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Abstract—Traditional compressed sensing considers sampling isometry property (RIP) of a certain order. The sigratan

a 1D signal. For a multidimensional signal, if reshaped into a vec-
tor, the required size of the sensing matrix becomes dramatically

large, which increases the storage and computational complexity

significantly. To solve this problem, the multidimensional signal
is reshaped into a 2D signal, which is then sampled and
reconstructed column by column using the same sensing matrix.
This approach is referred to asparallel compressed sensingnd

it has much lower storage and computational complexity. For a
given reconstruction performance of parallel compressed seirg,

if a so-calledacceptable permutatiois applied to the 2D signal, the
corresponding sensing matrix is shown to have a smaller required
order of restricted isometry property condition, and thus, lower

storage and computation complexity at the decoder are required.
A zigzag-scan-based permutation is shown to be particularly
useful for signals satisfying the newly introduced layer model.
As an application of the parallel compressed sensing with the

be recovered from thé&l measurements iy by solving, for
example, the following/;-norm minimization problem [3]

1)

where|| - ||; denotes the/;-norm of a vector. In addition, if
signalf is not sparse itself, it may be represented as a sparse
signal in some orthonormal basls, i.e.,x = ¥”f is a sparse
signal. Here(-)” denotes the transpose operation. Then given
the sensing matrixA for x and the orthonormal basi#, the
signalf can be measured usingféa x L measurement matrix

& = A¥7T je.,y = ®f. It is equivalent to using\ to sense

x sincey = AWTf = Ax. Therefore,x and thusf can be
recovered fromy as long asA satisfies the RIP of a certain

min ||x][; s.t.y = Ax
X

zigzag-scan-based permutation, a video compression scheme i©rder.

presented. It is shown that the zigzag-scan-based permutation

Usually, CS is applied to 1D signals, or vector-reshaped

increases the peak signal-to-noise ratio of reconstructed images myltidimensional signals. When the length of the 1D signal

and video frames.

or the vector-reshaped multidimensional signal is vergdaa

Index Terms—Compressed sensing, parallel processing, per-large size measurement matdx or equivalently, a large size

mutation, multidimensional signal processing.

I. INTRODUCTION

Compressed sensing (CS) theory states that the informat

contained in arl-length sparse signal can be fully preserved
with only K <« L measurements, which form A-length
vectory [1], [2]. This is done by the help of & x L sensing

matrix A, i.e., y = Ax, where A satisfies the restricted
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sensing matrixA, is needed. A dense measurement matrix
® or a dense sensing matrix results in a high storage re-
quirement and computational complexity in both the sangplin
and reconstruction processes. An example of such sampling
reconstruction scheme with a dense measurement matrix
is the single-pixel camera proposed in [4]. The single-pixe
camera acquires a group of measurements of a 2D image using
different patterns of the digital micromirror device (DMD)
array without collecting the pixels. Each pattern of the DMD
array plays the role of a row in the measurement mad¥ix
and gives one measurement for the vector-reshaped 2D image.
If the length of the vector-reshaped 2D image is very large,
the encoder needs to store a large group of patterns, and
the computational complexity of the reconstruction predes
high.

To address the above problem related to the storage require-
ment and the computational complexity during the sampling
process, a separable sensing operator framework is designe
for compressive imaging in [5], where an imaging operator,
that is, the measurement matrix for the whole image, can be
separated into two dimensions, i.e., two smaller-sized-mea
surement matrices. Using this approach, all dimensionbef t
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measurement matrix of a smaller size. Then the encoder
needs to store only the smaller-sized measurement matrices
The separable sensing operator design significantly reduce



the complexity of implementation, storage, and usage of tkelumn via CS. If the same sampling operator is applied to
imaging operator. A general framework of the separable-sersch row, the row-by-row scan in [10] is similar to the column
ing operator for sampling multidimensional signals, namduay/-column sampling scheme in the parallel CS framework.
Kronecker CSis proposed in [6]. In Kronecker CS, it is shownAnother example is the multiple measurement vectors (MMV)
that the following two methods are equivalent: (i) samplinghodel of [11], which considers a group of 1D signals that
the vectorized multidimensional signal using a measurémeshare the same sparsity profile. In the MMV model, a group
matrix which is the Kronecker product of several smalleedi of 1D signals is considered and all signals are sampled using
measurement matrices that correspond to the measurentbatsame dictionary, which is analogous to the sensing xnatri
processes for different portions of the multidimensiongihal; in CS, while the group of 1D signals can be viewed as a virtual
(i) sampling the multidimensional signal sequentiallyings 2D signal.
corresponding smaller-sized measurement matrices. Thus, It is known that the column-by-column reconstruction
is enough to store only the smaller-sized measurement rggheme in the parallel CS framework provides a poor recon-
trices instead of the Kronecker product of the smalleresiz&truction error performance, although it has low compatei
measurement matrices. complexity [6]. Thus, different reconstruction schemes ar
Another solution to the aforementioned problem related {roposed to provide a better reconstruction error perfooma
the sampling process is the block CS of [7]. The idea of thjg], [6]-[8], [10], [11]. All these approaches employ a joie-
block CS is to divide a 2D signal into smaller blocks andonstruction, which has higher computational complexie
sample individual vector-reshaped blocks, whereas altkslo pared to the basic column-by-column reconstruction scheme
need to be reconstructed as a whole. Essentially, a blockAnother problem of the parallel CS scheme is that the
diagonal measurement matrix, instead of a dense measurengarsity levels of the columns of the 2D-reshaped signal
matrix, is used in the block CS of [7] to sample the vectodiffer from one column to another. This problem has been
reshaped signal. As a result, the block CS can reduce fgtially studied in [12] and [13]. If we regard each column
storage and computational complexity at the encoder sidg a vectorized block, then the column-by-column sampling
Some improved reconstruction algorithms for the block C&nd reconstruction setting is similar to the block-based CS
scheme are presented in [8]. They help to further redugechitecture proposed for video compression in [12] and.[13
the required number of rows in the measurement malrix Considering that some blocks are not sparse enough to apply
for a given reconstruction error requirement. Based on ti®s, it is proposed in [12] and [13] to apply CS only to
block CS architecture, a fast sampling operator is proposggarse blocks found by a block classification scheme. Anothe
in [9] using the block Hadamard ensemble, which can hsiock classification scheme based on inter-frame coroelasi
easily implemented in the optical domain. Note that all theroposed in [14].
above works focus on the encoder side, aiming at reducing th@n the parallel CS framework considered in this paper, we
storage and computational complexity of the sampling B®cepropose to permute the 2D signal before it is sampled. Using
Joint reconstruction is employed in these schemes, and thgiso-called acceptable permutation, the maximal spaesisi |
the computational complexity at the decoder is still high.  of the columns of the permuted 2D signal can be reduced,
In this paper, to achieve a low-complexity at both encodgid thus a sensing matrix with a weaker RIP condition
and decoder sides, a parallel CS scheme is considered fordhg be used to sample all columns. Accordingly, the error
multidimensional sparse signal. The multidimensionahalg performance of the reconstruction can be improved for angive
is first rearranged into a 2D matrix, and then sampled columfamber of measurements for the 2D signal. The introduction
by-column via CS using the same sensing matrix. In this way@f permutation provides an alternative solution to those in
the required size of the sensing matrix can be reduced signi], [6]-[8], [10], [11] in order to give a better reconsttien
icantly compared to the scheme that samples the vectorizggor performance compared to the basic column-by-column
signal. Furthermore, both sampling and reconstructionbEn reconstruction scheme, while not increasing the compmutati
conducted for individual columns in parallel. Note that whecomplexity.
a 2D signal sparse in the identity basis is considered, thepermytations are studied in several papers related to CS,
measurement matrix is the same as the sensing matrix; idugh the goals of permutations in the existing literature
then the column-by-column sampling scheme is actually e very different from our goal here. In [15], a segmented
special case of the sampling operator used in the Kronec®er €5 architecture is proposed and it is shown that a similar
framework of [6] and the block CS framework of [7] and [8]improvement to that obtained by increasing the size of the
In the Kronecker CS framework, if one of the two samplingheasurement matrix can be achieved by using a virtual ex-
operators for the 2D signal is the identity matrix, then the 2tended measurement matrix obtained by permuting the egisti
signal is sampled either row-by-row or column-by-columm. Irqws of the initial measurement matrix. In [16], it is shown
the block CS framework, if each column of the 2D signal ighat if nonzero entries of a sparse signal are clustered, the
a block, then the block-by-block sampling is also the same ggterministic Delsarte-Goethals frame used as a sensitrixma
the column-by-column sampling. Several other works al$0 Ugoes not work. Thus, it is proposed to apply permutations

a similar column-by-column sampling setting at the encodgy the signal in order to avoid clustered nonzero entries. In
side for the signal which is sparse in the identity basis. In

[4], the wavelet coefficients of a 2D image are rearranged iNuygte that the sparsity level of a column is the number of noneetdies
a specific order into a 2D matrix and sampled column-bys the column.



our paper, the goal for applying permutations is differenpaper, for presentation simplicity, we consider 2D signieds,
Specifically, the parallel CS framework considers sensimgarrangement of a multidimensional signal into a 2D matrix
matrices that satisfy the RIP, and permutation is applied i®done in advance.

the 2D-reshaped signal aiming at ensuring that the maximum

sparsity level of the columns is reduced. We show that if a Sg- Theoretical Results on CS for 1D Signals

called acceptable permutation is conducted before sagjplin

the sensing matrix needs to satisfy the RIP of a smallerMOSt practical 5|gn_als_are not strictly sparse, but rather
. . . regarded asompressiblgi.e., they have only a few larde
order than the sensing matrix of the parallel CS without any*~ " . X
ntries. For a 1D or 2D signal, we define ist s-term

permutation. Lo . .
L approximationas a signal generated by keeping thiargest
In our paper, a group-scan-based permutation is introduced . " . . ) -
ries in the original signal and changing the remaining

: . . n
as an acceptable permutation for 2D signals which can gﬁtries to zeros. Therefore, the besterm approximation

divided into a number of groups with entries in each grou}E)aS sparsity levek. It is an optimal approximation using

having the same probability to be large in magnitude. As & : ) i .
. . .—only s entries to approximate a compressible signal. However,
special case of such group-scan-based permutation, agzigza L .
R . . uch approximation requires knowledge about the values and

scan-based permutation is introduced and investigated jor

2D signals satisfying a newly introduced layer model pcations of all entries in.
. 9 >1YINg y Y " . 0n the other hand, when CS is appliedxpit is known
video compression scheme based on the parallel CS wijth, . . )
. L that, if the sensing matriA obeys the RIP of ordes, the
the zigzag-scan-based permutation is also developed and In . . . : .
reconstruction via solving (1) is nearly as good as thatgisin

tnF bests-term approximation, as shown in the following
q_emma 1 [3], [18]. Before Lemma 1, consider the following
definition.

vestigated. It improves the peak signal-to-noise ratioNRB
of reconstructed frames compared to the parallel CS with
permutation. This demonstrates the effectiveness of tieagk
scan-based permutation in image compression. o )

In summary, this paper makes three contributions. First, igfinition 1. [3] For every integers = 1,2,..., the s-
investigate properties of permutations when applied talfer restricted isometry constarég of a glven_matnxz_& is defined
CS. Second, we introduce a group-scan-based permutafiéntne smallest quantity such that the inequality
and as an example a zigzag-scan-based permutation, and we (1= 0.)llzl13 < [|Az]]3 < (1 + 6,)|l=]]3
show that the zigzag-scan-based permutation is an acéeptab
permutation with a large probability for 2D signals satisfy holds for all sparse signalg with no more thans nonzero
a newly introduced layer model. Finally, the application dgntries, wherg] - || denotes theés-norm of a vector.
our parallel CS with the zigzag-scan-based permutation ltemma 1: [18] Assume that,, < v/2 — 1 (s is a positive
video compression in wireless multimedia sensor networksteger) for a sensing matrixA. Then for a signalx, the
is discussed. Some preliminary results have been reparntedsolutionx* to (1) obeys
[17].

The remainder of the paper is organized as follows. Sec-
tion Il introduces the parallel CS scheme. Permutations agad
discussed in Section lll. Section IV describes the video-com |x* — x|l < G- ||x —x*||1/V/s
pression scheme that employs the parallel CS with the zigzag
scan-based permutation in application to wireless mutfime fOr Some constant:.
sensor networks. Simulation results are given in Section V.In this paper, if the2s-restricted isometry constant ot
Finally, conclusions and further discussion are given io-Sesatisfiess,s < /2 — 1, the matrixA is regarded as obeying
tion VI. This paper is reproducible research, and the softwahe RIP of orders. Therefore, according to Lemma 1, an
needed to generate the simulation results can be obtaioed fisparse signal can be exactly reconstructed via solving (i
the IEEE Xplore together with the paper. sensing matrixA. obeys the RIP of order. For a compressible
signalx, if a sensing matrixA, which obeys the RIP of order
s, is used to sample, the reconstruction via solving (1) has an
error bounded by thé, -norm of the approximation error when

Given any multidimensional sparse signal, we can rearrangeis used to approximate. Note that, for reconstruction via
it into a 2D matrixX € RM*¥ A multidimensional signal solving (1), we do not need knowledge about the values and
and the corresponding 2D matriX are calleds-sparse or |ocations of all entries i, while such knowledge is needed
have sparsity levek if X has onlys nonzero entries. The if x® is used to approximate.
sparsity level of X can be denoted as a sparsity vector

s = [s1,82,--,sn], wheres; is the sparsity level of the g New Theoretical Results on Parallel CS for 2D Signals

j-th column ofX. In other words, thg-th column ofX has ) ) .
Based on Lemma 1, the following lemma gives a sufficient

only s; nonzero entries. Apparentlyjs||; = s. " . . .
In terms of the 2D signalX, the parallel CS SChemecondltlon for exact reconstruction of a 2Bsparse signal using
i parallel CS.

consists of sampling each column Xf by the same sensing
matrix A and reconstructing these columns |nd|V|quaIIy and IN 211 this paper, when we say a value is large or small, it means tipeitmale
parallel by using any 1D CS reconstruction algorithm. Irs thiof the value is large or small.

" =x|li <G [lx =x°[x

Il. PARALLEL CS



Lemma 2: Consider a 2Ds-sparse signalX with sparsity This completes the proof. [ ]
vector s, if the RIP of order||s||.. holds for the sensing To sum up, for parallel CS, the RIP condition for the sensing
matrix A, i.e., dy)js)l.. < V2 — 1, where|| - || stands for matrix A for a given reconstruction quality is related|{s|| .
the Chebyshev norm of a vectpthen X can be exactly In Subsection Ill-A, it will be shown that the RIP conditioarc

reconstructed using parallel CS scheme. be relaxed by performing a so-called acceptable permutatio
Proof: The proof follows the same steps as the proof fdiefore using the parallel CS.
the following Lemma 3. [ ]
For a 2D compressible signaX, the following lemma I1l. PERMUTATIONS

gives a suffi(_:ient condition that the reconstruction e_rrfoﬁh_e When parallel CS is applied to a 2D compressible signal

parallel CS is bounded by thg-norm of the approximation x he difference of sparsity levels among columnsof

error when the best-term approximation ofX, denoted as (yhich has sparsity vectes) is not considered, and thus, the

X*, is used to approximatX. ‘worst-case’ sparsity level of the columns &F, i.e., ||s||sc,

Lemma 3: Let X* € RM*¥ which has a sparsity vector needs to be taken into account when designing the sensing

s = [s1,82,---,sn], be the bests-term approximation of matrix. In this section, permutation is introduced such tha

X € RM*N jf s, > 1for j =1,2,---, N, and the sensing permuting entries of X, the maximum sparsity level of the

matrix A obeys the RIP of ordéfs||«, i.€.,02)s||.. < V2—1, columns of the best-term approximation of the newly formed

then the signalX reconstructed using parallel CS schem@D signal is reduced.

obeys Let P(-) be a permutation operator which maps a matrix

X - X[, <G-[|IX - X, into another matrix by permuting its entries and'P.) be the

corresponding inverse permutation operator. TRén= P(X)

N , and X = P }(X") where Xt € RM*N s a permuted 2D

1K - X|lp < G- X - X7 o ) P

where G is a finite constant. Here for a matri¥| - ||; and ~ With permutation before sampling, the parallel sampling

|| - |2 denotef;-norm and/y-norm of the vectorized matrix, process can be described as follows

respectively. . v, = Ax; @)
Proof: Due to the fact that for alj € {1,2,---, N},

ls|l~« > s;j, and according to the definition ofrestricted wherex} is thej-th column ofX T, andy; is the measurement

isometry constant, we havi,, < a5, < V2 — 1. Then, vector ofx!. We can rewrite (2) in the matrix form as
according to Lemma (1), we obtain that

and

) Y = AX' = AP(X)
1% — x5l <G - |Ix; = 511
whereY = [y1,y2,- -+, yn].
For signal reconstruction, all columns &' can be re-
1% — xj]l2 < Gy - |Ix; — x5 1 - Sj—l/2 < Gj-llx; — x| constructed in parallel by any existing CS reconstruction
. algorithm. Let X be the reconstructed permuted signal.
wherex;, x;, andx; denote thej-th column of X, X, and Then we can apply inverse permutationXd to obtain the
X?#, respectively, ands; is a finite constant. Therefore, byreconstructed 2D signé{, that is, X = p—l(XT)_
choosingG = max;{G,}, we obtain that

and

N N A. Discussion about Permutation
X = X[l = [1% = x;h

— For any multidimensional signal, the permutation can be
=

N either applied after or included in the process of rearmangi

, ; the multidimensional signal into a 2D matrix. The block-
<G- —x =G ||IX —X® . . .
- Z”XJ Xl l Il based CS employed in [7], [8], and [13] is a special case

=t of the parallel CS, which can be interpreted as making each

and vectorized block as a column of a new 2D signal. Furthermore,
N the problem of difference of sparsity levels among blocks is

1X = Xlla = | Y II%; — %513 addressed in [13] by employing a classification scheme to

j=1 identify sparse blocks and dense blocks and then applying

CS only to the sparse blocks. In our work, permutation is
5|2 applied to a 2D compressible signl or integrated into the
gt process of rearrangement of a multidimensional signal to a

N

<Gk = x5 =G
j=1

! 2D compressible signaX such that all columns oK' (the

N
S S
<G Z [Ixj = XjHl =G X =X 4Without loss of generality, compressible signals are cansidl in the
Jj=1 remainder of the paper, since a sparse signal can be regasdadspecial
case of a compressible signal.
3The Chebyshev norm of a vector is equal to the largest magnitfiche 5In this paper, “permute” means changing positions of entries i2D
entries in the vector. matrix, while not changing the dimension of the matrix.



bests-term approximation of the resulted 2D sigi¥l) are columns has|s/N| nonzero entries. Therefore, the sparsity

sparse. Thus, the classification step of [13] is avoided. vector of the bess-term approximation of the permuted 2D
Consider a compressible 2D signl and its bests-term signal is an optimal sparsity vector. This completes thepro
approximationX® with sparsity vectos, i.e., ||s||y = s. If [ |
the sensing matriA € RX*M s constructed from Gaussian From the proof of Lemma 4, it follows that the optimal
ensembles with sparsity vector and the optimal permutation may not be w@iqu
and the Chebyshev norm of an optimal sparsity vectoKof
K 2 C-|[s]loc log (M/]ls]]o0) () is equal to[s/N1].

In most scenarios, finding an optimal permutation may
not be practical. Then an acceptable permutation defined in
Qeﬁnition 2 can be used instead.

for some constan®, then it will satisfy the RIP of ordelfs||
[3]. Then according to Lemma 3, the sigri¥l reconstructed
using parallel CS obeys the inequalities shown in Lemma (

Definition 2: For a 2D compressible sign& ¢ R™*V and
its bests-term approximationX® with sparsity vectors, a
permutation R-) is called acceptable foX if the Chebyshev  The following observation is of interest. For a 2D compress-
norm of the sparsity vector of the besterm approximation ible signalX € RM™*N | consider a permuted sign®’ and
of the signal FX) is smaller than||s||ec- its bests-term approximatiorX '*. For anyi € {1,2,--- , N},

When permutation is applied before parallel CS, the signik@ll entries in thei-th row of X'* share the same probability
after permutation i, and the best-term approximation of t0 be nonzero, denoted as, then al! Columps ofX’* have
X' is denoted asXt* with sparsity vectors’, i.e., we have the same expected sparsity level, g!venZé#':l pi- _
||st]|; = s. Consider that\l > ||s||oc and M > [|sf||o, i.€., Example .l' When M = N = 4, if after a permutation,
X* and X'* are sparse enough. JI§'||o < ||s||«., it can be the entries in the 1.s_t., 2nd, 3rd, and 4th rowsXf* have
seen that for parallel CS with an acceptable permutatian, tigSpectively probabilitie, = 0.9, p, = 0.3, p3 = 0.2 and
lower bound of K in (3) is smaller than that in the parallelPs = 0.1 to be nonzero, then for the sparsity vectorXf*,
CS without an acceptable permutation. In other words, fégnoted as’ = [s], 5, 55, s1], we have
the sufficient condition in Lemmas 2 and 3, the condition
“A obeys the RIP of ordet|s||..” for parallel CS with E{maX{S}} —min{S;}} = 1.3881
an acceptable permutation is weaker than the conditian “ ! !
obeys the RIP of ordefls||..” for parallel CS without an and

B. Group-scan-based and Zigzag-scan-based Permutations

acceptable permutation. To sum up, the RIP condition for Pr{max{s}} —m_in{sj} < 1} — 0.6003
a given reconstruction quality is weaker after permutatfon J J
|Is"[|oo is smaller thar|s||o - where E{-} means expectation arlr{-} means probability

Since||s'[[, = ||s||s = s, it is desired that, after a permu-of an event. Thus, the permutation in this example is optimal
tation, thes nonzero entries in the besiterm approximation with probability 0.6003.
of the permuted 2D signal are evenly distributed among theFor the besk-term approximatiorX® of a 2D compressible
columns, which leads to minimuns||... A permutation signalX € R™*¥, consider that entries X* can be divided
providing such even distribution is an optimal permutatiopmto several non-overlapped groups, and in each group all
defined below. entries share the same probability to be nonzero. Basedeon th
Definition 3: For a 2D compressible sign& € R¥*N and observation in the two preceding paragraphs, a permutation
its bests-term approximationX?, if after a permutation, the hamedgroup-scan-based permutationan work as follows:
bests-term approximationX ¢ of the resulted 2D signak’ 1) preform group-by-group scérof the 2D compressible
has sparsity vectos* satisfyingmax;{s:} — min;{s?} <1, signalX into a vector, and 2) row-wisely reshape the resulted
where s¥ denotes thei-th entry of s*, then s* is called Vector into a new)M x N 2D signal. In this way, all nonzero
an optimal sparsity vector oX*®, and the corresponding entries of the best-term approximation of the new 2D signal
permutation is call an optimal permutation . are likely to be evenly distributed among all columns.

Lemma 4: For a 2D compressible signak € RM*N and Definition 4: For a 2D signalX € R"*", let X (i, j) denote

its bests-term approximationX®, there exists at least onethe entry in the positiorti, j). Them-th (1 <m < M + N)

optimal sparsity vectos* of X*. layer of X is the group of all entriesX(4, j)’s satisfying: +
Proof: Obviously,||s*||; = s. If [s/N] = |s/N| = s/N, 7~ L=

we can immediately find an optimal sparsity vectorwhose =~ Example 2 WhenM = N = 4, the following matrixX

entries are alls/N. Here [-] denotes the ceiling function

and |-| denotes the floor function. Ifs/N| # [s/N], we

consider a permutation oX such that: for the best-term X =

approximation of the resulted 2D signal, there drgN]

nonzero entries in each of the first- N|s/N | columns, and

the remaining nonzero entries are evenly distributed amoONGrhat s, first scan all entries in the first group, then scareatties in the

the remaining columns. Then each of the latéfs/N| — s second group, and so on.

ry X2 T X7
r3 X5 Tg T13 (4)
Ty Tg9 T12 T4
10 L11 T15 T16



has 7 layers, including{z1}, {w2,23}, {za, 75,26},
{1’7, &g, Ty, Ilo}, {Ill, T12, 1‘13}, {1‘14, I15}, {Ilﬁ}, respec- 095 uert? T
tively. The layers ofX are parallel to each other. O.9~"" ___________________________________
For a 2D compressible signaX, if all entries within §
each layer of its best-term approximationX® have similar ~ §9%85 .~
probabilities to be nonzero (an example when this condigon ’g 0.8 :
satisfied is to be given later in this subsection), we propose 3 0_75/f ; , —0a=0.2
following zigzag-scan-based permutation, which is a spec -0=0.4
example of the group-scan-based permutation. 07 ;gzg'g
Define the zigzag-scan-based permutatior 0.65, ‘ ‘ ‘ ‘ ‘ ‘ ‘
2 4 6 12 14 16

P: RMXN 5 RMXN for a 2D signal X € RMx*N
as RX) = R(Z(X)), where R:RMYN — RMx*N js the
row-wisely reshaping function which row-wisely turns &ig. 1: Lower bound ofPr{P is acceptable in (5) for
vector into anM x N matrix and Z:RM*N — RMNjs 719 = 0,11 = L

the zigzag scan function which turns a matrix into a “zigzag”

sequence vector.

Correspondingly, define thiaverse zigzag-scan-based per- Based on the(rg, 71,72, a)-layer model, we have the fol-
mutation P~: RM>xN  _,  RMxN for a 2D signal lowing proposition for the zigzag-scan-based permutation
Xf e RMXN as pl(Xf) = z'(R(X')), where Proposition 1: If a 2D compressible signaK € RMx*N
R™L: RM*N — RMN js a vectorization function which row- follows the(rg, r1, 2, «)-layer model withry > 2 —3rg —1
wisely turns a matrix into a vector and'Z: RMY — RM*N  and0 < ry < r; < ry < min{M, N}, the zigzag-scan-based
is the inverse zigzag scan function which turns a “zigzagfermutation B-) is an acceptable permutation with a large
sequence into af/ x N matrix. probability given as

Example 3 The matrixX given in (4) becomes a “zigzag”
sequence after zigzag scan, i.e.,

8 10
Layer Index I

Pr {P is acceptable= Pr {||s||o > [|s']|cc }
min{[(ro+rz2+1)/2],

) m1 T2 ro—ro,r2—j+1
21—[ I1 <l—eﬂ(m#°71)) ]H{H— 3

m=ri+1 7=l k=k 41

Z(X) = [$1,l’2,$3,$4,$5,$6,l’7,' o axIG]

and then becomes the permuted sigkdl after row-wisely
reshaping, that is,

1
X' = P(X) = RZ(X)) 2 (@ 1) (@ 1)} )
al;a27"';ak—kj J
= R([z1, x2, x3, T4, T5, T, T, , T16)) a1<as< <),
T T2 T3 T4 wheres and s' are the sparsity vectors of the besterm
_|*% Te X7 Ts approximation ofX and X', respectivelyX' is a 2D signal
T9  Tio Ti1 T12 after the zigzag-scan-based permutation, andifet j < 7o,
Ti3 Tia Ti5 Ti6 A = {my, mij+1, -, r}, mj = max{r +1,5},
and again becomes a “zigzag” sequence after vectorizatiand
that is, ry — 1o, 1<j<nr
kj=q m—j+1 ro+1<j<mr
R™Y(XT) = [21, 22, 23, 74, 5, 26, 77, -+ , T16) 0, 1< <ro
and then returns to the original sign®l after inverse zigzag Proof: See Appendix for the proof. [ ]
scan, i.e.,, P}(X") =z /(R }(XT)) = X. Figs. 1-3 show the value of the lower bound Bn{P is
Thus, according to the analysis at the beginning of thigceptablé in (5) under differente and ry for 1) ro = 0,
subsection, if entries in each layer X share similar proba- », = 1; 2) rg = 0,7, = 2; and 3)rg = 3,7, = 5. It can

bilities to be nonzero, after the zigzag-scan-based pationt be seen that the lower bound &n {P is acceptableis large

all nonzero entries of the permuted® tend to be evenly enough in general. For otheg andr, the results are similar.
distributed among all columns. From Proposition 1, it can be seen that the zigzag-scan-
Definition 5: Consider a 2D compressible sigr¥l € RM*~N  based permutation is an acceptable permutation for a very
and its bests-term approximationX®. For given transition broad class of signals. The knowledge of exact locations of
layer indicesro, 71, r» and a decay factory, we say thatx the nonzero entries of the besterm approximatiorX®, i.e.,
follows the (rg, 71,7, a)-layer model if for any entry in the the knowledge of the support of the 2D sign&F, is not

m-th layer of X#, its probability to be nonzero is given as needed. .
As an example, we show that the zigzag-scan-based permu-

0 l=m = tation is particularly useful for 2D discrete cosine tramsf

D = 1 (o 1) rotl<m=m (DCT2) coefficient matrices of 2D piecewise smooth image
emamTo ritl<m<r signals. Since the DCT2 coefficient matrix of a piecewise
0 rotl<m<M+N-L. smooth image signal typically has most of its large entries
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o i IV. EXAMPLE OF VIDEO COMPRESSION VIAPARALLEL CS
B S N O A WITH PERMUTATIONS IN WIRELESSMULTIMEDIA SENSOR
""""""""""""""" NETWORKS
o 0.981 -7 ) . ) ) .
§097: As an application example, we design a pair of CS video
@ encoder and decoder based on the parallel CS with the pro-
: posed zigzag-scan-based permutation. This CS video encode
3 jzfg'g and decoder can be plugged into the application layer of
eeq=04 the compressive distortion minimizing rate control (C-DRIR
~-a=0.5 system [20]. As discussed in [20], in wireless multimedia
0.93; 3 10 12 14 16 sensor networks, the C-DMRC system is preferred compared
Layer Index, to traditional video coding standards such as MPEG and
Fig. 3: Lower bound ofPr{P is acceptable in (5) for H.264, since the C-DMRC system_ has Igss—complex video
ro = 3,71 = 5. encoder and can tolerate much higher bit error rates. The

CS video encoder and decoder in the C-DMRC system are
built based on the block CS architecture proposed in [9].

lie in the top left corner, and small entries lie in the bottomi "US: as we discussed in Section |, the CS video decoder
right corner because most of its energy is concentrated 'th the C-DMRC system requires a joint reconstruction. By
low frequencies, the zigzag scan process is commonly ud&glacing the CS video encoder and decoder at the apphcatio
in image compression like JPEG [19]. Thus, the DCT2 cd@ver of the C-DMRC system with the CS video encoder and
efficient matrices of piecewise smooth image signals %tiscliecoder.based on pgrallel CS architecture, the compugtion
the (ro, 1,72, a)-layer model withr, = 0. It will also be complexity of the video decoder can be reduced and the
shown via simulation in Subsection V-B. Thus, the proposdficonstruction process can be parallelized. _
zigzag-scan-based permutation has a large probabilityeto b !N this example, frames with odd indices and even in-
an acceptable permutation when parallel CS is applied to thiges are taken as reference frames and non-referencesframe
DCT2 coefficient matrices. Note that the knowledge of th_r@SpeCt'Velj The block diagram of the CS video encoder
layer indicesro, 71, 7 and the decay facton of the layer IS Shown in Fig.5(a). The average compression ?{aim
model is not needed when applying the zigzag-scan-basféH“pUted by the rate controller at the transport layer atiogr
permutation to the DCT2 coefficient matrices. to current ngtwork status, e.g., the end-to-end round iimie t .

Fig. 4 shows the difference before and after the zigzag-sc&fid the estimated sample loss rate of the network, and it
based permutation when the 2D signal is the DCT2 coefficigfNtrols the number of measurements for a video frame. For
matrix of an image. The energy, which can be loosely viewd&YerY pair of a reference frame and its following non-refese
as an interpretation of the sparsity vector if all non-zers@me, the rate controller gives an average compressian rat
entries of the 2D signal have magnitude of the same ordé¢cording to this average compression ratio, the compuessi
is distributed more evenly among columns after the zigzagftios of the reference and non-reference frames in a pair ar
scan-based permutation. obtained. At the output of the CS video encoder, we have the

One advantage of the zigzag-scan-based permutation is fi@f’® measurements. The image acquisition device turns the
it is a pre-defined permutation, and thus, the encoder ap@ysical inputinto video frames and outputs the video frame
decoder know it in advance without any additional conf® different processing blocks according to the frame index
munication to each other. In Subsection V-B, we will also
show by simulation that the zigzag-scan-based permutigion "More sophisticated index assignment schemes for the refefemme and

. .. . nan-reference frame can be used as well.

an acceptaple .permUtat'on for DCT2 coefficient matrices o 8Here the compression ratio is the ratio of the number of measutsrie
several typical images. the number of entries in the target signal.
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Fig. 5: Block diagram of the CS video encoder and decoder.

The procedure for encoding the reference frame is esference frame, the compression ratio of the non-referenc
follows: 1) compute DCT2 on the reference frame; 2) perforfinames should be higher than that of the reference frames,
the zigzag-scan-based permutation on the DCT2 coefficiemt., fewer measurements are assigned to the non-reference
matrix; 3) perform parallel compressed sampling of the peirames. In our experiment in Section V, we set the ratio of
muted DCT2 coefficient matrix. The procedure for encodingieasurements being 4:1, i.e., the number of measurements fo
the non-reference frame is as follows: 1) compute the difeference frames is 4 times that for non-reference framas. F
ference between the non-reference frame and the precedixgmple, if current average compression ratio given bydte r
reference frame; 2) perform parallel compressed samplingaontroller is 0.5, then the compression ratio of the refegen
this difference. The outputs of all CS sampling processoimme is 0.8 and the compression ratio of the non-reference
are combined. For the non-reference frames, no permutatioitame is 0.2. Other ratios can be set according to the motion
is performed since the difference between two consecutiveensity of the video.
frames, especially in videos with slow motion, is sparse The block diagram of the CS video decoder is shown in
enough so that the sparsity level of each column is too smglh. 5(b). To decode a reference frame at the receiver dige, t
to have significant difference from column to column. Thusollowing steps are performed: 1) parallel CS reconstourcti
the permutation does not bring significant improvementcihi of the permuted DCT2 coefficient matrix from the measure-
we have checked by simulations in [17]. ments of the reference frame; 2) the inverse zigzag-scaeeba

Considering that the sparsity level of the difference betwe permutation on the reconstructed permuted DCT2 coefficient
a non-reference frame and its preceding reference framematrix; 3) inverse DCT2 on the reconstructed DCT2 coefficien
smaller than that of the DCT2 coefficient matrix of thematrix. To decode a non-reference frame, the following step

are performed: 1) parallel CS reconstruction of the diffiese
9Quantization is omitted in the example presented here, busitih been between the non-reference frame and its preceding referenc
done in a practical video coding scenario. frame from the measurements of the non-reference frame;



2) add the reconstructed difference between the non-refere 1

frame and its preceding reference frame to the correspgnd  _
reconstructed reference frame. For parallel CS reconginjc 208f 1
any /;-norm minimization solver, e.g., the basis pursuit algc 2
rithm, can be used. 5 £ 067 1
208
S —global measurements
V. SIMULATION RESULTS E 30'4 ---Kronecker measurements | |
’ E § __independent measurements
.. . . © 0.2+ with permutation -
A. Empirical Performance of Parallel CS with Permutation 2 _independent measurements
. . . . B ihout tati
Our first experiment considers ansparse 2D signak € 0 g : o L b on
NxN o e : . 4 0 100 200 300 400 500
R whose sparsifying basis is the identity basis. To con Number of measurements K

pare the reconstruction error performance of the paralil q:ig. 6: Empirical performance of different sampling and
with permutation framework with that of other framework§econstruction schemes

including the Kronecker CS framework [6], we consider the
following four schemes to acquir® measurements dX.

(i) Sample the vectorized 2D signal using a dense Gauss
X N 2, —=real
sensing matrixA, € RE*N" e, y, = A,%, where 0s. ~model
x = vec(X) is the vectorized signaX andy, is called '
as a vector ofglobal measurements$iere the subscript

‘g’ stands for “global”. EO'G’
(i) Sample the 2D signal using Kronecker sampling operatc =

i.e., Yk = A;XAT, or equivalentlyyx = Axx, where

both Yx and yi are calledKronecker measurements 02

A, and A, are dense Gaussian sensing matrices
size VK x N, and Ax € RE*N is the Kronecker ‘ : . )
product of A; and A,. Here the subscript ‘K’ stands % 10 20 30 40 50
for “Kronecker”. In our simulation, considering thetK’ tayer indexm
is not always an integer, we substitwék by [vK]. Fig. 7:py, of real image “Boat.tiff” and,,, of the layer model
Thus, for this scheme, totalljs//% ]2 measurements areWith 7o = 0,71 = 3,r; = 32, anda = 0.15.
acquired.

(iii) Sample the 2D signal column-by-column with permuta-
tion, i.e., using the same dense Gaussian sensing matriXi9-6 shows the results for these four schemes. It can
A, € RE/N*N to sample each column of the permute@e seen that Scheme () has. the best reconstruction error
2D signal. In other wordsY, = A;,P*(X), whereY;, performangg, wh|l<.e" Scheme (iv) has the worst one. Both
is a vector ofindependent measurements with permutachemes (i) and (iii) have bette_r_reconstructlon erroffquer
tion and P*(-) is the optimal permutation operator. Inmance than Scheme (iv). In addition, Scheme (ii) has shghtl

our experiment, we us& that makesk /N an integer. better performance compared to Scheme (iii). However, to
Here the subscript ‘ip’ stands for “independent witichieve 90% successful reconstruction, the number of mea-

permutation”. surements needed is almost the same for both of the schemes.
(iv) Sample the 2D signal column-by-column using the sanfdom this observation, we conclude that the parallel CS with
dense Gaussian sensing matd € RE/NV*N je permutation framework can achieve similar reconstruction
Y, = A;X, whereY; is a vector ofindependent €rror performance as the Kronecker CS framework, while it
measurements without permutatidtere the subscript ‘i has much lower computational complexity since the column-

stands for “independent”. As before, we usehat makes by-column reconstruction is used in the parallel CS with
K/N an integer. permutation framework.

We set N = 20 and the sparsity levek = 40. Joint i )
reconstruction is used for Schemes (i) and (i), while calum B- The Layer Model and the Zigzag-scan-based Permutation
by-column reconstruction is used for Schemes (iii) and. (iv) In this example, we check the layer model for the DCT2
We let the number of measuremenks vary from 20 to coefficient matrix of the gray image: Boat (522 512). The
N2, For Schemes (jiii) and (iv), we le\;, = A;. For format used in the simulation is tagged image file format
each value ofK’, we average 100 iterations by generating (TIFF). The best-term approximation is obtained by keeping
sparse signalX with independent and identically distributedall DCT2 coefficients with magnitudes not less than 1000
Gaussian entries and with support following a uniform dissnd changing the remaining to zeros. In Fig.7, the x-axis
tribution among all supports of size We then measure theis the layer indexm, and y-axis is the probability of an
probability of successful reconstruction for each valuekgf entry in them-th layer of the bess-term approximatiorX?®
where the success is declared if the signal estinXatebeys of the DCT2 coefficient matrix to be nonzero, calculated as
|[vee(X — X)||2 < 1073||vec(X)]|2, as used in [6]. pm = (1/m) >0 1, 1(X*(i,5) # 0), where [-) is the
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TABLE I: Comparison of||s||., before and after the zigzag- 4°
scan-based permutation.

Magnitude Threshold
Image
400 600 800 1000 o
Boat 33vs. 2| 23vs. 2| 19vs. 2| 16vs. 1 E’
z
Cameraman|| 13 vs. 2| 8vs. 2 7vs.1 | 4vs. 1 @ ~+-Boat with permutation
Lena 14 vs. 3| 11 vs. 2 8vs. 1 7vs. 1 20§ -©-Cameraman w?thout permqtation
| -©-Cameraman with permutation
Peppers 27vs. 3| 15vs. 2| 11vs. 2| 11vs. 2 —-Lena without permutation

-*-Lena with permutation
-9-Peppers without permutation
: : -9-Peppers with permutation

o _ _ 82 0.3 0.4 05 06 0.7 0.8
indicator function. Thep,,’s versus layer indexn for the Compression Ratio

real image “Boat.tiff” and the result of thew, 1,72, a)-layer  gig g: PSNR for the parallel CS scheme with/without the

model withro = 0,71 = 3,72 = 32,a = 0.15 are shown zi%zag-scan-based permutation in image compression.
in Fig. 7. It can be seen that the two curves are close to eac

other. Similar results are also achieved for other imaghenT
according to Proposition 1, the zigzag-scan-based petioata
is an acceptable permutation with an overwhelming prokigbil
for DCT2 coefficient matrices of such images.

The changes offs||. of the bests-term approximation of
the DCT2 coefficient matrix before and after the zigzag-scan (b'lgo'glfkreccin_ 18.38 | 2089 | 2364 | 26.14 | 27.36
based permutation are shown in Table l. The DCT2 coefficient struction)
matrices are taken from four test images: Boat (518312),  pgyr|  Block CS
Cameraman (256< 256), Lena (512x 512), Peppers (512 (dB) (SPL recon- || 24.51 | 27.68 | 29.75 | 31.39 | 33.06
x 512). The best-term approximation is chosen according struction)
to different magnitude thresholds, i.e., keeping DCT2 coef Par\";‘v'i'te}: cs 2038 | 2318 | 2567 | 27.60 | 29.50
ficients whose magnitudes are not less than the magnitude permutation ' ' ' ' ’
threshold and setting the remaining to be zeros. Table | show
that ||s||. decreases significantly after the zigzag-scan-based
permutation, which is consistent with Proposition 1.

TABLE II: Comparison among block CS-based frameworks
and parallel CS with permutation framework.

Compression Ratio 0.1 0.2 0.3 0.4 0.5

the other hand, in the parallel CS with permutation framéyvor
) _ _ ) the DCT2 is performed on the whole image. To compare
C. Image Compression via Parallel CS with the Zigzag-Scafie reconstruction error performance of these two schemes

Based Permutation where parallel sampling and reconstruction can be achjeved

The performance of image compression via parallel CS wiwe study the PSNR values for the image LeRa6(x 256).
the zigzag-scan-based permutation is shown by compresshgyj the block CS framework, the block dimensionlisx 16
the DCT2 coefficients of four images: Boat, Cameramagnd the DCT2 is performed on every block. Moreover, all
Lena, and Peppers. The PSNR is employed to show t#ectorized blocks are sampled independently. For the Iaral
reconstruction performance. We compare the performarfces® with permutation, the DCT2 is performed on the whole 2D
the parallel CS scheme for the configurations: 1) without pgmage and the DCT2 coefficients matrix is sampled column-
mutation; 2) with the zigzag-scan-based permutation.i&atr by-column. Both schemes use parallel reconstructiongeith
of the sensing matriA € RX*M are drawn from Gaussian block-by-block or column-by-column, and the reconstroati
ensembles, with variance beiig K. The parallel CS recon- is implemented using basis pursuit algorithm. The comparis
struction is implemented using basis pursuit algorithm hy t between the two schemes is shown in Tablell. For the block
CVX optimization toolboxt® Note that other reconstructionCS framework, Table Il also shows the PSNR values obtained
algorithms than the basis pursuit can also be used. PSRRuUsing the smoothed projected Landweber (SPL) algorithm
performance for different methods is shown in Fig. 8 versugoposed in [8]. It can be seen from Table Il that the parallel
the compression ratio. CS with permutation scheme outperforms the block-by-block

From Fig.8, we can see that under the same compressi@mpling and reconstruction scheme, although both of them
ratio, the zigzag-scan-based permutation helps to improt@n achieve parallel reconstruction. Compared to the bRgk
the PSNR by around~24 dB for all images. Consequently,with SPL reconstruction scheme, there is a 4 dB degradation i
it shows that the PSNR performance is indeed imprové@rms of PSNR when using the parallel CS with permutation
significantly after permutation. scheme. However, notice that the SPL algorithm is a joint

Note that for the block CS framework of [7] and [8], ifreconstruction scheme. This degradation is thus expeited s
DCT?2 is performed on each block of the image, instead of tiige permutation, though can improve the error performance

whole image, parallel reconstruction can also be achieed. of the column-by-column reconstruction, can hardly achiev
better reconstruction error performance than that of that jo

10The toolbox can be downloaded at http://cvxr.com/cvx. reconstruction, which has a higher computational compjexi
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TABLE llI: Comparison between the block-by-block sampling 0 ;
and reconstruction with zigzag scan scheme of [21] ai LA

parallel CS with the zigzag-scan-based permutation schem 35 Ly

wet”

Compression Ratio 0.75 | 0.5 | 0.625| 0.375 830 P
@ | A
[21] 34.89 | 30.94 | 31.17 | 27.68 & 250 .. o
PSNR D Pt -akiyo without permutation
(dB) Parallel CS 20 -A-gkiyo with permutation
with 35.19 | 29.50 | 32.14 | 27.17 -e-foreman without permutation
permutation 1 -e-foreman with permutation
--coastguard without permutation
coastguard with permutation

. L . . . 81 0.15 0.2 0.25 013 0.35 0.4 0.45 05
This result coincides with our result in Subsection V-A adlwe Compression Ratio

In [21], it is proposed to sample and reconstruct a 2D imagerig, 9: Average PSNR of reconstructed reference frames.
block-by-block. The DCT2 coefficients read in zigzag scan
order of each block are divided into a group of importar* 4o-
components and a group of unimportant components. In tl
way, the error performance of the simple block-by-bloc 35
reconstruction can be improved, and a similar computatior
complexity as that of the parallel CS with permutation schen 8307
can be achieved. To make a fair comparison between 12
nonuniform samplingvith zigzag scan scheme in [21] and theZ 470
parallel CS with permutation scheme, we use “Lena” image * ,¢"
Size256 x 256, and the block size for the nonuniform sampling
with zigzag scan scheme is selected toliex 16. In this 1 _ .

. . -9-coastguard without permutation
way, the length of each vectorized block is equal to the keng coastguard with permutation
of each column of the image. Orthogonal matching putsuit 181 015 02 025 03 035 04 045 05
(OMP) as described in [21] is used for reconstruction in tr.. Compression Ratio
nonuniform sampling with zigzag scan scheme. Similar to tig. 10: Average PSNR of reconstructed non-reference fsame
experiment of [21], for compression ratios 0.75 and 0.5, the
important/unimportant coefficients rate is 1/3; for congsien
ratios 0.625 and 0.375, the important/unimportant coeffits improves the PSNR performance of non-reference frames by
rate is 1/7. It can be seen from Tablelll that there is naround 3-9 dB for Akiyo, 2~5 dB for Foreman and-37 dB
absolute winner between the method of [21] and our schenfier Coastguard. The improved PSNR for non-reference frames
Both schemes have similar reconstruction error performands a bit lower than that of the preceding reference frames be-

cause the reconstruction of non-reference frames relié®tin

D. Video Compression via Parallel CS with the Zigzag-scaithe reconstruction of their corresponding preceding esfee
based Permutation frames and the reconstruction of the difference between non

The test video sequences in this example are three stand&i§rence frames and their corresponding preceding refere

YUV video sequences: Akiyo, Foreman, Coastguard. T gmes. . .

format used in the simulation is quarter common intermedi- 1© Show the advantage of the video compression scheme
ate format (QCIF). The performance of the proposed viddoPosed in Section IV, we compare the total time of re-
compression scheme is shown by compressing the Iuminaﬁ(?é‘Stru_Ct'ng one pair of reference and non-referenge Bame
components of the first 10 frames, i.e., 5 reference framgsN9 (i) the video encodgr and decod(.e_r emplqyed in the C-
and 5 non-reference frames. The average PSNRs for refereHe&RC system proposed in [20] and (ii) the video encoder
and non-reference frames are used as performance metod decoder proposed in Section IV. We also show the PSNRs
All settings are the same as in the example in Fig.8 of reconstructed_reference and non-reference _frame_s 1tdrr bo
Subsection V-C. PSNR performance for different metho&ghemes. The video sequence used in the simulation is the
is shown in Figs. 9 and 10 versus the average compré@ndafd YUV sequence Akiyo (QCIF format). The measure-
sion ratio, that is,(compression ratio of reference frames Ment matrices used in the C-DMRC system and our scheme

compression ratio of non-reference franyes are the scrambled block Hadamard matrix with block length

From Fig.9, we can see that under the same avera?éual to 32 and the random Gaussian matrix, respectivety. Fo
compression ratio, the zigzag-scan-based permutatiqs el '€ reference frame, the DCT2 basis is used as the spagsifyin
improve the PSNR of reference frames by arour®3iB for _baS:S in t:O(tjh S(_:herphes. The CS rlfcogzsgltucnlt_)n_al?ortl;hm IS
Akiyo, 5~6 dB for Foreman and 48 dB for Coastguard. 'MPlémented using thé,-magic package: To eliminate the

Fig.10 shows that the zigzag-scan-based permutation afgfFCtS Of randomness, we run 200 trials for each average
compression ratio and show the average PSNR and the total

11we use the OMP algorithm implemented in SparseLab packageahnat
be downloaded at http://sparselab.stanford.edu. 12The package is available at http://users.ece.gatechjedtih/llmagic.

-&-akiyo without permutation
-A-akiyo with permutation
-e-foreman without permutation
-o-foreman with permutation
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TABLE IV: Total reconstruction time and PSNR of reconsyjon the RIP condition for the sensing matrix in the paialls
structed video frames using the video encoder and decodgh e relaxed. The group-scan-based permutation has been

employed in [20]. introduced. As an example, the zigzag-scan-based pelontat
A for 2D signals satisfying thérg, r1, 72, «)-layer model, such
Compression o1 | o2 | 03 | 04 | os as DCT2 coefficient matrices of 2D images, has been analyzed.
Ratio The application to image and video compression has been

discussed as well. In the simulations, it has been shown
that the zigzag-scan-based permutation for DCT2 coefticien

Reconstruction

) 55.32 | 47.34 | 37.23 | 37.08 | 30.49
Time (seconds)

Reference matrices of images is an acceptable permutation. In additio
Frame || 2443|2752 29.79 | 3253 | 3624 the simulation results have shown that the proposed scheme
Pég)R - improves the reconstruction performance of images andsgide
reference || 24.44 | 27.53 | 29.73 | 32.27 | 35.32 in terms of PSNR significantly.
Frame It is worth mentioning that the zigzag-scan-based permu-

tation is designed for signals satisfying the proposedrlaye

TABLE V: Total reconstruction time and PSNR of reconinodel. If a signal has most of its large entries clusteredrato
structed video frames using the video encoder and deco@8e or more fixed locations, the more general group-scan-

proposed in Section IV. based permutation is applicable. Similar to the zigzagrsca
based permutation for the layer model, a lower bound on
Average the probability that the group-scan-based permutationnis a
Congepft‘?ss'on 01 02 | 03 | 04 | 05 acceptable permutation can be derived given a mathematical
ato _ model for the distribution pattern of large entries in thgnsil.
Reconstruction 12.85 | 14.30 | 20.17 | 18.40 | 18.67 Comparing the proposed approach to other existing alterna-
Time (seconds) . . . . . .
tives, the following discussion is of interest. The colubyr-
Reference || 5417 | 2730 | 30.32 | 33.79 | 38.34 column sampling and reconstrugtion cons_idered in the fedral
PSNR | Frame CS framework has been studied experimentally in several
(dB) Non- works [6], [10]. For example, the DMD-based compressive
re':ff;‘;:‘:e 24.17| 27.29 1 3029 | 33.71 ) 38.10 hyperspectral imaging operator presented in [6] is a parall

system where each spectral image is measured with the same
sampling operator. If each spectral image is reconstrumbed

o . by-one, the reconstruction can be parallelized. Howenrehis
reconstruction time. The results are shown in Tables IV and ase, the Kronecker CS system becomes essentially the same
_ It can be seen.from Tables IV and V that the reconstr.ucn% the block-by-block sampling and reconstruction scheme
t!me using the video encoder anq decoder proposed in SGfiiere DCT2 is performed on every block. This block-by-
tion IV is I_ess than that _for the video encoder arld deC_OdBrock sampling and reconstruction scheme has been digtusse
employed |r_1_[20],_ especially When_ the compression ratio §8 subsection V-C. Thus, in a similar manner, the parallel
low. In addition, if there are multiple decoding processorgg \vith permutation proposed in this paper outperforms the

simultaneously reconstructing the columns of a video fra”b%rallel sampling and reconstruction scheme for the Krioziec
as shown in Fig.5(b), the reconstruction time of the vide@S

decher proposed in Section IV can be_ furthe_:r_ reduced aPFor a 2D signal which is sparse in the identity basis, if the
proximately to th(_e total reconstruction time divided by thgame sampling operator is applied to each row, the row-by-
number of decoding processors. It can also be observed ), scan in [10] is similar to the column-by-column sampling
Table IV that the time for reconstruction using the videQ.peme in the parallel CS framework. To achieve a better
encoder and decoder employed in [20] decreases as the @vefag,nsiryction error performance, an algorithm is progase
compression ratio increases. This is because the recofigtru [10], which iteratively improves the current estimate af D
_algorlthm converges faster as the number of measurem_eggarse signal by modelling statistical dependencies leztwe
increases. _Accordlng to Table V, the time for r_econSt_rm'%eighboring rows. We have proposed a different approac her
using the video encoder and decoder proposed in Section IM{S¢ 5 permutation, to achieve a better reconstructioar er
less sensitive to the compression ratio. In addition, wesean performance than the basic column-by-column reconstmcti
that as compared to the video encoder and decoder emploYed iniroqyction of permutation into the column-by-column
in [20], the PSNR of reconstruct_ed wdgo frames for the V'des%mpling makes the sampling operator in this paper difteren
encoder and decoder proposed in Section IV is larger, wren t " that of [10], and improves the reconstruction error

average compression ratio is larger th_an 0.3, and it is alm%rformance of the column-by-column reconstruction.
the same (less than 0.3dB degradation), when the averagg ig gpyious that the parallel CS without permutation has

compression ratio is smaller than 0.3. low computational complexity. However, its reconstruatio
error performance is not favorable. Usually, the joint skingp
VI. CONCLUSION AND DISCUSSION and joint reconstruction scheme has better error perforgan
A parallel CS scheme with permutation has been proposédit at the same time, it has much higher computational
It has been proved that with a so-called acceptable permutamplexity at both encoder and decoder. Consequentlyr othe
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approaches have been studied which can achieve better re-
construction error performance than the parallel CS withou
permutation scheme and have lower computational complexit
than the joint sampling and joint reconstruction scheme. Fo
example, the block CS framework uses the block-by-block
sampling and joint reconstruction, with low-complexity at
sampling and high-complexity at reconstruction [7], [8prF

the Kronecker CS framework [6], separable sampling opesato
are used to achieve low complexity at the encoder, but tim joi
reconstruction still requires high-complexity at the déeo
Obviously, to achieve better performance than the par@ifl
without permutation, both the block CS and the Kronecker
CS frameworks require higher computational complexity of ) )
reconstruction, although their sampling operators havlai model is an acceptable permutation can be expressed as

Fig. 11: Regions in thérg, r1, rs, a)-layer model.

complexity to the column-by-column sampling operator. Our Pr {P is acceptable= Pr{||s||cc > [|s||oc} (63)
work has provided an alternative solution. We have shown tha I

by introducing permutation into the parallel CS framework, _ _ T _

the reconstruction error performance can indeed be imgrove tz_; Pr{|[s[loc =t |[8"][cc <t —1} (6b)
while the computational complexity remains the same as that ro—r0

of the parallel CS without permutation framework. It should > Z Pr{||s||oo =, HSTIIOO <t—1}

be noted that there is a trade-off between the reconstructio Pt

error performance and the computational complexity. Com- ra—ro

pared to the parallel CS without permutation, the one with = Z Pr{||s||cc =t} (6¢)
permutation results in a better reconstruction error perfo t=u+1

mance and similar computational complexity. Compared to =Pr{||s||loc > u+ 1}=1—Pr{||s||oc <u}

the joint reconstruction, the parallel CS with permutatioay >1 - Pr{[|s|w < 1}. (6d)
have worse reconstruction error performance, but enjoychmu - -

lower computational complexity. To derive (6a), we use the fact that an acceptable permntatio

To sum up, the main contribution of this work is themust result in|s||o < ||s||o. For deriving (6b), we use the
introduction of permutation for the parallel CS frameworkfact that the maximal sparsity level among columns of the
The use of permutation can improve the error performance Rfists-term approximatiorX* is upper bounded byrs — o),
the column-by-column reconstruction significantly. Altigh i-€., [|s[|<c < 72 — o, which immediately follows from the
the parallel CS without permutation is a special case ©fo,71,72,«)-layer model. For deriving (6¢c), we use the fact
the Kronecker CS, it has been shown in this paper that Byatu > [|s'||.. Finally, for deriving (6d), we use the fact that
using permutation, the parallel CS reconstruction canexehi v < I. Based on (6d), we focus on the cumulative distribution
similar error performance to the Kronecker CS, while it hafsinction of |[s|[o.. ) )
much lower computational complexity. Compared to the block . Since the events thaj < [ for different;’s are independent
based CS system [7], [8] with parallel reconstruction, wvé”th each other, we have
have shown that our scheme has better reconstruction error N
performance. Therefore, overall we conclude that the [gdral Pr{llsfle <1} = Hpr{sf <1 )
CS with permutation framework provides an effective soluiti =t
for the column-by-column sampling and reconstruction witiMoreover, since the positiofi, j) of an entry inX* indicates
low computational complexity. the indexm of the layer where the entry is located, i.e.,

m = i+ j — 1, we can define three regions X*:

Ri = {(i,j) €Zro+1<i+j—1<m}

Ry = {(i,j) €Z°m +1<i+j—1<m}

Proof: Denote thej-th entry of the sparsity vectar as . {(,j)eZ?N1<i+j—1<ro}U

s;, i.e., the sparsity level of thgth column ofX? is s;. Since . 9 L

)é follows the (rg, 71, 2, a)-layer model, the nonzejro entries {Gg) €2iratl<itj—1<M+N-1}

in X* are all in layers ofX® whose indices range fromy+1 These regions are separated by three transition layersthiee

to . After performing the zigzag-scan-based permutation @g-th layer, ther;-th layer and the-,-th layer. These regions

X, the number of nonzero entries in any column is not motge shown in Fig. 11. Therefore, according to Definition 5,

thanu = [(ro+ra+1)(r2—ro)/2N]. Thereforeu > [|s'[|. all entries of X* are nonzero with probability 1 in region

Let I = [(ro +r2 + 1)/2]. Sincer; < min {M, N} and R,. In regionRs, all entries ofX* are zero with probability

ro > 2rp — 3rg — 1, we havel > u andl > ry — 7. 1. In regionRs, the probability of an entry to be nonzero
As a result, the probability that the zigzag-scan-basel@creases exponentially with decay factoas the layer index

permutation of a 2D signal satisfying they, r1, 72, «)-layer m increases.

APPENDIX. PROOF OFPROPOSITION1 %

2,
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Pr{P is acceptable
g min{l,ro—rg,r2—j+1
> 1-T02 { T, (0 o)+ SR 50

(e T 7 min{l,ro—rg,ro—j+1
=TT T, ()| - TE2 Sl t)

(@) r T r

=1- j;1 'nfer(l_pm). jirﬁ»l

=1- H2:r1+1(1 - pm)rl ! H:3:T1+1(1 - pm)m_rl] . H;i
=1—

[T, (1=pa)| 2
m=m; Pm anaz - sag g €A (T=pay)(

1-pa )
k—k;
a1<a2<~“<ak,kj J

PayPap_p .
Za ag, - a EA; .
1,025k ;&) (T—pg ) (1—Pay,_ )

a1<a<l < /

e oq_ T2 min{l,ra—ro,ro—j+1} PayPag_p;
m:j(l pm)] = {1+Zk:kj+l Zal‘az’m’a’“*kj@“j (I=pay)(1—pa

k—k;)
a1<a2<~-<a;€,kj J

. . PasPa
min{l,ro—ro,ro—j+1} 1 k—k
1 {1+Zk:kj+1 Zalaa%"'7ak-,—kj€Aj (—pay ) 0pa

fk ;)
a1<ag<l - <ak—kj 7

PayPay

T2 m T2 min{l,ro—rg,r2—j+1}
Hm:m-&-l(l —Pm) } ’ H.'Fl {1+Zk:kj+1 Zal’”"”’“’“*ﬁ““i (lwttl)-'-(lw@k_k.)}'
J

”‘1<a2<'“<”'k—kj

For thej-th column of X*, if 7o +1 < j < N, all entries

of the column are in regiofR3 and thus are all zeros. Then

we havePr{s; <!} =1 sincel > r; —r¢ > 1. According to
(7), we have

[ o 1
Pr{[lsllec <1} =] Pr{s; <3=]]D_Pr{s;=k}. (8)
j=1

j=1k=0

Consequently, we focus on the probability distributiors pfor
the firstry columns ofX?, i.e.,Pr{s; =k} forall 0 < k <1
andl <j <.

Let k; denote the number of entries in theth column
(1 <j <) of X* that are in regiorR, i.e.,

1 — T, 1<j<r
k=4 rm—j+1, ro+1<j<r 9
0, 7"1+1§j§7"2.

Meanwhile, in thej-th column ( < j < rp) of X5,

m; = max{r + 1,7} andr, are the starting and endingthe facts that = [(

layer indices of regiorfR,, respectively.
In (8), for1 < j < g, i.e., for the firstry columns ofX#,

we consider the following three cases depending on the value

of k: 1)k:kj;Z)kj—‘rlSkgmin{Tg—To,T’g—j—Fl};
and 3)k§kjfl0rk2min{r27r0+1,r27j+2}.

For the first case, i.ek = k;, it can be seen that the event [2]

that s; = k£ happens when the entries of thigh column of
X* that are in regioriR, are all zeros. Therefore, we have

T2

Pr{s; =k} = H (1= pm)-

(10)

For the second case, i.é; + 1 < k < min{ry — o, 72 —
j+1}, the event that; = k means that thg-th column ofX*
has(k — k;) nonzero entries in the regioR,. Denote layer
indices of thes&k — k;) nonzero entries as;, az, - - - , ar_;

. A
with a; < ap < --- < ap_p,;. S0ay,az, -+ ,ar_k, € Aj =

{mj,mj +1,--- ,7’2}. We have
Pr{s; = k}

>

()

Par - Par_i, || (1=pm)

anaz, sagj 6A; =
a1<as<- - <ap_| _m7ag
1<a2< <Ak ; =1y k—k
T2
Pa, pak—kj

a1,az,sakk 6A;
a1<a2<~“<ak,kj

{ ﬁ (1—pm)}

m=m j

1T a-pm)

m=m

(1=pay) -+ (lipak—kj)

Pay"* Pay i,

(1_pa1)' ' '(1 _p%—kj) .

> (12)

a1,a2, a5k ;EA;
a1<a2<~“<u.k,kj

For the third case, i.ek < k; — 1 or k > min{rys —ro +
1,79 — j + 2}, sincek; < s; < min{ry —ro,7o — j + 1} for
1 < j <o, the event thak; = k never happens, i.e.,

Pr{s; =k} =0. (12)

According to (6d), (8), (10)—(12) and the fact that r; —
ro > k; (from (9)), we have the inequality shown on the top of
this page, where equality (a) follows from the fact thaf =
ri+1forl<j<r;andm;=jforr +1 < j <ry. Using
ro + 79 +1)/2] andp,, = e~ m=ro—1)
for ry +1 < m <y, we obtain (5). [ |
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