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Abstract— This letter studies distributed opportunistic channel

access in a contention-based wireless network with decode-and-
forward relays. If a source wins a contention, the channel state
information in the first-hop channel is estimated, and a decision
is made for the winner source to either give up the transmission
opportunity and let all sources start a new contention, or transmit
to the relay. Once the relay gets the traffic, it may have a sequence
of probings of the second-hop channel. The optimal decision
strategies for the two hops are derived in this letter. Simulation
results show that our scheme is beneficial when second-hop
channels have larger average signal-to-noise ratio.

Index Terms— Opportunistic transmission, optimal stopping.

I. I NTRODUCTION

In a distributed wireless network, normally channel con-
tention is adopted, for example, by using handshakes of
request-to-send (RTS) and clear-to-send (CTS) before a data
transmission. To efficiently utilize the wireless channel,it may
be better if a source that wins the channel contention could
give up its transmission opportunity when its channel is not
good, i.e., it does not transmit upon reception of CTS, and
thus, all sources immediately start a new channel contention.
This idea is calleddistributed opportunistic channel access.
The challenge is: how does distributed opportunistic chan-
nel access achieve optimality in terms of maximal system
throughput? The challenge was addressed in [1]. A source
first sends a probing packet (e.g., RTS) to its destination
for channel contention. If the contention is successful, the
destination estimates the channel signal-to-noise ratio (SNR)
and feedbacks (e.g., by using CTS) to the source. If the channel
SNR is less than a threshold value, which can be numerically
calculated based on the users’ channel statistics, the source
gives up its transmission opportunity; otherwise, the source
transmits its traffic using the maximal achievable transmission
rate of the probed channel. Ref. [2], [3], [4] are follow-upsof
[1], considering that channel information is imperfect, multiple
transmissions are possible, and there exists a bound on the
average interval between two transmissions, respectively. For
wireless relaying networks, distributed opportunistic channel
access is investigated in [5] and [6] with amplify-and-forward
relays and decode-and-forward (DF) relays, respectively.In
specific, a distributed DF relaying network is considered in
[6], in which each source-destination pair is aided by a DF
relay. If a source has traffic to send, it sends a probing packet,
and based on reception of the probing packet, the information
of the first-hop channel SNR (from the source to its relay
and to the destination) is obtained. Then the source decides
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to 1) give up, or 2) transmit with direct link, or 3) continue
to probe the second hop (from the relay to the destination). If
the source decides to probe the second hop, the channel SNR
of the second hop is estimated, and it is decided either to give
up or to transmit (by using the direct link or the relay link,
whichever has better utility).

Different from [6], here we propose another method for
a distributed DF relaying network. A source also first sends
a probing packet, and after the first-hop channel SNR is
obtained, we propose that the source either gives up the
transmission opportunity or utilizes the first-hop channelfirst
(by transmitting to its relay and letting its relay wait for agood
second-hop channel to forward the received traffic, referred
to asrelay-waiting). The rationale for the relay-waiting is: if
the first-hop instantaneous SNR is good but the second-hop
instantaneous SNR is bad, the relay-waiting can still exploit
the good first-hop channel, while the scheme in [6] is very
likely to give up, thus wasting the good first-hop channel.
In this letter, we derive an optimal strategy for our proposed
scheme, and show that our scheme is beneficial when the
second-hop channels have larger average SNR.

II. SYSTEM MODEL

Consider a distributed DF relaying network withM source-
destination pairs. Each source-destination pair is assigned a
relay. First consider the case with direct links from sources to
destinations. Similar to [6], to probe the first-hop channels, a
source can send a probing packet. If there is no collision,
the probing packet is received by both its relay and its
destination. By reception of the probing packet, the relay
and the destination can estimate the channel SNRs from the
source to themselves. Then the relay reports its channel SNR
information to the destination, and the destination makes a
decision for the first hop (give up or transmit). For this
case, by reception of the reporting message from the relay,
the destination can actually estimate the channel SNR from
the relay to itself, and thus, the destination has complete
channel SNR information for the two hops: from the source
to the relay, from the source to itself, and from the relay to
itself. Then the destination can calculate the achievable end-
to-end transmission rate denoted asR between the source and
itself. Therefore, although the communication from the source
to the destination is with two hops, it can be treated as a
virtual one-hop communication with achievable rateR. So
the same method as that in [1] (which deals with single-hop
networks) can be used to find an optimal opportunistic channel
access strategy. Therefore, in this letter, we investigatethe
case without direct link between any source-destination pair.
For source-destination pairi, channels in the first hop (from
sourcei to its relay) and the second hop (from the relay to
destinationi) follow Rayleigh fading with average received
SNR beingηi andρi, respectively.

Similar to [1] [5] [6], the M sources use a channel con-
tention procedure as follows. At a minislot with durationσ,
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each source sends an RTS with probabilityp to its relay. So at
a minislot, if no source transmits, i.e., the minislot is idle (the
probability is(1− p)M ), then all sources start a new channel
contention in the next minislot; if more than one source send
RTS (the probability is1 − (1 − p)M − Mp(1 − p)M−1), a
collision happens, and thus, all sources start a new channel
contention after a time-out duration following the collision; if
only one source sends RTS (with probabilityMp(1−p)M−1),
we call the source awinner source. Definean observation as
the interval from the starting point of the channel contention
until a winner source appears (i.e., its RTS is successfully
received by its relay). The average duration of an observation
is τ1 = (1−p)M

Mp(1−p)M−1 · σ + 1−(1−p)M−Mp(1−p)M−1

Mp(1−p)M−1 (τRTS +

τtimeout) + τRTS , in which τRTS and τtimeout are RTS and
time-out durations, respectively.

At the end of an observation (say, observationn), the winner
source’s relay can estimate the channel SNR from the winner
source to itself by the RTS reception, and it decides from
two options: 1) optiongive-up: to give up the transmission
opportunity, and notify the source of the decision by sending
back a CTS. This CTS is also received by other sources. Thus,
subsequently all sources can start a new contention. 2) option
stop: to stop the process and utilize the first-hop transmission
opportunity, and send back a CTS to notify the decision. In
the CTS, a transmission rate denoted asRn is also indicated
for transmission from the winner source to the relay. Then the
winner source transmits for duration of a channel coherence
time denoted asτd by using transmission rateRn (the optimal
value ofRn is derived in Section IV). The subsequent action
of the relay is detailed in Section III.

For observationn, if the winner source stops, denote reward
Yn as the total amount of traffic that is sent by the winner
source and received by its destination, and denoteTn as the
time duration from observation1 until observationn plus the
time used for transmissions in the two hops. DenoteN as
the stopping time, i.e., the winner sources in the firstN − 1
observations do not stop, and the winner source in theN th
observation stops. This letter targets at an optimal stopping
time denoted asN∗, which makes the system achieve the
maximal system throughput, i.e.,

N∗ = arg supN≥0 E[YN ]/E[TN ] (1)

whereE[·] means expectation.N∗ is also referred to asoptimal
stopping strategy. Based on [7, Chapter 6], we can transform
problem (1) into a problem that maximizes rewardYN−λTN

with λ > 0. In specific, forλ > 0, an optimal strategy denoted
asN∗(λ) should be found, which maximizes expected reward
of the transformed problem:

U(λ) = supN(λ)≥0 {E[YN(λ)]− λE[TN(λ)]}. (2)

If we find a λ∗ such thatU(λ∗) = 0, an optimal strategy of
Problem (1) is given asN∗(λ) with λ = λ∗ [7].

From [7], an optimal strategy of Problem (2) exists if the
following two conditions are satisfied:E

[

supn (Yn−λTn)
]

<
∞; and lim sup

n→∞
(Yn − λTn) = −∞ almost surely. From

Sections III and IV it can be seen thatRn should be finite
(because ifRn = ∞, the probability for a relay to have a good

enough second-hop channel to forward its received traffic is
zero). AsYn ≤ Rnτd, the first condition is apparently satisfied.
Sincelim sup

n→∞
Tn = ∞, the second condition is also satisfied.

Therefore, an optimal strategy of Problem (2) exists.
An optimal strategy of Problem (2) has two parts: optimal

first-hop and second-hop strategies, discussed next.

III. STRATEGY FOR THESECOND HOP

Consider observationn. Here we first try to find an optimal
strategy for the second hop, i.e., we assume that the winner
source, denoted asw(n), stops and transmits to its relay with
rate Rn. For the second hop, the relay should find its best
strategy. The relay first sends an RTS to the destination, and
the destination estimates the second-hop channel SNR denoted
as rg and feedbacks a CTS that includes the channel SNR
information, referred to as achannel probing. If the achievable
second-hop transmission rate, given aslog2(1 + rg), is not
less thanRn, the relay transmits to the destination by using
transmission rateRn with duration τd; otherwise, the relay
decides to give up or to continue channel probing. If the relay
decides to give up, all sources start a new channel contention.
If the relay decides to continue channel probing, the relay
waits for channel coherence timeτd and has a new RTS-CTS
exchange with the destination (a new channel probing), and
transmits if the achievable second-hop transmission rate is not
less thanRn, or decides to give up or to continue channel
probing otherwise. This procedure is repeated until the relay
transmits or gives up. So there are a sequence of decisions in
the second hop, which is challenging. To address this, we take
a new viewpoint for second-hop strategies, as follows.

DenoteSl as the second-hop strategy that the relay can have
up to l channel probings of its channel to the destination. So
if the relay cannot find a second-hop channel realization with
achievable rate not less thanRn within l channel probings,
the relay is forced to give up. DenoteV l(λ) (which is a
function of λ) as the net reward of strategySl. Therefore,
an optimal second-hop strategy should achieve net reward
max{E[V 1(λ)],E[V 2(λ)], ...,E[V ∞(λ)]}. We have

E[V l(λ)] = Pr[r1g ≥ rn](Rnτd − λτ2)

+ Pr[r1g < rn, r
2
g ≥ rn](Rnτd − 2λτ2) + ...

+ Pr[r1g < rn, ..., r
l−1
g < rn, r

l
g ≥ rn](Rnτd − lλτ2)

+ Pr[r1g < rn, ..., r
l−1
g < rn, r

l
g < rn]

× (−(l − 1)λτ2 − λ(τRTS + τCTS)) (3)

in which Pr[·] means probability,τCTS is CTS transmission
duration,τ2 = τRTS + τCTS + τd is the time cost for probing
and waiting (or transmission) in the second hop,rn , 2Rn−1
is the minimum required SNR of the second hop for achievable
transmission rateRn, and r1g , r

2
g , ..., r

l
g are channel SNRs of

1st, 2nd, ...,lth channel probing of the relay. We have

E[V ∞(λ)] = Pr[r1g ≥ rn](Rnτd − λτ2)

+ Pr[r1g < rn, r
2
g ≥ rn](Rnτd − 2λτ2) + ...

+ Pr[r1g < rn, ..., r
l−1
g < rn, r

l
g ≥ rn](Rnτd − lλτ2)

+Pr[r1g<rn, ..., r
l−1
g <rn, r

l
g<rn](E[V

∞(λ)]− lλτ2). (4)
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DenoteFw(n)(·) as the cumulative distribution function of the
SNR of the second-hop channel of winner sourcew(n)’s relay.
From (3) and (4), we have

E[V ∞(λ)]−E[V l(λ)] =(Fw(n)(rn))
l(E[V ∞(λ)]−λτd). (5)

From (5) with l and (5) withl + 1, we have

E[V l+1(λ)]− E[V l(λ)]

= (Fw(n)(rn))
l(1 − Fw(n)(rn))(E[V

∞(λ)] − λτd). (6)

Thus, if E[V ∞(λ)] ≥ λτd, from (6) we haveE[V 1(λ)] ≤
E[V 2(λ)] ≤ ... ≤ E[V ∞(λ)], which means the optimal
second-hop strategy should be: the relay keeps probing the
second-hop channel until the achievable rate is not less than
Rn. On the other hand, ifE[V ∞(λ)] < λτd, from (6) we have
E[V 1(λ)] > E[V 2(λ)] > ... > E[V ∞(λ)], which means the
optimal second-hop strategy should be: the relay probes the
second-hop channel only once, and transmits if the achievable
transmission rate is not less thanRn, or gives up otherwise.

IV. STRATEGY FOR THEFIRST HOP

Based on the derived optimal second-hop strategy, now we
derive an optimal strategy for the first hop. In the first hop, at
observationn, when the RTS of the winner source denoted as
w(n) is received by its relay and the first-hop channel SNR
denoted asrf (n) is estimated, the decision is either give-
up or stop (i.e., to transmit), whichever has higher reward.
If the decision for the first hop is give-up, the net reward is
−λτCTS (since a CTS is needed to notify the decision); if
the decision for the first hop is to transmit, the net reward is
max {E[V 1(λ)],E[V 2(λ)], . . . ,E[V ∞(λ)]}−λ(τCTS+τd), in
which τCTS + τd is time cost in the first hop: the relay uses
a CTS to notify the source of the decision and the source
transmits withτd duration.

First considerE[V ∞(λ)] < λτd for the second hop. Then
from Section III,max{E[V 1(λ)],E[V 2(λ)], . . . ,E[V ∞(λ)]} =
E[V 1(λ)]. So the net reward of transmission in the first hop
is E[V 1(λ)] − λ(τCTS + τd). SinceE[V ∞(λ)] < λτd, from
(5) with l = 1 we have

E[V 1(λ)] = (1−Fw(n)(rn))E[V
∞(λ)]+Fw(n)(rn)λτd < λτd

which leads toE[V 1(λ)]−λ(τCTS +τd) < −λτCTS . In other
words, the net reward of transmission in the first hop is less
than the net reward of give-up in the first hop, and thus, the
winner source will always give up in the first hop. Therefore,
when we calculate the net reward of transmission in the first
hop, we can ignore “E[V ∞(λ)] < λτd”. Thus, we focus on
E[V ∞(λ)] ≥ λτd, and from Section III, the net reward of
transmission (stopping) in the first hop is

E[V ∞(λ)]− λ(τCTS + τd)

(a)
=Rnτd −

1

1− Fw(n)(rn)
λτ2 − λ(τCTS + τd)

(b)
=τd log2(1 + rn)− λτCTS − λτd − λe

rn
ρw(n) τ2

(7)

in which (a) comes fromE[V ∞(λ)] = Rnτd − λτ2
1−Fw(n)(rn)

which is from (4) withl = 1, and(b) is fromFw(n)(rn) = 1−

e
−

rn
ρw(n) (Rayleigh fading) andrn , 2Rn − 1. The net reward

(7) is not a monotonically increasing function ofrn. Next we
set up an optimalrn that makes the net reward maximal.

For winner sourcew(n), define functionφ(xw(n)) =

τd log2(1+xw(n))−λτCTS−λτd−λexw(n)/ρw(n)τ2, which is a
concave function ofxw(n). To find the optimalxw(n), denoted

x∗
w(n), that maximizesφ(xw(n)), we can solve

dφ(xw(n))

dxw(n)
= 0,

which leads to

τd
(1 + x∗

w(n)) ln 2
=

λ

ρw(n)
e

x∗
w(n)

ρw(n) τ2. (8)

x∗
w(n) can be calculated from (8) numerically. Sorn should

be set tox∗
w(n) if feasible. However, it may not be feasible to

setrn to bex∗
w(n) sincern should be not more than the first-

hop channel SNRrf (n). Thus, overall we should setrn =
min{rf (n), x

∗
w(n)} andRn = log2(1 + min{rf (n), x

∗
w(n)}).

Recall that an optimal stopping strategy of Problem (2) with
λ∗ satisfyingU(λ∗) = 0 is an optimal stopping strategy of
Problem (1). So next we focus on optimal stopping strategy
of Problem (2) withλ∗. Maximal expected rewardU(λ∗) of
Problem (2) should satisfy an optimality equation [7]:

M
∑

w(n)=1

1

M
Ew(n)

[

max
{

τd log2(1 + min{rf (n), x
∗
w(n)})

−λ∗(τCTS + τd + e

min{rf (n),x∗
w(n)

}

ρw(n) τ2), U(λ∗)− λ∗τCTS

}]

− λτ1 = U(λ∗)

in which 1/M is the probability for a source to be the winner
source, andEw(n)[·] means expectation whenrf (n) follows
Rayleigh fading with mean SNR beingηw(n) (i.e., sourcew(n)
is the winner source).λ∗ can be calculated numerically from
the optimal equation by settingU(λ∗) = 0.

Accordingly, an optimal stopping strategy for winner source
w(n) in the first hop is given as

N∗(λ∗) = min
{

n ≥ 1 : τd log2(1 + min{rf (n), x
∗
w(n)})

− λ∗(τCTS + τd + e

min{rf (n),x∗
w(n)

}

ρw(n) τ2) ≥ −λ∗τCTS

}

(9)

in which x∗
w(n) can be calculated from (8) withλ = λ∗.

For each winner sourcew(n), the left-hand side of the
inequality in (9) is a non-decreasing function ofrf (n). De-
note r̂f,w(n) as the solution ofrf (n) that makes two sides
of the inequality in (9) equal. Then the optimal stopping
strategy in the first hop is rewritten asN∗(λ∗) = min

{

n ≥
1 : rf (n) ≥ r̂f,w(n)

}

. Overall, the proposed scheme works
as follows. After a successful channel contention, winner
sourcew(n)’s relay compares the first-hop channel SNRrf (n)
with the thresholdr̂f,w(n): if rf (n) < r̂f,w(n), the first-
hop decision is give-up; otherwise, the first-hop decision is
stopping, i.e., sourcew(n) transmits with rateRn = log2(1+
min{rf (n), x

∗
w(n)}). Subsequently the relay keeps probing the

second-hop channel and comparing the second-hop achievable
rate withRn. If the second-hop achievable rate is larger than
Rn, the relay transmits; otherwise, the relay keeps probing and
comparing until it transmits eventually. Note that the values
of r̂f,w(n) andx∗

w(n) for w(n) = 1, 2, ...,M can be calculated
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off-line, and thus, only one comparison is needed for the first-
hop decision and a few comparisons are needed for the second-
hop decision. Similarly, for the scheme in [6], only a few
comparisons are needed in its two-level decisions. Thus, the
computation complexity in each scheme is very low, and can
be expressed asO(1) since the complexity is not a function
of the number of users.1

V. PERFORMANCEEVALUATION

We use simulation to evaluate the proposed scheme, the
scheme in [6] (with direct links not considered), and a naive
scheme that utilizes all transmission opportunities (which is
actually the scheme in [6] that never gives up in the first and
second level decisions). The simulated network has 18 source-
destination pairs, with other parameters as: system bandwidth
is 2MHz, σ = 20µs, τRTS = 103µs, τCTS = τtimeout =
106µs, τd = 8ms,p = 0.1, ηi = 1 ∀i, ρi = ρ ∀i. We vary the
second-hop average SNRρ from 1 to 20.

Consider that each source has an infinitely backlogged
queue. Fig. 1 shows the system throughput of the three
schemes. Our scheme and the scheme in [6] have much better
performance than the naive scheme. Whenρ is below 5, the
scheme in [6] achieves higher system throughput (for example,
whenρ = 2, throughput of the scheme in [6] is28% higher
than that of our scheme). Whenρ > 5, our scheme achieves
better throughput performance (for example, whenρ = 20,
throughput of our scheme is14% higher than that of the
scheme in [6]). Fig. 1 also shows the average number of
second-hop probings per transmission in our scheme. The
number is not large, and decreases whenρ increases.

Now we evaluate delay performance which is important for
delay-sensitive applications. Since delay-sensitive applications
often have periodic traffic arrivals, we consider that each
source has periodic packet arrivals with packet inter-arrival
duration being10 ms. Each packet has500 bits. Definepacket
delay as the duration from a packet arrival until the moment
when the packet is transmitted. Fig. 2 shows average packet
delay in the three schemes. Whenρ = 1, the traffic load
is more than the system capacity, and thus, the packet delay
is large in the three schemes. Whenρ increases, the system
capacity increases, and the packet delay decreases. Forρ ≥ 2,
the packet delay of our scheme and the scheme in [6] are
similar and are less than10% of that in the naive scheme.
This is because, by giving up transmission opportunity (in our
scheme and the scheme in [6]) and/or letting relays wait (in

1In this work, we focus on throughput maximization. Thus, sources with
good average channel gains get more chances to transmit. If fairness is also
required, the following modification can be taken. First consider animaginary
network with independent and identically distributed (i.i.d.) first-hop channels
with mean SNR being(

∑M
i=1

ηi)/M and i.i.d. second-hop channels with
mean SNR being(

∑M
i=1

ρi)/M . Then our scheme is applied to find optimal
strategies for the two hops. The first-hop strategy is to compare rf (n) with
a threshold that is common for all sources. We can calculate the probability
that a winner source will stop (the probability that the first-hop instantaneous
SNR is not less than the threshold), denoted asα. Then, for the real network,
for the first-hop, the threshold for sourcei is set up such that the probability
that sourcei’s first-hop instantaneous SNR is not less than the thresholdis
equal toα; and if the first-hop decision is stopping, the relay keeps probing
the second hop until a good enough second-hop channel is observed. By this
setting, each source has the same chance in channel access.
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Fig. 1: Throughput (unit: 0.2 Mbps) of three schemes, and average
number of second-hop probings per transmission in our scheme.
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Fig. 2: Average packet delay.

our scheme), each transmission can have a higher rate, and
thus, queueing delay in the system decreases.

Overall, an adaptive scheme can work as follows. By
normalizing the first-hop average SNR to be1, the curves
of system throughput vs. second-hop average SNRρ can be
numerically plotted off-line for our scheme and the scheme
in [6], similar to plotting the two upper curves in Fig. 1. The
intersection of the two curves gives a thresholdρ† (which is
approximately5 in the example of Fig. 1). Then our scheme
should be used whenρ is more thanρ†, and the scheme in [6]
should be used otherwise. This adaptive scheme can achieve
good performance in low to high SNR.
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