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Abstract—For spectrum sensing in cognitive radio networks,
the IEEE 802.22 standard requires the detection of primary
signals with a signal-to-noise ratio (SNR) as low as -20dB an

receiver sensitivity as low as -116dBm. Under such low-SNR

levels, the performance of a conventional energy detectorsi
analyzed in this paper. The analysis includes novel expreisss
for missed-detection probability and area under the receier

operating characteristic (ROC) curve. Thus, a unified framavork

covering fading channels, square-law diversity combiningnd co-
operative spectrum-sensing scenarios is developed. Theteetion

threshold is optimized to minimize the total error rate subject
to bounded false alarm and missed-detection probabilitiesvhich

outperforms traditional detection threshold selection. Numerical

results and Monte-Carlo simulation results with the IEEE 8(2.22
sensing requirements are provided and discussed.

Index Terms—Cognitive radio, energy detection, low-SNR,
spectrum sensing, threshold selection.

I. INTRODUCTION

satisfying the two requirements on false alarm and missed-
detection probabilities) with a very low signal-to-nois#io
(SNR), such as -20dB SNR with a signal power of -116 dBm
and a noise floor of -96 dBm [4]. Thus, spectrum sensing at
low SNRis vital.

Fortunately, a wide array of spectrum sensing techniques
such as energy detection, matched filter detection, cyclo-
stationary feature detection, covariance based deteetimh
others may be employed [5]-[19]. While those techniques
perform well at moderate and high SNRs, low-SNR operation
typically requires a large number of samples, which impacts
the sensing and processing time. For example, IEEE 802.22
limits the maximal detection latency to 2 seconds which may
include sensing time and subsequent processing time. This
maximal time limit is critical at low-SNR spectrum sensing.

Although spectrum sensing techniques at moderate and high
SNRs have been researched a lot [5]-[9], the low-SNR case
remains relatively unexplored. This case is treated foiffardi

ROADBAND wireless access using the television (TVgntial energy detection scheme of multi-carrier systeng.,(e
white space spectrum has been approved by the W8hogonal frequency division multiplexing [OFDM]) in [1,0

Federal Communications Commission (FCC). Among ther multi-antenna detectors (which improve the robustriess
standardization efforts [1], the IEEE 802.22 wirelessoagl noise uncertainty) in [11], [12], and for a covariance based
area network (WRAN), which is designed to operate in thgetection in [13]. Moreover, low-SNR cooperative spectrum
vacant TV bands, brings broadband access not only to the Wiensing techniques are considered for belief propagation i
devices but also to general mobile networks (e.g., micits;ce [14], for cyclostationary detection in [15], for optimalaging
pico-cells, or femto-cells), allowing the use of the coiyeit scheme in [16], and for multi-antenna with a noise-uncetyai
radio on a non-interfering basis [2]-[4]. free detector in [17]. These works consider a generalided li
However, cognitive radio requires spectrum sensing for ofjhood ratio (GLR) detector, an alternative energy detecio
portunistic spectrum access. If spectrum sensing failsgny cyclostationary feature detector, or a covariance bastett e,
users will have interference. For this reason, IEEE 802.22which the operating SNR ranges from -30dB to 0dB.
prescribes the false alarm and missed-detection probabili To complement those studies, we focus on energy detection,
be less than 0.1. Due to possible multipath fading andfshich has low complexity and low cost compared to other
shadowing caused by high-rise buildings, it is required thapectrum sensing techniques such as matched filter detectio
secondary users should reliably detect primary signags, (i.cyclostationary feature detection, etc. [20]. Before tha¢
briefly mention some of the limitations of the state-of-#me-
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o Average detection (or missed-detection) probability
derivation: In [21], the distribution of test statistic werd
each hypothesis follows a gamma distribution. Its cu-
mulative distribution function (CDF) expression includes
an incomplete gamma function. Only Gaussian channels
are considered in [21]. With this model, the average
detection probability under any fading channel has not
been derived in closed-form in the literature (probably
because of difficulties in further analysis with the in-
complete gamma function). In [6]-[8], [22], by modeling
the test statistic with its exact distribution, the aver-
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age detection probabilities; over fading channels are hypothesis#, (signal absent) = 0) and#; (signal present,
derived. TheseP,; expressions however include speciad = 1). Here, h, s(n) andw(n) denote the wireless channel
functions, infinite-order derivatives, and/or infiniteiest gain, thenth primary signal sample and theh additive white
Thus, computational complexity increases rapidly witkbaussian noise (AWGN) sample, respectively. The tessttati
N, the number of samples. In the low-SNR case, howevés, given asA = Zivzl ly(n)|>, where N is the number
N is several thousands, and thus, the resulting complexdf samples. If the test statistic is larger than thresha)d
is prohibitive. To reduce complexity, rather than using thiéne primary signal is deemed to be present, and it is absent
exact distribution of the test statistic, an approximatiootherwise.
can be used [21], [23]-[25]. But these works are limited The AWGN samplesv(n), n = 1,2,--- | N, are assumed
to Gaussian channels. For the low-SNR energy detectidn,be independent and identically distributed (i.i.d.xualarly
P, is derived for Rayleigh fading [26], and for Nakagamsymmetric complex Gaussian (CSCG) random variables with
fading [27] with an integral form. mean zero and variande{|w(n)|?] = o2, whereE[] stands

« Threshold selection: Traditionally, the threshold is sder expectation, i.e.w(n) ~ CA(0,02). We assume that the
lected to guarantee a given false alarm probability)( detector knows the noise power exactly with the help of agnois
For this purpose, the inversion of thfé; expression is power estimation technique [31]. Due to space limitatioe, w
needed. Closed-form inversion however is not possibé@nnot treat the case with noise uncertainty in detail is thi
using results in [6]-[8], [21], [22]. This difficulty is paper. However, a limited discussion can be found in Section
heightened for IEEE 802.22 which additionally require¥-D.
bounded missed-detection probabili,q and bounded  Fori.i.d. signal samples undef; , the following three signal
Py simultaneously. Although works in [28] and [29]models are widely used in the literature:
perform Central Limit Theorem (CLT)-based threshold « S1 y(n) is Gaussian with nonzero mean, i.e., for given

selection, they focus on non-fading scenarios only. channel gaim, E[y(n)] = hs(n) [6], and the received
In summary, analytical tools specifically for low-SNR en- ~ SNR can be defined as
ergy detector performance analysis and threshold sefectio |h|* % 27]:7:1 |s(n)|?
over fading and/or shadowing channels may not be available. Ts1= o2 :

Contributions:In this paper, we provide a rigorous unified
performance analysis for conventional energy detecticinén
low-SNR regime. In particular, this paper makes the follogvi
contributions:

1) Missed-detection probability and Area Under receiver *
operating characteristic (ROC) Curve (AUC) for dif-

: ) . ) SNR is the same assy, i.e.,vs3 = |h|?02 /02
ferent fading and networking scenarios are derive . “rs2 753 = [hl°o5 /oy,
. . L . or S2 and S3 with sufficiently large number of samples, the
overcoming the aforementioned limitations (i.e., com-

. . signal variance can be written by using its sample variasce a
putational complexity).

2) Optimal threshold is formulated subject to bounded 1 X 1 X 2
false-alarm and missed-detection probabilities. Approx- ol ~ N > Is(n)* - (N > S(”)) -
imate optimal threshold values are derived analytically. n=1 n=1

3) Using the derived analytical results, numerical exasiplgf the sample mean goes to zero, i.{eEle s(n)]/N -0,
for the IEEE 802.22 requirements are presented. Wegan o2 ~ [Zﬁ[ﬂ |s(n)|2]/N, and thus, the received SNRs

show that these stringent low-SNR requirements can Qgder the three signal models are approximately equalngive
achieved by sufficiently high number of samples angs

high sampling rate (MHz range). Moreover, cooperative |h|2% ij:l |s(n)|?
sensing or diversity combining can help greatly. o2 :

The rest of this paper is organized as follows. Section H digp s without loss of generality, we denote the SNR at the
cusses energy detection, the system, low-SNR approximatigeatector asy (i.e., v = ~s1,7s2 OF 7s3) for the rest of this
generalized SNR distribution, and the performance Measurganer.

Section Il analyzes the missed-detection probability A The distribution ofA for givenh can be modeled exactly for
for low SNRs. Sections IV is devoted to the analysis of)| three signal models, but not f@3 under,. Therefore,
the optimal detection threshold. Section V presents nurakri by using the CLT, the distribution of\ given i can be
and simulation results, followed by concluding remarks ignnroximated as a normal distribution for sufficiently karg
Section VI. Related proofs are provided in the AppendiXy 5 [25]

io[rgg] preliminary results of this paper have been presented J\/(Ncrfu,Ncrf;) o

' N (NoZ(1+7),Noh(1+2y)) : Hy with S1
Alh ~ or S3 (with complex-valued phase-shift
Il. ENERGY DETECTION PRELIMINARIES keying [PSK])

Depending on whether the primary signal is present or not, N (Nggu(l +7), Not (1 + 7)2) : M, with S2
thenth signal sampley(n) = 0hs(n)+w(n) follows a binary (1)

« S2 s(n) is a CSCG random variablg(n) ~ CN (0, 02),
thusy(n) ~ CN (0,02 +02) [12], and the received SNR
can be defined ass; = |h|?02/02.

S3 s(n) is a signal with zero mean anrd variance (dis-
tribution may be unknown [13]), and thus, the received
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The probability density function (PDF) of\ under H,, With the aid of (4), (5), Erf¢—x) = 2 — Erfc(z), and
denoted fA 3, (z), and the PDF ofA under #;, denoted some straightforward algebraic manipulations, averagseni-
Jam, (), can be derived from (1). Under the low-SNR asdetection probability over the generalized SNR distritu(S),
sumption { < 1), the signal has little impact on the variancelenotedPSS$", can be given as

of the test statistic undek ;. Thus, in the low-SNR regime,

expression (1) can be accurately approximated for any of thesgr, lia'/mx'@i_le_CimErfC< Ew N No2 — /\> e
Tl 2 '
i=1

three signal models as [26], [31] md V2No2
Aow|h ~ { ﬁ/f (%créj, ivafu) Nod ZO ) We now (_jefine an integral expr_essiﬁ(n,p, ¢, d), which will
( ow(l+7), %) RASE be used in subsequent analysis, as [34, eq. (2.8.9.1)]

While the exactP; and Png expressions are different for the o [ n e 2 0"(p)
three different signal modelsS{, S2 and S3), the adoption Z(n,p;c, d):/o " PPErfe(cr + d)dz = (1) apr
of (2) permits a unified and accurate treatment for the three (6)
signal models, as follows. Thus, this approximation (2)dedi where

for the rest of this paper. p2taped v
Based on (2), the false alarm probabiliy and the missed- b(p) = Erfc(d) —e e Erfc(d+ £)
detection probabilityPng(y) can be evaluated as D ’
2 noo.
Py = lErfC (%) (3) n is a positive integer, Re[> 0, ¢ > 0,d > 0, and 387 is
2 V2No3, the nth-order partial derivative with respect jo Therefore,
and PEe" can be derived for integes; as
1 A—=No2(1+7)
P =1 gere (AT N No? -\
2 2NO'%J PGenz_ azI i_la iy a0 = . 7
respectively, where Erfe) is the complementary error function -
[32] defined as Erfe:) = (2/y/7) [.° et dt. This novel closed-form expression has a low computational
Since Pra(7) depends on channel gain, a generalized SNRMPplexity because of the following reasons.
distribution is necessary to derive analytical resultsdvésr In (7), we need(s; — 1)th partial derivative (with respect

various cases with path loss, large-scale fading and/ot-sm#0 p) of ¥(p) with
scale fading. Thus, we use a mixture of gamma distributions N No2 )
[33] for v c=4\5, d= —F=—v,
2 V2No?2,

5

fo(x) :Zaixﬁi—le—ciwv x>0, ai, Bi, (; >0, (5) andp; can take valuess,---,f3s. For fading channels,
im1 diversity or cooperative networkg; value may be a fading

parameter, the number of diversity branches, or the number

whereS is the number of termsy;, §; andg; are parameters . cooperative nodes, which are small integer values. Eurth

that represent the potential fading and shadowing effecid, values of3; and S are typically small. Since)(p) includes

ZfZI o T(B:)¢; % = 1, wherel'(-) is the gamma function. It | tial and Erfe) functi fr_its derivati
is shown in [33] that the generalized SNR distribution (5) caon y exponential and Erfe) functions ofp, ts derivatives are

accurately represent all existing fading/shadowing ckémn also closed-form expressions for giveh and 5, including

di it bining techni q i 4 only exponential and Erfe) functions ofp. The particular
IVersity-combining techniques and cooperative Spec rur&pressions are omitted for brevity. The most importantif&ac
sensing networks.

that the computational complexity of (7) does not increaisle w
N (noting that the value ofV is typically several thousands
I1l. PERFORMANCEANALYSIS AT A LOow SNR in the low-SNR regime). In contrast to (7), the complexity of

This section, by using (5), develops a unified analysis fother existingP,; expressions in the literature increases with

r .
the low-SNR regime: i) average missed-detection prohgbili(}v’ for example: _ _
and ii) average AUC. Diversity combining and cooperative * Confluent Hypergeometric functions and Laguerre poly-

spectrum sensing are also investigated subsequently. nomials [6], and generalized Hypergeometric functions
[7] need infinite number of steps.

o The order of derivative equals the number of sampVes

A. Average Missed-Detection Probability for residue calculations, and subsequently infinite series
Given the AWGN expression (4), average missed-detection are used_in the calculation [8], or infinite-order derivatv
probability over fading channel®,q, can be calculated by are required [22].

directly averaging over the SNR distribution to yielhqy = Therefore, (7) is especially suited for the low-SNR regime,
15" Pmd(z) fy(z)dz. Next we present a unified approach foe.g., as used in the threshold selection analysis in Sebiion
this average, encompassing many existing fading channelsNow we consider special cases of (7). For Rayleigh fading,
diversity-combining techniques, and cooperative sensing the parameters ar8 = 1, a3 = 1/ (¥ is average SNR),
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81 = 1, and(; = 1/7. Then the average missed-detection If there are K cooperative nodes, each of which sends to

probabilitmeRjy is given as a fusion center its own decision on presence/absence of the
PN primary signal, and the fusion center uses theut-of-K
— No2 — ) L4 (Ve VT fusion rule, the false alarm probability;°°® and detection
Pog’ =~ 5 |Erfc | —==—] - o bability PS° at the f be wri
2 V2No? ®) probability P, at the fusion center can be written as
No2 — ) 1 K
X Erfc( Tw + )] Coop __ K i K—i
VaNo? | v/aN PE®=3 (7)) (1 =p)* T,
i=k

For a Nakagamin fading channel, the parameters are

m

where the notationy’ means f’ for false alarm and means

M g=m, =2 ‘d’ for detection. Here, the channels from the primary user to
L(m)ym™ v the cooperative nodes are assumed to be i.i.d., and thukeall
and the missed-detection probablllfy’\‘ak is cooperative nqdes can ac_h_leve identical false alarm prhﬂyab
py and detection probability,. Thus, the average missed-

—Nak 1 m\" N No2 —\ detection probability of cooperative spectrum sensing is
ak Z{m— 1, A\ 5 )

md " o7 (1) ' V2No?2 K
w K K—1i N1
GenCoop Gen _ pGen
©  Ppg a1 ;() (P (1-F%") . av

Similarly, the average missed-detection probabilitieserov
many other existing fading channels (not only multipatfyith PGen given in (7).

fading channels) such as Nakagami-lognorntdl, K¢, n-

1, Nakagamig (Hoyt), x-u, or Nakagamis (Rician) can be

derived easily after properly selecting the parameférs,;, B- Average Area under ROC Curve (AUC)

Bir ¢ 1=1,2,...,5). The ROC curve is the plot af; versusP; as threshold\
For the square-law combining (SLC) with a low SNR, thearies from 0 tosco. By eliminating the variable\, P; can be
false alarm probability and the missed-detection proligbil expressed as function df;. The area under the ROC curve

under AWGN channels can be evaluated as (3) and (#,the AUC, which varies betweef.5 and 1. It represents
respectively, withV replaced byL N (hereL is the number of the probability that the detector is more likely to choose th
diversity branches). For fading channels, denote the SNRR oeorrect decision than the incorrect decision [35]. In Tlesor
the branches ag, 7o, ..., 7L . If the PDF ofy = J;Zle 'yl-]/L 1, we derive a general expression for the AUC for AWGN
is modeled by using the generalized channef(&)th the aid channels.

of (7), the average missed-detection probability can b&velér

S:L o] =

v

Theorem 1. Define

as
1 A—myg 1 A —my
LN LNo2 —\ Py(\) = —Erfc< ) Pi(\) = —Erfc< >
Gen SLC w f ) d )
E 1 _— .
Fo il (BZ i\ 5 V2LNo2 ) 2 V200 2 V201

(10) which are functions of\ (—oco < A < 00),2 wheremg, my,
09, and o1 are real positive values such that, < m; and
oo < o1. By eliminating term), the two functions can be
combined as

1 /L\* 1 mi—m
=== =] . P, = —Erfc Erfc !(2P ! 0) ,
' I'(L) <7) d 2 (01 ( j) V201

p1 = L and¢; = L/4. Similarly, the average missed-detectioivhich represents th&, versusP; curve. Thus, the area under
probability over a Nakagamiz fading channel can be derivedthe P, VersusP; curve, A, is given as

by using (10) withS =1,

L (mL A:l_lErfc(%) 12)
al:F(mL)( ) ’ 2 2(0g +07)

By =mL and(; = mL/7. Prpof: See Appendix A. [ |
The instantaneous AUC of an energy detector at a low SNR

IAs special cases, the PDF of = [ 3L | ~;]/L when signals of the Can be deered from (12) by replacmgo = NoZ, my =

Thus, the average missed-detection probability over adRglyl
fading channel can be derived by using (10) with-= 1,

branches follow i.i.d. Rayleigh and Nakagamifading are No? (1 + 7)' ‘70 = NO’ , and ‘71 = NO’ , as
1 (L\* L,
fy(a =—(f) abte 7, 1 VN
" (L) \v A(y) =1 - 5Erfc -]
1 mL\™ . _mL,
P = oy () =

2This is the theoretical limit of\. But negative values of the threshald
respectively, wherg is the average SNR at each branch [6]. are not considered in practice.
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Now we derive the average AUC over the generalized SNSmpling rate. I} < A7, any A value within range\’, A" ||

md? md
distribution (5) asA®e" = fooo A(z) f(z)dz, to yield can satisfy both false-alarm and missed-detection cdntdra
s In this range, optimal\ is then selected by optimizing a
o~ ] — lz o /OO LBl =G @I s combination metric of bothP;(\) and Png()\). For this
2 p “Jo 2 purpose, the Bayesian cost [36], a popular metric to select
S the detection threshold [37]-[41], can be used. Minimizimg
-1+ 1 Z(_l)ﬁﬁlai Bayesian cost is equivalent to minimizing the total errdera
24 P.(\) 2 P;(X) + Pnd(N). Therefore, the threshold selection
9fi-1 /1 2 p 1 problem is formulated as
X 8.1 <—€WErfC (—) — —) 5 L.
apPfi=t \p vN/) p)| . minimize P (A) = P;(A) + Pra())
(13) subject to Py(\) < P (16)
where 3; is a positive integer, and the equality in the second Pra(N) < P

line of (13) comes after applying [34, eq. (2.8.5.4)]. This ) o
approximation can be used for many wireless channel modelsYVe first relax the two constraints in (16), and denote the
For example, the average AUC over a Rayleigh fading chann@Ptimal solution as\?. Then the optimal solution for problem

AR is (16), denoted\*, is given as
T~ 1 N eN+? eric( L./ L 7 (14) Asif NG < Afg and Al € [\, Andl,
2 2 ¥V N o A} or Ang, Whichever is closer ta; : if A} < Aqq
and the average AUC over a Nakagamifading channel, . . ind)‘ef [)‘f’ )
ANaK s no solution: if A} > Agg.
(1) Lpmm Since Py(A) does not depend on fading effect; can be
ANak ~ 1 + W derived regardless of any fading scenario by using (3) as
_ 15)
8m1(1p2 (p)l)‘ ( (2 B
X | —eNErfc| —= | — = Ni = | y/<Erfc™! (2P) +1 | No2. (17)
0 m—1 ’ f N f w
D P VN) p o
wherem is an integer. In the following, we derive exach’, and A} for AWGN
Similarly, for the SLC technique, the AUC over Nakagamighannels and approximate them for multipath fading_ channel
m fading channels can be derived by using (13) with Generally, for any fading model (%gu§S|an, Rayleigh, etc.)
. minimum P.(\) is achieved when% = 0, which is
B 1 mL\"™ B ~mL illustrated in Appendix B.
S_la O‘l_r(mL)(,)/) aﬁl_mLa <1_ /7 ’

and with N replaced by LN. For cooperative spectrumA. AWGN Channel

. Coop . B Coop
sensing, becausE; ™ is not expressible in terms df;"™, In this case, rather than using the low-SNR model in (2), we

the AUC can be expressed as an integral only, which cagqiqer the general SNR case in (1), which leads to closed-
be evaIL_Jated by numerlcal methods. However, a closed-foggy,, expressions of\*, and \?, as follows? For S1 or S3
expression appears intractable. signal model with any SNR valug, X\, can be derived by
using (1) as
IV. THRESHOLDSELECTION

Threshold selection is traditionally based on the falsenala )\* , = ( MErfc—l (2(1 _ Prwd)) + (14 7)) No2,
probability only, which, unfortunately, does not work for N
cognitive radio networks where missed-detection resuits i o . (18)
interference on primary users. While threshold selectidth w@nd A¢ is given by using (1) as
different objective functions (by relaxing some consttsliinas 1 \— No2
been performed in [28], [29] and many others, these papeps = argmin | 1 + ~Erfc (7“’)
focus on non-fading scenarios, or do not consider Bt \) A ( 2 V2No?,
and Py (\) simultaneously. 1 A= No2(1+7)

For a cognitive radio networkPma(A) and Pr(A) must - §EFC m
be below the thresholds denotéy, and P{. Since Prna()) 10w

increases and”;(\) decreases with threshold, these re- 2
(N No? <1+\/1+27(1+(1+27)1n(1+27)> )

quirements are equivalent b < A7y and A > A} where T NA2
Prd(Aa) = Py and Pr(X}) = PP _ o

If A} > Aqq then there is no feasiblé that satisfies
both fglse-alarm and m|5§ed'de_teCt|0n reqwrements, I:Wh“:3This implies that the derived (18), (19), and (20) are vatiohf low to
necessitates other remedial actions, such as increas@ng Hibh SNR.

(19)
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where the second equality comes as explained in Appendix C3) Nakagamin Fading Channel:For a given fading pa-
Similarly, \%q and \: for S2 signal model can be derived asrameterm, PN3k can be derived in closed-form by using (9),
which includes only exponential and Effcfunctions. Follow-

. ( /3(1 +)Erfe! (2(1 _ P‘hd)) 4 7)>N02 ing the similar procedure given in Section IV-B2, approxiena
m N m w?

Ang and A} for a general Nakagamiz fading channel can

) easily be derived analytically. Moreover, by keeping iasiag
v = Now (1 + \/1 n 2(2+v)In(1 +’Y)> (1 + ”Y> the number of terms of Taylor series expansions (e.g., poly-
2 1+3)

N~y nomial with degree greater than 2), we can find more accurate
(20) approximations for\;; and ;.

C. Diversity Combining or Cooperative Spectrum Sensing

) ) ) ) If SLC is used, the results in Section IV-A can be applied
In Rayleigh and Nakagami» fading in the low-SNR \ith N replaced byL N for SLC over AWGN in whichy =
regime, the exact closed-_f.o_rt)rind and\} are intractable from [ZiLzl ~i]/L, and numerical methods can be used for other
missed-detection probabilities (8) and (9), although nurae ¢, 4ing channels by using (10). Similarly, if cooperativesiag

computation is feasible. As a result, we derive approxiamti s sed, the optimal threshold can be determined by nunierica
for Rayleigh and Nakagan®-fading channels. Our procedureyethods by using (11).

can also be extended for arbitrary > 2. The approximations
and simulations are compared in Table Il in Section V
showing a close match.

1) Rayleigh Fading ChannelWe define

B. Multipath Fading

V. NUMERICAL/SIMULATION RESULTS AND DISCUSSION

This section provides numerical results based on our pre-
ceding analysis, and semi-analytical Monte-Carlo sinitat

A NoZ—-X A 1 results based on the system model in Section Il. Because all
= ANo2 a= V2N7 signal models perform more or less the same at low SNR,
w

simulation is limited toS1 signal model only.
—~Ray i i N 4
which will be used in this section. By using (gyRay()\) can The normalized thresholds defined as\ = A\/N.* The

be written as md noise variance_is set to2 = L. For SLC .and copperative
spectrum sensing, only Rayleigh fading is considered. The
S 1 . . . ° )
PnTSy(A) ~ - |Erfc(a) — 0’ ¢200 Erfe (a+a)l. (21) Raylelgh fading case p_rowdes a worst-case benchmark be
2 cause its performance is much worse than those of AWGN

. d Nak i 1) fadi h Is.
Thus, an approximate;;, can be calculated as (22) on thean akagamin (m > 1) fading channels

next page, where = ae® Erfc(a). The derivation is given in ) ) N
Appendix D1. A. Accuracy of our low-SNR missed-detection probability ex

The total error rate isP.(\) = Pr()\) + Pn'fj‘y(/\). For Pressions

minimum P,()\), an approximate threshold can be given as 1he ROC curves are calculated from (4), (8)-(11), and
simulated (Figs. 1 and 2). Specifically, Fig. 1 shows the ROC

curves for AWGN, Rayleigh and Nakagamfading channels
N1 _‘_L__ 2 + 2 (l—i— A /gﬁ _1> NU?,J- with -20 dB average SNR. The ROC curves are plotted in the
Ny VNm N N\m u range € [0.95,1.05] and A € [0.995,1.02] for N =2 x 103
(23) andN = 2 x 10°, respectively. Fig. 2 shows the ROC curves

The derivation is given in Appendix D2. of SLC with L = 2,3 and cooperative spectrum sensing (with
2) Nakagami2 Fading Channel:By using (9),pn'jgk(/\) for ORdecision fusion rule) withk' = 2, 3 over Rayleigh fading
Nakagami2 fading channel can be written as aty= -20dB whenN takes two values: wheV = 2 x 10,
the ROC curves are plotted in the ranges [1.92,2.10] and
PNak(\) ~ lErfC(a) — 2_a€7a2 A € [2.94, 3.10] for SLC with L = 2 and 3, respectively, and
2 VT (24) in the range\ € [0.95, 1.1] for cooperative spectrum sensing;

when N = 2 x 10%, the ROC curves are plotted in the range
A € [2.00,2.02] and A € [3.00,3.03] for SLC with L =
. 2 and 3, respectively, and in the rangec [0.99,1.03] for
T?‘f;/\md can be calculated as (25) on next page, where ., h0rative spectrum sensing. The analytical resulteptyf
a”e™® Erfc(2a). The derivation is given in Appendix E1. match the simulation results for a high and low number of
The total error rate isP.(\) = Pr(\) + Pad(\). For samples, and also for high and loi; and Py, confirming
minimum P (), an approximate threshold can be given asthe accuracy of our low-SNR approximations in (4), (8)-(11)
These figures show that whevi = 2 x 103, the IEEE 802.22
(\/E — /7T -8+ 2N’72)} No?. requirements on false alarm and missed-detection pratedil

1
+ <4a2 ~5 + 2aa> e4a264a°‘ErfC(2a + a).

o

2 1
st = - =
{ Ny 2v2N
L ) . ) . (26) 4This is the threshold if the decision statistic is selectexl a =
The derivation is given in Appendix E2. [N Jy(n)?]/N.
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D) \/Eu—ﬂl/‘l\/éng‘da—2a—u(2a(2P,§1hd— VT + /7Tu — 2)

ma ™ (1=~ No; 22
md N 2&(1 — \/Eu) Ow ( )
(4@2—8\/7?(11)—\/5\/(771) (2P% — 1) (1 4 8a2)—(32a%2—a~2) v) —8a*+4y/ma? (a—2P%a + 8av))) o )
a1 —
md 1/ (L + 8a%) v — 1a) No,
(25)

i o SLCL=2
3 ©  AWGN 4 s sLCL=3
0. + Rayleigh i 014 x  Cooperative K=2 ]
i 4 X Nakagami-4 { +  Cooperative K=3
o i i i i i ; : ; o ; i ; :
0 01 02 03 04 05 06 07 08 09 1 0 0.2 0.4 0.6 0.8 1
P P

f f

Fig. 1: Approximate (low-SNR analysis) ROC curves (soliffig- 2: Approximate (low-SNR analysis) ROC curves (solid
lines) and simulated ROC curves (discrete marks) of AwGNnes) and simulated ROC curves (discrete marks) of SLC

Rayleigh and Nakagamii-fading channels fotv = 2 x 103 when L. = 2,3 and cooperative spectrum sensing when
and N = 2 x 10° at -20dB SNR. K =2,3for N =2x 103 and N = 2 x 10° over Rayleigh

fading at -20dB SNR.

cannot be satisfied simultaneously in any case in the two

figures; whenV = 2 x 10°, the requirements can be satisfiedotal error rates (analytical results represented by dirlies,
simultaneously for all cases in Fig. 1 except Rayleigh fgdirwhere the average missed-detection probability is caiedla
case; whenV = 2 x 10°, the requirements can be satisfiethased on our analysis in Section Ill-A) and simulated total
simultaneously for all cases in Fig. 2. Thus, the impact afgis error rates (represented by discrete marks) versus theahorm
more samples, more diversity branches or more cooperatived threshold for the AWGN, Rayleigh, Nakagatnfading

nodes is clearly positive. channels, cooperative spectrum sensiing £ 2), and SLC
diversity combining { = 3). Since the analytical results
B. Low-SNR AUC approximations perfectly match the simulation results in Figs. 3 and 4, @abl

By using egs. (14) and (15), Table I lists results for threléshowg only the numerically calculated normalized thoddh
lues &%, Ang AL, A%) (A} and Ary are calculated under

channels and SLC. Our approximations match closely witht ) -z )
the simulations. As expected, AUCs for AWGN and RayleighonstraintsP¢(A) < 0.1 and Png(A) < 0.1, respectively),
cases vary from the largest to the smallest. With SLC, a fargdd numerically calculated false alarm probability, misse
number of branches leads to a higher AUC and provides betfi§tection probability, and total error rate af. In Table
overall detection capability. Obviously, a larger numbér d!» the numbers in brackets are approximatgg and A:

samples also leads to a higher AUC confirming a better overl Rayleigh fading channels based on (22) and (23) and
detection capability. for Nakagami2 fading channels based on (25) and (26).

From Table II, we have;\f; < AL < Apyg for AWGN
channel, Nakagami-2 channel, SLC diversity combining, and

C. Threshold selection cooperative sensing, and thug, = \*. However, for Rayleigh

The optimal threshold)*, is determined by minimizing

the total error rate as in (16). We den = P,(\*), . .
(16) ok e(A) SFor AWGN channels, we have exact analytical solution¥f; and A as

P; = Pf(/\*)' a:nd Pra = P—md()‘*) Wheny = —20dB a.nd given in (18) and (19). For SLC or cooperative sensing oveintachannels,
N =2 x 109, Fig. 3 and Fig. 4 show low-SNR approximateve do not have analytical results faf,, and Ax.
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N =2x10% N =2x10° Fig. 2 N =2x10% N =2x10°
0.624085 (0.623489) 0.999217 (0.999174)] SLCL = 2 | 0.663636 (0.662751) 0.995683 (0.995679
Nakagami4 | 0.622408 (0.62172)| 0.974777 (0.97462)|| SLCL = 3 | 0.698242 (0.697292) 0.999455 (0.999455
Rayleigh | 0.616163 (0.615361) 0.895188 (0.895034

TABLE I: AUC approximations and simulated values (in thedkets) for AWGN, Rayleigh, Nakagami-4 channels in Fig. 1

and SLC ¢ = 2,3) in Fig. 2.

SLICL=3 CooperativeK = 2
AWGN Rayleigh Nakagami2 over Rayleigh over Rayleigh
1.00091 1.00091 1.00091 3.00157 1.00116
1.00908 1.00106 (1.0010)| 1.00261 (1.00291) 3.01096 1.00383
1.00498 1.00138 (1.0027)| 1.00160 (1.00463) 3.00357 1.00192
) ][ 9.90 x 10-13 0.02 0.004 0.002 0.007
Prmd(A%) || 9.90 x 10713 0.13 0.011 0.007 0.030
Pe(Ar) || 1.98 x 10712 0.15 0.015 0.009 0.037
A* A Ard X X A

TABLE II: Normalized threshold values\{, Arq, A2, A*) and error probabilitiesRy, Prg, Pe) atA? for AWGN, Rayleigh and
Nakagami2 channels, SLC, and cooperative spectrum sensing when2 x 10% and¥ = —20dB. The numbers in brackets
are approximated;,; and\? based on (22) and (23) for Rayleigh fading channels and bais¢85) and (26) for Nakagan2i-

fading channels, respectively; and X;‘nd are calculated under constrain®(\) < 0.1 and Pna(A\) < 0.1, respectively.

o  SLCL=3
0ol 0.9F
08l 0.8f
07t 0.7F
06l 0.6
°
a® 05 o 05
04l 0.4
03l 0.3F
0.2F
0.2 *  AWGN
x  Rayleigh ) 01k
0.1 O Nakagami-2
+ Cooperative K=2f\ L e
0 - . - 2.995 3 3.005 3.01 3.015 3.02 3.025
0.995 1 1.005 1.01 1.015 1.02

g Normalized threshold
Normalized threshold

Fig. 4: Approximate total error rate (solid lines) and siated

Fig. 3: Approximate total error rate (solid lines) and siatetl 45 error rate (discrete marks) versus normalized thuielsin
total error rate (discrete marks) versus normalized thulesh g ¢ (L = 3) over Rayleigh fading, folV = 2 x 106 at -20dB

AWGN, Rayleigh and Nakagani-channels and cooperative(,;“,er(.jlge SNR.
spectrum sensing/{ = 2) over Rayleigh fading.

La < A5 and thus )\ = N benefit low-SNR sensing. In our work, we limft = 1 MHz,

Next we focus on the IEEE 802.22 requirements f@nd thus the maximal value df is 2 x 10° for 2 seconds of
spectrum sensing by using standard parameter values. TheE3SIng t'mé- _ _
requirements specify tha?; < 0.1 and Pg < 0.1, and that Fig. 5, Fig. 6, and Fig. 7 show analytical error rates
the channel sensing time < 2 seconds. SincéV ~ 7f, (represented by lines) and simulated error rates (reptesgen
where f, is the sampling rate, which may depend on th@y discrete marks) at the optimal thresholdl; (= Pr(\"),
sampling frequency of the analog-to-digital converter @D Fma = Pma(A"), andP; = F.(\*)) versusN for fading chan-
and the FFT (fast Fourier transform) bin resolutidhcannot nels (AWGN, Rayleigh and Nakagant); diversity technique
be increased beyondf,. In an experimental energy detectiofSLC) and cooperative spectrum sensing with -20dB average
implementation [42],f is selected afs = 62.5kHz which
may be a typical test-bed FFT bin resolution for moderate or’Since we only consider the sensing but not the subsequeaegsing, 2
high SNR. Howevery, can take several mega-hertz in oth seconds is used as a reference sensing time. For a/fixesknsing time can

X ) ! Sbe proportionally reduced by using a higher sampling ratg, &e can have
typical system implementations, e.g., some advanced ADZs 10% samples within 10 milliseconds gt = 200 MHz as in [45].

can operate af, = 20 MHz [43], 500 MHz [44], which may
channel A} < A;
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I
N}

(@) AWGN
02 ®®o0q ‘ ‘ : 0.18
1l ®000,, - * =P
2015F W ®®000g, —F 0.16]
£ 11.N_=66345 060y md
8 Il N266748 —o— P o I
Qo
Qe- 01l e |] 0.14
. 2 0.1
1" =
0.05 3 : : ; ; ; . § o1
6.5 7 7.5 8 8.5 9 9.5 10 [
N 4
(b) Rayleigh x10 0.08}
0.2 sy T T
| T o= 9 . L
IN_=1511174 T 00— e o oo Py o0
2 0.5} 0.04}
% I
8 017' 0.02
o | "“W“-*—*_,__x__x__x_ 05
I T
0.054 ; ; . ;
L5 16 vt 19 1062 Fig. 7: Analytical error rates (lines) and simulated errates
A (c) Nakagami-4 X (discrete marks) at the optimal threshold value (total rerro
B e ‘ ‘ ‘ Py; false alarm:P;; and missed-detectior;;) versus the
- osel e ek | number,N, of samples at -20 dB average SNR for cooperative
£ [ [ spectrum sensing whelt = 2, 3, over Rayleigh fading.
] | I
Qo
DE_ 0.1} TR |
| |
0.05 N SNR. The optimal thresholdy*, is calculated based on low-
14 15 16 17 18 19 2 21 22 SNR analysis in Section IV. Recall that an optimal threshold
N x 10° can be found only when\}; < A7, which is equivalent to

N > N, whereNy is the minimum number of samples to have
) ' ] ] ) a feasible detection threshold that satisfies both req@ntsn
Fig. 5: Analytical error rates (lines) and simulated erraes o, faise alarm and missed-detection probabilities. Unbisr t

(discrete marks) at the optimal threshold value (total rerrq.qngition (v > N.), we may have three possible cases such

Py false alarm:P;; and missed-detectior’; ) versus the ;¢ i) N) < Ang < A5 (i) A7 < AL < Ang or (iii)

number,N, of samples at -ZOdB average SNR for (a) AWGN}\: < A} < Ang As examples given in Fig. 5, Fig. 6, and
(b) Rayleigh; (c) Nakagami-fading channels. Fig. 7, we do not have the third case.

Based on our analytical results in Fig. 5, Fig. 6, and Fig. 7,
the regions of N for different possible cases are shown in
Table 1117 Table 11l also includes the minimal sensing time to
have a feasible detection threshold whgn= 1 MHz, given
as Tmin = Ns/(1 MHz), and the minimal sampling rate to
have a feasible detection threshold when the sensing tiie is
seconds, given ags min = Ns/(2 seg. We use two cases in
Fig. 5: AWGN and Rayleigh fading cases, as examples. For
the AWGN channel, there is no feasible detection threshold
when N < N, = 66345. When N € [66345,66747], we
have \} < A\py < AZ, the optimal threshold is determined
by the missed-detection probability requirement, and thus
this region of N, P4 keeps at 0.1, and; is slightly below
0.1. WhenN > 66748, we have/\f; < A < Ay and the
optimal threshold is determined by minimizing the totaloerr
rate. For Rayleigh fading channel, there is no feasibleatiet®
threshold whenV < N, = 1511174. When N varies from
N, to 2 x 105 (the maximal number of samples wh¢n= 1
Fig. 6: Analytical error rates (lines) and simulated ertes MHz and sensing time = 2 seconds), we have} < A\fy <
(discrete marks) at the optimal threshold value (total rerro\*, and the optimal threshold is determined by the missed-
Py false alarm:P;; and missed-detection’;) versus the detection probability requirement, and thug;, keeps at 0.1

number,N, of samples at -20dB average SNR for SLC when

L=2,3. Since analytical and simulation results in Fig. 5, Fig. & &ig. 7 perfectly
match, we only use the analytical results to generate Tdble |

o
N

Probability
o o o o o o o
=) o o o [N [ e H
5 1) ® = ) > o ©
T T T T

o
o
o

o

o
«
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N Tmin (sec) fs,min (kHZ)

NS g | N S g < [ N SN S g [ M SN < Aeg | atfs=1MHz | atrT =2 sec
AWGN < 66344 (66345, 66747] > 66748 - 0.07 33.2
Rayleigh < 1511173 | [1511174,3871892] > 3871893 - 1.51 755.6
Nakagami4 < 144841 [144842, 205432] > 205433 - 0.14 72.4
SLCL =2 < 156004 [156005, 279605] > 279606 - 0.16 78.0
SLCL =3 < 62358 (62359, 96276] > 96277 — 0.06 31.2
CooperativeK = 2 < 164896 [164897, 295947] > 295948 - 0.16 82.4
CooperativeK = 3 < 70742 [70743,109650] > 109651 — 0.07 35.4

TABLE IlI: The regions of N for different cases of\%, A} 4, AZ, the minimal sensing timey,;, at f; = 1 MHz, and the
minimal sampling ratef; i, at 7 = 2 seconds.

threshold selection does not guarantee a bounded missed-
detection probability, which is evident from the figure. For

o :Efm(:?::::::::nzn example, whe_rN < 144842, Pmd_ < 0.1 is not satisfied, and
P, (conventional) thus, excess interference to primary users can be generated
02r < — % — P, (optimal) 1 When N > 144842, the optimal and conventional threshold
018l R | =~ P OPImal ) selection can keep botRyq and Py bounded by 0.1. But our
o o6l i i optma) _|| optimal scheme has a lower total error rate becagselrops
g ol . dramatically, improving spectral efficiency.
["

o
[
N

D. Discussion for Case with Noise Uncertainty

Following [46], it is well known that uncertainty of the neis
power level can significantly degrade the spectrum sensing
capability of the energy detector. This has given rise to the
e so-called SNR wall phenomenon. According to [46], noise
140000 160,000 180,000 200,000 220,000 uncertainty is modeled as?, € [(1/p)0,217 poi] whereo? is

N the nominal noise power and> 1. Thus, if we denoté”; and

_ PSein (3) and (7) asPy,2 and PSS, , respectively, and de-

Fig. 8: Error rates versus the number of samples of con- o v md|or, 5 o

. . . note the probability density function of, € [(1/p)o2, po?]
ventional and optimal threshold selection methods over (), then the false alarm probability can ben ivennas
Nakagami4 fading channels at -20dB average SNR. 9o\ ) P y 9

po?
Py = / P02 go2 (2)d,
(1/p)o2

in this region of N. . _ . .
and the average missed-detection probability can be gigen a

In the following, we focus on diversity-combining (SLC
with L = 2,3) and cooperative spectrum sensirfg € 2, 3), —= pa —se—
which can be used to increase the effective number of samples Prd"= / ) Pmd|aﬁ}g<712u (z)dz. (27)
in the decision statistic without increasing the sampliatgr ) /el )

The Rayleigh fading channel is considered to establish tR@wever, the analytical complexity depends on the nature of
worse case scenario. From Table Il for two or three digrsidoz (1) €xpression, and it may not guarantee a closed-form
branches in SLC,N, is reduced fromN, =1511174 (no and/or tractable expression for the threshold selection. .
diversity) to N, =156005 or 62359, respectively, which results AS an example, similar to [47], assume, to be auni-

in the minimum sensing time af, = 1 MHz as 7w ~ form rand_om va_nable betwee[r(l/p)aﬁ,_pofl}. Considering _
0.16 or 0.06 seconds, and the minimal sampling rate ¥gkagami-4 fading channel, we plot Fig. 9, based on (27) in
7 = 2 seconds ag, mm ~ 78.0kHz or 31.2kHz, respectively. Which Prdhe is givenin (9), witho? =1 and N = 2 x 10°.
Similarly, for two or three cooperative nodes in a coopeeati Since largerp means higher uncertainty, we can readily see
spectrum sensing network withR fusion rule, the minimum that the performance degrades rapidly with higher

sensing time is,;, ~ 0.16 or 0.07 seconds, and the minimal

sampling rate isfs min ~ 82.4kHz or 35.4kHz, respectively. VI. CONCLUSION

Thus, to satisfy both IEEE 802.22 requirements on false This paper analyzed the performance of energy detection in
alarm and missed-detection probabilities, diversity commy  |ow SNR, deriving new missed-detection probability and AUC
and cooperative spectrum sensing can significantly rech&e &xpressions. The criterion for optimal threshold was formu
required sensing time and/or the required sampling rate. |ated to minimize the total error rate subject to boundesefal

In Fig. 8, simulation results are provided to compare oalarm and miss-detection probabilities. Optimal thregdhol
(optimal) threshold selection with a conventional thrddhowere then derived for non-fading channels in closed-forich an
selection (calculated fron?; = 0.1). A Nakagami-4 fading for multipath fading channels in approximate form. Diveysi
channel with -20 dB SNR is considered. Note that conventiom@mbining techniques and cooperative spectrum sensing wer
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Fig. 9: Noise uncertaintyPSe" versusp. Fig. 10: An illustration of complementary ROC curve.

shown to reduce the needed sensing time or sampling raEQ!S result gives

enabling low-SNR detection. Low-SNR detection can play a 1 too e 1 Foo 2
useful role in the emerging cognitive radio networks. A= ﬁ [m € duﬁ[ oy dv
While this paper considered a single secondary user and one V2(@g+e1) (29)
primary spectrum band, this setup can be extended to cases 1 my — mo
with multiple secondary users and multiple primary speutru = §ErfC Yo
bands. In this context, our analytical framework can be used (5 + 1)

derive the detection performance and/or to select the tietec where the second equality is due(ty/ /7) f+°° e du =1

threshold for any secondary user over any spectrum band. & the definition of the Erfe) function. Expression (12) can
traffic model is specified for the secondary users, inteTgstipe optained from (29) by using Efex) = 2 — Erfc(z).
future research topics may include optimal resource diloca

to maximize the secondary network throughput B. General Result to Achieve Minimufa(A) in Any Channel

Model

APPENDIX For any channel model (AWGN, Rayleigh, etc.), from [48,
Property 3&4, Page 33-34], it can be seen that the ROC curve
(i.e., Py versusP; curve) is a concave curve and is above
As X varies from —oco to oo, Py varies from 1 to O. curve “P; = P;” in a P, versusP; plot, which means that
Therefore, the area undél; versusP; curve can be written the complementary ROC curve (i.€Png versus P; curve)

A. Proof of Theorem 1

as is a convex curve and is below the curv&ng + Py = 1”
1q o0 my — mo in @ Png versusPy plot. An example of the complementary
A :/ 5Erfc (—Erfc1(2a:) - 7> dx ROC curve is shown in Fig. 10, in which the dashed-dotted
0 a1 V20, , (28) curve is the curve Png + Py = 1”. In the figure, when the
_ /+°° Lene <@Z omy — mo> 5 threshold\ increases from 0 tac, (P, Png) Mmoves along
o o1 V204 N3 the complementary ROC curve froii, 0) to (0,1). Since

h th q lit ft bstituti the complementary ROC curve is convex and is below curve
where Ine second equally comes —after sSUubstiuling ... Py =17, it can be concluded that when the threshold

_ —1 ; _
2= )Eorfciwz(fl:v). l\gor(_ecr)]ver, byl “;'”9 Erf(c_c) | —_Aincreases from 0 too, total error rateP,(\) = Pnd + Ps
(2/vm) [, e w, and with some algebraic manipulationsg . gecreases (from value 1) and then increases (untikevalu

(28) can be re-written as 1). So there exists one and only one palnthat minimizes
1 [too ptoo s o P.(\), which is corresponding to the point wil%’% =0.
A= —/ / e (W) dudz.
T J_co 20 ,_™m1-mQ
V2o

C. Optimal Threshold\} for AWGN Channel

Now, we apply clockwise rotation to thev(z) axis through  For the optimal threshold\} = arg min P,()) is achieved

angled to generate theu( v) axis whergan § = o /o1, which OP.(\) ) :
is also equivalent to axis transformation of when =53= = 0. With the aid of (1), and
(@=1)?

u | | cosf —sinf w EErfC r—1l\_ 2 @
v | | sinf  cosf z | Oz qa ) qvT
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we can write

(A=N(@1+7)02)? (A-No2)?
8Pe A T T2N(+2v)0d T T 2Nod
) _ e - —0. (30)
O\ 2N (1 + 2v)o2, V2rNo?2

After some algebraic manipulations and taking the logarjth
(30) can be simplified into a quadratic equation\oés
(I1+2y)In(1+ 27)) 0
v

Thus, the solution)\! is given in (19) (here we omit the
negative root since\ > 0).

N 4
)\Q—Noi/\—% <N7+

12

2) Threshold\; for Nakagami2 Fading Channel:For min-
imum P, (\), after setting
manipulations, we can write

OP.(\) _

Y 0 and some mathematical

_N3* -4

(ata)® —
(a+a)e Erfc(a + «) W

By considering the Taylor series expansion @+ and
Erfc(a + o), we can write

N72 —4

e (34)

i(a—l—a)z—(a—i—a)%

VT

By solving the above equation, we can gétas given in (26),

D. Threshold Selections for Rayleigh Fading Channel

1) Threshold\;,, for Rayleigh Fading ChannelBy using
the Taylor series expansions of Hifg, e>*~ and Erfda+ «),

1
we can writePrY()) in (21) as W

Ray \) ~ % (1 - e“zErfc(a)) — ae”Erfc(a)a

md
L (e
LS
Setting PraY(\sy) = Py for the above equationyy(> 0)
can be selected as (22).
2) Threshold\* for Rayleigh Fading ChannelfFor mini-
mum P.(\), we setapg—;” = 0, which can be written with
the aid of (3) and (21) as

)

2 (31)
— a’e” Erfc(a)) a® 4+ 0(a?).

(5]
(6]

OP.(\) e +200Erfe (0 + ) B e B 7]
2 2Nogy V2rNo?2, B

(32)
[8]

2N
e e Erfc(a+ a) = \/—7
T

By using the Taylor series expansions ef+®)’ and
Erfc(a + «), we can write

El

[10]
(a+a)2 _ a? a? e
e Erfc(a + a) = e* Erfc(a) + [2&6 Erfc(a) \/E} a ”
2\ _a? 20| 4 3
+ | (1 4 2a*)e* Erfc(a) NG o+ O0(a?),

which can be used to solve (32). The solution is given in (23[)1,2]
which achieves the minimur®.()).
[13]
E. Threshold Selections for Nakagatkading Channel
1) Threshold A}, for Nakagami2 Fading Channel: By
using the Taylor series expansions of’, Erfc(a), e,
and Erf¢2a + o), we can writePNak()\) in (24) as

m

+ (4a2 - %) 84a2EI’fC(2a):|

[14]

[15]

—Nak 1 2a
g\ ~ [5 v

2 4a® 1 [16]
+8a [2@6 Erfc(2a) \/E] « (33)
o2 4a [17]
+4a® [(1 + 8a®) e** Erfc(2a) — ﬁ] a® 4+ 0(a?).

Setting PN3k(\:4) = P, for the above equationy’ (> 0)
can be derived as (25).

(18]

which minimizesP. ().
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