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Abstract—In this paper, the problem of dynamic pricing over
multiple rounds of spectrum leasing is investigated. One primary
network is considered, which is the spectrum seller and would like
to lease its unused channels to secondary users. To accommodate
different arrival instants of secondary users’ spectrum requests,
spectrum leasing is performed in multiple rounds (stages),and
in each stage, a separate spectrum price is set. First we consider
the case that, for each specific price value, the spectrum demand
(the number of channels requested by secondary users) is a
random variable. An optimization problem is formulated to
set up the spectrum prices in the multiple stages, with the
purpose of maximizing the total revenue of the primary network.
The solving method of the formulated optimization problem
is presented. Additionally, some interesting properties of the
optimal solution are also presented, such as monotonicity and
convexity of the maximal total revenue with respect to stage
index, and lower/upper bounds of the maximal total revenue.
Further, we consider the case that, for a specific price value, the
spectrum demand is non-random, and can be solely determined
by the price. An incremental algorithm is given to find out
the optimal price values at the stages. We also demonstrate
the monotonicity of the optimal price value with respect to the
stage index. Numerical results are provided to verify the research
findings and compare with existing work.

Index Terms—Cognitive radio, spectrum leasing, dynamic
pricing.

I. I NTRODUCTION

We are currently experiencing spectrum shortage since
almost all wireless spectrum has been allocated to existing
wireless applications for the exclusive use of the licensed
users. On the other hand, it has been shown by measurements
of the wireless spectrum usage [1], [2] that licensed spectrum
is actually not fully utilized by licensed users (referred to
as primary users) for a large portion of time. Accordingly,
cognitive radio has the potential to solve the above two prob-
lems, by allowing idle spectrum to be accessed by unlicensed
users (referred to assecondary users) [3]. Secondary users
pay the primary network a certain amount of payment for
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spectrum usage, referred to asspectrum leasing. In specific,
for a primary network, if its primary users do not use the
spectrum for a while, the primary network will announce its
spectrum price, and secondary users can decide whether or not
to lease the spectrum.

In spectrum leasing, the spectrum price is the most impor-
tant design parameter [4], which directly affects the primary
network’s revenue as well as the willingness of secondary
users to lease the spectrum. Spectrum leasing has been inves-
tigated in the literature, with two major settings: monopoly
spectrum leasing and oligopoly spectrum leasing.

In monopoly spectrum leasing, there is one single primary
network (or broker), targeting at revenue maximization of the
primary network (or broker) [5]–[7]. A broker is considered
in [5], which first decides on the spectrum amount that will
be purchased from primary networks, and then sets spectrum
leasing price for secondary users to purchase. The research
problem, i.e., to maximize the revenue of the broker, is
formulated as a Stackelberg game. Authors of [6] take a
similar model, but consider that secondary users’ spectrum
demand is random. In [7], a primary licence holder sets the
spectrum price to achieve the optimal balance between the
earned revenue and the cost due to extra interference (received
from secondary transmissions) and reduced coverage area (by
letting secondary users access the spectrum).

In oligopoly spectrum leasing, there are multiple primary
networks (or brokers) that lease spectrum to secondary users.
So the spectrum price is also affected by the competition
among primary networks (or brokers), and one major research
focus in the literature is to achieve equilibrium among primary
networks (or brokers) [8]–[12]. The work in [8] considers two
brokers, and uses a three-stage game. In Stage one, the two
brokers purchase spectrum from primary networks; In Stage
two, the two brokers set and announce their spectrum prices;
In Stage three, secondary users decide on their spectrum
demand from one broker. The work in [9] also considers two
brokers. Each broker has a common spectrum band to be
shared by secondary users. So multiple secondary users that
lease spectrum from the same broker will generate interference
to each other. Potential interference is considered in secondary
users’ strategies. In [10], there are multiple primary networks
and multiple secondary users. When secondary users make
purchase, they are unaware of the spectrum price or spectrum
bandwidth that will be allocated. The purchasing process of
secondary users is formulated as an evolutionary game. In [11],
there are multiple primary networks, one broker and multiple
secondary users. The utility function of a primary network
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reflects both the revenue earned and quality-of-service loss due
to leasing some spectrum to secondary users. In [12], multiple
primary networks compete with each other by price setting,
while each secondary user may have a unique criterion on
whether or not to lease the spectrum. In all these works, Nash
equilibrium among primary networks (or brokers) is achieved.

All the research efforts mentioned above focus on the static
decision making (i.e., the price of a primary network or broker
is fixed, and secondary users have spectrum requests at the
same time). However, for spectrum leasing in a long term,
secondary users may have spectrum demand at different time
moments, and thus, the stock of available spectrum should vary
with time. In [13], a pricing strategy for dynamic cognitive
networks in monopoly spectrum leasing is investigated. The
primary network decides on spectrum price dynamically to
maximize the average revenue over an infinite time duration.

In this paper, we investigate dynamic pricing for monopoly
spectrum leasing with one primary network that leases spec-
trum to secondary users. We consider spectrum leasing for
a finite time duration, in which a number of channels can
be leased to secondary users. The time duration for spectrum
leasing is equally divided into multiple stages, and in each
stage a spectrum price is set. The spectrum demand in each
stage depends on the spectrum price. Our target is to set
spectrum prices in the stages dynamically such that the total
revenue of the primary network over all stages is maximized.
The contributions of this paper are:

• When the spectrum demand is random for a given spec-
trum price, we formulate a revenue maximization prob-
lem, and give the method to solve it. We also demonstrate
interesting properties of the optimal solution including
monotonicity and convexity of the maximal total revenue
with respect to stage index as well as lower/upper bounds
of the maximal total revenue.

• When the spectrum demand is non-random for a given
spectrum price, we provide an incremental algorithm
to find the optimal price in each stage, and we also
demonstrate the monotonicity of the optimal price with
respect to the stage index.

The rest of this paper is organized as follows. Section II
gives the system model. Section III formulates the revenue
maximization problem, gives the method to solve the problem,
and demonstrates properties of the optimal solution. Section IV
discusses the case when the spectrum demand is non-random.
Section V presents numerical results, and after that, we have
conclusions in Section VI.

II. SYSTEM MODEL

Consider one primary network with a number of channels.
In the primary network, the primary users do not use all the
channels at all time, and thus, the primary network can lease
unused channels to secondary users. The primary network may
allow secondary users to opportunistically or exclusivelyuse
the leased channels.

• Opportunistic channel access of secondary users: the pri-
mary users have priority to use the channels. Secondary
users can access the channels only when primary users

do not use them. So secondary users need to sense the
channels first, and access the channels if the channels are
sensed free.

• Exclusive channel access of secondary users: Primary
users do not use the channels that are leased to secondary
users. So if a secondary user leases a channel, it can
exclusively use the channel during the leasing period.

Compared to exclusive channel access, the opportunistic
channel access has the following drawbacks: there may be
possible interference between primary users and secondary
users (due to imperfect spectrum sensing); sensing equipment
is required at secondary users; there is no guarantee for
quality-of-service of secondary users; and the primary network
needs to have realtime monitoring of the channel usage of
secondary users. Therefore, in this paper, the primary network
allows exclusive channel access of secondary users over the
leased channels. A similar setting is also adopted in [10], [11].

Accordingly, the primary network can partition its channels
into two sets: theprimary setof channels that can be used
by primary users only, and thesecondary setof channels to
be leased to secondary users. To maximize its own revenue,
the primary network should use as few channels as possible
in the primary set, conditioned on that primary users can be
served with quality-of-service. To achieve this, the primary
network should use dynamic channel assignment for primary
users (i.e., the primary network assigns channels to a primary
user when the primary user has packets to transmit, and takes
back the channels when the transmission is complete). The
primary network should also estimate the number of channels
in the primary set that are sufficient to serve primary users with
quality-of-service guarantee. Although the estimation method
is out of scope of this paper, some factors that should be
considered in the estimation are listed below:

• Population of primary users and call arrival rate of
primary users: Higher population and higher call arrival
rate result in a larger size of the primary set;

• Durations and data rates of primary users’ calls: Longer
call duration and higher data rates lead to a larger size
of the primary set;

• Channel quality of primary users: Better channel quality
means that higher transmission rates can be achieved, and
thus, a smaller primary set is needed.

Once the estimation of the primary set size is done, the
primary network can determine the size of the secondary
set. Note that since the primary user population, primary call
arrival rate, primary call duration, and primary data rate may
vary with time, a new estimation should be done after an
intervalT (defined as a duration that the above factors do not
have big changes). The intervalT is called a leasing period.
So for each leasing periodT , the size of the secondary set is
fixed, and the size may change in the next leasing period. This
paper targets at the pricing strategy of the primary networkfor
a leasing period with a given secondary set ofM channels.

As the secondary users may have spectrum access requests
at different time instants, it is reasonable for the primary
network to perform spectrum leasing once for a while. For
simplicity of presentation, the whole durationT is equally
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divided into N stages, indexed as StagesN,N − 1, ..., 2, 1,
respectively (in other words, the first stage is called Stage
N , and the last stage is called Stage 1). At the beginning of
each stage, the primary network first announces a spectrum
leasing price. Then the secondary users who can accept the
announced price make a contract with the primary network.
Once a channel is leased to a secondary user, the lease will
last until the end of the spectrum leasing periodT . This rule
is easier for the primary network to manage its spectrum
leasing. If a secondary user leases a channel and finishes all
its transmissions before the end of the spectrum leasing period
T , it can rent out the channel until the end of the spectrum
leasing periodT in a secondary market.

III. PROBLEM FORMULATION , SOLVING METHOD, AND

PROPERTIES

Denotepn,m as the price at Stagen when there arem
available channels (i.e.,m channels remain un-leased). Here
we assume that the price is taken from a finite set of discrete
values. For a given price valuex, the spectrum demand (i.e.,
the number of requested channels by secondary users) is a
random variable (with integer values), and we denoteg(y;x)
as the probability mass function of the demand valuey (i.e.,
some secondary users agree on the pricex and requesty chan-
nels)1. If the number of requested channels is more than the
number of available channels (m), the primary network only
accepts totallym channels’ requests. Therefore, for a given
price valuex, the probability mass function of the accepted
demand valuey when there arem available channels is given
by: fm(y;x) = g(y;x) if y < m; fm(y;x) =

∑∞

i=m g(i;x)
if y = m; fm(y;x) = 0 if y > m.

DenoteV (n,m) as the maximum attainable revenue of the
primary network from Stagen with m available channels to
the last stage (i.e., Stage 1). Then, we have

V (n,m) = max
pn,m

m
∑

m′=0

(

fm(m′; pn,m)

× [pn,m · n ·m′ + V (n− 1,m−m′)]
)

(1)

in which the termpn,m · n · m′ represents the revenue the
primary network can collect from Stagen until Stage 1 by
leasingm′ channels to secondary users at Stagen at price

1Here whether or not a secondary user agrees on a price is independent
of the channel quality of the secondary user. The following is how to also
consider channel quality of the secondary user. The secondary user’s channel
may experience path loss, shadowing, and fading. Since the spectrum leasing
period is normally much longer than the time scale of the shadowing and
fading, the average channel quality of the secondary user over a channel
during the spectrum leasing period can be approximated by only considering
path loss. For a secondary user, if its average channel quality is above a
threshold (or equivalently, its path loss attenuation is less than a threshold),
its channel quality is considered as acceptable; otherwise, the channel quality
is considered as unacceptable and the secondary user does not accept any
price. Based on this, from the location distribution of secondary users, we
can calculate the probability of having acceptable channelquality, denoted as
η. Therefore, ifg(y; x) is the probability thaty channels are requested by
secondary users with a given pricex without considering secondary channel
quality, then when secondary channel quality is considered, g(y; x) is the
probability thatηy channels are requested by secondary users with a given
price x. So, if secondary channel quality is also considered, we only need to
replaceg(y; x) with g′(y; x) in our paper, where the values ofg′(y; x) are
given as:g′(y; x) = g(y/η; x).

pn,m; V (0,m) = 0, ∀m ∈ M , {1, 2, ...,M}; andV (n, 0) =
0, ∀n ∈ N , {1, 2, ..., N}.

Using the formula in Eqn. (1),V (n,m) can be calculated
iteratively starting fromV (n, 0), ∀n ∈ N andV (0,m), ∀m ∈
M, by using dynamic programming, and the optimal price
pn,m for n ∈ N ,m ∈ M, denoted asp∗n,m, can be determined
accordingly.

Next we present some properties of the dynamic pricing
problem.

Property 1: The functionV (n,m) is an increasing function
with respect ton, ∀m ∈ M.

Proof: We use mathematical induction for proving. The
proof consists of two steps.

In the first step, we should proveV (1,m) − V (0,m) ≥
0, ∀m ∈ M. SinceV (1,m) ≥ 0 andV (0,m) = 0, apparently
we haveV (1,m)− V (0,m) ≥ 0.

In the second step, we should prove that ifV (n,m)−V (n−
1,m) ≥ 0, ∀m ∈ M, thenV (n+1,m)−V (n,m) ≥ 0, ∀m ∈
M. SupposeV (n,m) − V (n − 1,m) ≥ 0, ∀m ∈ M holds,
then based on (1), we have

V (n+ 1,m)− V (n,m)

=
m
∑

m′=0

fm(m′; p∗n+1,m)
[

p∗n+1,m · (n+ 1) ·m′

+ V (n,m−m′)
]

−
m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m · n ·m′

+ V (n− 1,m−m′)
]

≥
m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m · (n+ 1) ·m′

+ V (n,m−m′)
]

−
m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m · n ·m′

+ V (n− 1,m−m′)
]

=
m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m ·m′ + V (n,m−m′)

− V (n− 1,m−m′)
]

≥ 0.

(2)

In (2), the last inequality comes fromV (n, l)−V (n− 1, l) ≥
0, ∀l ∈ M, and the first inequality is due to the following fact:
Recall thatp∗n+1,m is the optimal price at Stagen+ 1 when
there arem available channels. So at Stagen + 1 with m
available channels, if we change the optimal pricep∗n+1,m to
any other price value, such asp∗n,m, then the revenue should
not increase. Thus, we have

m
∑

m′=0

fm(m′; p∗n+1,m)
[

p∗n+1,m · (n+ 1) ·m′

+ V (n,m−m′)
]

≥
m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m · (n+ 1) ·m′

+ V (n,m−m′)
]

.

This completes the proof.
Property 2: The functionV (n,m) is an increasing function

with respect tom, ∀n ∈ N .
Proof: We can use mathematical induction for proving,

which includes two steps.
In the first step, it is apparent thatV (0,m+1)−V (0,m) ≥

0, ∀m ∈ {0, 1, 2, ...,M − 1}.
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In the second step, we should prove that ifV (n,m+ 1)−
V (n,m) ≥ 0, ∀m ∈ {0, 1, 2, ...,M − 1}, then we haveV (n+
1,m+ 1)− V (n+ 1,m) ≥ 0, ∀m ∈ {0, 1, 2, ...,M − 1}. We
have

V (n+ 1,m+ 1)− V (n+ 1,m)

=
m+1
∑

m′=0

fm+1(m
′; p∗n+1,m+1)

[

p∗n+1,m+1 · (n+ 1) ·m′

+ V (n,m+ 1−m′)
]

−
m
∑

m′=0

fm(m′; p∗n+1,m)
[

p∗n+1,m · (n+ 1) ·m′

+ V (n,m−m′)
]

≥
m+1
∑

m′=0

fm+1(m
′; p∗n+1,m)

[

p∗n+1,m · (n+ 1) ·m′

+ V (n,m+ 1−m′)
]

−
m
∑

m′=0

fm(m′; p∗n+1,m)
[

p∗n+1,m · (n+ 1) ·m′

+ V (n,m−m′)
]

(a)
=

m
∑

m′=0

g(m′; p∗n+1,m)
[

p∗n+1,m · (n+ 1) ·m′

+ V (n,m+ 1−m′)
]

+
∞
∑

m′=m+1

g(m′; p∗n+1,m)
[

p∗n+1,m · (n+ 1)

× (m+ 1) + V (n, 0)
]

−
m
∑

m′=0

g(m′; p∗n+1,m)
[

p∗n+1,m · (n+ 1) ·m′

+ V (n,m−m′)
]

−
∞
∑

m′=m+1

g(m′; p∗n+1,m)
[

p∗n+1,m · (n+ 1) ·m
+ V (n, 0)

]

=
m
∑

m′=0

g(m′; p∗n+1,m)
[

V (n,m+ 1−m′)

− V (n,m−m′)
]

+
[

∞
∑

m′=m+1

g(m′; p∗n+1,m)
]

· p∗n+1,m · (n+ 1)

(b)

≥ 0
(3)

in which the first inequality comes from the fact thatp∗n+1,m+1

is the optimal price at Stagen+1 when there arem+1 avail-
able channels (similar to the reasoning for the first inequality
in (2)), (a) comes from expression offm(y;x) given at the
beginning of Section III, and(b) comes from the assumption
thatV (n, l+ 1)− V (n, l) ≥ 0, ∀l ∈ {0, 1, 2, ...,M − 1}. This
completes the proof.

Remark: From Property 1 and Property 2, it can be seen that
V (n,m) grows with the increase ofn andm. In other words,
when there is more time or channels left for spectrum leasing,
the maximum attainable revenue of the primary network is
larger.

Property 3: nV (1,m) ≤ V (n,m) ≤
(

n(n+ 1)/2
)

V (1,m), ∀m ∈ M, n ∈ N .

Proof: First, we prove the left-handside inequality in

Property 3. According to (1), we have

V (n,m)

=
m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m · n ·m′

+ V (n− 1,m−m′)
]

≥
m
∑

m′=0

fm(m′; p∗1,m)
[

p∗1,m · n ·m′

+ V (n− 1,m−m′)
]

≥
m
∑

m′=0

fm(m′; p∗1,m) · p∗1,m · n ·m′

= nV (1,m)

(4)

where the first inequality comes from the fact thatp∗n,m is
the optimal price at Stagen when there arem available
channels (similar to the reasoning for the first inequality in
(2)), and the last equality comes from the fact thatV (1,m) =
m
∑

m′=0

fm(m′; p∗1,m) · p∗1,m · 1 ·m′ based on (1) andV (0, l) = 0

for l ∈ {1, 2, ...,M}.
Next we prove the right-handside inequality in Property 3.

Still according to (1), we have

V (n,m)

=
m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m · n ·m′

+ V (n− 1,m−m′)
]

(c)

≤
m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m · n ·m′ + V (n− 1,m)
]

(d)
=

[

m
∑

m′=0

fm(m′; p∗n,m) · p∗n,m · n ·m′
]

+V (n−1,m)

(e)

≤ nV (1,m) + V (n− 1,m)
(5)

in which (c) follows from Property 2,(d) comes from the

fact
m
∑

m′=0

fm(m′; p∗n,m) = 1, and (e) is due toV (1,m) =

max
p1,m

m
∑

m′=0

fm(m′; p1,m) · p1,m · 1 ·m′. Accordingly,

V (n,m) = V (1,m) +
n
∑

n′=2

(

V (n′,m)− V (n′ − 1,m)
)

≤ V (1,m) +
n
∑

n′=2

n′V (1,m)

= n(n+1)
2 V (1,m)

(6)
where the inequality comes from (5).

This completes the proof.
Remark: Property 3 gives the performance limit, i.e., a

lower bound and an upper bound, for the maximal attainable
revenueV (n,m). Specifically, whenn = N andm = M , the
inequality in Property 3 becomesNV (1,M) ≤ V (N,M) ≤
(

(N + 1)/2
)

NV (1,M). In this inequality, the termV (1,M)
is the maximal attainable revenue if the spectrum leasing is
performed over one stage. SoNV (1,M) means the revenue
for N stages if the spectrum leasing is performed only in
the first stage and all leased channels continue to be used
by secondary users in the subsequentN − 1 stages (in other
words, the price is “non-dynamic” over stages). Inequality
NV (1,M) ≤ V (N,M) means that the revenue achieved by
setting up dynamic pricing values over the stages is larger
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than the revenue achieved in the non-dynamic pricing case.
On the other hand, the inequalityV (N,M) ≤

(

(N + 1)/2
)

·
NV (1,M) shows that the ratio ofV (N,M) to NV (1,M),
which represents the benefit of dynamic pricing over the non-
dynamic pricing, is upper bounded by(N + 1)/2.

Property 4: V (n,m) − V (n − 1,m) ≤ V (n + 1,m) −
V (n,m), ∀m ∈ M, n ∈ N\{N}.

Proof: We use mathematical induction for proving. The
proof consists of two steps. In the first step, it should be proved
that the property holds forn = 1, i.e.,

V (1,m)− V (0,m) ≤ V (2,m)− V (1,m), ∀m ∈ M. (7)

From Property 3, we have2V (1,m) ≤ V (2,m), ∀m ∈ M.
Together with the fact thatV (0,m) = 0, it can be seen that
inequality (7) holds.

In the second step, we need to prove that

V (n,m)−V (n−1,m)≤V (n+1,m)−V (n,m), ∀m ∈ M (8)

holds if

V (n−1,m)−V (n−2,m)≤V (n,m)−V (n−1,m), ∀m ∈ M.
(9)

We have (10) on top of the next page. In (10), the inequality in
(10b) is obtained by movingV (n−2,m) to the right-handside
and movingV (n− 1,m) to the left-handside; then inequality
in (10c) holds since2V (n− 1,m−m′) ≤

[

V (n,m−m′) +
V (n−2,m−m′)

]

from (10b); inequality (10d) is achieved by

adding term
m
∑

m′=0

fm(m′; p∗n,m)·2p∗n,m ·n ·m′ on both sides of

(10c); inequality (10e) comes from splitting the right-handside
of (10d) to two terms; inequality (10f) comes from two facts
(similar to the reasoning for the first inequality in (2)):

m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m ·(n+ 1)·m′ + V (n,m−m′)
]

≤
m
∑

m′=0

fm(m′; p∗n+1,m)
[

p∗n+1,m·(n+1)·m′+V (n,m−m′)
]

and

m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m·(n− 1)·m′ + V (n− 2,m−m′)
]

≤
m
∑

m′=0

fm(m′;p∗n−1,m)
[

p∗n−1,m·(n−1)·m′+V (n−2,m−m′)
]

;

inequality in (10g) holds by following the definition in (1).
This completes the proof.
Remark: Recall that Property 1 shows thatV (n,m) in-

creases ifn increases (i.e., the primary network has more time
for leasing the channels). In Property 4,V (n,m)−V (n−1,m)
is the revenue increase when the number of stages increases
from n− 1 to n, andV (n+ 1,m)− V (n,m) is the revenue
increase when the number of stages increases fromn to
n+1. So Property 4 implies that, when the number of stages
increases, the primary network has a higher revenue increase
rate. In other words,V (n,m) is an increasing convex-shaped
function with respect ton.

IV. W HEN SPECTRUM DEMAND IS NON-RANDOM

In Section III, given a price value, the spectrum demand
(i.e., the number of requested channels by secondary users)
is a random variable. In this section, we consider the case
that the spectrum demand for a given price value is non-
random, and can be solely determined by the price value.
Before we investigate the case, we first give an example for
the case. In Section III, the primary network needs to know
the probability mass function of the spectrum demand for a
given price. However, it is also likely that for a given price, the
primary network does not know the probability mass function
of the spectrum demand, but only knows the mean value of
the spectrum demand. So for a given price value, the primary
network has to estimate the spectrum demand by using the
known mean value. Thus, for the primary network to find the
optimal pricing strategy, the spectrum demand is viewed as
non-random, and takes the mean value of the actually random
spectrum demand for a given price.

Next we investigate the non-random spectrum demand case.
For price p, the spectrum demandd (i.e., the number of

requested channels) can be expressed asd = D(p).2 As
d ∈ I whereI means the set of non-negative integers,D(p)
is a piecewise function mapping intervals of price into non-
negative integers. In Stagen, denotepn as the price, and
dn = D(pn) as the demand for the number of channels.
The achieved revenue of the leased channels in Stagen can
be expressed aspndnn. So the total revenue over all the

stages is
N
∑

n=1
pndnn, i.e.,

N
∑

n=1
pnD(pn)n. Then the revenue

maximization problem can be formulated as
Problem 1:

max
p1,p2,...,pN

N
∑

n=1
pnD(pn)n

s.t.
N
∑

n=1

D(pn) ≤ M ;

pn ≥ 0, n ∈ N ;
D(pn) ∈ I, n ∈ N .

For the ease of analysis, by definingP (d) = max
D(p)=d

p,3

Problem 1 can be reformulated as
Problem 2:

max
d1,d2,...,dN

N
∑

n=1
dnP (dn)n

s.t.
N
∑

n=1
dn ≤ M ; dn ≥ 0, dn ∈ I, n ∈ N .

For the price function with respect to demand,P (d), three
characteristics are assumed and justified in the following.

• P (d) is a decreasing function with respect to demand
d. This assumption is in concordance with the fact that
when the announced price is higher, the spectrum for

2Here we assume that, for any demand valued ∈ {0, 1, 2, ...,M}, there
exists at least a pricep such thatD(p) = d.

3The conceptional meaning ofP (·) is the inverse function ofD(·).
Since D(·) is a piecewise function, its inverse function does not exist
mathematically. Therefore,P (d) is defined as the maximal price such that
D(P (d)) = d, rather thanD−1(d).
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V (n− 1,m)− V (n− 2,m) ≤ V (n,m)− V (n− 1,m), ∀m ∈ M (10a)

⇔ 2V (n− 1,m) ≤ V (n,m) + V (n− 2,m), ∀m ∈ M (10b)

⇒
m
∑

m′=0

fm(m′; p∗n,m)
[

2V (n− 1,m−m′)
]

≤
m
∑

m′=0

fm(m′; p∗n,m)
[

V (n,m−m′) + V (n− 2,m−m′)
]

(10c)

⇒
m
∑

m′=0

fm(m′; p∗n,m)
[

2p∗n,m · n ·m′ + 2V (n− 1,m−m′)
]

≤
m
∑

m′=0

fm(m′; p∗n,m)
[

2p∗n,m · n ·m′ + V (n,m−m′) + V (n− 2,m−m′)
]

(10d)

⇔
m
∑

m′=0

fm(m′; p∗n,m)
[

2p∗n,m · n ·m′ + 2V (n− 1,m−m′)
]

≤
( m

∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m · (n+ 1) ·m′ + V (n,m−m′)
]

+
m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m · (n− 1) ·m′ + V (n− 2,m−m′)
]

)

(10e)

⇒ 2
m
∑

m′=0

fm(m′; p∗n,m)
[

p∗n,m · n ·m′ + V (n− 1,m−m′)
]

≤
( m

∑

m′=0

fm(m′; p∗n+1,m)
[

p∗n+1,m · (n+ 1) ·m′ + V (n,m−m′)
]

+
m
∑

m′=0

fm(m′; p∗n−1,m)
[

p∗n−1,m · (n− 1) ·m′ + V (n− 2,m−m′)
]

)

(10f)

⇔ 2V (n,m) ≤ V (n+ 1,m) + V (n− 1,m) (10g)

⇔ V (n,m)− V (n− 1,m) ≤ V (n+ 1,m)− V (n,m). (10h)

leasing is less attractive to secondary users, and there is
less demand.

• d ·P (d) is an increasing function with respect to demand
d. This assumption is reasonable as the total revenue of
the primary network should be more if more channels are
leased.

• d · P (d) is “concave”, which means
[

(d+ 1)P (d+ 1)−
dP (d)

]

≤
[

dP (d)−(d−1)P (d−1)
]

, ∀d > 0, d ∈ I. This
assumption conforms to thelaw of diminishing returns
[14] in economics: the increase of revenue slows down
as the sale volume grows.

For Problem 2, the following lemma is in order.
Lemma 1:When the maximal value of the objective func-

tion
N
∑

n=1

dnP (dn)n is achieved, we should have
N
∑

n=1

dn = M .

Proof: We use proof by contradiction. According to
the second assumption onP (d), the objective function
N
∑

n=1
dnP (dn)n is an increasing function with respect to

dn, n ∈ N . Define the optimaldn as d∗n, n ∈ N . Suppose
N
∑

n=1
d∗n = M ′ < M , then the objective function in Problem 2

can be further increased by increasingd∗1 to d∗1 + M − M ′,
which contradicts the assumption thatd∗n, n ∈ N is the optimal
solution.

This completes the proof.

After substituting the constraint
N
∑

n=1
dn ≤ M with

N
∑

n=1
dn =

M , Problem 2 has the following features: the objective func-
tion is separable and “concave”, all the constraints are linear,
and all the variable coefficients in the constraints are 1’s.Thus,
Problem 2 can be solved by using an incremental algorithm
[15]. The procedure is given by the following Algorithm 1.

Algorithm 1 Incremental Algorithm solving Problem 2.
1: Setdn = 0, n ∈ N .

2: If
N
∑

n=1
dn < M , findn∗ = argmax

n∈N

(

(dn+1)P (dn+1)n−
dnP (dn)n

)

, and proceed to Step 3; Otherwise, proceed to
Step 4.

3: dn∗ = dn∗ + 1, proceed to Step 2.
4: Output {dn, n ∈ N}, which is the optimal solution of

Problem 2.

Based on the procedure of Algorithm 1, the following
theorem can be proved.

Theorem 1:d∗n increases whenn increases, andp∗n de-
creases whenn increases, whered∗n and p∗n are optimaldn
andpn, respectively, for Problem 2.

Proof: To prove thatd∗n increases whenn increases, we
use proof by contradiction.

Suppose there existn1, n2 ∈ N such thatn1 > n2 and
d∗n1

< d∗n2
. According to Algorithm 1, there areM rounds

of search. In each round, then∗ = argmax
n∈N

(

(dn +1)P (dn +

1)n − dnP (dn)n
)

is found. Before the first round,dn1
=
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dn2
= 0. After the last round,d∗n1

< d∗n2
. Then there should

exist a round such that: before the round we havedn1
= dn2

,
and after the round,dn2

is increased by 1. In other words,
before this round we have

[

(dn1
+ 1)P (dn1

+ 1)− dn1
P (dn1

)
]

n1

≤
[

(dn2
+ 1)P (dn2

+ 1)− dn2
P (dn2

)
]

n2.
(11)

Since we havedn1
= dn2

before this round, the inequality
in (11) is equivalent ton1 ≤ n2, which contradicts the
assumption thatn1 > n2. So we haved∗n1

≥ d∗n2
, ∀n1 > n2,

i.e., d∗n increases with respect ton.
As p∗n = P (d∗n), the functionP (·) is a decreasing function,

andd∗n increases whenn increases, it is easy to conclude that
p∗n decreases whenn increases.

This completes the proof.
Remark: According to Theorem 1, as the time approaches the
end of the spectrum leasing periodT , the primary network
should set the price higher, while in early stages, the primary
network should set lower prices to attract more spectrum
demand. This leads to a suggestion to secondary users: If a
secondary user wants to access the spectrum at a lower unit
price, it is better to accept the announced price earlier. There-
fore, based on our findings in Theorem 1, an interesting future
research problem is to investigate the interaction betweenthe
primary network and secondary users. The result in Theorem
1 also shares some similarity with pricing strategy in flight
ticket booking: long before the flight departure date, the flight
ticket price is low which can attract more bookings, while as
the flight departure date is approaching, the flight ticket price
goes higher.

V. NUMERICAL RESULTS

A. Verification of Properties 1–4 and Theorem 1

We first verify Properties 1–4. In the numerical example,N
is set as 10 andM is set as 50. Setg(y;x) as a discrete uniform
distribution over{m0,m0+1, ...,m0+4} wherem0 , ⌊1/x2⌋
(here⌊·⌋ is the floor function), i.e.,

g(y;x) = {0.2, 0.2, 0.2, 0.2, 0.2} (12)

for y = {m0,m0 + 1,m0 + 2,m0 + 3,m0 + 4}. The
spectrum price in a stage is selected from a discrete set of
100 values that are evenly spaced between 0.1474 and 1.001.
Here 0.1474 is the minimum selectable price because among
its five demand values{46, 47, 48, 49, 50}, the largest demand
value is M = 50; and 1.001 is the maximum selectable
price because among its five demand values{0, 1, 2, 3, 4}, the
smallest demand value is0.

Fig. 1, Fig. 2, and Fig. 3 showV (n,m) and its lower
and upper bounds,nV (1,m) and (n(n+ 1)/2)V (1,m), as
n grows from 1 toN whenm = 10, m = 20, andm = 30,
respectively. It can be seen thatV (n,m) increases whenn
or m increases, as indicated in Property 1 and Property 2. In
addition, V (n,m) lies between the lower bound and upper
bound, which is consistent with the conclusion in Property
3. And V (n,m) is convex-shaped withn, as indicated by
Property 4.

Next we verify Theorem 1. For non-random spectrum
demand,N is set as 10, the functionP (d) is set to be1/

√
d,
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Fig. 1. V (n,m) versusn with m = 10.
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Fig. 2. V (n,m) versusn with m = 20.
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Fig. 3. V (n,m) versusn with m = 30.
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Fig. 4. The optimal price.
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Fig. 5. The optimal demand.

which satisfies the three assumptions onP (d) in Section IV.
In Fig. 4 and Fig. 5, the optimal pricep∗n and optimal demand
d∗n are plotted, respectively, whenM = 100, M = 200, and
M = 400. It can be seen that the optimal pricep∗n decreases
with n, and the optimal demandd∗n grows withn. This result
matches Theorem 1.

B. Comparison of Random Spectrum Demand Case and Non-
Random Spectrum Demand Case

Recall that in random spectrum demand case considered
in Section III, the primary network knows the probability
mass function of spectrum demand for a given price, while an
example for the non-random spectrum demand case considered
in Section IV is that the primary network knows only the mean
value of spectrum demand for a given price. Accordingly, a
comparison of the random spectrum demand case and the non-
random spectrum demand case is interesting.

We take the same spectrum demand distribution as used in
Figs. 1-3. ConsiderM = 30. The achieved revenue of the ran-
dom spectrum demand case (when the primary network knows
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Random Demand, M=30

Non−random Demand, M=30

Fig. 6. Comparison of the achieved revenue in random spectrum demand
case (when the probability mass function of spectrum demandfor a given
price is known) and in non-random spectrum demand case (whenonly the
mean value of the spectrum demand for a given price is known).

probability mass function of the spectrum demand, given as
in (12)) is shown in Fig. 3. Now suppose the primary network
knows only mean value of the spectrum demand for a given
price, i.e., the expected demand for price valuex is given as
⌊1/x2⌋ + 2. Based on this demand function, we use Algorithm
1 to find out the optimal price for each stage. Then using those
price values at the stages, we carry out computer simulations
to find out the achieved revenue. In the simulations, we use the
real random spectrum demand at each stage for the calculated
optimal price. In other words, for a stage, if the optimal price
at Stagei calculated from Algorithm 1 isp∗i , then in the
stage, the simulated spectrum demand is a random variable,
taking values from{u∗, u∗ + 1, u∗ + 2, u∗ + 3, u∗ + 4} with
probability{0.2, 0.2, 0.2, 0.2, 0.2}. Hereu∗ = ⌊1/(p∗i )2⌋. The
simulated revenue (averaged over 500 simulation runs) is
shown in Fig. 6. As a comparison, the achieved revenue of the
random spectrum demand case is also shown in this figure.
From the figure, it is clear that the non-random spectrum
demand case achieves less revenue than the random spectrum
demand case. This is reasonable, due to the lack of distribution
information of the real spectrum demand in the non-random
spectrum demand case.

C. Comparison with Existing Work

In the following, we compare our dynamic pricing strategy
with the dynamic pricing strategy in [13], which also considers
one seller and multiple buyers, but for infinite duration. We
use the same spectrum demand distribution as used in Figs. 1-
3. We simulate the dynamic pricing strategy in [13] with
some modifications to fit with our considered multiple-stage
pricing problem4. The simulation result is shown in Fig. 7.

4The price in our work is for the unit of a channel, while the price in
[13] is for the unit of a packet transmission. Therefore, when implementing
the dynamic pricing strategy of [13] in our simulations withmultiple stages,
the channels are treated as packets as in [13], and in each stage, we use the
pricing strategy proposed in [13] to determine the price. Inthe simulations,
the parameterV in [13] is set to be 200.
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Fig. 7. Comparison between the proposed dynamic pricing strategy and the
dynamic pricing strategy in [13].

As a comparison, the achieved revenue of our method is also
shown. It can be seen that, when implemented in our pricing
problem with a finite duration, the achieved revenue by using
the dynamic pricing strategy of [13] is less than the revenue
by our proposed dynamic pricing strategy.

VI. CONCLUSIONS

In this paper, we have investigated the problem of dynamic
pricing over multiple stages of spectrum leasing. We have
formulated optimization problems that find the optimal price
in each stage so as to maximize the total revenue of the
primary network. We have presented the solving methods for
the optimization problems, as well as properties of the optimal
solutions, such as monotonicity and convexity of the maximal
total revenue with respect to stage index, and lower/upper
bounds of the maximal total revenue in the random spectrum
demand case, and monotonicity of the optimal price with
respect to stage index in the non-random spectrum demand
case. This research should provide helpful insights for pricing
strategy design in spectrum leasing.

In this research, there is only one primary network that
leases channels to secondary users. Another interesting re-
search topic is to investigate the case when there are multiple
primary networks performing the dynamic pricing. Thus, a
primary network should consider the dynamic pricing with
time (stage) as well as the price competition with other
primary networks in each stage. To investigate the research
problem, the first step could be to study dynamic pricing
with two primary networks. This problem can be formulated
as a differential game, which usually includes two players
having conflicting goals in a dynamic system with multiple
stages. It would be interesting to investigate the existence
and uniqueness of Nash equilibrium between the two primary
networks.
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