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Abstract—For spectrum sensing in cognitive radio networks,
the IEEE 802.22 standard requires the detection of primary
signals with a signal-to-noise ratio (SNR) as low as -20 dB and
receiver sensitivity as low as -116 dBm. Under such low-SNR
levels, the performance of a conventional energy detector is
analyzed in this paper. The analysis includes novel expressions
for missed-detection probability and area under the receiver
operating characteristic (ROC) curve. Thus, a unified framework
covering fading channels, square-law diversity combiningand co-
operative spectrum-sensing scenarios is developed. The detection
threshold is optimized to minimize the total error rate subject
to bounded false alarm and missed-detection probabilities, which
outperforms traditional detection threshold selection. Numerical
results and Monte-Carlo simulation results with the IEEE 802.22
sensing requirements are provided and discussed.

Index Terms—Cognitive radio, energy detection, low-SNR,
spectrum sensing, threshold selection.

I. I NTRODUCTION

BROADBAND wireless access using the television (TV)
white space spectrum has been approved by the US

Federal Communications Commission (FCC). Among the
standardization efforts [1], the IEEE 802.22 wireless regional
area network (WRAN), which is designed to operate in the
vacant TV bands, brings broadband access not only to the WiFi
devices but also to general mobile networks (e.g., micro-cells,
pico-cells, or femto-cells), allowing the use of the cognitive
radio on a non-interfering basis [2]–[4].

However, cognitive radio requires spectrum sensing for op-
portunistic spectrum access. If spectrum sensing fails, primary
users will have interference. For this reason, IEEE 802.22
prescribes the false alarm and missed-detection probabilities
be less than 0.1. Due to possible multipath fading and/or
shadowing caused by high-rise buildings, it is required that
secondary users should reliably detect primary signals (i.e.,
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satisfying the two requirements on false alarm and missed-
detection probabilities) with a very low signal-to-noise ratio
(SNR), such as -20 dB SNR with a signal power of -116 dBm
and a noise floor of -96 dBm [4]. Thus, spectrum sensing at
low SNRis vital.

Fortunately, a wide array of spectrum sensing techniques
such as energy detection, matched filter detection, cyclo-
stationary feature detection, covariance based detectionand
others may be employed [5]–[19]. While those techniques
perform well at moderate and high SNRs, low-SNR operation
typically requires a large number of samples, which impacts
the sensing and processing time. For example, IEEE 802.22
limits the maximal detection latency to 2 seconds which may
include sensing time and subsequent processing time. This
maximal time limit is critical at low-SNR spectrum sensing.

Although spectrum sensing techniques at moderate and high
SNRs have been researched a lot [5]–[9], the low-SNR case
remains relatively unexplored. This case is treated for a differ-
ential energy detection scheme of multi-carrier systems (e.g.,
orthogonal frequency division multiplexing [OFDM]) in [10],
for multi-antenna detectors (which improve the robustnessto
noise uncertainty) in [11], [12], and for a covariance based
detection in [13]. Moreover, low-SNR cooperative spectrum
sensing techniques are considered for belief propagation in
[14], for cyclostationary detection in [15], for optimal relaying
scheme in [16], and for multi-antenna with a noise-uncertainty-
free detector in [17]. These works consider a generalized like-
lihood ratio (GLR) detector, an alternative energy detector, a
cyclostationary feature detector, or a covariance based detector,
in which the operating SNR ranges from -30 dB to 0 dB.

To complement those studies, we focus on energy detection,
which has low complexity and low cost compared to other
spectrum sensing techniques such as matched filter detection,
cyclostationary feature detection, etc. [20]. Before that, we
briefly mention some of the limitations of the state-of-the-art
energy detection research when applied to the low-SNR case.

• Average detection (or missed-detection) probability
derivation: In [21], the distribution of test statistic under
each hypothesis follows a gamma distribution. Its cu-
mulative distribution function (CDF) expression includes
an incomplete gamma function. Only Gaussian channels
are considered in [21]. With this model, the average
detection probability under any fading channel has not
been derived in closed-form in the literature (probably
because of difficulties in further analysis with the in-
complete gamma function). In [6]–[8], [22], by modeling
the test statistic with its exact distribution, the aver-
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age detection probabilitiesPd over fading channels are
derived. ThesePd expressions however include special
functions, infinite-order derivatives, and/or infinite series.
Thus, computational complexity increases rapidly with
N , the number of samples. In the low-SNR case, however,
N is several thousands, and thus, the resulting complexity
is prohibitive. To reduce complexity, rather than using the
exact distribution of the test statistic, an approximation
can be used [21], [23]–[25]. But these works are limited
to Gaussian channels. For the low-SNR energy detection,
Pd is derived for Rayleigh fading [26], and for Nakagami
fading [27] with an integral form.

• Threshold selection: Traditionally, the threshold is se-
lected to guarantee a given false alarm probability (Pf ).
For this purpose, the inversion of thePf expression is
needed. Closed-form inversion however is not possible
using results in [6]–[8], [21], [22]. This difficulty is
heightened for IEEE 802.22 which additionally requires
bounded missed-detection probabilityPmd and bounded
Pf simultaneously. Although works in [28] and [29]
perform Central Limit Theorem (CLT)-based threshold
selection, they focus on non-fading scenarios only.

In summary, analytical tools specifically for low-SNR en-
ergy detector performance analysis and threshold selection
over fading and/or shadowing channels may not be available.

Contributions:In this paper, we provide a rigorous unified
performance analysis for conventional energy detection inthe
low-SNR regime. In particular, this paper makes the following
contributions:

1) Missed-detection probability and Area Under receiver
operating characteristic (ROC) Curve (AUC) for dif-
ferent fading and networking scenarios are derived,
overcoming the aforementioned limitations (i.e., com-
putational complexity).

2) Optimal threshold is formulated subject to bounded
false-alarm and missed-detection probabilities. Approx-
imate optimal threshold values are derived analytically.

3) Using the derived analytical results, numerical examples
for the IEEE 802.22 requirements are presented. We
show that these stringent low-SNR requirements can be
achieved by sufficiently high number of samples and
high sampling rate (MHz range). Moreover, cooperative
sensing or diversity combining can help greatly.

The rest of this paper is organized as follows. Section II dis-
cusses energy detection, the system, low-SNR approximation,
generalized SNR distribution, and the performance measures.
Section III analyzes the missed-detection probability andAUC
for low SNRs. Sections IV is devoted to the analysis of
the optimal detection threshold. Section V presents numerical
and simulation results, followed by concluding remarks in
Section VI. Related proofs are provided in the Appendix.
Some preliminary results of this paper have been presented
in [30].

II. ENERGY DETECTION PRELIMINARIES

Depending on whether the primary signal is present or not,
thenth signal sample,y(n) = θhs(n)+w(n) follows a binary

hypothesis:H0 (signal absent,θ = 0) andH1 (signal present,
θ = 1). Here,h, s(n) andw(n) denote the wireless channel
gain, thenth primary signal sample and thenth additive white
Gaussian noise (AWGN) sample, respectively. The test statistic
is given asΛ =

∑N
n=1 |y(n)|

2, where N is the number
of samples. If the test statistic is larger than thresholdλ,
the primary signal is deemed to be present, and it is absent
otherwise.

The AWGN samplesw(n), n = 1, 2, · · · , N , are assumed
to be independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian (CSCG) random variables with
mean zero and varianceE[|w(n)|2] = σ2

w, whereE[·] stands
for expectation, i.e.,w(n) ∼ CN (0, σ2

w). We assume that the
detector knows the noise power exactly with the help of a noise
power estimation technique [31]. Due to space limitation, we
cannot treat the case with noise uncertainty in detail in this
paper. However, a limited discussion can be found in Section
V-D.

For i.i.d. signal samples underH1, the following three signal
models are widely used in the literature:

• S1: y(n) is Gaussian with nonzero mean, i.e., for given
channel gainh, E[y(n)] = hs(n) [6], and the received
SNR can be defined as

γS1 =
|h|2 1

N

∑N
n=1 |s(n)|2
σ2
w

.

• S2: s(n) is a CSCG random variable,s(n) ∼ CN (0, σ2
s),

thusy(n) ∼ CN (0, σ2
w+σ2

s) [12], and the received SNR
can be defined asγS2 = |h|2σ2

s/σ
2
w.

• S3: s(n) is a signal with zero mean andσ2
s variance (dis-

tribution may be unknown [13]), and thus, the received
SNR is the same asγS2, i.e., γS3 = |h|2σ2

s/σ
2
w.

For S2 andS3, with sufficiently large number of samples, the
signal variance can be written by using its sample variance as

σ2
s ≈ 1

N

N
∑

n=1

|s(n)|2 −
(

1

N

N
∑

n=1

s(n)

)2

.

If the sample mean goes to zero, i.e.,
[
∑N

n=1 s(n)
]

/N → 0,
thenσ2

s ≈
[
∑N

n=1 |s(n)|2
]

/N , and thus, the received SNRs
under the three signal models are approximately equal, given
as

|h|2 1
N

∑N
n=1 |s(n)|2
σ2
w

.

Thus, without loss of generality, we denote the SNR at the
detector asγ (i.e., γ = γS1, γS2, or γS3) for the rest of this
paper.

The distribution ofΛ for givenh can be modeled exactly for
all three signal models, but not forS3 underH1. Therefore,
by using the CLT, the distribution ofΛ given h can be
approximated as a normal distribution for sufficiently large
N as [25]

Λ|h ∼























N
(

Nσ2
w, Nσ

4
w

)

: H0

N
(

Nσ2
w(1 + γ), Nσ4

w(1 + 2γ)
)

: H1 with S1
or S3 (with complex-valued phase-shift
keying [PSK])

N
(

Nσ2
w(1 + γ), Nσ4

w(1 + γ)2
)

: H1 with S2.
(1)
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The probability density function (PDF) ofΛ under H0,
denotedfΛ|H0

(x), and the PDF ofΛ under H1, denoted
fΛ|H1

(x), can be derived from (1). Under the low-SNR as-
sumption (γ ≪ 1), the signal has little impact on the variance
of the test statistic underH1. Thus, in the low-SNR regime,
expression (1) can be accurately approximated for any of the
three signal models as [26], [31]

Λlow|h ∼
{

N
(

Nσ2
w, Nσ

4
w

)

: H0

N
(

Nσ2
w(1 + γ), Nσ4

w

)

: H1.
(2)

While the exactPf andPmd expressions are different for the
three different signal models (S1, S2, and S3), the adoption
of (2) permits a unified and accurate treatment for the three
signal models, as follows. Thus, this approximation (2) is used
for the rest of this paper.

Based on (2), the false alarm probabilityPf and the missed-
detection probabilityPmd(γ) can be evaluated as

Pf =
1

2
Erfc

(

λ−Nσ2
w√

2Nσ2
w

)

(3)

and

Pmd(γ) ≈ 1− 1

2
Erfc

(

λ−Nσ2
w(1 + γ)√

2Nσ2
w

)

, (4)

respectively, where Erfc(·) is the complementary error function
[32] defined as Erfc(z) = (2/

√
π)
∫∞

z
e−t2dt.

SincePmd(γ) depends on channel gain, a generalized SNR
distribution is necessary to derive analytical results valid for
various cases with path loss, large-scale fading and/or small-
scale fading. Thus, we use a mixture of gamma distributions
[33] for γ

fγ(x) =

S
∑

i=1

αix
βi−1e−ζix, x ≥ 0, αi, βi, ζi > 0, (5)

whereS is the number of terms,αi, βi andζi are parameters
that represent the potential fading and shadowing effects,and
∑S

i=1 αiΓ(βi)ζ
−βi

i = 1, whereΓ(·) is the gamma function. It
is shown in [33] that the generalized SNR distribution (5) can
accurately represent all existing fading/shadowing channels,
diversity-combining techniques and cooperative spectrum-
sensing networks.

III. PERFORMANCEANALYSIS AT A LOW SNR

This section, by using (5), develops a unified analysis for
the low-SNR regime: i) average missed-detection probability;
and ii) average AUC. Diversity combining and cooperative
spectrum sensing are also investigated subsequently.

A. Average Missed-Detection Probability

Given the AWGN expression (4), average missed-detection
probability over fading channels,Pmd, can be calculated by
directly averaging over the SNR distribution to yieldPmd =
∫∞

0 Pmd(x)fγ(x)dx. Next we present a unified approach for
this average, encompassing many existing fading channels,
diversity-combining techniques, and cooperative sensing.

With the aid of (4), (5), Erfc(−x) = 2 − Erfc(x), and
some straightforward algebraic manipulations, average missed-
detection probability over the generalized SNR distribution (5),
denotedPGen

md , can be given as

PGen
md ≈ 1

2

S
∑

i=1

αi

∫ ∞

0

xβi−1e−ζixErfc

(
√

N

2
x+

Nσ2
w − λ√
2Nσ2

w

)

dx.

We now define an integral expression,I(n, p, c, d), which will
be used in subsequent analysis, as [34, eq. (2.8.9.1)]

I(n, p, c, d),
∫ ∞

0

xne−pxErfc(cx+ d)dx = (−1)n
∂nψ(p)

∂pn
,

(6)
where

ψ(p) =





Erfc(d)− e
p2+4pcd

4c2 Erfc
(

d+ p
2c

)

p



 ,

n is a positive integer, Re[p]> 0, c > 0, d > 0 , and ∂n

∂pn is
the nth-order partial derivative with respect top. Therefore,
PGen

md can be derived for integerβi as

PGen
md ≈ 1

2

S
∑

i=1

αiI
(

βi − 1, ζi,

√

N

2
,
Nσ2

w − λ√
2Nσ2

w

)

. (7)

This novel closed-form expression has a low computational
complexity because of the following reasons.

In (7), we need(βi − 1)th partial derivative (with respect
to p) of ψ(p) with

c =

√

N

2
, d =

Nσ2
w − λ√
2Nσ2

w

,

and βi can take valuesβ1, · · · , βS . For fading channels,
diversity or cooperative networks,βi value may be a fading
parameter, the number of diversity branches, or the number
of cooperative nodes, which are small integer values. Further,
values ofβi and S are typically small. Sinceψ(p) includes
only exponential and Erfc(·) functions ofp, its derivatives are
also closed-form expressions for givenβi and S, including
only exponential and Erfc(·) functions of p. The particular
expressions are omitted for brevity. The most important fact is
that the computational complexity of (7) does not increase with
N (noting that the value ofN is typically several thousands
in the low-SNR regime). In contrast to (7), the complexity of
other existingPd expressions in the literature increases with
N , for example:

• Confluent Hypergeometric functions and Laguerre poly-
nomials [6], and generalized Hypergeometric functions
[7] need infinite number of steps.

• The order of derivative equals the number of samplesN
for residue calculations, and subsequently infinite series
are used in the calculation [8], or infinite-order derivatives
are required [22].

Therefore, (7) is especially suited for the low-SNR regime,
e.g., as used in the threshold selection analysis in SectionIV.

Now we consider special cases of (7). For Rayleigh fading,
the parameters areS = 1, α1 = 1/γ̄ (γ̄ is average SNR),
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β1 = 1, and ζ1 = 1/γ̄. Then the average missed-detection

probabilityPRay
md is given as

PRay
md ≈ 1

2

[

Erfc

(

Nσ2
w − λ√
2Nσ2

w

)

− e

1
γ̄2 + 4

γ̄

(

Nσ2
w−λ

√

2Nσ2
w

)√
N
2

2N

× Erfc

(

Nσ2
w − λ√
2Nσ2

w

+
1

γ̄
√
2N

)]

.

(8)

For a Nakagami-m fading channel, the parameters are

S = 1, α1 =
mm

Γ(m)γ̄m
, β1 = m, ζ1 =

m

γ̄
,

and the missed-detection probability,PNak
md , is

PNak
md ≈ 1

2Γ(m)

(

m

γ̄

)m

I
(

m− 1,
m

γ̄
,

√

N

2
,
Nσ2

w − λ√
2Nσ2

w

)

.

(9)

Similarly, the average missed-detection probabilities over
many other existing fading channels (not only multipath
fading channels) such as Nakagami-lognormal,K, KG, η-
µ, Nakagami-q (Hoyt), κ-µ, or Nakagami-n (Rician) can be
derived easily after properly selecting the parametersS, αi,
βi, ζi (i = 1, 2, ..., S).

For the square-law combining (SLC) with a low SNR, the
false alarm probability and the missed-detection probability
under AWGN channels can be evaluated as (3) and (4),
respectively, withN replaced byLN (hereL is the number of
diversity branches). For fading channels, denote the SNR over
the branches asγ1, γ2, ..., γL. If the PDF ofγ =

[
∑L

i=1 γi
]

/L
is modeled by using the generalized channel (5),1 with the aid
of (7), the average missed-detection probability can be derived
as

PGen,SLC
md ≈ 1

2

S
∑

i=1

αiI
(

βi − 1, ζi,

√

LN

2
,
LNσ2

w − λ√
2LNσ2

w

)

.

(10)

Thus, the average missed-detection probability over a Rayleigh
fading channel can be derived by using (10) withS = 1,

α1 =
1

Γ(L)

(

L

γ̄

)L

,

β1 = L andζ1 = L/γ̄. Similarly, the average missed-detection
probability over a Nakagami-m fading channel can be derived
by using (10) withS = 1,

α1 =
1

Γ(mL)

(

mL

γ̄

)mL

,

β1 = mL andζ1 = mL/γ̄.

1As special cases, the PDF ofγ =
[
∑L

i=1
γi
]

/L when signals of the
branches follow i.i.d. Rayleigh and Nakagami-m fading are

fγ(x) =
1

Γ(L)

(

L

γ̄

)L

xL−1e
−

L
γ̄
x
,

fγ(x) =
1

Γ(mL)

(

mL

γ̄

)mL

xmL−1e
−

mL
γ̄

x
,

respectively, wherēγ is the average SNR at each branch [6].

If there areK cooperative nodes, each of which sends to
a fusion center its own decision on presence/absence of the
primary signal, and the fusion center uses thek-out-of-K
fusion rule, the false alarm probabilityPCoop

f and detection

probabilityPCoop
d at the fusion center can be written as

PCoop
χ =

K
∑

i=k

(

K

i

)

(pχ)
i(1− pχ)

K−i,

where the notation ‘χ’ means ‘f ’ for false alarm and means
‘d’ for detection. Here, the channels from the primary user to
the cooperative nodes are assumed to be i.i.d., and thus, allthe
cooperative nodes can achieve identical false alarm probability
pf and detection probabilitypd. Thus, the average missed-
detection probability of cooperative spectrum sensing is

PGen,Coop
md ≈ 1−

K
∑

i=k

(

K

i

)

(

PGen
md

)K−i (

1− PGen
md

)i

, (11)

with PGen
md given in (7).

B. Average Area under ROC Curve (AUC)

The ROC curve is the plot ofPd versusPf as thresholdλ
varies from 0 to∞. By eliminating the variableλ, Pd can be
expressed as function ofPf . The area under the ROC curve
is the AUC, which varies between0.5 and 1. It represents
the probability that the detector is more likely to choose the
correct decision than the incorrect decision [35]. In Theorem
1, we derive a general expression for the AUC for AWGN
channels.

Theorem 1. Define

Pf (λ) =
1

2
Erfc

(

λ−m0√
2σ0

)

, Pd(λ) =
1

2
Erfc

(

λ−m1√
2σ1

)

,

which are functions ofλ (−∞ < λ < ∞),2 wherem0, m1,
σ0, and σ1 are real positive values such thatm0 ≤ m1 and
σ0 ≤ σ1. By eliminating termλ, the two functions can be
combined as

Pd =
1

2
Erfc

(

σ0
σ1

Erfc−1(2Pf )−
m1 −m0√

2σ1

)

,

which represents thePd versusPf curve. Thus, the area under
thePd versusPf curve,A, is given as

A = 1− 1

2
Erfc

(

m1 −m0
√

2(σ2
0 + σ2

1)

)

. (12)

Proof: See Appendix A.
The instantaneous AUC of an energy detector at a low SNR

can be derived from (12) by replacingm0 = Nσ2
w, m1 =

Nσ2
w(1 + γ), σ2

0 = Nσ4
w, andσ2

1 = Nσ4
w, as

A(γ) ≈ 1− 1

2
Erfc

(√
N

2
γ

)

.

2This is the theoretical limit ofλ. But negative values of the thresholdλ
are not considered in practice.
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Now we derive the average AUC over the generalized SNR
distribution (5) asAGen =

∫∞

0
A(x)fγ(x)dx, to yield

AGen ≈ 1− 1

2

S
∑

i=1

αi

∫ ∞

0

xβi−1e−ζixErfc

(√
N

2
x

)

dx

= 1 +
1

2

S
∑

i=1

(−1)βi−1αi

× ∂βi−1

∂pβi−1

(

1

p
e

p2

N Erfc

(

p√
N

)

− 1

p

)

∣

∣

∣

∣

∣

p=ζi

,

(13)

whereβi is a positive integer, and the equality in the second
line of (13) comes after applying [34, eq. (2.8.5.4)]. This
approximation can be used for many wireless channel models.
For example, the average AUC over a Rayleigh fading channel,
ARay, is

ARay ≈ 1

2
+
e

1
Nγ̄2

2
Erfc

(

1

γ̄

√

1

N

)

, (14)

and the average AUC over a Nakagami-m fading channel,
ANak, is

ANak ≈ 1 +
(−1)m−1mm

2Γ(m)γ̄m

× ∂m−1

∂pm−1

(

1

p
e

p2

N Erfc

(

p√
N

)

− 1

p

)

∣

∣

∣

∣

∣

p=m
γ̄

,
(15)

wherem is an integer.
Similarly, for the SLC technique, the AUC over Nakagami-

m fading channels can be derived by using (13) with

S = 1, α1 =
1

Γ(mL)

(

mL

γ̄

)mL

, β1 = mL, ζ1 =
mL

γ̄
,

and with N replaced byLN . For cooperative spectrum
sensing, becausePCoop

d is not expressible in terms ofPCoop
f ,

the AUC can be expressed as an integral only, which can
be evaluated by numerical methods. However, a closed-form
expression appears intractable.

IV. T HRESHOLDSELECTION

Threshold selection is traditionally based on the false alarm
probability only, which, unfortunately, does not work for
cognitive radio networks where missed-detection results in
interference on primary users. While threshold selection with
different objective functions (by relaxing some constraints) has
been performed in [28], [29] and many others, these papers
focus on non-fading scenarios, or do not consider bothPmd(λ)
andPf (λ) simultaneously.

For a cognitive radio network,Pmd(λ) and Pf (λ) must
be below the thresholds denotedP th

md andP th
f . SincePmd(λ)

increases andPf (λ) decreases with thresholdλ, these re-
quirements are equivalent toλ ≤ λ∗md and λ ≥ λ∗f where
Pmd(λ

∗
md) = P th

md andPf (λ
∗
f ) = P th

f .
If λ∗f > λ∗md, then there is no feasibleλ that satisfies

both false-alarm and missed-detection requirements, which
necessitates other remedial actions, such as increasing the

sampling rate. Ifλ∗f ≤ λ∗md, anyλ value within range[λ∗f , λ
∗
md]

can satisfy both false-alarm and missed-detection constraints.
In this range, optimalλ is then selected by optimizing a
combination metric of bothPf (λ) and Pmd(λ). For this
purpose, the Bayesian cost [36], a popular metric to select
the detection threshold [37]–[41], can be used. Minimizingthe
Bayesian cost is equivalent to minimizing the total error rate

Pe(λ)
△
= Pf (λ) + Pmd(λ). Therefore, the threshold selection

problem is formulated as

minimize
λ

Pe(λ) = Pf (λ) + Pmd(λ)

subject to Pf (λ) ≤ P th
f

Pmd(λ) ≤ P th
md.

(16)

We first relax the two constraints in (16), and denote the
optimal solution asλ∗e . Then the optimal solution for problem
(16), denotedλ∗, is given as

λ∗ =















λ∗e : if λ∗f ≤ λ∗md andλ∗e ∈ [λ∗f , λ
∗
md],

λ∗f or λ∗md, whichever is closer toλ∗e : if λ∗f ≤ λ∗md

andλ∗e /∈ [λ∗f , λ
∗
md],

no solution: if λ∗f > λ∗md.

Since Pf (λ) does not depend on fading effect,λ∗f can be
derived regardless of any fading scenario by using (3) as

λ∗f =

(

√

2

N
Erfc−1

(

2P th
f

)

+ 1

)

Nσ2
w. (17)

In the following, we derive exactλ∗md and λ∗e for AWGN
channels and approximate them for multipath fading channels.
Generally, for any fading model (Gaussian, Rayleigh, etc.),
minimum Pe(λ) is achieved when∂Pe(λ)

∂λ = 0, which is
illustrated in Appendix B.

A. AWGN Channel

In this case, rather than using the low-SNR model in (2), we
consider the general SNR case in (1), which leads to closed-
form expressions ofλ∗md and λ∗e, as follows.3 For S1 or S3
signal model with any SNR valueγ, λ∗md can be derived by
using (1) as

λ∗md =

(
√

2(1 + 2γ)

N
Erfc−1

(

2(1− P th
md)
)

+ (1 + γ)

)

Nσ2
w,

(18)
andλ∗e is given by using (1) as

λ∗e = argmin
λ

(

1 +
1

2
Erfc

(

λ−Nσ2
w√

2Nσ2
w

)

− 1

2
Erfc

(

λ−Nσ2
w(1 + γ)

√

2N(1 + 2γ)σ2
w

))

=
Nσ2

w

2

(

1 +

√

1 + 2γ

(

1 +
(1 + 2γ) ln(1 + 2γ)

Nγ2

)

)

,

(19)

3This implies that the derived (18), (19), and (20) are valid from low to
high SNR.
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where the second equality comes as explained in Appendix C.
Similarly, λ∗md andλ∗e for S2 signal model can be derived as

λ∗md =

(

√

2

N
(1 + γ)Erfc−1

(

2(1− P th
md)
)

+ (1 + γ)

)

Nσ2
w,

λ∗e =
Nσ2

w

2

(

1 +

√

1 +
2(2 + γ) ln(1 + γ)

Nγ

)

(

1 + γ

1 + γ
2

)

.

(20)

B. Multipath Fading

In Rayleigh and Nakagami-m fading in the low-SNR
regime, the exact closed-formλ∗md andλ∗e are intractable from
missed-detection probabilities (8) and (9), although numerical
computation is feasible. As a result, we derive approximations
for Rayleigh and Nakagami-2 fading channels. Our procedure
can also be extended for arbitrarym ≥ 2. The approximations
and simulations are compared in Table II in Section V,
showing a close match.

1) Rayleigh Fading Channel:We define

α
△
=
Nσ2

w − λ√
2Nσ2

w

, a
△
=

1√
2Nγ̄

,

which will be used in this section. By using (8),PRay
md (λ) can

be written as

PRay
md (λ) ≈ 1

2

[

Erfc(α)− ea
2

e2aαErfc(a+ α)

]

. (21)

Thus, an approximateλ∗md can be calculated as (22) on the
next page, whereu = aea

2

Erfc(a). The derivation is given in
Appendix D1.

The total error rate isPe(λ) = Pf (λ) + PRay
md (λ). For

minimumPe(λ), an approximate threshold can be given as

λ∗e≈



1 +
1

Nγ̄
−
√

2

Nπ
+

√

√

√

√

2

N

(

1

π
+

√

2N

π
γ̄ −1

)



Nσ2
w.

(23)
The derivation is given in Appendix D2.

2) Nakagami-2 Fading Channel:By using (9),PNak
md (λ) for

Nakagami-2 fading channel can be written as

PNak
md (λ) ≈ 1

2
Erfc(α)− 2a√

π
e−α2

+

(

4a2 − 1

2
+ 2aα

)

e4a
2

e4aαErfc(2a+ α).

(24)

Thus,λ∗md can be calculated as (25) on next page, wherev =

a2e4a
2

Erfc(2a). The derivation is given in Appendix E1.
The total error rate isPe(λ) = Pf (λ) + PNak

md (λ). For
minimumPe(λ), an approximate threshold can be given as

λ∗e ≈
[

1 +
2

Nγ̄
− 1

2
√
2N

(√
π −

√

π − 8 + 2Nγ̄2
)

]

Nσ2
w.

(26)
The derivation is given in Appendix E2.

3) Nakagami-m Fading Channel:For a given fading pa-
rameterm, PNak

md can be derived in closed-form by using (9),
which includes only exponential and Erfc(·) functions. Follow-
ing the similar procedure given in Section IV-B2, approximate
λ∗md and λ∗e for a general Nakagami-m fading channel can
easily be derived analytically. Moreover, by keeping increasing
the number of terms of Taylor series expansions (e.g., poly-
nomial with degree greater than 2), we can find more accurate
approximations forλ∗md andλ∗e .

C. Diversity Combining or Cooperative Spectrum Sensing

If SLC is used, the results in Section IV-A can be applied
with N replaced byLN for SLC over AWGN in whichγ =
[
∑L

i=1 γi
]

/L, and numerical methods can be used for other
fading channels by using (10). Similarly, if cooperative sensing
is used, the optimal threshold can be determined by numerical
methods by using (11).

V. NUMERICAL /SIMULATION RESULTS AND DISCUSSION

This section provides numerical results based on our pre-
ceding analysis, and semi-analytical Monte-Carlo simulation
results based on the system model in Section II. Because all
signal models perform more or less the same at low SNR,
simulation is limited toS1 signal model only.

The normalized thresholdis defined aŝλ , λ/N .4 The
noise variance is set toσ2

w = 1. For SLC and cooperative
spectrum sensing, only Rayleigh fading is considered. The
Rayleigh fading case provides a worst-case benchmark be-
cause its performance is much worse than those of AWGN
and Nakagami-m (m > 1) fading channels.

A. Accuracy of our low-SNR missed-detection probability ex-
pressions

The ROC curves are calculated from (4), (8)-(11), and
simulated (Figs. 1 and 2). Specifically, Fig. 1 shows the ROC
curves for AWGN, Rayleigh and Nakagami-4 fading channels
with -20 dB average SNR. The ROC curves are plotted in the
rangeλ̂ ∈ [0.95, 1.05] and λ̂ ∈ [0.995, 1.02] for N = 2× 103

andN = 2× 105, respectively. Fig. 2 shows the ROC curves
of SLC withL = 2, 3 and cooperative spectrum sensing (with
OR decision fusion rule) withK = 2, 3 over Rayleigh fading
at γ̄= -20 dB whenN takes two values: whenN = 2 × 103,
the ROC curves are plotted in the rangeλ̂ ∈ [1.92, 2.10] and
λ̂ ∈ [2.94, 3.10] for SLC with L = 2 and 3, respectively, and
in the rangêλ ∈ [0.95, 1.1] for cooperative spectrum sensing;
whenN = 2× 106, the ROC curves are plotted in the range
λ̂ ∈ [2.00, 2.02] and λ̂ ∈ [3.00, 3.03] for SLC with L =
2 and 3, respectively, and in the rangeλ̂ ∈ [0.99, 1.03] for
cooperative spectrum sensing. The analytical results perfectly
match the simulation results for a high and low number of
samples, and also for high and lowPd and Pf , confirming
the accuracy of our low-SNR approximations in (4), (8)-(11).
These figures show that whenN = 2× 103, the IEEE 802.22
requirements on false alarm and missed-detection probabilities

4This is the threshold if the decision statistic is selected as Λ =
[
∑N

n=1
|y(n)|2

]

/N .
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λ∗md ≈



1−
√

2

N





√
πu− π1/4

√

4P th
mda− 2a− u

(

2a(2P th
md − 1)

√
π +

√
πu− 2

)

2a(1−√
πu)







Nσ2
w (22)

λ∗md≈






1−

(

4a2−8
√
πav−

√
2
√

(

πv
(

(2P th
md − 1) (1 + 8a2)−(32a2−a−2) v

)

−8a4+4
√
πa2

(

a−2P th
mda+ 8av

))

)

γ̄

4 (
√
π (1 + 8a2) v − 4a3)






Nσ2

w

(25)
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N=2×103

Fig. 1: Approximate (low-SNR analysis) ROC curves (solid
lines) and simulated ROC curves (discrete marks) of AWGN,
Rayleigh and Nakagami-4 fading channels forN = 2 × 103

andN = 2× 105 at -20 dB SNR.

cannot be satisfied simultaneously in any case in the two
figures; whenN = 2× 105, the requirements can be satisfied
simultaneously for all cases in Fig. 1 except Rayleigh fading
case; whenN = 2 × 106, the requirements can be satisfied
simultaneously for all cases in Fig. 2. Thus, the impact of using
more samples, more diversity branches or more cooperative
nodes is clearly positive.

B. Low-SNR AUC approximations

By using eqs. (14) and (15), Table I lists results for three
channels and SLC. Our approximations match closely with
the simulations. As expected, AUCs for AWGN and Rayleigh
cases vary from the largest to the smallest. With SLC, a larger
number of branches leads to a higher AUC and provides better
overall detection capability. Obviously, a larger number of
samples also leads to a higher AUC confirming a better overall
detection capability.

C. Threshold selection

The optimal threshold,λ∗, is determined by minimizing
the total error rate as in (16). We denoteP ∗

e = Pe(λ
∗),

P ∗
f = Pf (λ

∗), andP ∗
md = Pmd(λ

∗). When γ̄ = −20dB and
N = 2 × 106, Fig. 3 and Fig. 4 show low-SNR approximate
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SLC L=2
SLC L=3
Cooperative K=2
Cooperative K=3

N=2×103

N=2×106

Fig. 2: Approximate (low-SNR analysis) ROC curves (solid
lines) and simulated ROC curves (discrete marks) of SLC
when L = 2, 3 and cooperative spectrum sensing when
K = 2, 3 for N = 2 × 103 andN = 2 × 106 over Rayleigh
fading at -20 dB SNR.

total error rates (analytical results represented by solidlines,
where the average missed-detection probability is calculated
based on our analysis in Section III-A) and simulated total
error rates (represented by discrete marks) versus the normal-
ized threshold for the AWGN, Rayleigh, Nakagami-2 fading
channels, cooperative spectrum sensing (K = 2), and SLC
diversity combining (L = 3). Since the analytical results
perfectly match the simulation results in Figs. 3 and 4, Table
II shows only the numerically calculated normalized threshold
values (̂λ∗f , λ̂∗md, λ̂

∗
e , λ̂∗) (λ̂∗f and λ̂∗md are calculated under

constraintsPf (λ) ≤ 0.1 and Pmd(λ) ≤ 0.1, respectively),
and numerically calculated false alarm probability, missed-
detection probability, and total error rate atλ̂∗e . In Table
II, the numbers in brackets are approximatedλ̂∗md and λ̂∗e
for Rayleigh fading channels based on (22) and (23) and
for Nakagami-2 fading channels based on (25) and (26).5

From Table II, we haveλ̂∗f < λ̂∗e < λ̂∗md for AWGN
channel, Nakagami-2 channel, SLC diversity combining, and
cooperative sensing, and thus,λ̂∗ = λ̂∗e . However, for Rayleigh

5For AWGN channels, we have exact analytical solution forλ̂∗

md andλ̂∗

e as
given in (18) and (19). For SLC or cooperative sensing over fading channels,
we do not have analytical results forλ̂∗

md and λ̂∗

e .
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Fig. 1 N = 2× 103 N = 2× 105 Fig. 2 N = 2× 103 N = 2× 106

AWGN 0.624085 (0.623489) 0.999217 (0.999174) SLC L = 2 0.663636 (0.662751) 0.995683 (0.995679)
Nakagami-4 0.622408 (0.62172) 0.974777 (0.97462) SLC L = 3 0.698242 (0.697292) 0.999455 (0.999455)

Rayleigh 0.616163 (0.615361) 0.895188 (0.895034)

TABLE I: AUC approximations and simulated values (in the brackets) for AWGN, Rayleigh, Nakagami-4 channels in Fig. 1
and SLC (L = 2, 3) in Fig. 2.

SLC L = 3 CooperativeK = 2
AWGN Rayleigh Nakagami-2 over Rayleigh over Rayleigh

λ̂∗

f
1.00091 1.00091 1.00091 3.00157 1.00116

λ̂∗

md 1.00908 1.00106 (1.0010) 1.00261 (1.00291) 3.01096 1.00383
λ̂∗

e 1.00498 1.00138 (1.0027) 1.00160 (1.00463) 3.00357 1.00192
Pf (λ̂

∗

e) 9.90× 10−13 0.02 0.004 0.002 0.007
Pmd(λ̂

∗

e) 9.90× 10−13 0.13 0.011 0.007 0.030
Pe(λ̂∗

e) 1.98× 10−12 0.15 0.015 0.009 0.037
λ̂∗ λ̂∗

e λ̂∗

md λ̂∗

e λ̂∗

e λ̂∗

e

TABLE II: Normalized threshold values (λ̂∗f , λ̂∗md, λ̂
∗
e , λ̂∗) and error probabilities (Pf , Pmd, Pe) at λ̂∗e for AWGN, Rayleigh and

Nakagami-2 channels, SLC, and cooperative spectrum sensing whenN = 2× 106 and γ̄ = −20dB. The numbers in brackets
are approximated̂λ∗md andλ̂∗e based on (22) and (23) for Rayleigh fading channels and basedon (25) and (26) for Nakagami-2
fading channels, respectively.λ̂∗f and λ̂∗md are calculated under constraintsPf (λ) ≤ 0.1 andPmd(λ) ≤ 0.1, respectively.
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0
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e

 

 

AWGN
Rayleigh
Nakagami−2
Cooperative K=2

Fig. 3: Approximate total error rate (solid lines) and simulated
total error rate (discrete marks) versus normalized threshold in
AWGN, Rayleigh and Nakagami-2 channels and cooperative
spectrum sensing (K = 2) over Rayleigh fading.

channel,̂λ∗f < λ̂∗md < λ̂∗e, and thus,̂λ∗ = λ̂∗md.

Next we focus on the IEEE 802.22 requirements for
spectrum sensing by using standard parameter values. These
requirements specify thatPf ≤ 0.1 andPmd ≤ 0.1, and that
the channel sensing timeτ ≤ 2 seconds. SinceN ≈ τfs
where fs is the sampling rate, which may depend on the
sampling frequency of the analog-to-digital converter (ADC)
and the FFT (fast Fourier transform) bin resolution,N cannot
be increased beyondτfs. In an experimental energy detection
implementation [42],fs is selected asfs = 62.5 kHz which
may be a typical test-bed FFT bin resolution for moderate or
high SNR. However,fs can take several mega-hertz in other
typical system implementations, e.g., some advanced ADCs

2.995 3 3.005 3.01 3.015 3.02 3.025
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized threshold

P
e

 

 
SLC L=3

Fig. 4: Approximate total error rate (solid lines) and simulated
total error rate (discrete marks) versus normalized threshold in
SLC (L = 3) over Rayleigh fading, forN = 2×106 at -20 dB
average SNR.

can operate atfs = 20MHz [43], 500 MHz [44], which may
benefit low-SNR sensing. In our work, we limitfs = 1MHz,
and thus the maximal value ofN is 2× 106 for 2 seconds of
sensing time.6

Fig. 5, Fig. 6, and Fig. 7 show analytical error rates
(represented by lines) and simulated error rates (represented
by discrete marks) at the optimal threshold (P ∗

f = Pf (λ
∗),

P ∗
md = Pmd(λ

∗), andP ∗
e = Pe(λ

∗)) versusN for fading chan-
nels (AWGN, Rayleigh and Nakagami-4), diversity technique
(SLC) and cooperative spectrum sensing with -20 dB average

6Since we only consider the sensing but not the subsequent processing, 2
seconds is used as a reference sensing time. For a fixedN , sensing time can
be proportionally reduced by using a higher sampling rate, e.g., we can have
2× 106 samples within 10 milliseconds atfs = 200MHz as in [45].
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(b) Rayleigh
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(c) Nakagami−4
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Fig. 5: Analytical error rates (lines) and simulated error rates
(discrete marks) at the optimal threshold value (total error:
P ∗
e ; false alarm:P ∗

f ; and missed-detection:P ∗
md) versus the

number,N , of samples at -20 dB average SNR for (a) AWGN;
(b) Rayleigh; (c) Nakagami-4 fading channels.
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Fig. 6: Analytical error rates (lines) and simulated error rates
(discrete marks) at the optimal threshold value (total error:
P ∗
e ; false alarm:P ∗

f ; and missed-detection:P ∗
md) versus the

number,N , of samples at -20 dB average SNR for SLC when
L = 2, 3.
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Fig. 7: Analytical error rates (lines) and simulated error rates
(discrete marks) at the optimal threshold value (total error:
P ∗
e ; false alarm:P ∗

f ; and missed-detection:P ∗
md) versus the

number,N , of samples at -20 dB average SNR for cooperative
spectrum sensing whenK = 2, 3, over Rayleigh fading.

SNR. The optimal threshold,λ∗, is calculated based on low-
SNR analysis in Section IV. Recall that an optimal threshold
can be found only whenλ∗f ≤ λ∗md, which is equivalent to
N ≥ Ns whereNs is the minimum number of samples to have
a feasible detection threshold that satisfies both requirements
on false alarm and missed-detection probabilities. Under this
condition (N ≥ Ns), we may have three possible cases such
as (i) λ∗f ≤ λ∗md ≤ λ∗e ; (ii) λ∗f ≤ λ∗e ≤ λ∗md; or (iii)
λ∗e ≤ λ∗f ≤ λ∗md. As examples given in Fig. 5, Fig. 6, and
Fig. 7, we do not have the third case.

Based on our analytical results in Fig. 5, Fig. 6, and Fig. 7,
the regions ofN for different possible cases are shown in
Table III.7 Table III also includes the minimal sensing time to
have a feasible detection threshold whenfs = 1 MHz, given
as τmin = Ns/(1 MHz), and the minimal sampling rate to
have a feasible detection threshold when the sensing time is2
seconds, given asfs,min = Ns/(2 sec). We use two cases in
Fig. 5: AWGN and Rayleigh fading cases, as examples. For
the AWGN channel, there is no feasible detection threshold
when N < Ns = 66345. When N ∈ [66345, 66747], we
haveλ∗f ≤ λ∗md ≤ λ∗e , the optimal threshold is determined
by the missed-detection probability requirement, and thus, in
this region ofN , P ∗

md keeps at 0.1, andP ∗
f is slightly below

0.1. WhenN ≥ 66748, we haveλ∗f ≤ λ∗e ≤ λ∗md, and the
optimal threshold is determined by minimizing the total error
rate. For Rayleigh fading channel, there is no feasible detection
threshold whenN < Ns = 1511174. WhenN varies from
Ns to 2× 106 (the maximal number of samples whenfs = 1
MHz and sensing timeτ = 2 seconds), we haveλ∗f ≤ λ∗md ≤
λ∗e, and the optimal threshold is determined by the missed-
detection probability requirement, and thus,P ∗

md keeps at 0.1

7Since analytical and simulation results in Fig. 5, Fig. 6, and Fig. 7 perfectly
match, we only use the analytical results to generate Table III.
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N τmin (sec) fs,min (kHz)
λ∗

f
> λ∗

md λ∗

f
≤ λ∗

md ≤ λ∗

e λ∗

f
≤ λ∗

e ≤ λ∗

md λ∗

e ≤ λ∗

f
≤ λ∗

md at fs = 1MHz at τ = 2 sec

AWGN ≤ 66344 [66345, 66747] ≥ 66748 – 0.07 33.2
Rayleigh ≤ 1511173 [1511174, 3871892] ≥ 3871893 – 1.51 755.6

Nakagami-4 ≤ 144841 [144842, 205432] ≥ 205433 – 0.14 72.4
SLC L = 2 ≤ 156004 [156005, 279605] ≥ 279606 – 0.16 78.0
SLC L = 3 ≤ 62358 [62359, 96276] ≥ 96277 – 0.06 31.2

CooperativeK = 2 ≤ 164896 [164897, 295947] ≥ 295948 – 0.16 82.4
CooperativeK = 3 ≤ 70742 [70743, 109650] ≥ 109651 – 0.07 35.4

TABLE III: The regions ofN for different cases ofλ∗f , λ
∗
md, λ

∗
e, the minimal sensing timeτmin at fs = 1 MHz, and the

minimal sampling ratefs,min at τ = 2 seconds.
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Fig. 8: Error rates versus the number of samples of con-
ventional and optimal threshold selection methods over
Nakagami-4 fading channels at -20 dB average SNR.

in this region ofN .
In the following, we focus on diversity-combining (SLC

with L = 2, 3) and cooperative spectrum sensing (K = 2, 3),
which can be used to increase the effective number of samples
in the decision statistic without increasing the sampling rate.
The Rayleigh fading channel is considered to establish the
worse case scenario. From Table III, for two or three diversity
branches in SLC,Ns is reduced fromNs =1511174 (no
diversity) toNs =156005 or 62359, respectively, which results
in the minimum sensing time atfs = 1 MHz as τmin ≈
0.16 or 0.06 seconds, and the minimal sampling rate at
τ = 2 seconds asfs,min ≈ 78.0 kHz or 31.2 kHz, respectively.
Similarly, for two or three cooperative nodes in a cooperative
spectrum sensing network withOR fusion rule, the minimum
sensing time isτmin ≈ 0.16 or 0.07 seconds, and the minimal
sampling rate isfs,min ≈ 82.4 kHz or 35.4 kHz, respectively.
Thus, to satisfy both IEEE 802.22 requirements on false
alarm and missed-detection probabilities, diversity combining
and cooperative spectrum sensing can significantly reduce the
required sensing time and/or the required sampling rate.

In Fig. 8, simulation results are provided to compare our
(optimal) threshold selection with a conventional threshold
selection (calculated fromPf = 0.1). A Nakagami-4 fading
channel with -20 dB SNR is considered. Note that conventional

threshold selection does not guarantee a bounded missed-
detection probability, which is evident from the figure. For
example, whenN < 144842, Pmd ≤ 0.1 is not satisfied, and
thus, excess interference to primary users can be generated.
WhenN ≥ 144842, the optimal and conventional threshold
selection can keep bothPmd andPf bounded by 0.1. But our
optimal scheme has a lower total error rate becausePf drops
dramatically, improving spectral efficiency.

D. Discussion for Case with Noise Uncertainty

Following [46], it is well known that uncertainty of the noise
power level can significantly degrade the spectrum sensing
capability of the energy detector. This has given rise to the
so-called SNR wall phenomenon. According to [46], noise
uncertainty is modeled asσ2

w ∈
[

(1/ρ)σ2
n, ρσ

2
n

]

whereσ2
n is

the nominal noise power andρ ≥ 1. Thus, if we denotePf and
PGen

md in (3) and (7) asPf |σ2
w

andPGen
md|σ2

w
, respectively, and de-

note the probability density function ofσ2
w ∈

[

(1/ρ)σ2
n, ρσ

2
n

]

asgσ2
w
(·), then the false alarm probability can be given as

Pf =

∫ ρσ2
n

(1/ρ)σ2
n

Pf |σ2
w
gσ2

w
(x)dx,

and the average missed-detection probability can be given as

PGen
md =

∫ ρσ2
n

(1/ρ)σ2
n

PGen
md|σ2

w
gσ2

w
(x)dx. (27)

However, the analytical complexity depends on the nature of
gσ2

w
(·) expression, and it may not guarantee a closed-form

and/or tractable expression for the threshold selection.
As an example, similar to [47], assumeσ2

w to be a uni-
form random variable between

[

(1/ρ)σ2
n, ρσ

2
n

]

. Considering
Nakagami-4 fading channel, we plot Fig. 9, based on (27) in
which PGen

md|σ2
w

is given in (9), withσ2
n = 1 andN = 2× 106.

Since largerρ means higher uncertainty, we can readily see
that the performance degrades rapidly with higherρ.

VI. CONCLUSION

This paper analyzed the performance of energy detection in
low SNR, deriving new missed-detection probability and AUC
expressions. The criterion for optimal threshold was formu-
lated to minimize the total error rate subject to bounded false
alarm and miss-detection probabilities. Optimal thresholds
were then derived for non-fading channels in closed-form and
for multipath fading channels in approximate form. Diversity
combining techniques and cooperative spectrum sensing were
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Fig. 9: Noise uncertainty:PGen
md versusρ.

shown to reduce the needed sensing time or sampling rate,
enabling low-SNR detection. Low-SNR detection can play a
useful role in the emerging cognitive radio networks.

While this paper considered a single secondary user and one
primary spectrum band, this setup can be extended to cases
with multiple secondary users and multiple primary spectrum
bands. In this context, our analytical framework can be usedto
derive the detection performance and/or to select the detection
threshold for any secondary user over any spectrum band. If a
traffic model is specified for the secondary users, interesting
future research topics may include optimal resource allocation
to maximize the secondary network throughput.

APPENDIX

A. Proof of Theorem 1

As λ varies from −∞ to ∞, Pf varies from 1 to 0.
Therefore, the area underPd versusPf curve can be written
as

A =

∫ 1

0

1

2
Erfc

(

σ0
σ1

Erfc−1(2x)− m1 −m0√
2σ1

)

dx

=

∫ +∞

−∞

1

2
Erfc

(

σ0
σ1
z − m1 −m0√

2σ1

)

e−z2

√
π
dz

(28)

where the second equality comes after substituting
z = Erfc−1(2x). Moreover, by using Erfc(x) =
(2/

√
π)
∫∞

x
e−w2

dw, and with some algebraic manipulations,
(28) can be re-written as

A =
1

π

∫ +∞

−∞

∫ +∞

σ0
σ1

z−
m1−m0
√

2σ1

e−(w2+z2)dwdz.

Now, we apply clockwise rotation to the (w, z) axis through
angleθ to generate the (u, v) axis wheretan θ = σ0/σ1, which
is also equivalent to axis transformation of

[

u
v

]

=

[

cos θ − sin θ
sin θ cos θ

] [

w
z

]

.
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Fig. 10: An illustration of complementary ROC curve.

This result gives

A =
1√
π

∫ +∞

−∞

e−u2

du
1√
π

∫ +∞

−
m1−m0√
2(σ2

0+σ2
1)

e−v2

dv

=
1

2
Erfc

(

− m1 −m0
√

2(σ2
0 + σ2

1)

)

,

(29)

where the second equality is due to(1/
√
π)
∫ +∞

−∞ e−u2

du = 1
and the definition of the Erfc(·) function. Expression (12) can
be obtained from (29) by using Erfc(−x) = 2− Erfc(x).

B. General Result to Achieve MinimumPe(λ) in Any Channel
Model

For any channel model (AWGN, Rayleigh, etc.), from [48,
Property 3&4, Page 33–34], it can be seen that the ROC curve
(i.e., Pd versusPf curve) is a concave curve and is above
curve “Pd = Pf ” in a Pd versusPf plot, which means that
the complementary ROC curve (i.e.,Pmd versusPf curve)
is a convex curve and is below the curve “Pmd + Pf = 1”
in a Pmd versusPf plot. An example of the complementary
ROC curve is shown in Fig. 10, in which the dashed-dotted
curve is the curve “Pmd + Pf = 1”. In the figure, when the
thresholdλ increases from 0 to∞, (Pf , Pmd) moves along
the complementary ROC curve from(1, 0) to (0, 1). Since
the complementary ROC curve is convex and is below curve
“Pmd + Pf = 1”, it can be concluded that when the threshold
λ increases from 0 to∞, total error ratePe(λ) = Pmd + Pf

first decreases (from value 1) and then increases (until value
1). So there exists one and only one pointλ that minimizes
Pe(λ), which is corresponding to the point with∂Pe(λ)

∂λ = 0.

C. Optimal Thresholdλ∗e for AWGN Channel

For the optimal threshold,λ∗e = argmin
λ
Pe(λ) is achieved

when ∂Pe(λ)
∂λ = 0. With the aid of (1), and

∂

∂x
Erfc

(

x− l

q

)

= −2e
−

(x−l)2

q2

q
√
π

,
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we can write

∂Pe(λ)

∂λ
=

e
−

(λ−N(1+γ)σ2
w)2

2N(1+2γ)σ4
w

√

2πN(1 + 2γ)σ2
w

− e
−

(λ−Nσ2
w)2

2Nσ4
w√

2πNσ2
w

= 0. (30)

After some algebraic manipulations and taking the logarithm,
(30) can be simplified into a quadratic equation ofλ as

λ2 −Nσ2
wλ− Nσ4

w

2

(

Nγ +
(1 + 2γ) ln(1 + 2γ)

γ

)

= 0.

Thus, the solutionλ∗e is given in (19) (here we omit the
negative root sinceλ ≥ 0).

D. Threshold Selections for Rayleigh Fading Channel

1) Thresholdλ∗md for Rayleigh Fading Channel:By using
the Taylor series expansions of Erfc(α), e2aα and Erfc(a+α),

we can writePRay
md (λ) in (21) as

P
Ray
md (λ) ≈ 1

2

(

1− ea
2

Erfc(a)
)

− aea
2

Erfc(a)α

+

(

a√
π
− a2ea

2

Erfc(a)

)

α2 +O(α3).
(31)

SettingPRay
md (λ∗md) = P th

md for the above equation,λ∗md(≥ 0)
can be selected as (22).

2) Thresholdλ∗e for Rayleigh Fading Channel:For mini-
mum Pe(λ), we set ∂Pe(λ)

∂λ = 0, which can be written with
the aid of (3) and (21) as

∂Pe(λ)

∂λ
=
ea

2+2aαErfc(a+ α)

2Nσ2
wγ̄

− e−α2

√
2πNσ2

w

= 0

⇐⇒ e(a+α)2Erfc(a+ α) =

√

2N

π
γ̄.

(32)

By using the Taylor series expansions ofe(a+α)2 and
Erfc(a+ α), we can write

e(a+α)2Erfc(a+ α) = ea
2

Erfc(a) +

[

2aea
2

Erfc(a)− 2√
π

]

α

+

[

(1 + 2a2)ea
2

Erfc(a)− 2a√
π

]

α2 +O(α3),

which can be used to solve (32). The solution is given in (23),
which achieves the minimumPe(λ).

E. Threshold Selections for Nakagami-2 Fading Channel

1) Thresholdλ∗md for Nakagami-2 Fading Channel: By
using the Taylor series expansions ofe−α2

, Erfc(α), e4aα,
and Erfc(2a+ α), we can writePNak

md (λ) in (24) as

PNak
md (λ) ≈

[

1

2
− 2a√

π
+

(

4a2 − 1

2

)

e4a
2

Erfc(2a)

]

+8a2
[

2ae4a
2

Erfc(2a)− 1√
π

]

α

+4a2
[

(

1 + 8a2
)

e4a
2

Erfc(2a)− 4a√
π

]

α2 +O(α3).

(33)

SettingPNak
md (λ∗md) = P th

md for the above equation,λ∗md(≥ 0)
can be derived as (25).

2) Thresholdλ∗e for Nakagami-2 Fading Channel:For min-
imum Pe(λ), after setting∂Pe(λ)

∂λ = 0 and some mathematical
manipulations, we can write

(a+ α)e(a+α)2Erfc(a+ α) = −Nγ̄
2 − 4

4
√
π

.

By considering the Taylor series expansion ofe(a+α)2 and
Erfc(a+ α), we can write

2√
π
(a+ α)2 − (a+ α) ≈ Nγ̄2 − 4

4
√
π

. (34)

By solving the above equation, we can getλ∗e as given in (26),
which minimizesPe(λ).
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