
1

Permutation Meets Parallel Compressed Sensing:
How to Relax Restricted Isometry Property for 2D
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Abstract—Traditional compressed sensing considers sampling
a 1D signal. For a multidimensional signal, if reshaped into a vec-
tor, the required size of the sensing matrix becomes dramatically
large, which increases the storage and computational complexity
significantly. To solve this problem, the multidimensional signal
is reshaped into a 2D signal, which is then sampled and
reconstructed column by column using the same sensing matrix.
This approach is referred to asparallel compressed sensing, and
it has much lower storage and computational complexity. For a
given reconstruction performance of parallel compressed sensing,
if a so-calledacceptable permutationis applied to the 2D signal, the
corresponding sensing matrix is shown to have a smaller required
order of restricted isometry property condition, and thus, lower
storage and computation complexity at the decoder are required.
A zigzag-scan-based permutation is shown to be particularly
useful for signals satisfying the newly introduced layer model.
As an application of the parallel compressed sensing with the
zigzag-scan-based permutation, a video compression scheme is
presented. It is shown that the zigzag-scan-based permutation
increases the peak signal-to-noise ratio of reconstructed images
and video frames.

Index Terms—Compressed sensing, parallel processing, per-
mutation, multidimensional signal processing.

I. I NTRODUCTION

Compressed sensing (CS) theory states that the information
contained in anL-length sparse signalx can be fully preserved
with only K ≪ L measurements, which form aK-length
vectory [1], [2]. This is done by the help of aK×L sensing
matrix A, i.e., y = Ax, where A satisfies the restricted
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isometry property (RIP) of a certain order. The signalx can
be recovered from theK measurements iny by solving, for
example, the followingℓ1-norm minimization problem [3]

min
x

||x||1 s.t. y = Ax (1)

where || · ||1 denotes theℓ1-norm of a vector. In addition, if
signal f is not sparse itself, it may be represented as a sparse
signal in some orthonormal basisΨ, i.e.,x = ΨT f is a sparse
signal. Here(·)T denotes the transpose operation. Then given
the sensing matrixA for x and the orthonormal basisΨ, the
signalf can be measured using aK ×L measurement matrix
Φ = AΨT , i.e.,y = Φf . It is equivalent to usingA to sense
x sincey = AΨT f = Ax. Therefore,x and thusf can be
recovered fromy as long asA satisfies the RIP of a certain
order.

Usually, CS is applied to 1D signals, or vector-reshaped
multidimensional signals. When the length of the 1D signal
or the vector-reshaped multidimensional signal is very large, a
large size measurement matrixΦ, or equivalently, a large size
sensing matrixA, is needed. A dense measurement matrix
Φ or a dense sensing matrixA results in a high storage re-
quirement and computational complexity in both the sampling
and reconstruction processes. An example of such sampling
and reconstruction scheme with a dense measurement matrix
is the single-pixel camera proposed in [4]. The single-pixel
camera acquires a group of measurements of a 2D image using
different patterns of the digital micromirror device (DMD)
array without collecting the pixels. Each pattern of the DMD
array plays the role of a row in the measurement matrixΦ,
and gives one measurement for the vector-reshaped 2D image.
If the length of the vector-reshaped 2D image is very large,
the encoder needs to store a large group of patterns, and
the computational complexity of the reconstruction process is
high.

To address the above problem related to the storage require-
ment and the computational complexity during the sampling
process, a separable sensing operator framework is designed
for compressive imaging in [5], where an imaging operator,
that is, the measurement matrix for the whole image, can be
separated into two dimensions, i.e., two smaller-sized mea-
surement matrices. Using this approach, all dimensions of the
image signal can be sampled sequentially using corresponding
measurement matrix of a smaller size. Then the encoder
needs to store only the smaller-sized measurement matrices.
The separable sensing operator design significantly reduces
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the complexity of implementation, storage, and usage of the
imaging operator. A general framework of the separable sens-
ing operator for sampling multidimensional signals, named
Kronecker CS, is proposed in [6]. In Kronecker CS, it is shown
that the following two methods are equivalent: (i) sampling
the vectorized multidimensional signal using a measurement
matrix which is the Kronecker product of several smaller-sized
measurement matrices that correspond to the measurement
processes for different portions of the multidimensional signal;
(ii) sampling the multidimensional signal sequentially using
corresponding smaller-sized measurement matrices. Thus,it
is enough to store only the smaller-sized measurement ma-
trices instead of the Kronecker product of the smaller-sized
measurement matrices.

Another solution to the aforementioned problem related to
the sampling process is the block CS of [7]. The idea of the
block CS is to divide a 2D signal into smaller blocks and
sample individual vector-reshaped blocks, whereas all blocks
need to be reconstructed as a whole. Essentially, a block-
diagonal measurement matrix, instead of a dense measurement
matrix, is used in the block CS of [7] to sample the vector-
reshaped signal. As a result, the block CS can reduce the
storage and computational complexity at the encoder side.
Some improved reconstruction algorithms for the block CS
scheme are presented in [8]. They help to further reduce
the required number of rows in the measurement matrixΦ

for a given reconstruction error requirement. Based on the
block CS architecture, a fast sampling operator is proposed
in [9] using the block Hadamard ensemble, which can be
easily implemented in the optical domain. Note that all the
above works focus on the encoder side, aiming at reducing the
storage and computational complexity of the sampling process.
Joint reconstruction is employed in these schemes, and thus,
the computational complexity at the decoder is still high.

In this paper, to achieve a low-complexity at both encoder
and decoder sides, a parallel CS scheme is considered for the
multidimensional sparse signal. The multidimensional signal
is first rearranged into a 2D matrix, and then sampled column-
by-column via CS using the same sensing matrix. In this way,
the required size of the sensing matrix can be reduced signif-
icantly compared to the scheme that samples the vectorized
signal. Furthermore, both sampling and reconstruction canbe
conducted for individual columns in parallel. Note that when
a 2D signal sparse in the identity basis is considered, the
measurement matrix is the same as the sensing matrix; and
then the column-by-column sampling scheme is actually a
special case of the sampling operator used in the Kronecker CS
framework of [6] and the block CS framework of [7] and [8].
In the Kronecker CS framework, if one of the two sampling
operators for the 2D signal is the identity matrix, then the 2D
signal is sampled either row-by-row or column-by-column. In
the block CS framework, if each column of the 2D signal is
a block, then the block-by-block sampling is also the same as
the column-by-column sampling. Several other works also use
a similar column-by-column sampling setting at the encoder
side for the signal which is sparse in the identity basis. In
[4], the wavelet coefficients of a 2D image are rearranged in
a specific order into a 2D matrix and sampled column-by-

column via CS. If the same sampling operator is applied to
each row, the row-by-row scan in [10] is similar to the column-
by-column sampling scheme in the parallel CS framework.
Another example is the multiple measurement vectors (MMV)
model of [11], which considers a group of 1D signals that
share the same sparsity profile. In the MMV model, a group
of 1D signals is considered and all signals are sampled using
the same dictionary, which is analogous to the sensing matrix
in CS, while the group of 1D signals can be viewed as a virtual
2D signal.

It is known that the column-by-column reconstruction
scheme in the parallel CS framework provides a poor recon-
struction error performance, although it has low computational
complexity [6]. Thus, different reconstruction schemes are
proposed to provide a better reconstruction error performance
[4], [6]–[8], [10], [11]. All these approaches employ a joint re-
construction, which has higher computational complexity com-
pared to the basic column-by-column reconstruction scheme.

Another problem of the parallel CS scheme is that the
sparsity levels1 of the columns of the 2D-reshaped signal
differ from one column to another. This problem has been
partially studied in [12] and [13]. If we regard each column
as a vectorized block, then the column-by-column sampling
and reconstruction setting is similar to the block-based CS
architecture proposed for video compression in [12] and [13].
Considering that some blocks are not sparse enough to apply
CS, it is proposed in [12] and [13] to apply CS only to
sparse blocks found by a block classification scheme. Another
block classification scheme based on inter-frame correlation is
proposed in [14].

In the parallel CS framework considered in this paper, we
propose to permute the 2D signal before it is sampled. Using
a so-called acceptable permutation, the maximal sparsity level
of the columns of the permuted 2D signal can be reduced,
and thus a sensing matrix with a weaker RIP condition
can be used to sample all columns. Accordingly, the error
performance of the reconstruction can be improved for a given
number of measurements for the 2D signal. The introduction
of permutation provides an alternative solution to those in
[4], [6]–[8], [10], [11] in order to give a better reconstruction
error performance compared to the basic column-by-column
reconstruction scheme, while not increasing the computational
complexity.

Permutations are studied in several papers related to CS,
though the goals of permutations in the existing literature
are very different from our goal here. In [15], a segmented
CS architecture is proposed and it is shown that a similar
improvement to that obtained by increasing the size of the
measurement matrix can be achieved by using a virtual ex-
tended measurement matrix obtained by permuting the existing
rows of the initial measurement matrix. In [16], it is shown
that if nonzero entries of a sparse signal are clustered, the
deterministic Delsarte-Goethals frame used as a sensing matrix
does not work. Thus, it is proposed to apply permutations
to the signal in order to avoid clustered nonzero entries. In

1Note that the sparsity level of a column is the number of nonzeroentries
in the column.
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our paper, the goal for applying permutations is different.
Specifically, the parallel CS framework considers sensing
matrices that satisfy the RIP, and permutation is applied to
the 2D-reshaped signal aiming at ensuring that the maximum
sparsity level of the columns is reduced. We show that if a so-
called acceptable permutation is conducted before sampling,
the sensing matrix needs to satisfy the RIP of a smaller
order than the sensing matrix of the parallel CS without any
permutation.

In our paper, a group-scan-based permutation is introduced
as an acceptable permutation for 2D signals which can be
divided into a number of groups with entries in each group
having the same probability to be large in magnitude. As a
special case of such group-scan-based permutation, a zigzag-
scan-based permutation is introduced and investigated for
2D signals satisfying a newly introduced layer model. A
video compression scheme based on the parallel CS with
the zigzag-scan-based permutation is also developed and in-
vestigated. It improves the peak signal-to-noise ratio (PSNR)
of reconstructed frames compared to the parallel CS without
permutation. This demonstrates the effectiveness of the zigzag-
scan-based permutation in image compression.

In summary, this paper makes three contributions. First, we
investigate properties of permutations when applied to parallel
CS. Second, we introduce a group-scan-based permutation
and as an example a zigzag-scan-based permutation, and we
show that the zigzag-scan-based permutation is an acceptable
permutation with a large probability for 2D signals satisfying
a newly introduced layer model. Finally, the application of
our parallel CS with the zigzag-scan-based permutation to
video compression in wireless multimedia sensor networks
is discussed. Some preliminary results have been reported in
[17].

The remainder of the paper is organized as follows. Sec-
tion II introduces the parallel CS scheme. Permutations are
discussed in Section III. Section IV describes the video com-
pression scheme that employs the parallel CS with the zigzag-
scan-based permutation in application to wireless multimedia
sensor networks. Simulation results are given in Section V.
Finally, conclusions and further discussion are given in Sec-
tion VI. This paper is reproducible research, and the software
needed to generate the simulation results can be obtained from
the IEEE Xplore together with the paper.

II. PARALLEL CS

Given any multidimensional sparse signal, we can rearrange
it into a 2D matrixX ∈ R

M×N . A multidimensional signal
and the corresponding 2D matrixX are calleds-sparse or
have sparsity levels if X has onlys nonzero entries. The
sparsity level ofX can be denoted as a sparsity vector
s = [s1, s2, · · · , sN ], where sj is the sparsity level of the
j-th column ofX. In other words, thej-th column ofX has
only sj nonzero entries. Apparently,||s||1 = s.

In terms of the 2D signalX, the parallel CS scheme
consists of sampling each column ofX by the same sensing
matrixA and reconstructing these columns individually and in
parallel by using any 1D CS reconstruction algorithm. In this

paper, for presentation simplicity, we consider 2D signals, i.e.,
rearrangement of a multidimensional signal into a 2D matrix
is done in advance.

A. Theoretical Results on CS for 1D Signals

Most practical signals are not strictly sparse, but rather
regarded ascompressible, i.e., they have only a few large2

entries. For a 1D or 2D signal, we define itsbest s-term
approximationas a signal generated by keeping thes largest
entries in the original signal and changing the remaining
entries to zeros. Therefore, the bests-term approximation
has sparsity levels. It is an optimal approximation using
only s entries to approximate a compressible signal. However,
such approximation requires knowledge about the values and
locations of all entries inx.

On the other hand, when CS is applied tox, it is known
that, if the sensing matrixA obeys the RIP of orders, the
reconstruction via solving (1) is nearly as good as that using
the bests-term approximation, as shown in the following
Lemma 1 [3], [18]. Before Lemma 1, consider the following
definition.

Definition 1: [3] For every integer s = 1, 2, . . . , the s-
restricted isometry constantδs of a given matrixA is defined
as the smallest quantity such that the inequality

(1− δs)||z||22 ≤ ||Az||22 ≤ (1 + δs)||z||22
holds for all sparse signalsz with no more thans nonzero
entries, where|| · ||2 denotes theℓ2-norm of a vector.

Lemma 1: [18] Assume thatδ2s <
√
2 − 1 (s is a positive

integer) for a sensing matrixA. Then for a signalx, the
solutionx∗ to (1) obeys

||x∗ − x||1 ≤ G · ||x− xs||1
and

||x∗ − x||2 ≤ G · ||x− xs||1/
√
s

for some constantG.

In this paper, if the2s-restricted isometry constant ofA
satisfiesδ2s <

√
2− 1, the matrixA is regarded as obeying

the RIP of orders. Therefore, according to Lemma 1, ans-
sparse signal can be exactly reconstructed via solving (1) if the
sensing matrixA obeys the RIP of orders. For a compressible
signalx, if a sensing matrixA, which obeys the RIP of order
s, is used to samplex, the reconstruction via solving (1) has an
error bounded by theℓ1-norm of the approximation error when
xs is used to approximatex. Note that, for reconstruction via
solving (1), we do not need knowledge about the values and
locations of all entries inx, while such knowledge is needed
if xs is used to approximatex.

B. New Theoretical Results on Parallel CS for 2D Signals

Based on Lemma 1, the following lemma gives a sufficient
condition for exact reconstruction of a 2Ds-sparse signal using
parallel CS.

2In this paper, when we say a value is large or small, it means the magnitude
of the value is large or small.
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Lemma 2: Consider a 2Ds-sparse signalX with sparsity
vector s, if the RIP of order ||s||∞ holds for the sensing
matrix A, i.e., δ2||s||∞ <

√
2 − 1, where || · ||∞ stands for

the Chebyshev norm of a vector3, then X can be exactly
reconstructed using parallel CS scheme.

Proof: The proof follows the same steps as the proof for
the following Lemma 3.

For a 2D compressible signalX, the following lemma
gives a sufficient condition that the reconstruction error of the
parallel CS is bounded by theℓ1-norm of the approximation
error when the bests-term approximation ofX, denoted as
Xs, is used to approximateX.

Lemma 3: Let Xs ∈ R
M×N , which has a sparsity vector

s = [s1, s2, · · · , sN ], be the bests-term approximation of
X ∈ R

M×N . If sj ≥ 1 for j = 1, 2, · · · , N , and the sensing
matrixA obeys the RIP of order||s||∞, i.e.,δ2||s||∞ <

√
2−1,

then the signalX̂ reconstructed using parallel CS scheme
obeys

||X̂−X||1 ≤ G · ||X−Xs||1
and

||X̂−X||2 ≤ G · ||X−Xs||1
whereG is a finite constant. Here for a matrix,|| · ||1 and
|| · ||2 denoteℓ1-norm andℓ2-norm of the vectorized matrix,
respectively.

Proof: Due to the fact that for allj ∈ {1, 2, · · · , N},
||s||∞ ≥ sj , and according to the definition ofs-restricted
isometry constant, we haveδ2sj ≤ δ2||s||∞ <

√
2 − 1. Then,

according to Lemma (1), we obtain that

||x̂j − xj ||1 ≤ Gj · ||xj − xs
j ||1

and

||x̂j − xj ||2 ≤ Gj · ||xj − xs
j ||1 · s

−1/2
j ≤ Gj · ||xj − xs

j ||1

wherexj , x̂j , andxs
j denote thej-th column ofX, X̂, and

Xs, respectively, andGj is a finite constant. Therefore, by
choosingG = maxj{Gj}, we obtain that

||X̂−X||1 =

N
∑

j=1

||x̂j − xj ||1

≤ G ·
N
∑

j=1

||xj − xs
j ||1 = G · ||X−Xs||1

and

||X̂−X||2 =

√

√

√

√

N
∑

j=1

||x̂j − xj ||22

≤

√

√

√

√G2 ·
N
∑

j=1

||xj − xs
j ||21 = G ·

√

√

√

√

N
∑

j=1

||xj − xs
j ||21

≤ G ·
N
∑

j=1

||xj − xs
j ||1 = G · ||X−Xs||1.

3The Chebyshev norm of a vector is equal to the largest magnitude of the
entries in the vector.

This completes the proof.
To sum up, for parallel CS, the RIP condition for the sensing

matrixA for a given reconstruction quality is related to||s||∞.
In Subsection III-A, it will be shown that the RIP condition can
be relaxed by performing a so-called acceptable permutation
before using the parallel CS.

III. PERMUTATIONS

When parallel CS is applied to a 2D compressible signal4

X, the difference of sparsity levels among columns ofXs

(which has sparsity vectors) is not considered, and thus, the
‘worst-case’ sparsity level of the columns ofXs, i.e., ||s||∞,
needs to be taken into account when designing the sensing
matrix. In this section, permutation is introduced such that by
permuting5 entries ofX, the maximum sparsity level of the
columns of the bests-term approximation of the newly formed
2D signal is reduced.

Let P(·) be a permutation operator which maps a matrix
into another matrix by permuting its entries and P−1(·) be the
corresponding inverse permutation operator. ThenX† = P(X)
and X = P−1(X†) whereX† ∈ R

M×N is a permuted 2D
signal.

With permutation before sampling, the parallel sampling
process can be described as follows

yj = Ax
†
j (2)

wherex†
j is thej-th column ofX†, andyj is the measurement

vector ofx†
j . We can rewrite (2) in the matrix form as

Y = AX† = AP(X)

whereY = [y1,y2, · · · ,yN ].
For signal reconstruction, all columns ofX† can be re-

constructed in parallel by any existing CS reconstruction
algorithm. Let X̂† be the reconstructed permuted signal.
Then we can apply inverse permutation tôX† to obtain the
reconstructed 2D signal̂X, that is,X̂ = P−1(X̂†).

A. Discussion about Permutation

For any multidimensional signal, the permutation can be
either applied after or included in the process of rearranging
the multidimensional signal into a 2D matrix. The block-
based CS employed in [7], [8], and [13] is a special case
of the parallel CS, which can be interpreted as making each
vectorized block as a column of a new 2D signal. Furthermore,
the problem of difference of sparsity levels among blocks is
addressed in [13] by employing a classification scheme to
identify sparse blocks and dense blocks and then applying
CS only to the sparse blocks. In our work, permutation is
applied to a 2D compressible signalX or integrated into the
process of rearrangement of a multidimensional signal to a
2D compressible signalX such that all columns ofX†s (the

4Without loss of generality, compressible signals are considered in the
remainder of the paper, since a sparse signal can be regarded as a special
case of a compressible signal.

5In this paper, “permute” means changing positions of entries in a 2D
matrix, while not changing the dimension of the matrix.
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bests-term approximation of the resulted 2D signalX†) are
sparse. Thus, the classification step of [13] is avoided.

Consider a compressible 2D signalX and its bests-term
approximationXs with sparsity vectors, i.e., ||s||1 = s. If
the sensing matrixA ∈ R

K×M is constructed from Gaussian
ensembles with

K ≥ C · ||s||∞ log (M/||s||∞) (3)

for some constantC, then it will satisfy the RIP of order||s||∞
[3]. Then according to Lemma 3, the signalX̂ reconstructed
using parallel CS obeys the inequalities shown in Lemma (3).

Definition 2: For a 2D compressible signalX ∈ R
M×N and

its best s-term approximationXs with sparsity vectors, a
permutation P(·) is called acceptable forX if the Chebyshev
norm of the sparsity vector of the bests-term approximation
of the signal P(X) is smaller than||s||∞.

When permutation is applied before parallel CS, the signal
after permutation isX†, and the bests-term approximation of
X† is denoted asX†s with sparsity vectors†, i.e., we have
||s†||1 = s. Consider thatM ≫ ||s||∞ andM ≫ ||s†||∞, i.e.,
Xs andX†s are sparse enough. If||s†||∞ < ||s||∞, it can be
seen that for parallel CS with an acceptable permutation, the
lower bound ofK in (3) is smaller than that in the parallel
CS without an acceptable permutation. In other words, for
the sufficient condition in Lemmas 2 and 3, the condition
“A obeys the RIP of order||s†||∞” for parallel CS with
an acceptable permutation is weaker than the condition “A

obeys the RIP of order||s||∞” for parallel CS without an
acceptable permutation. To sum up, the RIP condition for
a given reconstruction quality is weaker after permutationif
||s†||∞ is smaller than||s||∞.

Since ||s†||1 = ||s||1 = s, it is desired that, after a permu-
tation, thes nonzero entries in the bests-term approximation
of the permuted 2D signal are evenly distributed among the
columns, which leads to minimum||s†||∞. A permutation
providing such even distribution is an optimal permutation
defined below.

Definition 3: For a 2D compressible signalX ∈ R
M×N and

its bests-term approximationXs, if after a permutation, the
bests-term approximationX†s of the resulted 2D signalX†

has sparsity vectors∗ satisfyingmaxi{s∗i } −mini{s∗i } ≤ 1,
where s∗i denotes thei-th entry of s∗, then s∗ is called
an optimal sparsity vector ofXs, and the corresponding
permutation is call an optimal permutation ofX.

Lemma 4: For a 2D compressible signalX ∈ R
M×N and

its best s-term approximationXs, there exists at least one
optimal sparsity vectors∗ of Xs.

Proof: Obviously,||s∗||1 = s. If ⌈s/N⌉ = ⌊s/N⌋ = s/N ,
we can immediately find an optimal sparsity vectors∗ whose
entries are alls/N . Here ⌈·⌉ denotes the ceiling function
and ⌊·⌋ denotes the floor function. If⌈s/N⌉ 6= ⌊s/N⌋, we
consider a permutation onX such that: for the bests-term
approximation of the resulted 2D signal, there are⌈s/N⌉
nonzero entries in each of the firsts−N⌊s/N⌋ columns, and
the remaining nonzero entries are evenly distributed among
the remaining columns. Then each of the latterN⌈s/N⌉ − s

columns has⌊s/N⌋ nonzero entries. Therefore, the sparsity
vector of the bests-term approximation of the permuted 2D
signal is an optimal sparsity vector. This completes the proof.

From the proof of Lemma 4, it follows that the optimal
sparsity vector and the optimal permutation may not be unique,
and the Chebyshev norm of an optimal sparsity vector ofXs

is equal to⌈s/N⌉.
In most scenarios, finding an optimal permutation may

not be practical. Then an acceptable permutation defined in
Definition 2 can be used instead.

B. Group-scan-based and Zigzag-scan-based Permutations

The following observation is of interest. For a 2D compress-
ible signalX ∈ R

M×N , consider a permuted signalX† and
its bests-term approximationX†s. For anyi ∈ {1, 2, · · · , N},
if all entries in thei-th row ofX†s share the same probability
to be nonzero, denoted aspi, then all columns ofX†s have
the same expected sparsity level, given as

∑M
i=1 pi.

Example 1: When M = N = 4, if after a permutation,
the entries in the 1st, 2nd, 3rd, and 4th rows ofX†s have
respectively probabilitiesp1 = 0.9, p2 = 0.3, p3 = 0.2 and
p4 = 0.1 to be nonzero, then for the sparsity vector ofX†s,
denoted ass† = [s†1, s

†
2, s

†
3, s

†
4], we have

E

{

max
j

{s†j} −min
j

{s†j}
}

= 1.3881

and

Pr

{

max
j

{s†j} −min
j

{s†j} ≤ 1

}

= 0.6003

whereE{·} means expectation andPr{·} means probability
of an event. Thus, the permutation in this example is optimal
with probability 0.6003.

For the bests-term approximationXs of a 2D compressible
signalX ∈ R

M×N , consider that entries inXs can be divided
into several non-overlapped groups, and in each group all
entries share the same probability to be nonzero. Based on the
observation in the two preceding paragraphs, a permutation,
namedgroup-scan-based permutation, can work as follows:
1) preform group-by-group scan6 of the 2D compressible
signalX into a vector, and 2) row-wisely reshape the resulted
vector into a newM ×N 2D signal. In this way, all nonzero
entries of the bests-term approximation of the new 2D signal
are likely to be evenly distributed among all columns.

Definition 4: For a 2D signalX ∈ R
M×N , letX(i, j) denote

the entry in the position(i, j). Them-th (1 ≤ m < M +N )
layer ofX is the group of all entriesX(i, j)’s satisfyingi+
j − 1 = m.

Example 2: WhenM = N = 4, the following matrixX

X =









x1 x2 x6 x7

x3 x5 x8 x13

x4 x9 x12 x14

x10 x11 x15 x16









(4)

6That is, first scan all entries in the first group, then scan allentries in the
second group, and so on.
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has 7 layers, including{x1}, {x2, x3}, {x4, x5, x6},
{x7, x8, x9, x10}, {x11, x12, x13}, {x14, x15}, {x16}, respec-
tively. The layers ofX are parallel to each other.

For a 2D compressible signalX, if all entries within
each layer of its bests-term approximationXs have similar
probabilities to be nonzero (an example when this conditionis
satisfied is to be given later in this subsection), we proposethe
following zigzag-scan-based permutation, which is a special
example of the group-scan-based permutation.

Define the zigzag-scan-based permutation
P: R

M×N → R
M×N for a 2D signal X ∈ R

M×N

as P(X) = R(Z(X)), where R:RMN → R
M×N is the

row-wisely reshaping function which row-wisely turns a
vector into anM × N matrix and Z:RM×N → R

MN is
the zigzag scan function which turns a matrix into a “zigzag”
sequence vector.

Correspondingly, define theinverse zigzag-scan-based per-
mutation P−1: R

M×N → R
M×N for a 2D signal

X† ∈ R
M×N as P−1(X†) = Z−1(R−1(X†)), where

R−1: R
M×N → R

MN is a vectorization function which row-
wisely turns a matrix into a vector and Z−1: RMN → R

M×N

is the inverse zigzag scan function which turns a “zigzag”
sequence into anM ×N matrix.

Example 3: The matrixX given in (4) becomes a “zigzag”
sequence after zigzag scan, i.e.,

Z(X) = [x1, x2, x3, x4, x5, x6, x7, · · · , x16]

and then becomes the permuted signalX† after row-wisely
reshaping, that is,

X† = P(X) = R(Z(X))

= R([x1, x2, x3, x4, x5, x6, x7, · · · , x16])

=









x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16









and again becomes a “zigzag” sequence after vectorization,
that is,

R−1(X†) = [x1, x2, x3, x4, x5, x6, x7, · · · , x16]

and then returns to the original signalX after inverse zigzag
scan, i.e., P−1(X†) = Z−1(R−1(X†)) = X.

Thus, according to the analysis at the beginning of this
subsection, if entries in each layer ofXs share similar proba-
bilities to be nonzero, after the zigzag-scan-based permutation,
all nonzero entries of the permutedXs tend to be evenly
distributed among all columns.

Definition 5: Consider a 2D compressible signalX ∈ R
M×N

and its bests-term approximationXs. For given transition
layer indicesr0, r1, r2 and a decay factorα, we say thatX
follows the(r0, r1, r2, α)-layer model if for any entry in the
m-th layer ofXs, its probability to be nonzero is given as

pm =















0 1≤ m ≤r0
1 r0+1≤ m ≤r1
e−α(m−r0−1) r1+1≤ m ≤r2
0 r2+1≤ m≤M+N−1.
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Fig. 1: Lower bound ofPr {P is acceptable} in (5) for
r0 = 0, r1 = 1.

Based on the(r0, r1, r2, α)-layer model, we have the fol-
lowing proposition for the zigzag-scan-based permutation.

Proposition 1: If a 2D compressible signalX ∈ R
M×N

follows the(r0, r1, r2, α)-layer model withr2 ≥ 2r1−3r0−1
and 0 ≤ r0 < r1 < r2 ≤ min{M,N}, the zigzag-scan-based
permutation P(·) is an acceptable permutation with a large
probability given as

Pr {P is acceptable} = Pr
{

||s||∞ > ||s†||∞
}

≥ 1−
[ r2

∏

m=r1+1

(

1−e−α(m−r0−1)
)m

]

·
r2
∏

j=1

{

1+

min{⌈(r0+r2+1)/2⌉,
r2−r0,r2−j+1}

∑

k=kj+1

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

1

(eα(a1−1−r0)−1)· · ·(eα(ak−kj
−1−r0)−1)

}

(5)

where s and s† are the sparsity vectors of the bests-term
approximation ofX andX†, respectively,X† is a 2D signal
after the zigzag-scan-based permutation, and for1 ≤ j ≤ r2,

Aj
△
= {mj , mj + 1, · · · , r2}, mj = max {r1 + 1, j},

and

kj =







r1 − r0, 1 ≤ j ≤ r0
r1 − j + 1, r0 + 1 ≤ j ≤ r1
0, r1 + 1 ≤ j ≤ r2.

Proof: See Appendix for the proof.
Figs. 1–3 show the value of the lower bound onPr{P is

acceptable} in (5) under differentα and r2 for 1) r0 = 0,
r1 = 1; 2) r0 = 0, r1 = 2; and 3)r0 = 3, r1 = 5. It can
be seen that the lower bound onPr {P is acceptable} is large
enough in general. For otherr0 andr1, the results are similar.

From Proposition 1, it can be seen that the zigzag-scan-
based permutation is an acceptable permutation for a very
broad class of signals. The knowledge of exact locations of
the nonzero entries of the bests-term approximationXs, i.e.,
the knowledge of the support of the 2D signalXs, is not
needed.

As an example, we show that the zigzag-scan-based permu-
tation is particularly useful for 2D discrete cosine transform
(DCT2) coefficient matrices of 2D piecewise smooth image
signals. Since the DCT2 coefficient matrix of a piecewise
smooth image signal typically has most of its large entries
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r0 = 0, r1 = 2.
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Fig. 3: Lower bound ofPr {P is acceptable} in (5) for
r0 = 3, r1 = 5.

lie in the top left corner, and small entries lie in the bottom
right corner because most of its energy is concentrated in
low frequencies, the zigzag scan process is commonly used
in image compression like JPEG [19]. Thus, the DCT2 co-
efficient matrices of piecewise smooth image signals satisfy
the (r0, r1, r2, α)-layer model withr0 = 0. It will also be
shown via simulation in Subsection V-B. Thus, the proposed
zigzag-scan-based permutation has a large probability to be
an acceptable permutation when parallel CS is applied to the
DCT2 coefficient matrices. Note that the knowledge of the
layer indicesr0, r1, r2 and the decay factorα of the layer
model is not needed when applying the zigzag-scan-based
permutation to the DCT2 coefficient matrices.

Fig. 4 shows the difference before and after the zigzag-scan-
based permutation when the 2D signal is the DCT2 coefficient
matrix of an image. The energy, which can be loosely viewed
as an interpretation of the sparsity vector if all non-zero
entries of the 2D signal have magnitude of the same order,
is distributed more evenly among columns after the zigzag-
scan-based permutation.

One advantage of the zigzag-scan-based permutation is that
it is a pre-defined permutation, and thus, the encoder and
decoder know it in advance without any additional com-
munication to each other. In Subsection V-B, we will also
show by simulation that the zigzag-scan-based permutationis
an acceptable permutation for DCT2 coefficient matrices of
several typical images.

(a) Before the zigzag-scan-
based permutation

(b) After the zigzag-scan-
based permutation

Fig. 4: Energy distribution of a DCT2 coefficient matrix before
and after the zigzag-scan-based permutation.

IV. EXAMPLE OF V IDEO COMPRESSION VIAPARALLEL CS
WITH PERMUTATIONS IN WIRELESSMULTIMEDIA SENSOR

NETWORKS

As an application example, we design a pair of CS video
encoder and decoder based on the parallel CS with the pro-
posed zigzag-scan-based permutation. This CS video encoder
and decoder can be plugged into the application layer of
the compressive distortion minimizing rate control (C-DMRC)
system [20]. As discussed in [20], in wireless multimedia
sensor networks, the C-DMRC system is preferred compared
to traditional video coding standards such as MPEG and
H.264, since the C-DMRC system has less-complex video
encoder and can tolerate much higher bit error rates. The
CS video encoder and decoder in the C-DMRC system are
built based on the block CS architecture proposed in [9].
Thus, as we discussed in Section I, the CS video decoder
in the C-DMRC system requires a joint reconstruction. By
replacing the CS video encoder and decoder at the application
layer of the C-DMRC system with the CS video encoder and
decoder based on parallel CS architecture, the computational
complexity of the video decoder can be reduced and the
reconstruction process can be parallelized.

In this example, frames with odd indices and even in-
dices are taken as reference frames and non-reference frames,
respectively.7 The block diagram of the CS video encoder
is shown in Fig. 5(a). The average compression ratio8 is
computed by the rate controller at the transport layer according
to current network status, e.g., the end-to-end round trip time
and the estimated sample loss rate of the network, and it
controls the number of measurements for a video frame. For
every pair of a reference frame and its following non-reference
frame, the rate controller gives an average compression ratio.
According to this average compression ratio, the compression
ratios of the reference and non-reference frames in a pair are
obtained. At the output of the CS video encoder, we have the
frame measurements. The image acquisition device turns the
physical input into video frames and outputs the video frames
to different processing blocks according to the frame index.

7More sophisticated index assignment schemes for the reference frame and
non-reference frame can be used as well.

8Here the compression ratio is the ratio of the number of measurements to
the number of entries in the target signal.
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Fig. 5: Block diagram of the CS video encoder and decoder.

The procedure for encoding the reference frame is as
follows: 1) compute DCT2 on the reference frame; 2) perform
the zigzag-scan-based permutation on the DCT2 coefficient
matrix; 3) perform parallel compressed sampling of the per-
muted DCT2 coefficient matrix. The procedure for encoding
the non-reference frame is as follows: 1) compute the dif-
ference between the non-reference frame and the preceding
reference frame; 2) perform parallel compressed sampling of
this difference. The outputs of all CS sampling processors
are combined.9 For the non-reference frames, no permutation
is performed since the difference between two consecutive
frames, especially in videos with slow motion, is sparse
enough so that the sparsity level of each column is too small
to have significant difference from column to column. Thus,
the permutation does not bring significant improvement, which
we have checked by simulations in [17].

Considering that the sparsity level of the difference between
a non-reference frame and its preceding reference frame is
smaller than that of the DCT2 coefficient matrix of the

9Quantization is omitted in the example presented here, but it has to been
done in a practical video coding scenario.

reference frame, the compression ratio of the non-reference
frames should be higher than that of the reference frames,
i.e., fewer measurements are assigned to the non-reference
frames. In our experiment in Section V, we set the ratio of
measurements being 4:1, i.e., the number of measurements for
reference frames is 4 times that for non-reference frames. For
example, if current average compression ratio given by the rate
controller is 0.5, then the compression ratio of the reference
frame is 0.8 and the compression ratio of the non-reference
frame is 0.2. Other ratios can be set according to the motion
intensity of the video.

The block diagram of the CS video decoder is shown in
Fig. 5(b). To decode a reference frame at the receiver side, the
following steps are performed: 1) parallel CS reconstruction
of the permuted DCT2 coefficient matrix from the measure-
ments of the reference frame; 2) the inverse zigzag-scan-based
permutation on the reconstructed permuted DCT2 coefficient
matrix; 3) inverse DCT2 on the reconstructed DCT2 coefficient
matrix. To decode a non-reference frame, the following steps
are performed: 1) parallel CS reconstruction of the difference
between the non-reference frame and its preceding reference
frame from the measurements of the non-reference frame;
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2) add the reconstructed difference between the non-reference
frame and its preceding reference frame to the corresponding
reconstructed reference frame. For parallel CS reconstruction,
any ℓ1-norm minimization solver, e.g., the basis pursuit algo-
rithm, can be used.

V. SIMULATION RESULTS

A. Empirical Performance of Parallel CS with Permutation

Our first experiment considers ans-sparse 2D signalX ∈
R

N×N whose sparsifying basis is the identity basis. To com-
pare the reconstruction error performance of the parallel CS
with permutation framework with that of other frameworks
including the Kronecker CS framework [6], we consider the
following four schemes to acquireK measurements ofX.

(i) Sample the vectorized 2D signal using a dense Gaussian
sensing matrixAg ∈ R

K×N2

, i.e., yg = Agx̄, where
x̄ = vec(X) is the vectorized signalX andyg is called
as a vector ofglobal measurements.Here the subscript
‘g’ stands for “global”.

(ii) Sample the 2D signal using Kronecker sampling operator,
i.e.,YK = A1XAT

2 , or equivalently,yK = AKx̄, where
both YK and yK are calledKronecker measurements,
A1 and A2 are dense Gaussian sensing matrices of
size

√
K × N , and AK ∈ R

K×N2

is the Kronecker
product of A1 and A2. Here the subscript ‘K’ stands
for “Kronecker”. In our simulation, considering that

√
K

is not always an integer, we substitute
√
K by ⌈

√
K⌉.

Thus, for this scheme, totally⌈
√
K⌉2 measurements are

acquired.
(iii) Sample the 2D signal column-by-column with permuta-

tion, i.e., using the same dense Gaussian sensing matrix
Aip ∈ R

K/N×N to sample each column of the permuted
2D signal. In other words,Yip = AipP

∗(X), whereYip

is a vector ofindependent measurements with permuta-
tion and P∗(·) is the optimal permutation operator. In
our experiment, we useK that makesK/N an integer.
Here the subscript ‘ip’ stands for “independent with
permutation”.

(iv) Sample the 2D signal column-by-column using the same
dense Gaussian sensing matrixAi ∈ R

K/N×N , i.e.,
Yi = AiX, where Yi is a vector of independent
measurements without permutation. Here the subscript ‘i’
stands for “independent”. As before, we useK that makes
K/N an integer.

We set N = 20 and the sparsity levels = 40. Joint
reconstruction is used for Schemes (i) and (ii), while column-
by-column reconstruction is used for Schemes (iii) and (iv).
We let the number of measurementsK vary from 20 to
N2. For Schemes (iii) and (iv), we letAip = Ai. For
each value ofK, we average 100 iterations by generatings-
sparse signalsX with independent and identically distributed
Gaussian entries and with support following a uniform dis-
tribution among all supports of sizes. We then measure the
probability of successful reconstruction for each value ofK,
where the success is declared if the signal estimateX̂ obeys
||vec(X− X̂)||2 ≤ 10−3||vec(X)||2, as used in [6].
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Fig. 6: Empirical performance of different sampling and
reconstruction schemes.
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Fig. 7:pm of real image “Boat.tiff” andpm of the layer model
with r0 = 0, r1 = 3, r2 = 32, andα = 0.15.

Fig. 6 shows the results for these four schemes. It can
be seen that Scheme (i) has the best reconstruction error
performance, while Scheme (iv) has the worst one. Both
Schemes (ii) and (iii) have better reconstruction error perfor-
mance than Scheme (iv). In addition, Scheme (ii) has slightly
better performance compared to Scheme (iii). However, to
achieve 90% successful reconstruction, the number of mea-
surements needed is almost the same for both of the schemes.
From this observation, we conclude that the parallel CS with
permutation framework can achieve similar reconstruction
error performance as the Kronecker CS framework, while it
has much lower computational complexity since the column-
by-column reconstruction is used in the parallel CS with
permutation framework.

B. The Layer Model and the Zigzag-scan-based Permutation

In this example, we check the layer model for the DCT2
coefficient matrix of the gray image: Boat (512× 512). The
format used in the simulation is tagged image file format
(TIFF). The bests-term approximation is obtained by keeping
all DCT2 coefficients with magnitudes not less than 1000
and changing the remaining to zeros. In Fig. 7, the x-axis
is the layer indexm, and y-axis is the probability of an
entry in them-th layer of the bests-term approximationXs

of the DCT2 coefficient matrix to be nonzero, calculated as
pm = (1/m)

∑

i+j−1=m I(Xs(i, j) 6= 0), where I(·) is the
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TABLE I: Comparison of||s||∞ before and after the zigzag-
scan-based permutation.

Image Magnitude Threshold

400 600 800 1000

Boat 33 vs. 2 23 vs. 2 19 vs. 2 16 vs. 1

Cameraman 13 vs. 2 8 vs. 2 7 vs. 1 4 vs. 1

Lena 14 vs. 3 11 vs. 2 8 vs. 1 7 vs. 1

Peppers 27 vs. 3 15 vs. 2 11 vs. 2 11 vs. 2

indicator function. Thepm’s versus layer indexm for the
real image “Boat.tiff” and the result of the(r0, r1, r2, α)-layer
model withr0 = 0, r1 = 3, r2 = 32, α = 0.15 are shown
in Fig. 7. It can be seen that the two curves are close to each
other. Similar results are also achieved for other images. Then
according to Proposition 1, the zigzag-scan-based permutation
is an acceptable permutation with an overwhelming probability
for DCT2 coefficient matrices of such images.

The changes of||s||∞ of the bests-term approximation of
the DCT2 coefficient matrix before and after the zigzag-scan-
based permutation are shown in Table I. The DCT2 coefficient
matrices are taken from four test images: Boat (512× 512),
Cameraman (256× 256), Lena (512× 512), Peppers (512
× 512). The bests-term approximation is chosen according
to different magnitude thresholds, i.e., keeping DCT2 coef-
ficients whose magnitudes are not less than the magnitude
threshold and setting the remaining to be zeros. Table I shows
that ||s||∞ decreases significantly after the zigzag-scan-based
permutation, which is consistent with Proposition 1.

C. Image Compression via Parallel CS with the Zigzag-Scan-
Based Permutation

The performance of image compression via parallel CS with
the zigzag-scan-based permutation is shown by compressing
the DCT2 coefficients of four images: Boat, Cameraman,
Lena, and Peppers. The PSNR is employed to show the
reconstruction performance. We compare the performances of
the parallel CS scheme for the configurations: 1) without per-
mutation; 2) with the zigzag-scan-based permutation. Entries
of the sensing matrixA ∈ R

K×M are drawn from Gaussian
ensembles, with variance being1/K. The parallel CS recon-
struction is implemented using basis pursuit algorithm by the
CVX optimization toolbox.10 Note that other reconstruction
algorithms than the basis pursuit can also be used. PSNR
performance for different methods is shown in Fig. 8 versus
the compression ratio.

From Fig. 8, we can see that under the same compression
ratio, the zigzag-scan-based permutation helps to improve
the PSNR by around 2∼4 dB for all images. Consequently,
it shows that the PSNR performance is indeed improved
significantly after permutation.

Note that for the block CS framework of [7] and [8], if
DCT2 is performed on each block of the image, instead of the
whole image, parallel reconstruction can also be achieved.On

10The toolbox can be downloaded at http://cvxr.com/cvx.
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Fig. 8: PSNR for the parallel CS scheme with/without the
zigzag-scan-based permutation in image compression.

TABLE II: Comparison among block CS-based frameworks
and parallel CS with permutation framework.

Compression Ratio 0.1 0.2 0.3 0.4 0.5

PSNR
(dB)

Block CS
(block recon-

struction)
18.38 20.89 23.64 26.14 27.36

Block CS
(SPL recon-
struction)

24.51 27.68 29.75 31.39 33.06

Parallel CS
with

permutation
20.38 23.18 25.67 27.60 29.50

the other hand, in the parallel CS with permutation framework,
the DCT2 is performed on the whole image. To compare
the reconstruction error performance of these two schemes
where parallel sampling and reconstruction can be achieved,
we study the PSNR values for the image Lena (256 × 256).
For the block CS framework, the block dimension is16× 16
and the DCT2 is performed on every block. Moreover, all
vectorized blocks are sampled independently. For the parallel
CS with permutation, the DCT2 is performed on the whole 2D
image and the DCT2 coefficients matrix is sampled column-
by-column. Both schemes use parallel reconstruction, either
block-by-block or column-by-column, and the reconstruction
is implemented using basis pursuit algorithm. The comparison
between the two schemes is shown in Table II. For the block
CS framework, Table II also shows the PSNR values obtained
by using the smoothed projected Landweber (SPL) algorithm
proposed in [8]. It can be seen from Table II that the parallel
CS with permutation scheme outperforms the block-by-block
sampling and reconstruction scheme, although both of them
can achieve parallel reconstruction. Compared to the blockCS
with SPL reconstruction scheme, there is a 4 dB degradation in
terms of PSNR when using the parallel CS with permutation
scheme. However, notice that the SPL algorithm is a joint
reconstruction scheme. This degradation is thus expected since
the permutation, though can improve the error performance
of the column-by-column reconstruction, can hardly achieve
better reconstruction error performance than that of the joint
reconstruction, which has a higher computational complexity.
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TABLE III: Comparison between the block-by-block sampling
and reconstruction with zigzag scan scheme of [21] and
parallel CS with the zigzag-scan-based permutation scheme.

Compression Ratio 0.75 0.5 0.625 0.375

PSNR
(dB)

[21] 34.89 30.94 31.17 27.68

Parallel CS
with

permutation
35.19 29.50 32.14 27.17

This result coincides with our result in Subsection V-A as well.
In [21], it is proposed to sample and reconstruct a 2D image

block-by-block. The DCT2 coefficients read in zigzag scan
order of each block are divided into a group of important
components and a group of unimportant components. In this
way, the error performance of the simple block-by-block
reconstruction can be improved, and a similar computational
complexity as that of the parallel CS with permutation scheme
can be achieved. To make a fair comparison between the
nonuniform samplingwith zigzag scan scheme in [21] and the
parallel CS with permutation scheme, we use “Lena” image of
size256×256, and the block size for the nonuniform sampling
with zigzag scan scheme is selected to be16 × 16. In this
way, the length of each vectorized block is equal to the length
of each column of the image. Orthogonal matching pursuit11

(OMP) as described in [21] is used for reconstruction in the
nonuniform sampling with zigzag scan scheme. Similar to the
experiment of [21], for compression ratios 0.75 and 0.5, the
important/unimportant coefficients rate is 1/3; for compression
ratios 0.625 and 0.375, the important/unimportant coefficients
rate is 1/7. It can be seen from Table III that there is no
absolute winner between the method of [21] and our scheme.
Both schemes have similar reconstruction error performance.

D. Video Compression via Parallel CS with the Zigzag-scan-
based Permutation

The test video sequences in this example are three standard
YUV video sequences: Akiyo, Foreman, Coastguard. The
format used in the simulation is quarter common intermedi-
ate format (QCIF). The performance of the proposed video
compression scheme is shown by compressing the luminance
components of the first 10 frames, i.e., 5 reference frames
and 5 non-reference frames. The average PSNRs for reference
and non-reference frames are used as performance metrics.
All settings are the same as in the example in Fig. 8 in
Subsection V-C. PSNR performance for different methods
is shown in Figs. 9 and 10 versus the average compres-
sion ratio, that is,(compression ratio of reference frames+
compression ratio of non-reference frames)/2.

From Fig. 9, we can see that under the same average
compression ratio, the zigzag-scan-based permutation helps to
improve the PSNR of reference frames by around 3∼9 dB for
Akiyo, 5∼6 dB for Foreman and 4∼8 dB for Coastguard.
Fig. 10 shows that the zigzag-scan-based permutation also

11We use the OMP algorithm implemented in SparseLab package thatcan
be downloaded at http://sparselab.stanford.edu.
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Fig. 9: Average PSNR of reconstructed reference frames.
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Fig. 10: Average PSNR of reconstructed non-reference frames.

improves the PSNR performance of non-reference frames by
around 3∼9 dB for Akiyo, 2∼5 dB for Foreman and 3∼7 dB
for Coastguard. The improved PSNR for non-reference frames
is a bit lower than that of the preceding reference frames be-
cause the reconstruction of non-reference frames relies onboth
the reconstruction of their corresponding preceding reference
frames and the reconstruction of the difference between non-
reference frames and their corresponding preceding reference
frames.

To show the advantage of the video compression scheme
proposed in Section IV, we compare the total time of re-
constructing one pair of reference and non-reference frames
using (i) the video encoder and decoder employed in the C-
DMRC system proposed in [20] and (ii) the video encoder
and decoder proposed in Section IV. We also show the PSNRs
of reconstructed reference and non-reference frames for both
schemes. The video sequence used in the simulation is the
standard YUV sequence Akiyo (QCIF format). The measure-
ment matrices used in the C-DMRC system and our scheme
are the scrambled block Hadamard matrix with block length
equal to 32 and the random Gaussian matrix, respectively. For
the reference frame, the DCT2 basis is used as the sparsifying
basis in both schemes. The CS reconstruction algorithm is
implemented using thel1-magic package.12 To eliminate the
effects of randomness, we run 200 trials for each average
compression ratio and show the average PSNR and the total

12The package is available at http://users.ece.gatech.edu/~justin/l1magic.
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TABLE IV: Total reconstruction time and PSNR of recon-
structed video frames using the video encoder and decoder
employed in [20].

Average
Compression

Ratio
0.1 0.2 0.3 0.4 0.5

Reconstruction
Time (seconds) 55.32 47.34 37.23 37.08 30.49

PSNR
(dB)

Reference
Frame

24.43 27.52 29.79 32.53 36.24

Non-
reference

Frame
24.44 27.53 29.73 32.27 35.32

TABLE V: Total reconstruction time and PSNR of recon-
structed video frames using the video encoder and decoder
proposed in Section IV.

Average
Compression

Ratio
0.1 0.2 0.3 0.4 0.5

Reconstruction
Time (seconds) 12.85 14.30 20.17 18.40 18.67

PSNR
(dB)

Reference
Frame

24.17 27.30 30.32 33.79 38.34

Non-
reference

Frame
24.17 27.29 30.29 33.71 38.10

reconstruction time. The results are shown in Tables IV and V.
It can be seen from Tables IV and V that the reconstruction

time using the video encoder and decoder proposed in Sec-
tion IV is less than that for the video encoder and decoder
employed in [20], especially when the compression ratio is
low. In addition, if there are multiple decoding processors
simultaneously reconstructing the columns of a video frame
as shown in Fig. 5(b), the reconstruction time of the video
decoder proposed in Section IV can be further reduced ap-
proximately to the total reconstruction time divided by the
number of decoding processors. It can also be observed in
Table IV that the time for reconstruction using the video
encoder and decoder employed in [20] decreases as the average
compression ratio increases. This is because the reconstruction
algorithm converges faster as the number of measurements
increases. According to Table V, the time for reconstruction
using the video encoder and decoder proposed in Section IV is
less sensitive to the compression ratio. In addition, we cansee
that as compared to the video encoder and decoder employed
in [20], the PSNR of reconstructed video frames for the video
encoder and decoder proposed in Section IV is larger, when the
average compression ratio is larger than 0.3, and it is almost
the same (less than 0.3dB degradation), when the average
compression ratio is smaller than 0.3.

VI. CONCLUSION AND DISCUSSION

A parallel CS scheme with permutation has been proposed.
It has been proved that with a so-called acceptable permuta-

tion, the RIP condition for the sensing matrix in the parallel CS
can be relaxed. The group-scan-based permutation has been
introduced. As an example, the zigzag-scan-based permutation
for 2D signals satisfying the(r0, r1, r2, α)-layer model, such
as DCT2 coefficient matrices of 2D images, has been analyzed.
The application to image and video compression has been
discussed as well. In the simulations, it has been shown
that the zigzag-scan-based permutation for DCT2 coefficient
matrices of images is an acceptable permutation. In addition,
the simulation results have shown that the proposed scheme
improves the reconstruction performance of images and videos
in terms of PSNR significantly.

It is worth mentioning that the zigzag-scan-based permu-
tation is designed for signals satisfying the proposed layer
model. If a signal has most of its large entries clustered around
one or more fixed locations, the more general group-scan-
based permutation is applicable. Similar to the zigzag-scan-
based permutation for the layer model, a lower bound on
the probability that the group-scan-based permutation is an
acceptable permutation can be derived given a mathematical
model for the distribution pattern of large entries in the signal.

Comparing the proposed approach to other existing alterna-
tives, the following discussion is of interest. The column-by-
column sampling and reconstruction considered in the parallel
CS framework has been studied experimentally in several
works [6], [10]. For example, the DMD-based compressive
hyperspectral imaging operator presented in [6] is a parallel
system where each spectral image is measured with the same
sampling operator. If each spectral image is reconstructedone-
by-one, the reconstruction can be parallelized. However, in this
case, the Kronecker CS system becomes essentially the same
as the block-by-block sampling and reconstruction scheme
where DCT2 is performed on every block. This block-by-
block sampling and reconstruction scheme has been discussed
in Subsection V-C. Thus, in a similar manner, the parallel
CS with permutation proposed in this paper outperforms the
parallel sampling and reconstruction scheme for the Kronecker
CS.

For a 2D signal which is sparse in the identity basis, if the
same sampling operator is applied to each row, the row-by-
row scan in [10] is similar to the column-by-column sampling
scheme in the parallel CS framework. To achieve a better
reconstruction error performance, an algorithm is proposed in
[10], which iteratively improves the current estimate of the 2D
sparse signal by modelling statistical dependencies between
neighboring rows. We have proposed a different approach here,
that is, permutation, to achieve a better reconstruction error
performance than the basic column-by-column reconstruction.
The introduction of permutation into the column-by-column
sampling makes the sampling operator in this paper different
from that of [10], and improves the reconstruction error
performance of the column-by-column reconstruction.

It is obvious that the parallel CS without permutation has
low computational complexity. However, its reconstruction
error performance is not favorable. Usually, the joint sampling
and joint reconstruction scheme has better error performance,
but at the same time, it has much higher computational
complexity at both encoder and decoder. Consequently, other
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approaches have been studied which can achieve better re-
construction error performance than the parallel CS without
permutation scheme and have lower computational complexity
than the joint sampling and joint reconstruction scheme. For
example, the block CS framework uses the block-by-block
sampling and joint reconstruction, with low-complexity at
sampling and high-complexity at reconstruction [7], [8]. For
the Kronecker CS framework [6], separable sampling operators
are used to achieve low complexity at the encoder, but the joint
reconstruction still requires high-complexity at the decoder.
Obviously, to achieve better performance than the parallelCS
without permutation, both the block CS and the Kronecker
CS frameworks require higher computational complexity of
reconstruction, although their sampling operators have similar
complexity to the column-by-column sampling operator. Our
work has provided an alternative solution. We have shown that
by introducing permutation into the parallel CS framework,
the reconstruction error performance can indeed be improved,
while the computational complexity remains the same as that
of the parallel CS without permutation framework. It should
be noted that there is a trade-off between the reconstruction
error performance and the computational complexity. Com-
pared to the parallel CS without permutation, the one with
permutation results in a better reconstruction error perfor-
mance and similar computational complexity. Compared to
the joint reconstruction, the parallel CS with permutationmay
have worse reconstruction error performance, but enjoys much
lower computational complexity.

To sum up, the main contribution of this work is the
introduction of permutation for the parallel CS framework.
The use of permutation can improve the error performance of
the column-by-column reconstruction significantly. Although
the parallel CS without permutation is a special case of
the Kronecker CS, it has been shown in this paper that by
using permutation, the parallel CS reconstruction can achieve
similar error performance to the Kronecker CS, while it has
much lower computational complexity. Compared to the block-
based CS system [7], [8] with parallel reconstruction, we
have shown that our scheme has better reconstruction error
performance. Therefore, overall we conclude that the parallel
CS with permutation framework provides an effective solution
for the column-by-column sampling and reconstruction with
low computational complexity.

APPENDIX: PROOF OFPROPOSITION1

Proof: Denote thej-th entry of the sparsity vectors as
sj , i.e., the sparsity level of thej-th column ofXs is sj . Since
X follows the (r0, r1, r2, α)-layer model, the nonzero entries
in Xs are all in layers ofXs whose indices range fromr0+1
to r2. After performing the zigzag-scan-based permutation on
Xs, the number of nonzero entries in any column is not more
thanu = ⌈(r0+r2+1)(r2−r0)/2N⌉. Therefore,u ≥ ||s†||∞.
Let l = ⌈(r0 + r2 + 1)/2⌉. Sincer2 ≤ min {M, N} and
r2 ≥ 2r1 − 3r0 − 1, we havel ≥ u and l ≥ r1 − r0.

As a result, the probability that the zigzag-scan-based
permutation of a 2D signal satisfying the(r0, r1, r2, α)-layer

Fig. 11: Regions in the(r0, r1, r2, α)-layer model.

model is an acceptable permutation can be expressed as

Pr {P is acceptable} = Pr{||s||∞ > ||s†||∞} (6a)

=

r2−r0
∑

t=1

Pr{||s||∞ = t, ||s†||∞ ≤ t− 1} (6b)

≥
r2−r0
∑

t=u+1

Pr{||s||∞ = t, ||s†||∞ ≤ t− 1}

=

r2−r0
∑

t=u+1

Pr{||s||∞ = t} (6c)

= Pr{||s||∞ ≥ u+ 1}= 1− Pr{||s||∞ ≤ u}
≥ 1− Pr{||s||∞ ≤ l}. (6d)

To derive (6a), we use the fact that an acceptable permutation
must result in||s†||∞ < ||s||∞. For deriving (6b), we use the
fact that the maximal sparsity level among columns of the
bests-term approximationXs is upper bounded by(r2− r0),
i.e., ||s||∞ ≤ r2 − r0, which immediately follows from the
(r0, r1, r2, α)-layer model. For deriving (6c), we use the fact
thatu ≥ ||s†||∞. Finally, for deriving (6d), we use the fact that
u ≤ l. Based on (6d), we focus on the cumulative distribution
function of ||s||∞.

Since the events thatsj ≤ l for differentj’s are independent
with each other, we have

Pr{||s||∞ ≤ l} =

N
∏

j=1

Pr{sj ≤ l}. (7)

Moreover, since the position(i, j) of an entry inXs indicates
the index m of the layer where the entry is located, i.e.,
m = i+ j − 1, we can define three regions inXs:

R1 = {(i, j) ∈ Z
2|r0 + 1 ≤ i+ j − 1 ≤ r1}

R2 = {(i, j) ∈ Z
2|r1 + 1 ≤ i+ j − 1 ≤ r2}

R3 = {(i, j) ∈ Z
2|1 ≤ i+ j − 1 ≤ r0} ∪

{(i, j) ∈ Z
2|r2 + 1 ≤ i+ j − 1 ≤ M +N − 1}.

These regions are separated by three transition layers, i.e., the
r0-th layer, ther1-th layer and ther2-th layer. These regions
are shown in Fig. 11. Therefore, according to Definition 5,
all entries ofXs are nonzero with probability 1 in region
R1. In regionR3, all entries ofXs are zero with probability
1. In regionR2, the probability of an entry to be nonzero
decreases exponentially with decay factorα as the layer index
m increases.
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Pr {P is acceptable}

≥ 1−
∏r2

j=1

{

∏r2
m=mj

(1− pm)+
∑min{l,r2−r0,r2−j+1}

k=kj+1

[

∏r2
m=mj

(1−pm)

]

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1
···pak−kj

(1−pa1
)···(1−pak−kj

)

}

= 1−
∏r2

j=1

[

∏r2
m=mj

(1−pm)

]

·
∏r2

j=1

{

1+
∑min{l,r2−r0,r2−j+1}

k=kj+1

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1
···pak−kj

(1−pa1
)···(1−pak−kj

)

}

(a)
= 1−

[

∏r1
j=1

∏r2
m=r1+1

(1−pm)·
∏r2

j=r1+1

∏r2
m=j(1−pm)

]

·
∏r2

j=1

{

1+
∑min{l,r2−r0,r2−j+1}

k=kj+1

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1
···pak−kj

(1−pa1
)···(1−pak−kj

)

}

= 1−

[

∏r2
m=r1+1(1− pm)r1 ·

∏r2
m=r1+1(1− pm)m−r1

]

·
∏r2

j=1

{

1+
∑min{l,r2−r0,r2−j+1}

k=kj+1

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1
···pak−kj

(1−pa1
)···(1−pak−kj

)

}

= 1−

[

∏r2
m=r1+1(1− pm)m

]

·
∏r2

j=1

{

1+
∑min{l,r2−r0,r2−j+1}

k=kj+1

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1
···pak−kj

(1−pa1
)···(1−pak−kj

)

}

.

For thej-th column ofXs, if r2 + 1 ≤ j ≤ N , all entries
of the column are in regionR3 and thus are all zeros. Then
we havePr{sj ≤ l} = 1 sincel ≥ r1 − r0 ≥ 1. According to
(7), we have

Pr{||s||∞ ≤ l}=
r2
∏

j=1

Pr{sj ≤ l}=
r2
∏

j=1

l
∑

k=0

Pr{sj=k}. (8)

Consequently, we focus on the probability distribution ofsj for
the firstr2 columns ofXs, i.e.,Pr{sj = k} for all 0 ≤ k ≤ l
and1 ≤ j ≤ r2.

Let kj denote the number of entries in thej-th column
(1 ≤ j ≤ r2) of Xs that are in regionR1, i.e.,

kj =







r1 − r0, 1 ≤ j ≤ r0
r1 − j + 1, r0 + 1 ≤ j ≤ r1
0, r1 + 1 ≤ j ≤ r2.

(9)

Meanwhile, in the j-th column (1 ≤ j ≤ r2) of Xs,
mj = max{r1 + 1, j} and r2 are the starting and ending
layer indices of regionR2, respectively.

In (8), for 1 ≤ j ≤ r2, i.e., for the firstr2 columns ofXs,
we consider the following three cases depending on the value
of k: 1) k = kj ; 2) kj + 1 ≤ k ≤ min{r2 − r0, r2 − j + 1};
and 3)k ≤ kj − 1 or k ≥ min{r2 − r0 + 1, r2 − j + 2}.

For the first case, i.e.,k = kj , it can be seen that the event
that sj = k happens when the entries of thej-th column of
Xs that are in regionR2 are all zeros. Therefore, we have

Pr{sj = k} =

r2
∏

m=mj

(1− pm). (10)

For the second case, i.e.,kj + 1 ≤ k ≤ min{r2 − r0, r2 −
j+1}, the event thatsj = k means that thej-th column ofXs

has(k − kj) nonzero entries in the regionR2. Denote layer
indices of these(k−kj) nonzero entries asa1, a2, · · · , ak−kj

with a1 < a2 < · · · < ak−kj
. So a1, a2, · · · , ak−kj

∈ Aj
△
=

{mj ,mj + 1, · · · , r2}. We have

Pr{sj = k}

=
∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1
· · · pak−kj

r2
∏

m=mj

m6=ai
i=1,···,k−kj

(1−pm)

=
∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1
· · · pak−kj

(1−pa1
) · · · (1−pak−kj

)

r2
∏

m=mj

(1−pm)

=

[ r2
∏

m=mj

(1−pm)

]

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1
· · ·pak−kj

(1−pa1
)· · ·(1−pak−kj

)
. (11)

For the third case, i.e.,k ≤ kj − 1 or k ≥ min{r2 − r0 +
1, r2 − j + 2}, sincekj ≤ sj ≤ min{r2 − r0, r2 − j + 1} for
1 ≤ j ≤ r2, the event thatsj = k never happens, i.e.,

Pr{sj = k} = 0. (12)

According to (6d), (8), (10)–(12) and the fact thatl ≥ r1 −
r0 ≥ kj (from (9)), we have the inequality shown on the top of
this page, where equality (a) follows from the fact thatmj =
r1+1 for 1 ≤ j ≤ r1 andmj = j for r1+1 ≤ j ≤ r2. Using
the facts thatl = ⌈(r0 + r2 + 1)/2⌉ andpm = e−α(m−r0−1)

for r1 + 1 ≤ m ≤ r2, we obtain (5).
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