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Abstract— This paper investigates the problem of traffic
scheduling between roadside units (RSUs) in a vehicular delay
tolerant network. A source RSU needs the help of passing-by
vehicles to forward its traffic to a destination RSU. Costs are
associated with energy consumption and information loss. When
a vehicle arrives, the source RSU needs to decide whether to stop,
i.e., transmit its traffic to the vehicle, or skip this vehicle and
continue to wait for other vehicles. The source RSU’s objective is
to achieve the minimal rate of cost. In this paper, we theoretically
derive an optimal stopping strategy of the source RSU. Simulation
results are presented to show the effectiveness of the derived
strategy.

Index Terms— Vehicular delay tolerant networks, traffic
scheduling, optimal stopping.

I. INTRODUCTION

Traffic scheduling problems in vehicular delay tolerant
networks (VDTNs) have been attracting increasing research
interests in the past years. One type of VDTN is installed
in less-populated remote areas, which includes a number of
roadside units (RSUs), and only a limited number of RSUs
have connection to backbone networks [1]. The isolated RSUs
(i.e., the RSUs without backbone network connection) are de-
ployed to serve as gateways for sensor networks (for example,
sensor networks for monitoring environment or wildlife [2]–
[5]) in less-populated remote areas. Since it may be costly
to set up direct communication connections from the isolated
RSUs to backbone networks, passing-by vehicles may provide
a solution: passing-by vehicles can help forward traffic (e.g.,
sensed data) from isolated RSUs to RSUs that have connection
to backbone networks [6]. When a vehicle arrives at a source
RSU that is isolated, the source RSU may send its traffic
to the vehicle, and then the vehicle stores the traffic in its
local buffer and forwards the traffic to a destination RSU
with backbone network connection when the vehicle arrives at
the destination RSU [7]. The destination RSU then forwards
(through backbone networks) the traffic to a data center that
processes the data.
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For such RSU-to-RSU communication in a VDTN, in
general, delay (the duration from the moment that the traffic
arrives at the source RSU until the moment that the traffic is
delivered to the destination RSU) can be tolerated to a certain
level. However, it is still desirable that the traffic is delivered
before it becomes expired [8]–[10]. In other words, there is
a delay bound associated with each traffic unit. In RSU-to-
RSU communication, the delay of the traffic is composed
of two parts: Queueing delay at the source RSU (from the
moment that the traffic arrives until the moment that the traffic
is sent to a passing-by vehicle) and transit delay (from the
moment that the passing-by vehicle receives the traffic until
the moment that the vehicle arrives at the destination RSU
and forwards the traffic). There is a tradeoff between these
two delay components. If each passing-by vehicle is used
to forward traffic, then we can keep the smallest queueing
delay; however, low-speed vehicles may make the transit delay
very large. On the other hand, if only high-speed vehicles are
selected to help, then we can keep small transit delay; however,
the queueing delay might be out of control since it might
take a long time for the next high-speed vehicle to arrive.
Therefore, the source RSU should strike a balance between
queueing delay and transit delay. In [11], the traffic to be sent
is either a finite-size file or an infinite-size file. For the first
case, the finite-size file is partitioned into segments, and the
tool of Markov decision process is used so as to minimize the
time needed by the destination RSU to receive all segments of
the file. For the second case, there are an infinite number of
segments in an infinite-size file, and thus, the tool of Markov
decision process is used to achieve the minimum average delay
of a segment. It can be seen that both queueing delay and
transit delay are considered in [11]. In [12], when the source
RSU is waiting for vehicles, its incoming traffic is aggregated
into a bundle. The probability that a passing-by vehicle arrives
at the destination later than the next vehicle does is calculated,
and upon arrival of a vehicle, the source RSU transits to the
vehicle with that probability.

For the isolated RSUs in a VDTN, it is also likely that they
are powered by batteries or renewable energy (for example,
solar power). Therefore, energy consumption of the RSUs is
another important performance measure in VDTNs [13]–[16].
In [13], the objective is to design a scheduling algorithm that
achieves minimum energy consumption of the RSUs while
satisfying passing-by vehicles’ communication requirement.
It is shown that vehicles that are closer to the RSU and
with higher speeds should be picked up. In [14], each packet
has a delay bound deadline, and packets that have not been
received at the destination by the deadline will be discarded
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at the source node. The source node probabilistically sends
its traffic to a vehicle, and the optimal probability to send
traffic (i.e., the probability that achieves the highest successful
delivery probability under a constraint of energy consumption)
is obtained. In [15] and [16], in addition to energy used
for data transmission, energy used by the source RSU to
detect a passing-by vehicle is also taken into account. By
distributing available energy for vehicle detection and data
transmission, the RSU maximizes the probability of successful
traffic delivery prior to a delay bound, for two-hop routing case
in [15] and epidemic routing case in [16].

Both queueing delay and energy consumption are taken into
account in [17]. Cost is charged 1) for consumed energy to
send information, and 2) when there is information loss due
to delay bound violation. An optimal scheduling strategy, in
which the rate of cost (i.e., the average cost per unit time) is
minimized, is derived, and is shown to have a pure-threshold
structure, that is, a passing-by vehicle should be picked up if
the queueing delay exceeds a threshold whose value can be
numerically calculated off-line.

The delay considered in [17] is the queueing delay at the
source RSU. However, in a real application, we are more
interested in the total delay including the queueing delay and
the transit delay. The transit delay depends on the speeds of
the passing-by vehicles. As aforementioned, there is a tradeoff
between queueing delay and transit delay. So the source RSU’s
scheduling decision (i.e., upon a vehicle arrival, whether to
stop at this vehicle and transmit, or continue to wait for other
vehicles) should depend on both the queueing delay and the
speed of the passing-by vehicle, to be addressed in this work.
Another issue of the work in [17] is that in a forced stop (i.e.,
when the delay of any traffic unit in the queue of the source
RSU is more than the delay bound, the RSU is forced to use
the coming vehicle), a fixed penalty is charged regardless of
the amount of traffic units whose delay is more than the delay
bound. This may not be practical, since it is more reasonable
to set up the penalty proportional to the amount of traffic
units whose delay is more than the delay bound. This issue is
to be addressed in this work. In specific, in this work, costs
are assigned for both energy consumption and traffic loss: An
amount of cost is associated with each consumed energy unit,
and an amount of cost is charged if a traffic unit cannot be
delivered (by the selected vehicle) before its delay bound and
thus is discarded. We derive an optimal strategy for the source
RSU to select passing-by vehicles to help deliver its traffic.

The remainder of this paper is organized as follows. Section
II presents the system model and problem formulation. Section
III derives an optimal strategy. Section IV shows performance
evaluation of the derived optimal strategy. Section V investi-
gates the effect of wireless transmission errors, followed by
concluding remarks in Section VI. Appendices include proofs
of the theorems. A list of symbols used is given in Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a source RSU, which does not have backbone
connection, and a destination RSU with backbone connection.
The distance from the source RSU to the destination RSU is

TABLE I
USED SYMBOLS

Symbol Meaning
An Amount of discarded traffic if vehicle n is selected

a, b The smallest, largest transit delay

b∗ Convergence point of sequence {bi}i=1,2,...

(b1 = ϕ(b); bi = ϕ(bi−1), i ≥ 2)

B Cost of discarding one traffic unit

C Cost of energy used to transmit one traffic unit

D Distance between source RSU and destination RSU

FG(g) Cumulative distribution function of transit delay

FV (v) Cumulative distribution function of vehicle speed

fG(g) Probability density function of transit delay

Fn Information of T1, T2, ..., Tn and G1, G2, ..., Gn

Gn The transit delay of vehicle n

K Delay bound

N†(λ) Optimal stopping rule of Problem (7)

P Transmit power level

R Data transmission rate from source RSU to a vehicle

r Incoming traffic rate at the source RSU

Tn The arrival time of vehicle n

Vn Speed of vehicle n

V (λ) Minimal cost of Problem (7)

vmax Maximum vehicle speed

vmin Minimum vehicle speed

W Cost of energy per Joule

Xn Duration between arrivals of vehicles n− 1 and n

Yn Total cost of using vehicle n (given in (2))

Zn(λ) Cost function for Problem (7)

µ Average vehicle inter-arrival duration

κ Overhead duration for communication

ω Outcome of Y1, Y2, Y3, ...

D (meters). Traffic arrives at the source RSU at a constant
rate r (bits/second) (for example, when the source RSU is
used as a gateway of underlying wireless sensor networks,
the collected traffic by the source RSU is likely to be with
almost constant rate). Each traffic unit should be sent to the
destination RSU by a maximal delay of K (seconds) from
the moment when the traffic unit arrives at the source RSU.
No direct connection is assumed between the two RSUs.
Therefore, passing-by vehicles are selected by the source RSU
to forward its accumulated traffic to the destination RSU. At
the source RSU, the traffic is kept buffered until a passing-
by vehicle is selected, at which moment those accumulated
traffic units whose delay (including the queueing delay and
the transit delay, i.e., the time needed by the vehicle to
arrive at the destination RSU) is less than K are sent to the
selected vehicle, and other traffic units are discarded by the
source RSU. Subsequently the vehicle forwards the traffic to
the destination RSU when it arrives at the destination RSU.
Assume that wireless transmission between RSUs and vehicles
is error free (effects of wireless transmission errors will be
investigated in Section V).

Assume that the starting point of the process of observation
is T0 = 0 (second). At the source RSU, the arrival instant
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of the nth vehicle (called vehicle n) is Tn (second). Then
Xn = Tn − Tn−1 (n = 1, 2, ...) is the vehicle inter-arrival
duration. Since some empirical measurement [18] has shown
that the vehicle inter-arrival durations at a roadside point fol-
low independent and identically distributed (i.i.d.) exponential
distributions, similar to [11], [12], [19]–[22], we assume Xn’s
are independent and follow an exponential distribution with
parameter µ, i.e., E [Xn] = µ (seconds). Here E [·] means
expectation. In other words, vehicle arrivals at the source RSU
follow a Poisson process with vehicle arrival rate being 1/µ.
Similar to [11], [12], [21], we assume that, upon a vehicle
arrival, the source RSU can detect the speed of the vehicle
and the vehicle’s speed does not change from the source
RSU to the destination RSU. Denote Vn as the speed of
the nth vehicle. Suppose the vehicle speeds are i.i.d. random
variables with cumulative distribution function (CDF) being
FV (v) for v ∈ [vmin, vmax], where vmin (m/s) and vmax (m/s)
are the minimum and maximum speeds, respectively. The
transit delay of vehicle n is Gn = D/Vn (seconds). So
Gn’s (n = 1, 2, ...) are i.i.d. random variables with CDF
FG(g) = 1 − FV

(
D/g

)
for g ∈ [a, b], where a , D/vmax

(seconds) and b , D/vmin (seconds) are the smallest and the
largest transit delay, respectively.

Upon arrival of a vehicle, the source RSU has two choices:
To skip the vehicle and continue to wait for future vehicles
(referred to as continue in the sequel), or to stop waiting
(referred to as stop in the sequel) and send its accumulated
traffic (that can meet the delay bound requirement) to the
vehicle by a constant rate R (bits/second) and a transmit
power level P (Watt). Consider that vehicle n is selected to
help (which implies that the source RSU does not stop at
vehicles 1, 2, ..., n − 1). The amount of accumulated traffic
(from moment 0 to moment Tn) is rTn. Let An denote the
amount of traffic units that cannot meet their delay requirement
(i.e., when queueing delay plus transit delay is more than the
delay bound K)1 and thus are discarded. An is given as

An =


rTn if K < Gn

r(Tn +Gn −K) if Gn ≤ K < Tn +Gn

0 if K ≥ Tn +Gn

(1)

for the following reason. When K < Gn, even the transit delay
Gn alone is more than the delay bound K, so all accumulated
traffic with amount rTn will be discarded. When K ≥ Tn +
Gn, it means that even the oldest traffic unit in the source
RSU’s buffer can meet the delay bound (for the oldest traffic
unit, its queueing delay is Tn, and its transit delay is Gn).
So no traffic will be discarded. When Gn ≤ K < Tn + Gn,
considering that vehicle n needs Gn duration to arrive at the
destination RSU, only traffic accumulated in the past (K−Gn)
duration can meet delay bound requirement. So the amount of

1The total delay is the summation of the queueing delay and the transit
delay Gn. The transmission duration from the source RSU to the vehicle is
not considered here, since the transmission duration is actually included in
the transit delay.

discarded traffic is rTn − r(K −Gn) = r(Tn +Gn −K).2

Similar to the weighted cost structure in [23]–[25], if vehicle
n is selected, we have cost values associated with the energy
consumption and traffic loss.

• Energy: The total energy consumption for the data
transmission from the source RSU to the vehicle is
P (rTn −An)/R (Joule). By letting W (unit of cost per
Joule) denote the cost weight of energy consumption,
the cost of the energy consumption of transmitting data
is given by WP (rTn −An)/R. For the data transmis-
sion, there is also communication overhead to setup the
transmission (for example, the information exchanges of
request-to-send [RTS] and clear-to-send [CTS]) and to
acknowledge the transmission. Assume the overhead also
uses power level P , and the total duration of the transmis-
sion of the overhead is κ (seconds). Then the energy cost
for communication overhead is WPκ. So the total cost
for energy consumption is WP (rTn −An)/R+WPκ =
C(rTn −An)+WPκ, where C , WP/R is the energy
cost of sending one traffic unit.

• Traffic loss: When some traffic units are discarded, a
penalty of B (unit of cost) is charged for each discarded
traffic unit. So the total cost for traffic loss is BAn.

The total cost of using vehicle n, denoted Yn, is thus given
as3

Yn = WPκ+ C(rTn −An) +BAn. (2)

Yn’s (n = 1, 2, ...) are random variables.
For the stopping problem, consider that we observe ran-

dom variables Y1, Y2, . . . , and get one realization of them
as y1, y2, . . . , corresponding to the costs of using vehicle
1, 2, . . . , respectively. In probability theory, a such realization,
denoted as ω, is referred to as one outcome. And the sample
space, denoted as Ω, is the set of all outcomes. An event is
defined as a subset of Ω, which is assigned a probability.

For example, consider that we have observed the value of
the first random variable Y1 as y1. This fact can be defined
as an event E1 = {ω : Y1 = y1}. In other words, the event is
the set of outcomes that have the first observed value as y1.
We can write Y1(ω) = y1 for ω ∈ E1; and Y1(ω) ̸= y1 for
ω ∈ Ω\E1.

After knowing Y1 = y1 or the event E1 happens, if the
source RSU decides to stop at vehicle 1, the final cost of the
stopping problem is y1; otherwise, the source RSU continues
to observe Y2, Y3, . . . , which are unobserved random variables
conditioned on the event E1. What we aim to achieve is to find
the right moment to stop so as to minimize the cost.

2Considering that the delay bound K of a VDTN is usually not more than
a few thousand seconds (e.g., 7200 seconds as used in [4]) and that the data
coming rate r at the source RSU is usually not more than a few hundred bps
[4], [5], it is reasonable to assume that all the traffic that is not discarded,
with amount given as rTn −An, can be transmitted from the source RSU to
the passing-by vehicle within their contact time.

3If the source RSU selects vehicle n to help, it is optimal to transmit all
rTn −An traffic to vehicle n, for the following reason. Assume an amount
x of the rTn − An traffic is not transmitted to vehicle n. If the amount x
traffic is transmitted to vehicle n, the extra cost is given as Cx. However,
for any future vehicle to carry the amount x traffic, the cost is at least Cx,
considering that all or part of the x amount of traffic may become expired
when waiting for future vehicles.
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Consider a stopping rule such that for each outcome ω ∈
Ω, the moment to stop is denoted N(ω) where N(ω) ∈
{1, 2, . . . } is the index of the vehicle that the source RSU
stops at. N(ω) is also used to denote the stopping rule. We
can think of a stopping rule as a function in the domain Ω,
which maps each ω ∈ Ω to one positive number. So N(ω)
(a stopping rule) is a random variable and is often written in
short form as N . A simple example of stopping rules is N = 1
(N(ω) = 1) for ω ∈ Ω, i.e., always stop at the first vehicle.
To solve an optimal stopping problem is to find an optimal
stopping rule that maps each outcome to a stopping moment
to minimize the cost.

In this paper, we consider stopping problems that are
repeated in time. For the moment when the source RSU
completes information exchange with a selected vehicle,
this moment is considered as the end of the old stopping
problem and also the beginning of a new stopping problem.
If the source RSU stops at vehicle N(ω), whose cost is
YN(ω)(ω) and stopping time is TN(ω)(ω), then starting from
the moment TN(ω)(ω), a new stopping problem begins with
starting point denoted T0 = 0 and the next arrival vehicle
called vehicle 1. For such repeated stopping problems with
stopping rule N(ω), denote the independent outcomes as
ω1, ω2, . . . , etc. Then we have i.i.d. stopping vehicle indices
{N(ω1), N(ω2), . . . , N(ωn), . . . }, i.i.d. stopping moments
{TN(ω1)(ω1), TN(ω2)(ω2), . . . , TN(ωn)(ωn), . . . }, and i.i.d.
costs {YN(ω1)(ω1), YN(ω2)(ω2), . . . , YN(ωn)(ωn), . . . }.
The total cost is

∑
i YN(ωi)(ωi) and the total amount of

traffic that arrives at the source RSU is
∑

i rTN(ωi)(ωi).
So the rate of cost (average cost per traffic unit)
is

∑
i YN(ωi)(ωi)/

∑
i rTN(ωi)(ωi), which converges

to E
[
YN(w)(w)

]
/E
[
rTN(w)(w)

]
, or in short form

E [YN ]/E [rTN ], by the law of large numbers [26]. Here
E [·] means expectation. Therefore, our objective is to find a
stopping rule N to minimize the rate of cost E [YN ]/E [rTN ].
The optimal rate of cost is given as

Q∗ , inf
N≥1

E [YN ]

E [rTN ]

= inf
N≥1

WPκ+ CE [rTN −AN ] +BE [AN ]

E [rTN ]

= inf
N≥1

WPκ+ CE [rTN ] + (B − C)E [AN ]

E [rTN ]
(3)

where {N ≥ 1} is the set of stopping rules that observe at
least one vehicle.4

III. AN OPTIMAL STOPPING RULE

We make three comments here.
• We assume a ≤ K, because otherwise the minimum

transit delay a alone is more than the delay bound K,

4In the expression of the optimal rate of cost in (3), we use “inf” instead of
“min” because for a general stopping problem, it is possible that no optimal

stopping rule N exists such that
E [YN ]

E [rTN ]
= Q∗. Nevertheless, in Section III

we will show that in our Problem (3), there exists an optimal stopping rule
that has a rate of cost being Q∗.

and thus, no vehicle can meet the delay requirement of
any traffic unit.

• If b > K, which means the maximum transit delay b
is greater than the delay bound K, then those vehicles
whose transit delay are greater than K should be skipped,
since they cannot meet the delay bound requirement of
any traffic unit. Recall that the vehicle arrivals follow a
Poisson process with rate 1/µ. Upon a vehicle arrival, it is
with probability 1 − FG(K) that the vehicle is skipped.
Thus, the arrivals of considered (not skipped) vehicles
follow a Poisson process with rate FG(K)/µ [27]. Then
the original stopping problem is equivalent to the case
when vehicle arrivals follow a Poisson process with rate
FG(K)/µ, the transit delay of a vehicle is within range
[a,K], and the CDF of transit delay is

0 if g < a

FG(g)/FG(K) if a ≤ g ≤ K

1 if g > K.

Therefore, without loss of generality, we assume K ≥ b
in the sequel. And thus, from (1), An now takes the form
of

An = r(Tn +Gn −K)+ (4)

in which (x)+ = max(x, 0).
• We should have

B > C +
WPκ

r(K − a)
. (5)

The reason is as follows. First we have B > C (this is
because, if B ≤ C, it means the cost of discarding a
traffic unit is not more than the energy cost of sending
a traffic unit, then all traffic units should be discarded).
Next we use proof by contradiction. Suppose B ≤ C +
WPκ/

(
r(K − a)

)
, which means WPκ−r(B−C)(K−

a) ≥ 0. Since the maximal amount of traffic that a vehicle
can carry is r(K − a),5 then for any amount of traffic
x ∈ (0, r(K − a)] carried by a selected vehicle, we have
WPκ − (B − C)x ≥ WPκ − r(B − C)(K − a) ≥
0, which leads to WPκ + Cx ≥ Bx. This means
that WPκ + Cx, the cost of energy consumption in
sending the carried traffic, is not less than Bx, the cost
of discarding the carried traffic. Thus, the source RSU
should discard all traffic. Therefore, we should not have
B ≤ C +WPκ/

(
r(K − a)

)
.

A. Transformation of Problem (3)

We consider a transformation of Problem (3). For λ > 0,
define a cost function

Zn(λ) , Yn − λrTn

= WPκ+ C(rTn −An) +BAn − λrTn

= WPκ+ r (C − λ)Tn + (B − C)An (6)

5Considering that the transit delay of any vehicle is not less than a, a
vehicle can take at most the traffic accumulated in the past K − a duration.
So the maximal amount of traffic that a vehicle can carry is r(K − a).
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in which the physical meaning of λ is rate of cost.
Based on the cost function Zn(λ), we formulate a new

stopping problem as

V (λ) , inf
N≥1

E
[
ZN (λ)

]
= inf

N≥1
E
[
WPκ+ r (C − λ)TN + (B − C)AN

]
. (7)

Theorem 1: For Problem (7) with λ ∈ (0, B], there ex-
ists an optimal stopping rule, denoted N†(λ), such that
E
[
ZN†(λ)(λ)

]
= V (λ).

Proof: See Appendix A.
Theorem 2: If i) there exists a λ∗ such that V (λ∗) =

infN≥1 E
[
ZN (λ∗)

]
= 0; and ii) for Problem (7) with

λ∗, there exists an optimal stopping rule N†(λ∗) such that
E
[
ZN†(λ∗)(λ

∗)
]
= V (λ∗) = 0, then N†(λ∗) is an optimal

stopping rule for Problem (3) and the optimal rate of cost (i.e.,
the optimal objective function of Problem (3)) is λ∗.

Proof: See Appendix B.
The next theorem shows that the first condition in Theorem

2 is satisfied for Problem (7).
Theorem 3: There exists a λ∗ ∈ (C,B] such that V (λ∗) =

0.
Proof: See Appendix C.

From Theorem 1, it can be concluded that the second
condition in Theorem 2 is also satisfied. Therefore, an optimal
stopping rule for Problem (3) is in the form of N†(λ∗). So
if N†(λ) and V (λ) can be obtained for any λ ∈ (C,B],
then the value of λ∗ can be obtained numerically such that
V (λ∗) = 0, and thus N†(λ∗) is an optimal stopping rule of
Problem (3). Therefore, next we focus on derivation of N†(λ)
and V (λ) for λ ∈ (C,B] in Problem (7). For Problem (7) with
a specific λ, we first derive an optimal strategy for vehicles
arriving after moment K−a in Section III-B, and based on the
result, we derive an optimal stopping rule for vehicles arriving
before moment K − a in Section III-C. Then as a summary
of Sections III-B and Section III-C, in Section III-D we give
an overall optimal stopping rule, i.e., N†(λ), for Problem (7)
with a specific λ, as well as its optimal cost V (λ). In Section
III-E, we find λ∗ such that V (λ∗) = 0, and thus, N†(λ∗) is
an optimal stopping rule of Problem (3).

B. Optimal stopping rule for Problem (7) (with a specific λ)
when Tn ≥ K − a

First we consider that the source RSU does not stop before
moment K − a, i.e., we consider Problem (7) when Tn ≥
K − a. For presentation simplicity, in Section III-B, when we
say “Problem (7)”, it means “Problem (7) when Tn ≥ K−a”.

Here we introduce the notion of myopic stopping rule. The
myopic stopping rule is the rule that calls for stopping at
vehicle n if the cost of vehicle n 6 is not greater than the
expected cost of vehicle n+1. For Problem (7), its myopic rule
is to stop at min

{
n ≥ 1 : Zn(λ) ≤ E

[
Zn+1(λ)|Fn

]}
. Here

Fn means information of T1, T2, ..., Tn and G1, G2, ..., Gn,
which is available at the source RSU when it decides whether
or not to stop at vehicle n + 1. Note that, upon arrival of

6Cost of a vehicle is the cost of stopping at the vehicle.

vehicle n, if the myopic rule calls for continuation7 (i.e.,
Zn(λ) > E

[
Zn+1(λ)|Fn

]
, and thus, the myopic rule decides

not to stop at vehicle n), it is also optimal for Problem (7)
to continue since Zn(λ) > E

[
Zn+1(λ)|Fn

]
means that the

expected cost of vehicle n+1 is smaller than the cost of vehicle
n and thus, continuing to observe vehicle n + 1 is optimal.
On the other hand, if the myopic rule calls for stopping at
a vehicle, generally it may not be optimal for Problem (7)
to stop at the vehicle. However, if a stopping problem is
monotone, under some mild conditions, if the myopic rule calls
for stopping at a vehicle, it is also optimal for the stopping
problem to stop at the vehicle (in other words, the myopic rule
is an optimal stopping rule). Therefore, next we introduce the
concept of monotone problem, and when Problem (7) is not
monotone, we transform it to a monotone problem, for which
we prove that its myopic rule is optimal.

Definition 1: Let Bn denote the event{
ω : Zn(λ) ≤ E

[
Zn+1(λ)|Fn

]}
. Problem (7) is monotone

if B1 ⊆ B2 ⊆ B3 ⊆ . . . almost surely (a.s.) [28].
Bn is the set of outcomes that the myopic rule calls for

stopping at the vehicle n.8 Bn ⊆ Bn+1 ⊆ Bn+2 ⊆ ... means
that: If for one specific outcome ω the myopic rule calls for
stopping at vehicle n, then the myopic rule will also call for
stopping at vehicle n+1 (for whatever realization of Tn+1 and
Gn+1); and in general, the myopic rule will call for stopping at
any future vehicle for whatever realization of {Tn+1, Tn+2, ...}
and {Gn+1, Gn+2, ...} (a.s.).

Next we will try to transform Problem (7) into a monotone
problem (if it is not a monotone problem), derive the myopic
rule for the monotone problem and prove that the myopic rule
is optimal for Problem (7).

Recall that in this subsection we consider Tn ≥ K − a,
which means Tn + Gn ≥ K since Gn ≥ a. Then from (4)
we have An = r(Tn +Gn −K). Since Tn+1 > Tn ≥ K − a
and Gn+1 ≥ a, we also have An+1 = r(Tn+1 +Gn+1 −K).
Zn(λ) in (6) can be rewritten as

Zn(λ) =WPκ+ r(C − λ)Tn + r(B − C)(Tn +Gn −K)

=WPκ+ r(B − λ)Tn + r(B − C)(Gn −K). (8)

From (8), the expectation of Zn+1(λ) conditioned on that
the source RSU has observed the first n vehicles but has not
stopped at them is

E
[
Zn+1(λ)|Fn

]
=WPκ+ r(B − λ)E

[
Tn+1|Fn

]
+ r(B − C)E

[
Gn+1 −K|Fn

]
=WPκ+ r(B − λ)E

[
Tn +Xn+1|Fn

]
+ r(B − C)(E

[
Gn+1|Fn

]
−K)

=WPκ+ r(B − λ)(Tn + µ) + r(B − C)
(
E [Gn+1]−K

)
(9)

7When we say a stopping rule calls for continuation (which means the
source RSU continues to observe other vehicles) or stopping at vehicle n, it
implies that the source RSU does not stop at vehicles 1, 2, ..., n− 1.

8For presentation simplicity, here vehicle n means the nth vehicle arriving
after moment K−a (recalling that in Section III-B we only consider vehicles
arriving after the moment K − a).



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (ACCEPTED) 6

where the last equality comes from the following fact. Fn

does not carry information regarding Xn+1 and Gn+1. In
other words, if we know Fn, we know the values of
{Xk, k = 1, . . . , n} and {Gk, k = 1, . . . , n}, but not Xn+1

or Gn+1. Thus, we have E
[
Tn|Fn

]
= Tn, E

[
Xn+1|Fn

]
=

E [Xn+1] = µ, and E
[
Gn+1|Fn

]
= E [Gn+1].

From (8) and (9), the difference between the cost of vehicle
n and the expected cost of vehicle n+ 1 is

E
[
Zn+1(λ)|Fn

]
− Zn(λ)

=r(B − λ)(Tn + µ) + r(B − C)
(
E [Gn+1]−K

)
− r(B − λ)Tn − r(B − C)(Gn −K)

=r(B − λ)µ+ r(B − C)
(
E [Gn+1]−Gn

)
=r(B − C)

(
(B − λ)µ

B − C
+

∫ b

a

xfG(x) dx−Gn

)
(10)

where fG(x) is the probability density function of the transit
delay of the vehicles. We define a function

ϕ(g) , 1

FG(g)

(
(B − λ)µ

B − C
+

∫ g

a

xfG(x) dx

)
a ≤ g ≤ b,

(11)

and define b1 , ϕ(b).9 Since FG(b) = 1, we can re-write (10)
as

E
[
Zn+1(λ)|Fn

]
− Zn(λ) = r(B − C)(b1 −Gn). (12)

We consider two scenarios: b1 ≥ b and b1 < b. For each
scenario, we get a monotone problem, obtain its myopic rule,
and prove that the myopic rule is optimal for Problem (7), as
follows.

1) Scenario with b1 ≥ b: Since b1 is not less than the
largest transit delay b, it is not less than Gn. So for any vehicle
n, expression (12) is always nonnegative. Thus, for any n,
ignoring vehicle n and stopping at vehicle n+1 is expected to
involve more cost than that of stopping at vehicle n. Therefore,
the myopic rule for Problem (7) will require the source RSU
to stop at the first vehicle (arriving after K − a), given as

Nm
K−a(λ) = min{n : Tn ≥ K − a} (13)

in which superscript ‘m’ means ‘myopic’ and subscript
‘K − a’ means we start observation from moment K −
a. And Problem (7) is a monotone problem for rea-
son as follows. From (12), we always have Zn(λ) ≤
E
[
Zn+1(λ)|Fn

]
for any n. Recalling that Bn denotes the

event
{
ω : Zn(λ) ≤ E

[
Zn+1(λ)|Fn

]}
, we have B1 = B2 =

B3 = ..., and thus, from Definition 1, Problem (7) is a
monotone problem.

Theorem 4: When Tn ≥ K − a and b1 ≥ b, the myopic
rule (13) is an optimal stopping rule for Problem (7) with
λ ∈ (0, B].

Proof: See Appendix D.
So when Tn ≥ K − a, the expected optimal stopping time is

E
[
TNm

K−a(λ)

]
= K − a+ µ (14)

9Note that b1 is a function of λ. For presentation simplicity, we do not show
it in form of b1(λ). The subsequent b2, b3, ... and b∗ are treated similarly.

due to the fact that: Since the Poisson arrival process (of
vehicle arrivals) is memoryless, starting from moment K − a,
the expected waiting time for the next vehicle is µ (the average
vehicle inter-arrival time).

Denote the optimal cost of Problem (7) when we start
observation from moment K − a as VK−a(λ). Then we have

VK−a(λ) =E
[
ZNm

K−a(λ)
(λ)
]

=WPκ+ r(B − λ)E
[
TNm

K−a(λ)

]
+ r(B − C)(E [Gn]−K)

=WPκ+ r(C − λ)K − r(B − λ)(a− µ)

+ r(B − C)

∫ b

a

xfG(x) dx (15)

where the second equality comes from (8) and the third
equality comes from (14).

2) Scenario with b1 < b: We consider a sequence of values
{bi}i=1,2,..., in which bi = ϕ(bi−1) for i ≥ 2 (recall that b1 =
ϕ(b)). The following theorem will be useful in subsequent
investigation.

Theorem 5: When b1 < b, the sequence {bi}i=1,2,... has the
following properties: 1) bi < bi−1 for i ≥ 2; 2) {bi}i=1,2,...

converges to a value denoted b∗; 3) b∗ is the unique root of
ϕ(g) = g for g ∈ (a, b]; 4) for g ∈ (a, b], g = b∗ minimizes
ϕ(g).

Proof: See Appendix E.

Next we show that when b1 < b, Problem (7) is not a
monotone problem, and then transform Problem (7) into a
monotone problem. Upon arrival of vehicle n, if Gn ≤ b1,
then from (12) we have E

[
Zn+1(λ)|Fn

]
−Zn(λ) ≥ 0, and the

myopic rule will call for stopping at vehicle n; otherwise, the
myopic rule will ask for continuation. This means the decision
for any vehicle depends on the transit delay of the vehicle. So
Problem (7) is not a monotone problem when b1 < b. To
transform Problem (7) into a monotone problem, we have the
following iterations.

Iteration 1: By observing (12), we notice that
E
[
Zn+1(λ)|Fn

]
− Zn(λ) depends only on Gn. Upon

arrival of vehicle n, if Gn > b1, then for whatever value
of Tn, the myopic rule always asks for continuation and
thus it is optimal for Problem (7) to skip this vehicle and
continue to wait for other vehicles (recalling that if myopic
rule calls for continuation, it is optimal for the source RSU to
continue). So we can ignore those slow vehicles with transit
delay larger than b1, and only consider those vehicles whose
transit delay is smaller than or equal to b1. After ignoring
those slow vehicles, the arrival rate of considered vehicles is
FG(b1)/µ. We use superscript ‘[1]’ to denote the case when
vehicles with transmit delay more than b1 are not considered.
The transit delay of the nth considered vehicle, denoted G

[1]
n ,

is in the range of [a, b1] with CDF FG[1](g) = FG(g)/FG(b1)
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for g ∈ [a, b1]. And similar to (10), we have

E
[
Z

[1]
n+1(λ)|F [1]

n

]
− Z [1]

n (λ)

=r(B − λ)µ/FG(b1) + r(B − C)

(
E
[
G

[1]
n+1

]
−G[1]

n

)

=r(B − λ)µ/FG(b1) + r(B − C)

∫ b1
a

xfG(x) dx

FG(b1)
−G[1]

n


=r(B−C)

 1

FG(b1)

(
(B − λ)µ

B − C
+

∫ b1

a

xfG(x) dx

)
−G[1]

n


=r(B − C)(ϕ(b1)−G[1]

n )

=r(B − C)(b2 −G[1]
n ) (16)

where the last two equalities come from the definition of ϕ(·)
in (11) and b2 = ϕ(b1), respectively.

From Theorem 5, we have b2 < b1.
Iteration 2: Upon arrival of the nth considered vehicle, if

G
[1]
n > b2, then E

[
Z

[1]
n+1(λ)|F

[1]
n

]
−Z

[1]
n (λ) < 0, and thus, it

is optimal to continue since continuing to stop at vehicle n+1
expects to incur less cost than that of stopping at vehicle n. So
we can ignore those slow vehicles with transit delay G

[1]
n >

b2, and only consider the remaining vehicles. After ignoring
those slow vehicles, the arrival rate of considered vehicles is
FG(b2)/µ. And the transit delay of the nth considered vehicle,
denoted G

[2]
n , is in the range of [a, b2] with CDF FG[2](g) =

FG(g)/FG(b2) for g ∈ [a, b2]. Here superscript ‘[2]’ means
that those vehicles with transmit delay more than b2 are not
considered. And similar to (16), we have

E
[
Z

[2]
n+1(λ)|F [2]

n

]
− Z [2]

n (λ) = r(B − C)(b3 −G[2]
n ).

Similarly, we can have Iterations 3, 4,...,etc. And in Iteration
l (l = 1, 2, ...), vehicles with transit delay more than bl should
not be considered. Since sequence {bi}i=1,2,... converges to
b∗ (from Theorem 5), it can be concluded that, as an overall
result after all iterations, vehicles with transit delay more than
b∗ should not be considered. The arrival rate of considered
vehicles is FG(b

∗)/µ. And the transit delay of the nth consid-
ered vehicle, denoted G

[o]
n , is in the range of [a, b∗] with CDF

FG[o](g) = FG(g)/FG(b
∗). Here superscript ‘[o]’ means the

overall effect of the iterations (i.e., vehicles with transit delay
more than b∗ are not considered).

With only those considered vehicles, Problem (7) is a
monotone problem. This is because for any considered vehicle
n = 1, 2, ..., we have G

[o]
n ≤ b∗, and similar to (16), we have

E
[
Z

[o]
n+1(λ)|F

[o]
n

]
− Z

[o]
n (λ) = r(B − C)(b∗ − G

[o]
n ) ≥ 0.

Similar to the scenario with b1 ≥ b, Problem (7) with only
those considered vehicles is monotone.

For Problem (7) with only those considered vehicles, since
E
[
Z

[o]
n+1(λ)|F

[o]
n

]
− Z

[o]
n (λ) ≥ 0 for any n, its myopic rule

will call for stopping at the first considered vehicle after
moment K−a (recalling that we consider Tn ≥ K−a in this
subsection). The myopic rule is expressed as

Nm
K−a(λ) = min

{
n : T [o]

n ≥ K − a
}
. (17)

Theorem 6: When Tn ≥ K−a and b1 < b, the myopic rule
(17) is an optimal stopping rule for Problem (7) when only
vehicles with transmit delay less than b∗ are considered.
The proof is similar to the proof of Theorem 4, and is omitted
here.

As aforementioned, for Problem (7) when the RSU does not
stop before time K − a, it is optimal to ignore those vehicles
with transit delay larger than b∗ because for such a vehicle,
the expected cost of stopping at the next vehicle is less. So
stopping rule (17) is optimal for Problem (7). The optimal
stopping rule can be rewritten as

Nm
K−a(λ) = min {n : Tn ≥ K − a,Gn ≤ b∗} (18)

which means from moment K − a, the source RSU should
stop at the first vehicle whose transit delay is not more than
b∗. Similar to (14), the expected optimal stopping time is

E
[
TNm

K−a(λ)

]
= K − a+

µ

FG (b∗)
(19)

since the arrival rate of vehicles whose transit delay is not
more than b∗ is FG(b

∗)/µ.
Upon an optimal stopping, the expectation of transit delay

(which is the average transmit delay of a vehicle conditioned
on that its transit delay is not more than b∗) is

E
[
GNm

K−a(λ)

]
=

∫ b∗

a
gfG(g) dg

FG(b∗)
. (20)

Recall that VK−a(λ) denotes the optimal cost of Problem (7)
when we start observation from moment K−a. Thus, we have

VK−a(λ)

=E
[
ZNm

K−a(λ)
(λ)
]

=WPκ+ r(B − λ)E
[
TNm

K−a(λ)

]
+ r(B − C)

(
E
[
GNm

K−a(λ)

]
−K

)
=WPκ+ r(B − λ)

(
K − a+

µ

FG (b∗)

)

+ r(B − C)

∫ b∗

a
gfG(g) dg

FG(b∗)
−K


=WPκ+ r(C − λ)K − r(B − λ)a

+ r(B − C)
1

FG(b∗)

(
(B − λ)µ

B − C
+

∫ b∗

a

xfG(x) dx

)
=WPκ+ r(C − λ)K − r(B − λ)a+ r(B − C)ϕ(b∗)

=WPκ+ r(C − λ)K − r(B − λ)a+ r(B − C)b∗ (21)

in which the second equality comes from (8), the third equality
comes from (19) and (20), and the last two equalities come
from the definition of ϕ(·) in (11) and ϕ(b∗) = b∗ (from
Theorem 5), respectively.

Remark: To get the optimal stopping rule, the value of b∗,
which is the converging point of sequence {bi}i=1,2,..., should
be obtained. From Theorem 5, the value of b∗ can be obtained
by any method to find the unique root of ϕ(g) = g for g ∈
(a, b] or by any method to find the minimum of ϕ(g) for g ∈
(a, b].
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C. Optimal stopping rule for Problem (7) (with a specific λ)
when 0 ≤ Tn < K − a

Since we have obtained the optimal stopping rule for Tn ≥
K−a in Section III-B, next we only need to consider vehicles
arriving between [0,K−a). Denote Vt(λ) as the optimal cost
of Problem (7) when we start observation from moment t (not
including moment t). So the optimal cost of Problem (7) is
V (λ) = V0(λ). As a boundary condition, when t = K − a,
Vt(λ) is given in (15) when b1 ≥ b or in (21) when b1 <
b. Next we will derive Vt(λ) for t ∈ [0,K − a) using this
boundary condition.

Suppose a vehicle, say vehicle n, arrives at moment Tn,
and if it is selected, the cost is Zn(λ). The source RSU needs
to decide whether it is optimal to stop at this vehicle. The
optimality equation of dynamic programming [28] states that,
if Zn(λ) < VTn(λ) (i.e., the cost of current vehicle is less than
the optimal cost of ignoring the current vehicle and continuing
to wait for future vehicles), then it is optimal to stop at vehicle
n; otherwise, it is optimal to continue observation of future
vehicles.

For moment t, consider an interval (t − ∆t, t) in which
∆t > 0 is sufficiently small. Since the vehicle arrival process is
a Poisson process with average arrival rate 1/µ, within interval
(t − ∆t, t), the probability that one vehicle arrives is ∆t/µ,
the probability that no vehicle arrives is (1−∆t/µ), and the
probability that two or more vehicles arrive is o(∆t) (higher
order of ∆t). Next we give an expression for Vt−∆t(λ).

• If there is no vehicle arriving during the interval (t −
∆t, t): Then the source RSU has to wait for vehicles
arriving after moment t for chance of transmission. For
this case, the optimal costs starting from t and (t−∆t)
are the same, i.e., Vt−∆t(λ) = Vt(λ).

• If there is one vehicle, say vehicle n, arriving at Tn =
t−∆t′ where 0 < ∆t′ < ∆t: From (6) and (4), we have
Zn(λ) = WPκ + r (C − λ) (t −∆t′) + r (B − C) (t −
∆t′ +Gn −K)+.
When

Zn(λ) = WPκ+ r (C − λ) (t−∆t′)

+ r (B − C) (t−∆t′ +Gn −K)+ ≤ Vt−∆t′(λ),
(22)

then it is optimal to stop at vehicle n and there is no need
to continue the observation after t. Define a function10

ρ(t, λ) , max
{
g ∈ [a, b] : WPκ+ r (C − λ) t+

r (B − C) (t+ g −K)+ ≤ Vt(λ)
}
.

Then (22) is equivalent to Gn ≤ ρ(t − ∆t′, λ), which
happens with probability FG(ρ(t −∆t′, λ)). When (22)

10Note that if WPκ+ r (C − λ) t+ r (B − C) (t+ g −K)+ ≤ Vt(λ)
never holds for g ∈ [a, b], then ρ(t, λ) = a.

holds, it is optimal to stop at vehicle n, and we have

Vt−∆t(λ)

= E
[
Zn(λ)

]
= WPκ+ r (C − λ) (t−∆t′)

+ r(B − C)

∫ ρ(t−∆t′,λ)

a
(t−∆t′+ x−K)+fG(x) dx

FG(ρ(t−∆t′, λ))
.

If (22) does not hold (with probability 1 − FG(ρ(t −
∆t′, λ))), it is optimal to skip vehicle n and continue
to wait for other vehicles that come after moment t.
Therefore, we have Vt−∆t(λ) = Vt(λ).

As a summary, we have

Vt−∆t(λ)

=(1−∆t/µ)Vt(λ)+(∆t/µ)
(
1− FG(ρ(t−∆t′, λ))

)
Vt(λ)

+(∆t/µ)FG(ρ(t−∆t′, λ))

(
WPκ+ r (C − λ) (t−∆t′)

+ r (B − C)

∫ ρ(t−∆t′,λ)

a
(t−∆t′ + x−K)+fG(x) dx

FG(ρ(t−∆t′, λ))

)
+ o(∆t)

=Vt(λ) + (∆t/µ)FG(ρ(t−∆t′, λ))

×

(
− Vt(λ) +WPκ+ r (C − λ) (t−∆t′)

+ r (B − C)

∫ ρ(t−∆t′,λ)

a
(t−∆t′ + x−K)+fG(x) dx

FG(ρ(t−∆t′, λ))

)
+ o(∆t).

After some algebraic operations, we have

µ
Vt(λ)− Vt−∆t(λ)

∆t

=FG(ρ(t−∆t′, λ))

(
Vt(λ)−WPκ− r (C − λ) (t−∆t′)

− r (B − C)

∫ ρ(t−∆t′,λ)

a
(t−∆t′ + x−K)+fG(x) dx

FG(ρ(t−∆t′, λ))

)
+ o(∆t)/∆t.

Letting ∆t approach zero, it follows

µ
∂Vt(λ)

∂t
=FG(ρ(t, λ))

(
Vt(λ)−WPκ− r (C − λ) t

− r (B − C)

∫ ρ(t,λ)

a
(t+ x−K)+fG(x) dx

FG(ρ(t, λ))

)
.

(23)

With the aforementioned boundary condition, equation (23)
can be solved numerically to get Vt(λ) for t ∈ [0,K − a).

Therefore, for Problem (7), upon arrival of vehicle n at
moment Tn, if Tn < K − a, an optimal stopping rule works
as follows. The source RSU first calculates (from (6)) the
cost of vehicle n given as Zn(λ) = WPκ + r(C − λ)Tn +
r(B − C)(Tn + Gn − K)+. If Zn(λ) is less than VTn(λ),
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then the source RSU stops at vehicle n; otherwise, the source
RSU continues to observe future vehicles. The optimal cost of
Problem (7) is V (λ) = V0(λ).

D. Overall Optimal Stopping Rule for Problem (7) (with a
specific λ)

As a summary of Sections III-B and III-C, for Problem (7),
the optimal cost is V (λ) = V0(λ), and an optimal stopping
rule works as shown in (24) on top of the next page. In
other words, when the waiting time is less than K − a, then
the source RSU stops at the first vehicle such that Zn(λ) =
WPκ+ r(C −λ)Tn + r(B−C)(Tn +Gn −K)+ < VTn(λ);
when the waiting time is more than K − a, then the source
RSU stops at the next vehicle if b1 ≥ b or stops at the next
vehicle with transmit delay less than b∗ if b1 < b.

E. Optimal Stopping Rule for Problem (3)

From Theorem 3, there exists λ∗ ∈ (C,B] such that
V (λ∗) = 0. From proof of Theorem 3, V (λ) is continuous
and decreasing for λ ∈ [C,B]. So λ∗ can be found by a
bisection search. Then from Theorem 2, an optimal stopping
rule of Problem (3) is N†(λ∗) in the form of (24), and the
optimal rate of cost (i.e., the optimal objective function of
Problem (3)) is λ∗.

To implement the optimal stopping rule N†(λ∗), the value
of λ∗, the values of Vt(λ

∗) for t ∈ [0,K − a), and values of
b, b1 and b∗ can be calculated off-line in advance and stored
at the source RSU when the source RSU is setup. Then it
can be seen that the computational complexity of the optimal
stopping rule N†(λ∗) in the form of (24) is fairly low. Thus,
upon a vehicle arrival, the source RSU is able to quickly make
a decision, and the energy consumption in the computation is
negligible.

Next we continue to calculate the expected optimal stopping
time of Problem (3) given as E

[
TN†(λ∗)

]
, the expected energy

consumption per unit time, and the expected traffic loss rate.

Define function α(t) = E
[
TN†(λ∗)

∣∣∣TN†(λ∗) ≥ t

]
, which

is the expected optimal stopping time if we know that the
stopping time is not before time t. Recall that when we
start observation from moment K − a, the expected optimal
stopping time is E

[
TNm

K−a(λ
∗)

]
= K − a + µ given in (14)

when b1 ≥ b or E
[
TNm

K−a(λ
∗)

]
= K − a + µ/FG(b

∗) given
in (19) when b1 < b. If we extend the definition of b∗ to
the scenario with b1 ≥ b such that b∗ = b when b1 ≥ b
holds, then we have a uniform expression of expected optimal
stopping time after moment K−a for both b1 ≥ b and b1 < b

as: E
[
TNm

K−a(λ
∗)

]
= K − a + µ/FG(b

∗). In other words, a
boundary condition of α(t) is

α(K − a) = E
[
TNm

K−a(λ
∗)

]
= K − a+

µ

FG(b∗)
. (25)

Following the same method of deriving (23), we can derive
the following equation

µ
dα(t)

dt
= α(t)− FG(ρ(t, λ

∗))t. (26)

Based on (25) and (26), α(t) can be numerically calculated
for t ∈ [0,K−a). And the expected optimal stopping time of
Problem (3) is E

[
TN†(λ∗)

]
= α(0).

When the optimal stopping rule N†(λ∗) is used, the objec-
tive function of Problem (3) is given as

WPκ+ CE
[
rTN†(λ∗)

]
+ (B − C)E

[
AN†(λ∗)

]
E
[
rTN†(λ∗)

]
=

WPκ+ Crα(0) + (B − C)E
[
AN†(λ∗)

]
rα(0)

.

Since an optimal stopping rule of Problem (3) should attain
the optimal rate of cost (also the optimal objective function of
Problem (3)) given as λ∗ (from Theorem 2), we have

WPκ+ Crα(0) + (B − C)E
[
AN†(λ∗)

]
rα(0)

= λ∗

which leads to

E
[
AN†(λ∗)

]
=

rα(0)(λ∗ − C)−WPκ

B − C
. (27)

Therefore, the traffic loss rate of the optimal stopping rule
N†(λ∗) is the ratio of the expected discarded traffic amount
upon a stop to the expected total traffic amount accumulated
before a stop, given as

E
[
AN†(λ∗)

]
rE
[
TN†(λ∗)

] =
rα(0)(λ∗ − C)−WPκ

rα(0)(B − C)
.

And the energy consumption per time unit is

Pκ+ P
rE

[
T
N†(λ∗)

]
−E

[
A

N†(λ∗)

]
R

E
[
TN†(λ∗)

] =
Pκ+ P

rα(0)−E
[
A

N†(λ∗)

]
R

α(0)

in which the numerator is the expected energy consumption
when the source RSU stops, the denominator is the expected
stopping time, and E

[
AN†(λ∗)

]
is given in (27).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the derived
stopping strategy, and compare with Matlab simulations. If a
vehicle is selected to help, four-way handshake of RTS-CTS-
DATA-ACK is used. The data transmission rate is R = 11
Mbps, and transmission power is P = 15.5 dBm = 35.5 mW.
The overhead duration κ = 938.91 µs consists of the following
components: RTS duration (ratio of RTS size to basic rate, plus
preamble time), CTS duration (ratio of CTS size to basic rate,
plus preamble time), ACK duration (ratio of ACK size to R,
plus preamble time), as well as overhead for data transmission
(MAC header time, given as ratio of MAC header size to R,
and preamble time), in which basic rate is 2 Mbps, preamble
time is 192 µs, and RTS, CTS, ACK, and MAC header have
sizes of 20 bytes, 14 bytes, 14 bytes, and 34 bytes, respectively.
The traffic coming rate is r = 5 bps at the source RSU. The
energy cost is W = 1 unit of cost per µJoule. The delay
bound K is usually application dependent (e.g., a delay bound
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N†(λ) =

{
min{n : WPκ+ r (C − λ)Tn + r (B − C) (Tn +Gn −K)+ ≤ VTn(λ)} if Tn < K − a

minn if b1 ≥ b or min{n : Gn ≤ b∗} if b1 < b if Tn ≥ K − a.
(24)

of 120 minutes is adopted in [4]; the delay bound in [31] is
5–20 minutes). In our simulation, each traffic unit is expected
to be delivered to the destination RSU within delay bound
K = 1800 seconds. If a traffic unit is discarded at the source
RSU, a cost of B = 0.5 per bit is charged. The distance
of the source RSU to the destination RSU is D = 10, 000
meters. At the source RSU, vehicle inter-arrival time follows
an exponential distribution with parameter µ = 400 seconds.
The speeds of those vehicles are truncated Gaussian random
variables 11 which have mean v̄ = 25 m/s and variance σ2 = 9
[29]. The minimum and maximum speeds are vmin = 18 m/s
and vmax = 32 m/s, respectively. Thus, speeds of vehicles are
i.i.d. random variables with CDF:

FV (v) =


0 if v < vmin∫ v

vmin
e−(x−v̄)2/2σ2

dx∫ vmax
vmin

e−(x−v̄)2/2σ2 dx
if vmin ≤ v ≤ vmax

1 otherwise.

The transit delay of vehicle n is Gn = D/Vn, where Vn is
the speed of vehicle n. And Gn’s are i.i.d. random variables
with CDF:

FG(g) = 1− FV

(
D

g

)

=


0 if g < a∫ vmax

D/g
e−(x−v̄)2/2σ2

dx∫ vmax
vmin

e−(x−v̄)2/2σ2 dx
if a ≤ g ≤ b

1 if g > b

where a = D/vmax = 312.5 seconds and b = D/vmin =
555.6 seconds are the smallest and the largest transit delay,
respectively.

A. Optimal stopping rule (24) for Problem (7)

We first evaluate our optimal stopping rule (24) for Problem
(7). For λ ∈ [0.0032, 0.05],12 Fig. 1 shows the numerically
calculated values of V (λ) = V0(λ) (optimal cost of Problem
(7)) based on our derivation in Section III-C. Matlab simula-
tions13 are also carried out to get the cost of Problem (7) by
using the stopping rule N†(λ) given in (24), and the simulation
results are also shown in Fig. 1. It can be seen that numerical
and simulation results match well. As indicated in proof of

11Here “truncated Gaussian random variable” means the probability density
function of a Gaussian random variable is truncated with a minimum value
and a maximal value.

12In this example, C = WP/R = 0.0032. Since λ∗ ∈ (C,B] (from
Theorem 3), the minimum value of λ in Fig.1 is 0.0032.

13When simulations are carried out to evaluate the proposed stopping rule
or the subsequently presented heuristic stopping rule, the stopping rule is
applied for each vehicle arrival to decide whether or not to stop. And once
the source RSU stops and forwards its traffic to the selected vehicle, it keeps
observing subsequent vehicles for its next stopping decisions. In other words,
in the simulations, repeated stopping problems are dealt with. And simulation
statistics are averaged over 106 stops.
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Fig. 1. V (λ) for C ≤ λ ≤ B for Problem (7).

Theorem 3, V (λ) is a continuous and decreasing function of
λ ∈ [C,B].

B. Optimal stopping rule of Problem (3)

Now we focus on Problem (3). From Fig. 1, we have λ∗ =
0.031 since V (λ∗) = 0. And from our analysis in Section III-
E, an optimal stopping rule of Problem (3) is as follows, with
optimal rate of cost being λ∗ = 0.031.

• When Tn < K − a = 1487.5 seconds, by (24) with
λ = λ∗ = 0.031, an optimal stopping rule of Problem
(3) is

N†(0.031)

= min{n : WPκ+ r(C − 0.031)Tn

+ r(B − C)An ≤ VTn(0.031)}
= min{n : 33.33− 0.1389Tn + 2.48(Tn +Gn − 1800)+

≤ VTn(0.031)}.

• When Tn ≥ K − a = 1487.5 seconds and λ = λ∗,
since b1 = ϕ(b) = ϕ(555.6) = 805.39 > b = 555.6, by
(24) with λ = λ∗ = 0.031, an optimal stopping rule of
Problem (3) is

min{n : Tn ≥ K − a = 1487.5}.

Next we vary the value of B from 0.2 to 1. For Problem (3)
with each value of B, we numerically calculate λ∗ (which is
the numerically obtained optimal rate of cost for Problem (3),
and can be found, as aforementioned in Section III-E, by a
bisection search such that V (λ∗) = 0) and obtain the optimal
stopping rule N†(λ∗) in the form of (24) with λ = λ∗. We also
run computer simulations for the objective function of Problem
(3) with stopping rule being N†(λ∗) and get the simulated
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Fig. 2. The rate of cost of the heuristic rule (simulation results) and the
proposed optimal stopping rule (numerical and simulation results) for Problem
(3).
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Fig. 3. Average stopping time of the heuristic rule (simulation results) and
the proposed optimal stopping rule (numerical and simulation results) for
Problem (3).

rate of cost. Both the numerically calculated optimal rate of
cost (i.e., λ∗) and the simulated rate of cost for different B
values are shown in Fig. 2. We can see that the numerical and
simulation results match well.

Fig. 2 also shows the simulated rate of cost using a heuristic
stopping rule for different values of B. The heuristic stopping
rule is the simple myopic stopping rule: Upon a vehicle arrival
(say vehicle n), if its rate of cost is less than the rate of cost
of the next vehicle, vehicle n + 1, by assuming that vehicle
n + 1 has an average inter-arrival time (i.e., Xn+1 = µ) and
has an average transit delay (i.e.,Gn+1 =

∫ b

a
gfG(g) dg), then

the source RSU stops at vehicle n; Otherwise, the source RSU
skips vehicle n and waits for other vehicles. In other words,
the heuristic stopping rule is shown in (28) on top of next
page. From Fig. 2, it can be seen that the proposed stopping
rule has a much lower rate of cost than the heuristic rule.
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Fig. 4. The percentage of traffic loss of the heuristic rule (simulation results)
and the proposed optimal stopping rule (numerical and simulation results) for
Problem (3).
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Fig. 5. The energy consumption per second of the heuristic rule (simulation
results) and the proposed optimal stopping rule (numerical and simulation
results) for Problem (3).

Figs. 3-5 shows the average stopping time, average per-
centage of traffic loss, and average energy consumption per
time unit, respectively, for both the proposed stopping rule
(analytical results from Section III-E and simulation results)
and the heuristic rule (simulation results). When penalty B
increases, the proposed stopping rule is more conservative to
decide on continuation, and therefore, the average stopping
time decreases in Fig. 3 and the percentage of traffic loss
decreases in Fig. 4. Since more percentage of traffic is deliv-
ered when B increases, more energy is consumed, as shown
in Fig. 5. On the other hand, for the heuristic stopping rule,
increase of B only slightly decreases the average stopping
time. This can be roughly explained as follows.

• When Tn ≤ K − µ−
∫ b

a
gfG(g) dg = 994.8 second, we

have (Tn +Gn −K)+ ≤ (Tn + b−K)+ ≤ (994.8+ b−
K)+ = 0. Since (Tn + Gn − K)+ = max(Tn + Gn −
K, 0) ≥ 0, we have (Tn + Gn −K)+ = 0. Further, we
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min

{
n :

WPκ+ rCTn+ r(B − C)(Tn +Gn −K)+

rTn
≤

WPκ+ rC(Tn + µ)+ r(B − C)(Tn+ µ+
∫ b

a
gfG(g) dg−K)+

r(Tn+ µ)

}
.

(28)

have (Tn +µ+
∫ b

a
gfG(g) dg−K)+ = 0. Therefore, the

inequality in (28) becomes

WPκ+ rCTn

rTn
≤ WPκ+ rC(Tn + µ)

r(Tn + µ)

which apparently never holds. Therefore, when Tn ≤
994.8 second, the heuristic stopping rule never decides
on stopping.

• When Tn ≥ K−a = 1487.5 second, we have (Tn+Gn−
K)+ = Tn + Gn − K, and (Tn + µ +

∫ b

a
gfG(g) dg −

K)+ = Tn + µ +
∫ b

a
gfG(g) dg −K, and therefore, the

inequality in (28) becomes (29) on top of next page.
Recall that B varies from 0.2 to 1 in Figs. 3-5. If B takes
the minimum value 0.2, we have C = 0.0032 ≪ B−C,
WPκ = 33.33 ≪ r(B −C)(K − a) ≤ r(B −C)Tn. So
in (29), we can approximately omit WPκ + rCTn and
WPκ+ rC(Tn + µ) from the numerator on both sides,
respectively, and get

Tn +Gn −K

Tn
≤

Tn + µ+
∫ b

a
gfG(g) dg −K

Tn + µ

in which B does not exist. Therefore, when Tn ≥ K −
a = 1487.5 second, the value of B almost does not affect
the stopping time.

• When Tn ∈ (994.8 second, 1487.5 second), the heuristic
stopping rule is more conservative when the penalty B
increases.

Overall, for the heuristic stopping rule, the value of B
only affects the stopping decision for vehicle n when Tn ∈
(994.8 second, 1487.5 second). Therefore, when B increases,
the average stopping time of the heuristic rule only slightly
decreases in Fig. 3. This also explains that the percentage of
traffic loss slightly decreases in Fig. 4, and that the average
energy consumption per second slightly increases in Fig. 5.

V. EFFECT OF WIRELESS TRANSMISSION ERRORS

Now we briefly investigate the case when there are wire-
less transmission errors (e.g., due to wireless link outage
or collisions). In specific, if a transmission error happens
with the RTS, CTS, DATA, or ACK exchange between the
source RSU and a vehicle, retransmission(s) will be needed,
which consume more energy. And if the RTS-CTS-DATA-
ACK handshake cannot be completed before the vehicle leaves
the communication coverage area of the source RSU, the
DATA will remain in the source RSU’s buffer, and wait for
future vehicles.

First we analyze the effect of wireless transmission errors
on our optimal stopping rule. When the source RSU makes
a decision on whether or not to stop, it does not know how
much energy will be consumed if it decides to stop, since
possible retransmissions may enlarge the energy consumption.

Therefore, the source RSU needs to assess the expected energy
consumption when it decides whether or not to stop. Denote
the probabilities that an RTS, CTS, DATA, and ACK message
is successfully received as p1, p2, p3, and p4, respectively.
Then the information exchange between the source RSU and
the vehicle follows a Markov chain with five states: RTS,
CTS, DATA, ACK and SUCCESS, as shown in Fig. 6, in
which SUCCESS means that the handshake is successfully
completed. In the figure, eRTS, eCTS, eDATA, and eACK are the
energy consumption for transmission of an RTS, CTS, DATA,
and ACK message, respectively.

Denote ERTS, ECTS, EDATA, and EACK as the expected en-
ergy consumption to reach SUCCESS state if we begin with
RTS, CTS, DATA and ACK state, respectively. We have the
following equations:

EACK = p4eACK + (1− p4)
(

eACK + ERTS

)
EDATA = p3

(
eDATA + EACK

)
+ (1− p3)

(
eDATA + ERTS

)
ECTS = p2

(
eCTS + EDATA

)
+ (1− p2)

(
eCTS + ERTS

)
ERTS = p1

(
eRTS + ECTS

)
+ (1− p1)

(
eRTS + ERTS

)
.

By solving the above equations, we have the expected energy
consumption if the source RSU stops, as follows:

ERTS =
eRTS + p1eCTS + p1p2eDATA + p1p2p3eACK

p1p2p3p4
.

The energy consumed to send data (i.e., eDATA) contains
two parts: energy used to send MAC header and preamble:
eMAC+preamble, and energy used to send actual data: ePAYLOAD
(which is equal to P (rTn −An)/R). Since W is cost weight
for energy consumption, to successfully transmit traffic from
the source RSU to a vehicle, the expected cost of energy
consumption is

WP rTn−An

R

p3p4
+

W
eRTS + p1eCTS + p1p2eMAC+preamble + p1p2p3eACK

p1p2p3p4
.

After a comparison with the cost expression of energy
consumption given in Section II, it can be seen that: our
analysis and solution in Section II and III are still valid, if we
replace parameter C with C/(p3p4) and replace parameter κ
with

eRTS + p1eCTS + p1p2eMAC+preamble + p1p2p3eACK

Pp1p2p3p4
.

With these replacements, similar to Fig. 2, we get the numeri-
cal result and simulation result of our derived optimal stopping
rule, as well as the simulation result of the heuristic rule, as
shown in Fig. 7. In the numerical and simulation results, each
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WPκ+ rCTn + r(B − C)(Tn +Gn −K)

rTn
≤

WPκ+ rC(Tn + µ) + r(B − C)(Tn + µ+
∫ b

a
gfG(g) dg −K)

r(Tn + µ)
. (29)
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Fig. 6. Information exchange between the source RSU and a vehicle.
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Fig. 7. The rate of cost of the heuristic rule (simulation results) and the
proposed optimal stopping rule (numerical and simulation results) for Problem
(3) when there are transmission errors (p1 = p2 = p3 = p4 = 0.9).

message (RTS, CTS, DATA, or ACK) is successfully received
with a probability 0.9, which means p1 = p2 = p3 = p4 = 0.9.
In the simulation for our derived optimal stopping rule and the
heuristic rule, if the RTS-CTS-DATA-ACK handshake cannot
be completed before the vehicle is outside the communication
coverage of the source RSU14 (the coverage radius is set to
be 300 meters in the simulation), the RSU keeps the traffic
in its buffer and waits for future vehicle. It can be seen that
the numerical and simulation results for our derived stopping
rule match with each other. Compared to Fig. 2, wireless
transmission errors lead to larger rate of cost in our derived
stopping rule and the heuristic rule.

VI. CONCLUSION AND FURTHER DISCUSSION

In this work, we have studied the traffic scheduling in
vehicular delay tolerant networks by taking into account the
queueing delay, the transmit delay, and the energy consump-
tion. By setting the objective to minimize the rate of cost,

14Note that this rarely happens, since the available communication time of
the source RSU and the vehicle is large enough if the transmission successful
probability is not extremely low.

we theoretically derive an optimal stopping rule of the source
RSU.

In this paper, all vehicles passing by the source RSU will
also pass by the destination RSU. Actually our research can
be extended to the case when some arrival vehicles do not
pass by the destination RSU. Recall that vehicle arrivals at
the source RSU follow a Poisson process with rate 1/µ (µ
is the average inter-arrival time). Let β denote the percentage
of the passing-by vehicles at the source RSU that will also
pass by the destination RSU. Then the problem is equivalent
to the case that vehicles arrive with rate β(1/µ) (i.e., average
inter-arrival time is µ/β) and all vehicles will pass by the
destination RSU.

We also assume there is only one destination RSU. How-
ever, our research can be extended to the case when the source
RSU can send its traffic to any one of several destination RSUs
(that have backbone connection). As an example, consider
a source RSU that has two paths, with destination RSU #1
and destination RSU #2, respectively. The transit delay of
the two paths have CDF FG1(g) and FG2(g), respectively.
For the vehicles arriving at the source RSU, denote α and
1 − α as the percentage of vehicles passing by destination
RSU #1 and #2, respectively. Then, the problem is equivalent
to the case that only a single destination RSU exists and
the transit delay of vehicles has the following effective CDF:
FG(g) = αFG1(g) + (1− α)FG2(g).

From the above discussion it can be seen that if a vehicle
does not pass by any destination RSU, then the source RSU
(called source RSU #1) cannot ask the vehicle to help. How-
ever, if the vehicle will pass by another source RSU (called
source RSU #2 that does not have backbone connection either)
closer to a destination RSU, then it may be beneficial for
source RSU #1 to forward its traffic to the vehicle, expecting
that the vehicle will deliver the traffic to source RSU #2, which
will ask its passing-by vehicles to help deliver the traffic to a
destination RSU. Further, a vehicle, who carries the traffic of
a source RSU, may pass the traffic to another vehicle later, if
it takes the latter vehicle less time to arrive at an RSU with
backbone network connection. The cooperative traffic delivery
will be considered as a future research topic.
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APPENDIX

A. Proof of Theorem 1

According to [28], if the following two conditions are met:

1.E
[
inf
n

Zn(λ)

]
> −∞ (30)

2. lim
n→∞

Zn(λ) ≥ Z∞(λ) almost surely (a.s.), (31)

then there exits an optimal stopping rule N†(λ) such that
E
[
ZN†(λ)(λ)

]
= V (λ), where V (λ) = infN≥1 E

[
ZN (λ)

]
.

From (4), we have

An ≥

{
0 if Tn < K − a

r(Tn +Gn −K) if Tn ≥ K − a.
(32)

For λ ≤ B, we have

Zn(λ)
= WPκ+ r (C − λ)Tn + (B − C)An

≥ WPκ+ r (C −B)Tn + (B − C)An

(e1)
≥

{
WPκ+ r (C −B)Tn if Tn < K − a

WPκ+ r(B − C)(Gn −K) if Tn ≥ K − a

(e2)
≥

{
WPκ+ r (C −B) (K − a) if Tn < K − a

WPκ+ r(B − C)(a−K) if Tn ≥ K − a

= WPκ+ r(B − C)(a−K) > −∞

where inequality (e1) follows from (32), and inequality (e2)
follows from B > C and Gn ≥ a. Thus, the first condition in
(30) is established.

When n → ∞, we have Tn → ∞ a.s., and thus from (4),
we have An = r(Tn +Gn −K), and

lim
n→∞

Zn(λ)

= lim
n→∞

{
WPκ+ r (C − λ)Tn+(B − C)r(Tn +Gn−K)

}
= lim

n→∞

{
WPκ+ r (B − λ)Tn + (B − C)r(Gn −K)

}
.

Define Z∞(λ) = ∞. Then we have limn→∞ Zn(λ) = Z∞(λ)
a.s., and the second condition in (31) is satisfied.

B. Proof of Theorem 2

According to the condition i), we have E [YN − λ∗rTN ] ≥ 0
for any stopping rule N , which leads to

E [YN ]

E [rTN ]
≥ λ∗. (33)

From condition ii), we have E
[
ZN†(λ∗)(λ

∗)
]
= V (λ∗) =

0, which means E
[
YN†(λ∗) − λ∗rTN†(λ∗)

]
= 0. This leads to

E
[
YN†(λ∗)

]
E
[
rTN†(λ∗)

] = λ∗. (34)

From (33) and (34), N†(λ∗) is an optimal stopping rule for

inf
N≥1

E [YN ]

E [rTN ]

which is Problem (3), and the optimal rate of cost is

E
[
YN†(λ∗)

]
E
[
rTN†(λ∗)

] = λ∗.

C. Proof of Theorem 3

Based on the definition of Zn(λ) in (6), when λ = C, for
any n we have Zn(λ)

∣∣∣
λ=C

≥ WPκ > 0. Hence, based on
the definition of V (λ) in (7), we have V (C) > 0.

From (5), we have

K − a >
WPκ

r(B − C)
.

Define

δ , K − a− WPκ

r(B − C)
> 0.

When λ = B, from (6) we have Zn(B) = WPκ − (B −
C)(rTn −An). From (7), we have

V (B) = inf
N≥1

E
[
ZN (B)

]
≤ inf

N≥1,TN>K,GN<a+δ
E
[
ZN (B)

]
(35)

because {N : N ≥ 1, TN > K,GN < a+δ} ⊂ {N : N ≥ 1}.
When TN > K,GN < a + δ, from (4) we have AN =

r(TN +GN −K), and further, we have

ZN (B) = WPκ− (B − C)(rTN −AN )
= WPκ− (B − C)r(K −GN )
< WPκ− (B − C)r(K − (a+ δ))
= 0

(36)

where the last equality comes from the definition of δ.
From (35) and (36), we have V (B) ≤ 0.
Next we show that V (λ) is continuous in [C,B]. From

Theorem 1, it is shown that for λ ≤ B, there exists an
optimal stopping rule denoted N†(λ) for Problem (7). As to
be shown in (14) and (19) in Section III-B (which show that
the average optimal stopping time of Problem (7) is finite),
we have E

[
TN†(λ)

]
< ∞.

Let C ≤ λ1 < λ2 ≤ B. Then

V (λ1) = E
[
YN†(λ1)

]
− λ1E

[
rTN†(λ1)

]
> E

[
YN†(λ1)

]
− λ2E

[
rTN†(λ1)

]
≥ V (λ2) (37)

where the first equality comes from the optimality of stopping
rule N†(λ1) for Problem (7) with λ = λ1, the first inequality
comes from λ1 < λ2, and the second inequality comes from
the fact that V (λ2) is the minimum cost of Problem (7) with
λ = λ2.

From (37), it can be seen that V (λ) is decreasing in λ ∈
[C,B].

If λ2 − λ1 < ϵ/(rE
[
TN†(λ2)

]
) where ϵ is a very small

positive value (recalling that E
[
TN†(λ)

]
is finite for any λ ∈
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(0, B]), we have

|V (λ2)− V (λ1)|
= V (λ1)− V (λ2)

= V (λ1)−
(
E
[
YN†(λ2)

]
−(λ1+(λ2−λ1))E

[
rTN†(λ2)

])
= V (λ1)−

(
E
[
YN†(λ2)

]
− λ1E

[
rTN†(λ2)

])
+ (λ2 − λ1)E

[
rTN†(λ2)

]
≤(λ2 − λ1)E

[
rTN†(λ2)

]
< ϵ

(38)
where the second equality comes from the optimality of
N†(λ2) for Problem (7) with λ = λ2, and the first inequality
comes from the fact that V (λ1) is the minimum cost of
Problem (7) with λ = λ1.

From (38), it can be concluded that V (λ) is continuous
for λ ∈ [C,B]. Since V (C) > 0 and V (B) ≤ 0 and V (λ)
is decreasing in λ ∈ [C,B], according to Intermediate Value
Theorem [30], there exists a unique λ∗ ∈ (C,B] such that
V (λ∗) = 0.

D. Proof of Theorem 4

According to Theorem 2 and Corollary 2 in Chapter 5 of
[28], if Problem (7) when Tn ≥ K − a is monotone, then
its myopic rule (13) is optimal if the following conditions are
satisfied:

• i) Zn can be written as Zn = un + wn, where
E
[
supn |un|

]
< ∞ and wn is nonnegative and nonde-

creasing a.s.;
• ii) limn→∞ Zn = Z∞ a.s..
We copy (8) here:

Zn(λ) = WPκ+ r(B − λ)Tn + r(B − C)(Gn −K).

Define un = WPκ+ r(B−C)(Gn−K) and wn = r(B−
λ)Tn. Since λ ∈ (0, B], Condition i) is satisfied.

Define Z∞(λ) = ∞. Then

lim
n→∞

Zn(λ)

= lim
n→∞

(
WPκ+ r(B − λ)Tn + r(B − C)(Gn −K)

)
= Z∞(λ) a.s. (39)

which means Condition ii) is satisfied.

E. Proof of Theorem 5

Take the first-order derivative of ϕ(g) given in (11), we have

dϕ(g)

dg
=

fG(g)

FG(g)

(
g − (B − λ)µ

(B − C)FG(g)
−
∫ g

a
xfG(x) dx

FG(g)

)

=
fG(g)

FG(g)

(
g − ϕ(g)

)
=

fG(g)

(FG(g))2
(
g − ϕ(g)

)
FG(g)

=
fG(g)

(FG(g))2
Ψ(g) (40)

a b∗ b2 b1 b
a

b2

b1

b

y = g

y = φ(g)

Fig. 8. Curves y = ϕ(g) and y = g, and the procedure of obtaining
b → b1 → b2 → ... .

in which Ψ(g) ,
(
g − ϕ(g)

)
FG(g). Then Ψ(b) = (b −

ϕ(b))FG(b) = b − ϕ(b) = b − b1 > 0. Replacing ϕ(g) with
(11), Ψ(g) can be rewritten as

Ψ(g) = gFG(g)−
(B − λ)µ

B − C
−
∫ g

a

xfG(x) dx

=

∫ g

a

(g − x)fG(x) dx− (B − λ)µ

B − C

from which it can be seen that Ψ(g) is an increasing function
of g ∈ (a, b], and

lim
g>a, g→a

Ψ(g) = − (B − λ)µ

B − C
< 0.

Recalling that Ψ(b) > 0, for g ∈ (a, b] there is a unique
root of Ψ(g) = 0. Denote the root as b∗. In other words,
Ψ(b∗) = (b∗ −ϕ(b∗))FG(b

∗) = 0, which leads to ϕ(b∗) = b∗.
This means, for g ∈ (a, b], curve y = ϕ(g) and curve y = g
have a unique common point at g = b∗, which proves Part 3) of
Theorem 5. Since Ψ(g) is an increasing function of g ∈ (a, b]
and limg>a, g→a Ψ(g) < 0 < Ψ(b), we have

• When g ∈ (a, b∗), Ψ(g) < 0. Then from (40) we have
dϕ(g)
dg < 0, which means ϕ(g) is a decreasing function of

g ∈ (a, b∗);
• When g ∈ (b∗, b], Ψ(g) > 0. Then from (40) we have

dϕ(g)
dg > 0, which means ϕ(g) is an increasing function

of g ∈ (b∗, b].
These also mean that for g ∈ (a, b], g = b∗ minimizes ϕ(g),
which proves Part 4) of Theorem 5.

Fig. 8 shows the curve y = ϕ(g) and curve y = g. The
red curve in Fig. 8 shows how to get b1 = ϕ(b) from b, get
b2 = ϕ(b1) from b1, ..., etc. It can be seen that the procedure
of obtaining b → b1 → b2 → ... is actually the procedure of
finding the unique common point of the curve y = ϕ(g) and
curve y = g. Therefore, it can be concluded that sequence
{bi}i=1,2,... converges to b∗, and b > b1 > b2 > ..., which
proves Parts 1) and 2) of Theorem 5.
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