STOPPING STRATEGY

We have four steps in the following four subsections to
derive an optimal stopping strategy for Problem (3).

A. Transformation of the original problem

Define

Zn(λ) = Yn − λTn = ωPκ+ β1{Tn+Sn>D}−λTn, λ > 0.
(4)

Hereλ can be viewed as rate of cost.
We will first transform Problem (3) into a stopping problem

that minimizesE
[

ZN (λ)
]

[26], i.e.,

N †(λ) = arg inf
N∈C

E
[

ZN (λ)
]

. (5)

Theorem 1:If i) for any particularλ > 0, Problem (5) has
an optimal stopping strategy, denoted asN †(λ), and ii) there

exists aλ∗ such thatE
[

ZN†(λ∗)(λ
∗)
]

= 0, then an optimal

stopping strategy of Problem (3) is in the form ofN †(λ∗).
Proof: See Appendix B.

In the subsequent two steps in Sections III-B and III-C,
we deriveN †(λ) for Problem (5). Then in the last step in
Section III-D, we prove that there existsλ∗ satisfying the
above condition ii).

B. Elimination of a set of non-optimal stopping strategies

In this step, we show that, for Problem (5), a set of stopping
strategies are non-optimal, and thus, can be removed from our
consideration.

For any stopping strategyN ∈ C, define an event:{TN ≤
D − a, TN + SN > D}. This event means that when the S-
RSU stops, it is not a forced stop, and the total delay (queuing
delay plus transit delay) is more than the delay bound.

We first consider the following set of stopping strategies:

B =
{

N ∈ C : Pr{TN ≤ D − a, TN + SN > D} > 0
}

,

in which Pr{·} means probability of an event. Next we
show that stopping strategies inB are strictly non-optimal
for Problem (5). We can use proof by contradiction. Assume
N ∈ B is optimal for Problem (5). Then based onN , we can

construct a new stopping strategy, denoted asN
′

. The only
difference ofN

′

from N is that: ifN advises a stopping such
that TN ≤ D − a, TN + SN > D, thenN

′

advises that the
S-RSU waits until a forced stop. It can be easily shown that
E
[

ZN(λ)
]

> E
[

ZN
′ (λ)

]

, which contradicts the assumption
that strategyN is optimal.

Hence, we need only to search for an optimal stopping
strategy within the following collection of stopping strategies:

N = C\B = {N ∈ C : TN + SN ≤ D if TN ≤ D − a} .

In other words, upon a vehicle arrival, if the total delay
(queuing delay plus transit delay of the vehicle) is aboveD,
and the queuing delay is less thanD − a (i.e., it is before
the forced stop, which also means that it is still possible for
the S-RSU to pick up a later vehicle that can make the total
delay bounded byD), then the S-RSU should continue to
wait for the next vehicle. Or equivalently, the S-RSU should
skip the vehicles which arrive at the S-RSU before moment
(D−a) and violate the delay bound. And we re-index the not
skipped vehicles asnr = 1, 2, .... So we have1 ≤ nr ≤ Cr,
whereCr , min{nr : Tnr

> D− a} means the forced stop.6

DenoteXnr
= Tnr

− Tnr−1 (nr = 1, 2, ...). Let Nr denote
the corresponding stopping time (the new index of the vehicle
upon arrival of which the S-RSU stops) and stopping strategy.

Then we have the following new stopping problem

N †
r (λ) = arg inf

Nr∈N
E

[

ZNr
(λ) = ωPκ+ β1{TNr+SNr>D}

− λTNr

]

. (6)

C. Optimal stopping strategy for Problem (6) and Problem (5)

Consider Problem (6). The concept of myopic stopping
strategy is given first. Upon a vehicle arrival, the myopic
stopping strategy advises the S-RSU to stop if the cost of
stopping at the vehicle is not more than the expected cost of
skipping the vehicle and stopping at the next vehicle.

We use Anr
to denote the event{Znr

(λ) ≤
E
[

Znr+1(λ)|Fnr

]

}, in which Fnr
is the information

up to timeTnr
. HereFnr

includes the arrival moments and
transit delay of all previous vehicles before Vehiclenr. So
Anr

means that the myopic strategy advises the S-RSU to
stop at Vehiclenr. We have the following definition for a
monotone problem.

Definition 1: Problem (6) is monotone ifA1 ⊂ A2 ⊂ A3 ⊂
. . . almost surely (a.s.) [26].

In this definition,Anr
⊂ Anr+1 ⊂ Anr+2 ⊂ . . . means that

if the myopic strategy advises the S-RSU to stop at Vehicle
nr, then it will also advise the S-RSU to stop at any future
vehicle7 no matter what the realization of(Tnr+1, Tnr+2, ...)
will be (a.s.).

Now, we proceed to show that Problem (6) is a monotone
problem. Since at momentTCr

the S-RSU is forced to stop,
we need only to considernr < Cr , i.e.,Tnr

= t ∈ [0, D− a].

6Note thatCr (in the re-indexed system with some vehicles skipped) and
C (in the initial system) both mean the forced stop, corresponding to the first
vehicle arrival after momentD − a.

7When we say that the myopic strategy advises the S-RSU to stopat a
future vehicle, it is assumed that the S-RSU does not stop at vehicles before
that future vehicle.
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Then, we have

Znr
(λ) = ωPκ− λTnr

,
E
[

Znr+1(λ)|Fnr

]

= E
[

Znr+1(λ)|Tnr
= t
]

(i)
= ωPκ+ βPr{nr + 1 = Cr|Tnr

= t}
− λTnr

− λE
[

Xnr+1|Tnr
= t
]

,

in which equality (i) uses the following two equations:

E

[

1{Tnr+1+Snr+1>D}|Tnr
= t

]

=Pr{nr + 1=Cr|Tnr
= t},

Tnr+1 = Tnr
+Xnr+1.

For 0 ≤ t ≤ D − a, we define :

m(t, λ)
△
= E

[

Znr+1(λ)|Fnr

]

− Znr
(λ)

= βPr{nr + 1 = Cr|Tnr
= t} − λE

[

Xnr+1|Tnr
= t
]

.

Theorem 2:m(t, λ) is continuous int ∈ [0, D− a]. And if
for somet∗ ∈ [0, D− a), we havem(t∗, λ) ≥ 0, thenm(t, λ)
is a strictly increasing function int ∈ [t∗, D − a].

Proof: See Appendix C.
For Problem (6), if the myopic strategy advises the S-RSU
to stop at Vehiclenr, based on the definition ofm(t, λ),
we havem(Tnr

, λ) ≥ 0. Then from Theorem 2, we have
m(Tnr+1, λ) > 0, m(Tnr+2, λ) > 0, ..., for Tnr+1 < D −
a, Tnr+2 < D − a, .... In other words, the myopic strategy
also advises the S-RSU to stop at any vehicle after Vehicle
nr. Thus, Problem (6) is a monotone problem.

In general, the myopic strategy of Problem (6) advises the
S-RSU to stop at the earliest possible vehicle such that the
cost of stopping at the vehicle is not more than the expected
cost of skipping the vehicle and stopping at the next vehicle.
Thus, the myopic strategy for Problem (6) can be expressed
as

Nm
r (λ) = min

{

min
{

nr : m(Tnr
, λ) ≥ 0

}

, Cr

}

, (7)

in which the superscriptm stands for “myopic”.
Theorem 3:The myopic stopping strategy (7) is optimal for

Problem (6).
Proof: See Appendix E.

Considering the skipped vehicles when we transform Prob-
lem (5) to Problem (6), from Theorem 2 an optimal stopping
strategy for Problem (5) is

N †(λ) = min
{

min
{

n : Tn ≥ Tth(λ), Tn + Sn ≤ D
}

, C
}

,

(8)

in which Tth(λ) is given as

Tth(λ) =

{

t∗ if ∃t∗ ∈ [0, D − a], m(t∗, λ) = 0;

∞ if m(D − a, λ) < 0.
(9)

D. Optimal stopping strategy for Problem (3)

Recall thatN †(λ) denotes optimal strategy of Problem
(5). For Problem (5), letV (λ) denote the optimal objective
function, i.e.,

V (λ)= inf
N∈C

(

E [YN ]−λE [TN ]
)

=E

[

YN†(λ)

]

− λE
[

TN†(λ)

]

.

Theorem 4:V (λ) is strictly decreasing and continuous in
λ > 0.

Proof: See Appendix F.

If λ → 0,

lim
λ→0

V (λ) = lim
λ→0

E

[

YN†(λ)

]

≥ ωPκ. (10)

On the other hand, ifλ > µ(ωPκ+ β), we have

V (λ)
(ii)
= ωPκ+ βPr{TN†(λ) + SN†(λ) > D} − λE

[

TN†(λ)

]

≤ ωPκ+ β − λE [T1] = ωPκ+ β −
λ

µ
< 0, (11)

in which equality (ii) uses

E

[

1{

T
N†(λ)

+S
N†(λ)

>D
}

]

= Pr{TN†(λ) + SN†(λ) > D}.

From Theorem 4 and inequalities (10) and (11), it can be
concluded that there exists one and only oneλ∗ > 0 such
thatV (λ∗) = 0. In other words, condition ii) of Theorem 1 is
satisfied. Thus, according to Theorem 1, an optimal stopping
strategy to the Problem (3) is

N †(λ∗) = min
{

min {n : Tn ≥ T ∗, Tn + Sn ≤ D} , C
}

,

in which T ∗ = Tth(λ
∗). It can be seen that, before a forced

stop, the S-RSU is optimal to transmit to a passing-by vehicle
if the queuing delay is more than the thresholdT ∗, conditioned
on that the sum of the queuing delay and the transit delay is
bounded byD. In other words, the optimal stopping strategy
has a conditional pure-threshold structure.

IV. D ERIVATION OF THE OPTIMAL THRESHOLDT ∗

To derive the optimal thresholdT ∗, it is intuitive to firstly
obtain the thresholdTth(λ) based on (9) for eachλ(> 0)
value (in which the solution of nonlinear equationm(t∗, λ) =
0 needs to be calculated numerically), secondly obtain the
optimal objective functionV (λ) of Problem (5) for eachλ
value, and thirdly findλ∗ such thatV (λ∗) = 0. Although
T ∗ = Tth(λ

∗) can be numerically calculated based on this
intuitive method, the computational complexity is high. So
next we propose to deriveT ∗ from another perspective, to
obtainT ∗ directly.

For Problem (3), fort ∈ [0, D − a], we consider the
following stopping strategies:

N(t) = min
{

min {n : Tn ≥ t, Tn + Sn ≤ D} , C
}

with corresponding objective function denoted as

k(t) =
ωPκ+ βPr{N(t) = C}

E

[

TN(t)

] . (12)

ThenT ∗ should be the value oft that minimizesk(t).

Theorem 5:k(t) is continuous int ∈ [0, D − a].

Proof: See Appendix G.

To minimize k(t), we may investigate its derivative ex-
pressed as

dk(t)

dt
= l(t)/

(

E

[

TN(t)

])2

,
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where

l(t) = β
dPr{N(t) = C}

dt
E

[

TN(t)

]

−
dE
[

TN(t)

]

dt

(

ωPκ+ βPr{N(t) = C}
)

. (13)

We have the following theorem.
Theorem 6:The functionl(t) is continuous in the interval

[0, D− a] with l(0) < 0 andl(D− a) = 0. Moreover, if there
is a t‡ ∈ [0, D − a) such thatl(t‡) ≥ 0, then l(t) > 0 for
t ∈ (t‡, D − a).

Proof: See Appendix H.
Theorem 6 implies that there is at most one root forl(t) = 0,

t ∈ [0, D − a). And if there is a root, denoted ast§, then
l(t) < 0 in t ∈ [0, t§) (which meansk(t) is strictly decreasing
in t ∈ [0, t§)) and l(t) > 0 in t ∈ (t§, D − a) (which means
k(t) is strictly increasing int ∈ (t§, D − a)), and thus, the
optimal thresholdT ∗ should beT ∗ = t§.

Based on these conclusions, we can deriveT ∗, as follows.
We consider the following three cases.

Case 1)If l(D − b) ≥ 0:
Sincel(0) < 0, andl(t) is continuous in the interval[0, D−

a], we can see thatl(t) = 0 (t ∈ [0, D−a)) has a unique root
in [0, D− b]. From (40) in Appendix H, the optimal threshold
T ∗ is the root of

µβte−µ(D−t)

(

b

a

)
µab
b−a

− ωPκ
(

1 + µe−µ(D−b−t)

×
(

g(D − b)−D + b−
1

µ

)

)

= 0. (14)

The method of bisection search can be used to find the root.
The corresponding minimum rate of cost is

k(T ∗) =
ωPκ+ βPr{N(T ∗) = C}

E

[

TN(T∗)

]

(iii)
=

ωPκ+ βe−µ(D−T∗)
(

b
a

)
µab
b−a

1
µ
+ T ∗ −

(

D − b+ 1
µ
− g(D − b)

)

e−µ(D−b−T∗)
,

(15)

in which equality (iii) comes from (34) and (35) in Appendix
G, and functiong(·) is defined in Appendix C and derived in
Appendix D.

Case 2): If l(D − b) < 0 and l(t)|t=(D−a)− > 0 (which
is equivalent to

(

t − g(t) + [β/(ωPκ)]h(t)t
)

|t=D−a > 0
from (41) in Appendix H, where functionh(·) is defined in
Appendix C and derived in Appendix D):8

We can see thatl(t) = 0 (t ∈ [0, D − a)) has a unique
root in (D − b,D − a). From (41), the optimal threshold
T ∗ is the root of t − g(t) + βh(t)t/(ωPκ) = 0. The
method of bisection search can be used to find the root. The
corresponding minimum rate of cost is

k(T ∗) =
ωPκ+ βPr{N(T ∗) = C}

E

[

TN(T∗)

]

(iv)
=

ωPκ+ βh(T ∗)

g(T ∗)
,

(16)

8Here x− means a value that is smaller thanx but with infinitely small
difference.

0 200 400 600 800 1000 1200 1400

Threshold (seconds)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
at

e 
of

 c
os

t (
un

it 
of

 c
os

t/s
ec

on
d)

Simulated rate of cost
Simulated rate of delay cost
Simulated rate of energy consumption cost
Analytically calculated point in our derived strategy

Fig. 1. Rate of cost in conditional pure-threshold strategies with different
thresholds.

in which equality (iv) comes from (36) and (37) in Appendix
G.

Case 3): If l(D − b) < 0 and l(t)|t=(D−a)− ≤ 0 (which is
equivalent to

(

t − g(t) + [β/(ωPκ)]h(t)t
)

|t=D−a ≤ 0 from
(41)):

From Theorem 6, we havel(t) < 0 in [0, D−a). Thus,k(t)
is a strictly decreasing function in[0, D−a). Since we want to
minimize k(t), the optimal threshold should beT ∗ = D − a.
In other words, it is optimal to wait for a forced stop. The
corresponding minimum rate of cost is

k(T ∗) =
ωPκ+ βPr{N(D − a) = C}

E

[

TN(D−a)

]

(v)
=

ωPκ+ β

g(D − a)
, (17)

where equality (v) comes fromPr{N(D − a) = C} = 1 and

E

[

TN(D−a)

]

= g(D − a) (which is from (37) in Appendix
G).

V. PERFORMANCE EVALUATION

We use Matlab simulation to evaluate our derived stopping
strategy. The distance of the S-RSU and D-RSU isd = 10, 000
m. The S-RSU has a data arrival rate ofr = 5 bits/second.
The soft delay bound is set to beD = 1, 800 seconds.
Vehicle arrival process at the S-RSU is a Poisson process
with parameterµ. If the S-RSU decides to stop at a vehicle,
the communication overhead duration isκ = 938.91 µs.9

The transmission rate of DATA packets isR = 11 Mbps.
The transmission power of RTS, CTS, DATA, and ACK is
P = 15.5 dBm= 35.5 mW. The cost weight for energy
consumption isω = 1 unit of cost perµJoule. We collect
simulation statistics over100, 000 simulation runs.

We first demonstrate that our stopping strategy is optimal.
For this purpose, we compare our strategy with other con-
ditional pure-threshold strategies. Here a conditional pure-
threshold strategy with thresholdη works as follows: before

9the overhead 938.91µs is calculated based on IEEE 802.11 Standard,
which includes the following: RTS preamble (192µs), ratio of RTS size (20
bytes) to RTS transmission rate (2Mb/s), CTS preamble (192µs), ratio of
CTS size (14 bytes) to CTS transmission rate (2Mb/s), DATA preamble (192
µs), ratio of DATA MAC header size (34 bytes) to DATA transmission rate
(11 Mb/s), ACK preamble (192µs), and ratio of ACK size (14 bytes) to ACK
transmission rate (11Mb/s).
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forced stop, the S-RSU selects the first vehicle (say thenth
vehicle) such thatTn > η and Tn + Sn ≤ D; if the S-
RSU cannot find such a vehicle, then the forced stop is
decided on. We setβ = 500, µ = 1/400 vehicles/second,
vmin = 10 m/second, andvmax = 30 m/second. In conditional
pure-threshold strategies with thresholdη varying from 0 to
(D − a), Fig. 1 shows the simulation results of the rate of
cost, as well as the simulation results of the rate of energy
consumption cost and rate of delay cost10. It can be seen
that, when the threshold increases, the chance to have delay
bound violation is larger, and thus, the delay cost is higher. On
the other hand, a larger threshold means that the S-RSU has
information exchanges with fewer vehicles in a long term, and
thus, the energy consumption cost is lower. Fig. 1 also shows
the analytically calculated thresholdT ∗ and the corresponding
analytically calculated rate of cost (i.e.,k(T ∗) in (15)-(17) plus
ωrP/R, the difference ofE [YN ]/E [TN ] from E [UN ]/E [TN ]
as shown in (3)) in our derived strategy. It is clearly shown that
our derived strategy strikes an optimal balance between energy
consumption cost and delay cost, and achieves the minimal
rate of total cost.

We then vary the penalty costβ from 10 to 10, 000. And
for eachβ value, we exhaustively search the simulated rate
of cost in conditional pure-threshold strategies with threshold
η varying from 0 to (D − a). Fig. 2 shows the searched
optimal threshold that achieves the (simulated) minimal rate
of cost for eachβ value, and Fig. 3 shows the corresponding
(simulated) minimal rate of cost for eachβ value. As a
comparison, for eachβ value, Fig. 2 and Fig. 3 also show the
analytically calculated thresholdT ∗ in our derived strategy and
corresponding analytically calculated rate of cost, respectively.
It can be seen that the analytical results and exhaustively
searched optimal simulation results match well. Whenβ
is small, the S-RSU waits until it is forced to stop, i.e.,
the optimal threshold is(D − a) = 1, 467 seconds. This
is because the penalty costβ is dominated by the benefit
from delivering more traffic in a transmission. In fact, from
Case 3) when derivingT ∗ in Section IV, we know that if
(

t− g(t) + [β/(ωPκ)]h(t)t
)

|t=D−a ≤ 0, which means

β ≤
ωPκ

(

g(D − a)−D + a
)

(D − a)h(D − a)
= 36.4,

then the optimal threshold is(D−a) = 1, 467 seconds. When
the value ofβ increases, the penalty cost begins to dominate,
and the optimal threshold value begins to decrease. As an
extreme case, the optimal threshold becomes0 whenβ → ∞,
which means that the cost of delay bound violation is too
high to afford, and thus, the S-RSU should transmit to the
first vehicle that meets the delay bound requirement (i.e., the
sum of queuing delay and transit delay is not more thanD).

Fig. 3 also shows the comparison of our derived stopping
strategy with the following heuristic strategy: when the S-

10In a conditional pure-threshold strategy (including our derived strategy),
a delay bound violation happens only at a forced stop. At a forced stop, the
average amount of information units with delay bound violation is expressed
asr(1/µ + E [S]− a), in which E [S] is average transit delay of a vehicle.
Therefore, if the rate of delay cost is expressed asRd, the amount of
information units per unit time with delay bound violation can be expressed
as(Rd/β)r(1/µ+E [S]−a), i.e., proportional toRd. Thus, the rate of delay
cost in our cost function actually can represent the performance of positive
system throughput (defined as the amount of information units per unit time
that can be delivered to the D-RSU within delay bound).

101 102 103 104

β (unit of cost)

0

500

800

1000

1467

1600

T
hr

es
ho

ld
 (

se
co

nd
s)

Analytically calculated optimal threshold
Simulated optimal threshold by exhaustive search

Fig. 2. The optimal threshold in conditional pure-threshold strategies.
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Fig. 3. The rate of cost in conditional pure-threshold strategies.

RSU’s waiting time is less thanD − b, it is impossible
for any vehicle to violate the delay bound requirement (i.e.,
Tn + Sn > D), and thus, the S-RSU does not stop; when
the S-RSU’s waiting time is more thanD − b, it is possible
that a vehicle would violate the delay bound requirement, and
thus, the S-RSU transmits to the next coming vehicle that
satisfies the delay bound requirement. So the heuristic strategy
is actually a conditional pure-threshold strategy with threshold
being (D − b). The simulated rate of cost in the heuristic
strategy for differentβ values is shown in Fig. 3. It is clear
that the heuristic strategy is not optimal in general.

We continue to show how different arrival rates of vehicles
at the S-RSU affect the optimal threshold and the rate of cost
in the derived stopping strategy. We vary the arrival rateµ of
vehicles from0.0015 to 0.03 vehicles/second. Forβ = 500
and differentµ, the analytically calculated and simulated (by
exhaustive search) optimal thresholds are shown in Fig. 4,
and analytical calculated and simulated minimal rates of cost
are shown in Fig. 5. It can be seen that, whenµ increases,
the optimal threshold increases, and the minimal rate of cost
decreases. This is because, when it is expected that vehicles
arrive more frequently, the S-RSU can hold the traffic in its
buffer for a longer time, and thus, each transmission can
deliver more traffic, which leads to a smaller rate of cost.
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Next we show how the value of the soft delay bound
D affects the optimal threshold and the rate of cost in the
derived stopping strategy. Forβ = 500 and µ = 1/400
vehicles/second, we varyD from 1,000 seconds to 40,000 sec-
onds. The analytically calculated and simulated (by exhaustive
search) optimal thresholds are shown in Fig. 6, and analytical
calculated and simulated minimal rates of cost are shown in
Fig. 7. It can be seen that, with a larger delay boundD, the
S-RSU can wait more time before stop, and thus, the optimal
threshold increases, and the minimal rate of cost decreases(as
the S-RSU has information exchanges with fewer vehicles in
a long term, thus decreasing energy consumption).

VI. CONCLUSION

This work studies vehicle-aided communications from a
remote RSU to a central RSU. Costs are assigned to en-
ergy consumption as well as possible violation of a soft
delay bound. We theoretically prove that an optimal stopping
strategy has a conditional pure-threshold structure, and the
threshold can be calculated offline quickly by our provided
method. Upon arrival of a passing-by vehicle, if the vehiclecan
meet the delay bound requirement, the S-RSU only needs to
compare the arrival moment of the vehicle with the threshold
to make its decision. Thus, the derived stopping strategy can
be implemented in a VANET easily with very low complexity.
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Fig. 6. The optimal threshold value for differentD.
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Fig. 7. The minimal rate of cost for differentD.

APPENDIX

A. Reason to have a fixed charge for one or multiple infor-
mation units with delay bound violation

As an example, we use the typical application of the S-RSU:
serve as gateway for a wireless sensor network. So the data
traffic at the S-RSU actually carries information of a number
of “events” in the wireless sensor network, and each event is
corresponding to a number of information units in the data
traffic at the S-RSU.

We expect that only a very small portion of the data traffic
will have delay bound violation (i.e., cannot be delivered
before the delay bound). This is because, if a large portion
of data traffic has delay bound violation, this means that the
system is not effective to deliver the buffered data traffic at
the S-RSU, and thus, a new system is needed (for example, by
using cellular communications or satellite communications).

Therefore, when the S-RSU stops at a vehicle, it is very
likely that the information units that have delay bound viola-
tion belong to the same event. For the same event, a single
information unit with delay bound violation and multiple
information units with delay bound violation have the same
effect on processing of the event: both will make processing
of the event at the receiver side delayed. Thus, when there

9



is delay bound violation, we do not make the penalty charge
proportional to the number of information units with delay
bound violation. Rather, we use a fixed penalty charge for
one or multiple information units with delay bound violation.

In addition, if the data traffic of the wireless sensor network
is encrypted, an encryption segment consists of a number
of information units. At the receiver side, decryption of an
encryption segment can be done only after all information
units in the segment are received. Then for an encryption
segment, a single information unit with delay bound violation
and multiple information units with delay bound violation both
will make the decryption process at the receiver side delayed.
Thus, it is reasonable to charge a fixed penalty when one or
multiple information units have delay bound violation.

B. Proof of Theorem 1

Considering Problem (5) withλ∗, from i) we know that
N †(λ∗) is optimal stopping strategy. In other words, for
any stopping strategyN ∈ C, we haveE

[

ZN(λ∗)
]

=

E [YN − λ∗TN ] ≥ E

[

ZN†(λ∗)(λ
∗)
]

= 0, in which the
last equality comes from ii). Based on this, we have
E [YN ]/E [TN ] ≥ λ∗.

Further, from (4), we have E

[

ZN†(λ∗)(λ
∗)
]

=

E

[

YN†(λ∗) − λ∗TN†(λ∗)

]

. As E

[

ZN†(λ∗)(λ
∗)
]

= 0 which is

from ii), we haveE
[

YN†(λ∗)

]

/E
[

TN†(λ∗)

]

= λ∗. Together

with E [YN ]/E [TN ] ≥ λ∗, we can see that among all stopping
strategies inC, N †(λ∗) minimizesE [YN ]/E [TN ], and thus,
is an optimal stopping strategy of Problem (3), with the
optimal value of the objective function of Problem (3) being
λ∗.

C. Proof of Theorem 2

Since the expression ofm(t, λ) includes the following two
terms:Pr{nr + 1 = Cr|Tnr

= t} and E
[

Xnr+1|Tnr
= t
]

(t ∈ [0, D − a]), we need to calculate the two terms. We
consider the following two cases.

• When0 ≤ t < (D − b): We have

Pr{nr + 1 = Cr|Tnr
= t}

(vi)
=Pr{nr + 1 = Cr|Tnr+1 ≥ D − b, Tnr

= t}

× Pr{Tnr+1 ≥ D − b|Tnr
= t}

(vii)
= h(D − b)e−µ(D−b−t)

=

(

b

a

)
µab
b−a

e−µbe−µ(D−b−t)

=e−µ(D−t)

(

b

a

)
µab
b−a

, (18)

in which equality (vi) uses Total Probability Theorem and
the factPr{nr + 1 = Cr|Tnr+1 < D − b, Tnr

= t} = 0,
and equality (vii) usesPr{nr + 1 = Cr|Tnr+1 ≥ D −
b, Tnr

= t} = Pr{nr + 1 = Cr|Tnr+1 ≥ D − b} and
Pr{Tnr+1 ≥ D − b|Tnr

= t} = e−µ(D−b−t) (recalling
that vehicle inter-arrival durations are exponentially dis-

tributed with parameterµ). Hereh(τ)
△
= Pr{nr + 1 =

Cr|Tnr+1 ≥ τ}, D − b ≤ τ ≤ D − a, is derived in
Appendix D.

E
[

Xnr+1|Tnr
= t
]

(viii)
= E

[

Xnr+1|Tnr+1 < D − b, Tnr
= t
]

× Pr{Tnr+1 < D − b|Tnr
= t}

+ E
[

Xnr+1|Tnr+1 ≥ D − b, Tnr
= t
]

× Pr{Tnr+1 ≥ D − b|Tnr
= t}

(ix)
=

∫ D−b−t

0

µxe−µx dx+
(

g(D − b)− t
)

e−µ(D−b−t)

=
1

µ
−

(

D − b+
1

µ
− g(D − b)

)

e−µ(D−b−t), (19)

in which equality (viii) uses Total Probability Theorem,
equality (ix) uses the fact that the vehicle inter-arrival
durations are exponentially distributed with parameterµ,

andg(τ)
△
= E

[

Tnr+1|Tnr+1 ≥ τ
]

, D− b ≤ τ ≤ D− a,
is derived in Appendix D.

• When (D − b) ≤ t ≤ (D − a): We have

Pr{nr + 1 = Cr |Tnr
= t}

= h(t) =

(

D − t

a

)
µab
b−a

e−
µb(D−a−t)

b−a

andE
[

Xnr+1|Tnr
= t
]

= g(t)− t.
Thenm(t, λ) can be expressed as

m(t, λ)

=



















βe−µ(D−t)
(

b
a

)
µab
b−a

− λ
(

1
µ
−
(

D − b+ 1
µ
− g(D − b)

)

× e−µ(D−b−t)
)

, if 0 ≤ t < D − b;

βh(t)− λ
(

g(t)− t
)

, if D − b ≤ t ≤ D − a.
(20)

It can be verified from (20) thatm(t, λ) is continuous for
t ∈ [0, D − a].

Supposeλ > 0 and there is at∗ ∈ [0, D − a) satisfying
m(t∗, λ) ≥ 0.

If t∗ ∈ [0, D − b), from (20), we have

m(t∗, λ) =βe−µ(D−t∗)

(

b

a

)
µab
b−a

− λ
( 1

µ
−
(

D − b

+
1

µ
− g(D − b)

)

e−µ(D−b−t∗)
)

≥ 0.

Then, we have

∂m(t,λ)
∂t

∣

∣

∣

∣

t=t∗
= µm(t∗, λ) + λ > 0. (21)

If t∗ ∈ [D − b,D − a), from (20), we havem(t∗, λ) =
βh(t∗)− λ

(

g(t∗)− t∗
)

≥ 0. Then, we have

∂m(t,λ)
∂t

∣

∣

∣

∣

t=t∗
=

(

β
dh(t)

dt
− λ

dg(t)

dt
+ λ

) ∣

∣

∣

∣

t=t∗

(x)
= βµFS(D − t∗)h(t∗)− λµFS(D − t∗)

×
(

g(t∗)− t∗
)

+ λ

= µFS(D − t∗)
(

βh(t∗)−λ
(

g(t∗)− t∗
)

)

+ λ

= µFS(D − t∗)m(t∗, λ) + λ > 0, (22)
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where equality (x) uses the following two equations:

dh(t)

dt
= µFS(D − t)h(t),

dg(t)

dt
= µFS(D − t)

(

g(t)− t
)

,

which are from Appendix D.
Thus, if for somet∗ ∈ [0, D − a), we havem(t∗, λ) ≥ 0,

then from (21) and (22) we have

∂m(t, λ)

∂t
> 0 for t ∈ [t∗, D − a),

which meansm(t, λ) is strictly increasing int ∈ [t∗, D − a].

D. Derivation ofh(τ) and g(τ)

We consider the following stopping strategy:

N(τ) = min
{

min {n : Tn ≥ τ, Tn + Sn ≤ D} , C
}

for D − b ≤ τ ≤ D − a.
According to the definitions ofh(τ) andg(τ) in Appendix

C, we have

h(τ) = Pr{N(τ) = C}, g(τ) = E

[

TN(τ)

]

with the following boundary conditions:

h(D − a) = 1, g(D − a) = D − a+
1

µ
.

We first deriveh(τ). For D − b < τ ≤ D − a, consider
a sufficiently small∆τ such thatτ − ∆τ ≥ D − b. Recall
that vehicles arrive at the S-RSU following a Poisson process
with parameterµ. Thus, within duration(τ − ∆τ, τ), the
probabilities of no vehicle arrival, one vehicle arrival, and
two or more vehicle arrivals are expressed as(1 − µ∆τ),
µ∆τ , ando(∆τ) (higher order of∆τ ), respectively. Consider
stopping strategyN(τ − ∆τ). If no vehicle arrives within
duration(τ −∆τ, τ), then the S-RSU should continue to wait
for the next vehicle that comes after momentτ . If one vehicle,
say thenth vehicle, arrives within duration(τ −∆τ, τ), and
Tn + Sn ≤ D, then the S-RSU stops and there is no need to
wait afterτ . If one vehicle, say thenth vehicle, arrives within
duration(τ −∆τ, τ), andTn+Sn > D, then the RSU should
skip this vehicle and continue to wait for the next vehicle that
comes after momentτ . As a summary, we have

h(τ −∆τ) =(1− µ∆τ)h(τ) + µ∆τ
(

1− FS(D − τ)
)

h(τ)

+o(∆τ),

which leads to

h(τ) − h(τ −∆τ)

∆τ
= µFS(D − τ)h(τ) −

o(∆τ)

∆τ
.

Letting ∆t approach zero, we have

dh(τ)

dτ
= µFS(D − τ)h(τ). (23)

Using the initial conditionh(D − a) = 1, we obtain

h(τ)=eµ
∫

τ

D−a
FS(D−x) dx=

(

D − τ

a

)
µab
b−a

e−
µb(D−τ−a)

b−a (24)

for D − b ≤ τ ≤ D − a.

Since we have

dh(τ)

dτ
= µFS(D − τ)h(τ) > 0 for τ ∈ [D − b,D − a)

and

dh(τ)

dτ
|τ=D−a = µFS(a)h(D − a) = 0 (asFS(a) = 0),

it can be concluded thath(τ) is strictly increasing in[D −
b,D − a].

Similar to the derivation ofh(τ), for g(τ) we have

g(τ −∆τ) = (1− µ∆τ)g(τ) + µ∆τFS(D − τ)τ

+ µ∆τ(1 − FS(D − τ))g(τ) + o(∆τ),

which leads to

g(τ)− g(τ −∆τ)

∆τ
= µFS(D − τ)

(

g(τ)− τ
)

−
o(∆τ)

∆τ
.

Letting ∆τ approach zero, we have

dg(τ)

dτ
= µFS(D − τ)

(

g(τ) − τ
)

. (25)

Using the initial conditiong(D−a) = D−a+1/µ, we obtain

g(τ) = D − h(τ)
[

a−
1

µ
+

µb

b− a

(

a

e

)
µab
b−a

×

∫ D−τ

a

(z − a)z−
µab
b−a e

µbz
b−a dz

]

(26)

for D − b ≤ τ ≤ D − a, whereh(τ) is given in (24).

E. Proof of Theorem 3

Since the S-RSU is forced to stop whennr = Cr, for
presentation simplicity we can setTnr

= TCr
for nr > Cr.

Then the objective function of Problem (6) can be written as
Znr

(λ) = ωPκ+ β1{nr=Cr} − λTnr
. We have

E
[

inf nr
(Znr

(λ))
]

≥ ωPκ+ E
[

inf nr
(−λTnr

)
]

= ωPκ− E [sup nr
λTnr

]

≥ ωPκ− λE [TCr
]

= ωPκ− λ

(

D − a+
1

µ

)

> −∞.

(27)

According to Wald’s Equation,E [TCr
] = E [C]/µ. Thus,

E [Cr] ≤ E [C] < ∞ (sinceE [TCr
] < ∞), which leads to

1{Cr<∞} = 1 a.s.. Again, since the RSU is required to stop
whennr = Cr, the stopping strategies that we consider have
the propertyNr(λ) ≤ Cr and thus

E
[

Nr(λ)
]

< ∞ a.s.. (28)

According to Theorem 3.1 in [26], when the two inequalities
(27) and (28) hold, there exists an optimal stopping strategy
N †

r (λ) for Problem (6), and the optimal (minimal) objective

function of the problem is denoted asV ∗(λ) = E

[

Z
N

†
r (λ)

]

.

To prove the optimality of the myopic stopping strategy
Nm

r (λ) in (7) for Problem (6), it suffices if we can show that
the optimal objective function of Problem (6) is not less than
the objective function of the myopic stopping strategyNm

r (λ),
as follows.
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For Problem (6), if the S-RSU is forced to stop when the
vehicle indexnr is more thanJ , then we call this problem
bounded atJ . Recall that Problem (6) is monotone problem.
Thus, Problem (6) bounded atJ is a finite horizon monotone
problem, and thus, according to Theorem 5.1 in [26], the corre-
sponding myopic strategy for Problem (6) bounded atJ , given
as N

m,(J)
r (λ) = min

{

min
{

nr : m(Tnr
, λ) ≥ 0

}

, Cr, J
}

,
is optimal, with the achieved objective function denoted as
V (J)(λ) = E

[

Z
N

m,(J)
r (λ)

(λ)
]

.

Based onN †
r (λ), we define a new stopping strategy as

N
[J]
r (λ) = min{N †

r (λ), J}, for J ≥ 1, and denote the
corresponding objective function asV [J](λ). Then we have
V [∞](λ) = V ∗(λ). Since stopping strategyNm,(J)

r (λ) is
optimal for Problem (6) bounded atJ , and N

[J]
r (λ) is a

stopping strategy for Problem (6) bounded atJ , we have
V [J](λ) ≥ V (J)(λ). Then

0 ≤V (J)(λ)− V ∗(λ) ≤ E

[

Z
N

[J]
r (λ)

(λ)
]

− E

[

Z
N

†
r (λ)

(λ)
]

=E

[

1{

N
†
r (λ)>J

}

(

Z
N

[J]
r (λ)

(λ) − Z
N

†
r (λ)

(λ)
)

]

=E

[

1{

N
†
r (λ)>J

}

(

Z
N

[J]
r (λ)=J

(λ) − Z
N

†
r (λ)

(λ)
)

]

=E

[

1{

N
†
r (λ)>J

}

(

β
(

1{TJ+SJ>D}−1{

T
N

†
r (λ)

+S
N

†
r (λ)

>D

}

)

+ λ(T
N

†
r (λ)

− TJ)

)]

≤E

[

1{

N
†
r (λ)>J

}

(

2β + λT
N

†
r (λ)

)

]

≤E

[

1{

N
†
r (λ)>J

} (2β + λTCr
)

]

. (29)

Since Pr{N †
r (λ) > J} → 0 as J → ∞, then we have

E

[

1{

N
†
r (λ)>J

} (2β + λTCr
)

]

→ 0 as J → ∞. Then from

(29) we have

V ∗(λ) = lim
J→∞

V (J)(λ) = lim
J→∞

E

[

Z
N

m,(J)
r (λ)

(λ)
]

= lim inf
J→∞

E

[

Z
N

m,(J)
r (λ)

(λ)
]

(xi)
≥ E

[

lim inf
J→∞

Z
N

m,(J)
r (λ)

(λ)

]

(xii)
= E

[

ZNm
r (λ)(λ)

]

, (30)

in which inequality (xi) follows from (27) by applying
Fatou’s lemma [27], and equality (xii) follows from the
fact that Nm,(J)

r (λ) is an increasing sequence of stopping
strategies converging toNm

r (λ). Because of (28),Nm
r (λ)

is a fixed integer from someJ on a.s.. Thus, we have
lim infJ→∞ Z

N
m,(J)
r (λ)

(λ) = ZNm
r (λ)(λ) a.s..

Inequality (30) means that the achieved objective function
in the optimal stopping strategy for Problem (6) is not less
than the achieved objective function of the myopic stopping
strategyNm

r (λ). So the myopic stopping strategy is optimal
for Problem (6).

F. Proof of Theorem 4

Consider positiveλ2 andλ1 satisfyingλ2 > λ1. We have

V (λ1) = E

[

YN†(λ1)

]

− λ1E

[

TN†(λ1)

]

> E

[

YN†(λ1)

]

− λ2E

[

TN†(λ1)

]

, (31)

in which the inequality is becauseλ1 < λ2.

For Problem (5) with parameterλ2, its optimal strategy is
denoted asN †(λ2). In other words,N †(λ2) minimizes the
objective function of Problem (5) with parameterλ2. Thus,
we have

V (λ2) = E

[

YN†(λ2)

]

− λ2E

[

TN†(λ2)

]

< E

[

YN†(λ1)

]

− λ2E

[

TN†(λ1)

]

. (32)

Combining (31) and (32), we haveV (λ1) > V (λ2). Thus,
V (λ) is strictly decreasing inλ > 0.

Next we prove thatV (λ) is uniformly continuous, i.e., for
any ǫ > 0, there exists aδ such that for anyλ1 and λ2

satisfying |λ2 − λ1| < δ, we have|V (λ2) − V (λ1)| < ǫ.
We set δ = ǫ/E [TC ]. Then for anyλ1 and λ2 satisfying
0 < λ1 < λ2 < λ1 + δ, we have

|V (λ2)− V (λ1)|
= V (λ1)− V (λ2)
< V (λ1)− V (λ1 + δ)

= V (λ1)−

(

E

[

YN†(λ1+δ)

]

− (λ1 + δ)E
[

TN†(λ1+δ)

]

)

= V (λ1)−

(

E

[

YN†(λ1+δ)

]

− λ1E

[

TN†(λ1+δ)

]

)

+ δE
[

TN†(λ1+δ)

]

(xiii)
≤ δE

[

TN†(λ1+δ)

] (xiv)
≤ δE [TC ] = ǫ,

in which inequality (xiii) is becauseV (λ1) is the minimal
objective function of Problem (5) with parameterλ1, and
inequality (xiv) is becauseN †(λ1 + δ) ≤ C.

Since a uniformly continuous function is also continuous
[28], it can be concluded thatV (λ) is continuous inλ > 0.

G. Proof of Theorem 5

When0 ≤ t < (D − b), similar to (18), we have

Pr{N(t) = C} = e−µ(D−b−t)h(D − b) (33)

= e−µ(D−t)

(

b

a

)
µab
b−a

, (34)

in which h(τ) is derived in Appendix D. Similar to (19), we
have

E

[

TN(t)

]

=
1

µ
+ t−

(

D − b+
1

µ
− g(D − b)

)

e−µ(D−b−t).

(35)
SoPr{N(t) = C} andE

[

TN(t)

]

are both continuous int ∈

[0, D − b), and thus, from (12),k(t) is continuous int ∈
[0, D − b).
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When (D − b) ≤ t ≤ (D − a), we have

Pr{N(t) = C} = h(t) =

(

D − t

a

)
µab
b−a

e−
µb(D−a−t)

b−a , (36)

E

[

TN(t)

]

= g(t), (37)

where h(τ) and g(τ) are derived in Appendix D. So

Pr{N(t) = C} and E

[

TN(t)

]

are both continuous int ∈

[D−b,D−a], and thus,k(t) is continuous int ∈ [D−b,D−a].
Moreover, aroundt = D − b we have

lim
t<D−b, t→(D−b)

Pr{N(t) = C}
(xv)
= h(D − b)

(xvi)
= Pr{N(D − b) = C},

in which equalities (xv) and (xvi) are from (33) and (36),
respectively, and

lim
t<D−b, t→(D−b)

E

[

TN(t)

]

= g(D − b) = E

[

TN(D−b)

]

,

in which the two equalities are from (35) and (37), respec-
tively. SoPr{N(t) = C} andE

[

TN(t)

]

are both continuous

at t = D − b, and thus,k(t) is continuous att = D − b.
Overall,k(t) is continuous int ∈ [0, D − a].

H. Proof of Theorem 6

When0 ≤ t < (D − b), from (34) we have

dPr{N(t) = C}

dt
= µe−µ(D−t)

(

b

a

)
µab
b−a

. (38)

From (35), we have

dE
[

TN(t)

]

dt
= 1 + µe−µ(D−b−t)

(

g(D − b)−D + b−
1

µ

)

.

(39)

Then from (13), (34), (35), (38), and (39), we have expression
of l(t) in (40) on top of next page.

From (40) we know thatl(t) is continuous in[0, D − b).
Taking the first-order derivative ofl(t), we have

dl(t)

dt
=µβe−µ(D−t)

(

b

a

)
µab
b−a

+ µ2βte−µ(D−t)

(

b

a

)
µab
b−a

− ωPκµ2e−µ(D−b−t)

(

g(D − b)−D + b−
1

µ

)

=µ

{

µβte−µ(D−t)

(

b

a

)
µab
b−a

− ωPκµe−µ(D−b−t)

×

(

g(D − b)−D + b−
1

µ

)

− ωPκ

}

+ µωPκ+ µβe−µ(D−t)

(

b

a

)
µab
b−a

=µl(t) + µωPκ+ µβe−µ(D−t)

(

b

a

)
µab
b−a

> µl(t).

Thus, if there is at‡ ∈ [0, D − b) satisfying l(t‡) ≥ 0, then

we have
dl(t)

dt
> 0 for t ∈ [t‡, D − b), and subsequently we

havel(t) > 0 for t ∈ (t‡, D − b).

When (D − b) ≤ t ≤ (D − a), from (36), (37), (23), and
(25), we have

dPr{N(t) = C}

dt
=

dh(t)

dt
= µFS(D − t)h(t),

dE
[

TN(t)

]

dt
=

dg(t)

dt
= µFS(D − t)

(

g(t)− t
)

.

Then from (13), we have

l(t) =µβFS(D − t)h(t)g(t)

− µFS(D − t)
(

g(t)− t
) (

ωPκ+ βh(t)
)

=µFS(D − t)
(

t
(

ωPκ+ βh(t)
)

− g(t)ωPκ
)

=ωPκµFS(D − t)

(

t− g(t) +
βh(t)t

ωPκ

)

=ωPκµFS(D − t)p(t), (41)

wherep(t)
△
= t− g(t) + β

ωPκ
h(t)t. From (41), it can be seen

that l(t) is continuous int ∈ [D − b,D − a].

When t ∈ [D − b,D − a], according to (25), we have

t− g(t) =
−

dg(t)

dt
µFS(D − t)

.

Then, we have

p(t) =
−

dg(t)

dt
µFS(D − t)

+
β

ωPκ
h(t)t

=

dh(t)

dt

(

a− 1
µ
+ µb

b−a

(

a
e

)
µab
b−a

∫D−t

a
(z − a)z−

µab
b−a e

µbz
b−a dz

)

µFS(D − t)

−

h(t)
(

µb
b−a

(

a
e

)
µab
b−a (D − t− a)(D − t)−

µab
b−a e

µb(D−t)
b−a

)

µFS(D − t)

+
β

ωPκ
h(t)t

= h(t)q(t), (42)

where the second equality is from (26), the last equality is
from (23) and (1), andq(t) is defined as

q(t) =a−
1

µ
+

µb

b− a

(

a

e

)
µab
b−a
∫ D−t

a

(z − a)z−
µab
b−a e

µbz
b−a dz

−

(

a

e

)
µab
b−a

(D − t)1−
µab
b−a e

µb(D−t)
b−a +

βt

ωPκ
.

Taking the first-order derivative ofq(t), we have

dq(t)

dt
=−

µb

b− a

(

a

e

)
µab
b−a

(D− t− a)(D − t)−
µab
b−a e

µb(D−t)
b−a

+

(

1−
µab

b− a

)(

a

e

)
µab
b−a

(D − t)−
µab
b−a e

µb(D−t)
b−a

+
µb

b− a

(

a

e

)
µab
b−a

(D − t)1−
µab
b−a e

µb(D−t)
b−a +

β

ωPκ

=

(

a

e

)
µab
b−a

(D − t)−
µab
b−a e

µb(D−t)
b−a +

β

ωPκ
> 0.
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l(t) =µβe−µ(D−t)

(

b

a

)
µab
b−a

(

1

µ
+ t−

(

D − b+
1

µ
− g(D − b)

)

e−µ(D−b−t)

)

−

{

1 + µe−µ(D−b−t)

(

g(D − b)−D + b−
1

µ

)

}



ωPκ+ βe−µ(D−t)

(

b

a

)
µab
b−a





=µβte−µ(D−t)

(

b

a

)
µab
b−a

− ωPκ

(

1 + µe−µ(D−b−t)

(

g(D − b)−D + b −
1

µ

)

)

. (40)

As shown in Appendix D,h(t) > 0 and
dh(t)

dt
> 0 in t ∈

[D− b,D− a). So if there is at‡ ∈ [D− b,D− a) such that
l(t‡) ≥ 0, then from (41) we havep(t‡) ≥ 0, and further from

(42) we haveq(t‡) ≥ 0. Together with the fact that
dq(t)

dt
>

0, h(t) > 0,
dh(t)

dt
> 0 for t ∈ [D − b,D − a), we have that

p(t) = h(t)q(t) is strictly increasing and always positive for
t ∈ (t‡, D− a). SinceFS(D− t) > 0 for t ∈ [D− b,D− a),
from (41) it can be concluded thatl(t) > 0 for t ∈ (t‡, D−a).

Since l(t) is continuous in the intervals of[0, D − b) and
[D − b,D − a], and

lim
t<D−b, t→(D−b)

l(t)

= µβ(D − b)e−µb

(

b

a

)
µab
b−a

+ ωPκµ
(

D − b− g(D − b)
)

= ωPκµ

(

D − b− g(D − b) +
βh(D − b)(D − b)

ωPκ

)

= lim
t>D−b, t→(D−b)

l(t)

(in which the first equality is from (40), the second equalityis
from (24), and the last equality is from (41) andFS(b) = 1),
it can be concluded thatl(t) is continuous in[0, D − a].

From (40), we have

l(0)=−ωPκ

(

1 + µe−µ(D−b)

(

g(D − b)−D + b−
1

µ

)

)

.

According to the definition ofg(t) in Appendix C, g(D −
b) = E

[

Tnr+1|Tnr+1 ≥ D − b
]

≥ D− b+1/µ, which means
l(0) < 0. From (41), it can be seen thatl(D − a) = 0 due to
the fact thatFS(a) = 0.
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