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Abstract— This paper studies relay selection schemes for two-
way amplify-and-forward (AF) relay networks. For a network
with two users that exchange information via multiple AF relays,
we first consider a single-relay selection (SRS) scheme based on
the maximization of the worse signal-to-noise ratio (SNR) of the
two end users. The cumulative distribution function (CDF) of the
worse SNR of the two users and its approximations are obtained,
based on which the block error rate (BLER), the diversity order,
the outage probability, and the sum-rate of the two-way network
are derived. Then, with the help of a relay ordering, a multiple-
relay selection (MRS) scheme is developed. The training overhead
and feedback requirement for the implementation of the relay
selection schemes are discussed. Numerical and simulation results
are provided to corroborate the analytical results.

Index Terms— Diversity order, error rate, outage probability,
relay selection, sum-rate, two-way networks.

I. INTRODUCTION

Cooperative communications have drawn much interest due
to its capability of mitigating the fading effect of wire-
less channels, extending coverage without enlarging transmit
power, and achieving spatial diversity. The relay network, in
which one or multiple pairs of users communicate with the
help of a single or multiple relay nodes, is one of the most
common models for cooperative communications [1]–[5]. The
decode-and-forward (DF) and the amplify-and-forward (AF)
are two popular relaying protocols. AF usually has a lower
implementation complexity as an AF relay simply amplifies
its received signal with a power coefficient and forwards it to
the destination without hard decoding. Both coherent power
coefficient and non-coherent power coefficient are proposed
for AF relaying [3]–[5]. The coherent power coefficient, which
is adaptive to the channel condition, outperforms the non-
coherent one.

The relaying concept is initiated in unidirectional or one-
way relay networks, and has been extensively studied in the
literature. Recently, bidirectional or two-way relay networks
have gained much attention. In two-way relay networks, two
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end users exchange information with each other through a
single or multiple common relays. Since the two-way relay
network model allows the two users to exchange data simul-
taneously, it improves bandwidth efficiency [6]–[8]. For two-
way networks with multiple antennas, precoding is considered
in [9], [10]. For two-way networks with multiple relays, single-
relay selection (SRS) and multiple-relay selection (MRS)
schemes are two main techniques to use the available relays.

SRS schemes, in which a single relay is chosen to help the
end users, have been proposed for DF relaying [11]–[15] and
AF relaying [16]–[26]. For DF relaying, in [11], a selection
scheme is given to maximize the weighted sum-rate capacity;
in [12]–[14], the worse receive signal-to-noise ratio (SNR) of
the two users is maximized; and in [15], a cross-layer relay
selection metric, which depends on both the instantaneous
channel conditions and the queuing status, is investigated. For
AF relaying, SRS schemes are proposed to maximize the in-
stantaneous sum-rate [16], minimize the sum symbol error rate
(SER) [17], maximize the mutual information [18], minimize
the outage probability based on the mutual information [19],
and maximize the average receive SNR [20]. In [21], three
SRS schemes based on the transmission rate maximization,
equivalent channel gain maximization, and harmonic mean of
channel gain minimization are proposed. Suboptimal max-min
criteria are used in [22] and [23], where the maximum SER
is minimized in [22], and the minimum SNR is maximized
in [23]. The asymptotic SER and outage probability are also
derived for high SNR in [22], [23]. Recently, a selection
scheme that maximizes the worse receive SNR of the two
users for a two-way AF relay network is proposed in [24]–
[26]. Specifically, the outage-optimal opportunistic relaying is
considered in [24], and our work in [25] and [26] focus on
the error rate analysis.

While research on SRS in two-way networks is frequently
available in the literature, research on MRS, in which more
than one relay can be selected for cooperation, is still limited.
In [14], for DF relaying, a scheme that selects two relays out of
N available relays to minimize the average sum bit error rate
(BER) is proposed. For AF relaying, our paper [26] reports
some preliminary results on MRS based on maximization of
the worse receive SNR. In [27], focusing on the achievable
rate maximization, a cross-entropy (CE) method is introduced
to search a near-optimal relay subset.

In this paper, we consider two-way AF relay networks and
study SRS and MRS schemes that maximize the worse receive
SNR of the two end users. Since this work is for AF relaying,
it differs from [11]–[15], which are for DF relaying. Further,
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design criteria of [11] and [15] are different from our max-min
design criterion. The same max-min design criterion is used in
references [12]–[14], which consider DF and were published
during the review process of this paper. Due to the difference in
the relaying protocols (DF vs. AF), the analytical approaches
and employed mathematical tools in [12]–[14] are significantly
different from those in this paper. Also, while [12]–[14]
analyze outage probability, diversity order, frame error-rate,
and bit error-rate, in this paper, outage probability, diversity
order, block error-rate (BLER), and sum-rate are analyzed.
The last two measures are not considered in other papers. This
paper is also different from [16]–[23] because it considers the
worse receive SNR maximization while different criteria are
used in [16]–[23] as discussed above. This paper is different
from [24] in that outage probability is the only performance
measure in [24] while outage probability, error rate, sum-
rate, diversity order, and power efficiency are analyzed with
different analytical approaches in this paper. Further, this paper
is a broader and deeper extension of our work in [25], [26].
Only error rate and diversity order of the SRS scheme are
analyzed in [25] and [26] with the former focusing on two-
relay networks only. Our main contributions in this paper are
summarized as follows.

• The exact cumulative distribution function (CDF) of
the worse end-to-end SNR and its approximations are
obtained, based on which extensive performance mea-
sures, including the error rate, diversity order, outage
probability, and sum-rate, are evaluated analytically for
SRS.

• An MRS scheme is developed for two-way relay net-
works by using the relay ordering idea proposed in [28].
The extension of the relay ordering idea to two-way relay
networks is not straightforward because for two-way relay
networks, there are two communication tasks each with
its own bit/symbol error rate and end-to-end SNR. The
relay selection depends on the overall network quality-
of-service requirement and the fairness consideration. In
this paper, we apply the relay ordering based on the worse
receive SNR and aim at finding the subset of relays that
maximizes the worse receive SNR of the two users.

• In comparing SRS and MRS schemes, two interesting
advantages of the latter are observed. The MRS scheme
is more power efficient, and results in a faster increase
in sum-rate with respect to the increase in the number of
relays in the network.

The remainder of the paper is organized as follows. The
system model, the relay selection criterion, the performance
metrics, and discussions on training for the channel state
information (CSI) requirement are presented in Section II.
The SRS and its performance analysis are studied in Section
III. The MRS is considered in Section IV. Numerical and
simulation results are presented in Section V, followed by
concluding remarks in Section VI. Two involved proofs are
provided in the appendices.

II. SYSTEM MODEL

This section describes the network model, the relay selection
criterion, and the measures used to evaluate the network
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Fig. 1. A two-way multiple-relay network with two end users and R relays.

performance. A training scheme for the CSI requirement and
its overhead are also discussed.

A. Network Model

A two-way wireless relay network has two end users
(namely, u1 and u2) and R relays as depicted in Fig. 1.
Each node has a single antenna which can be used for both
transmission and reception. The fading coefficients from u1 to
the jth relay and from u2 to the jth relay are denoted as fj
and gj , respectively. The channels are reciprocal such that the
channels from the jth relay to the two end users are also fj and
gj , respectively. All channels are assumed to be independent
and identically distributed (i.i.d.) complex Gaussian fading
with zero-mean and unit-variance, i.e., fj , gj ∼ CN (0, 1).
Therefore, magnitudes of fj and gj follow a Rayleigh distri-
bution.1 It is assumed that the two end users know all channel
coefficients, f1, ..., fR and g1, ..., gR, and Relay j knows its
own channels fj and gj . This channel information requirement
can be satisfied through training which is discussed in detail
in Section II-D. The power budget is P for each end user and
Qj for the jth relay.

For simplicity, we assume that both users use the same
codebook denoted by S. The information symbols from u1
and u2, randomly selected from the codebook, are denoted by
s1 and s2, respectively. For the two users to exchange their
information symbols, we use the following two-phase protocol.
In the first phase, u1 and u2 transmit s1 and s2, respectively, at
the same time to all relays. Relay j receives a superposition of
the two signals, given as yj =

√
Pfjs1+

√
Pgjs2+vj where

vj is the additive noise at the relay. vj’s are assumed to be
i.i.d. with the distribution CN (0, 1). In the second phase, one
or multiple relays are selected to forward information. Denote
the set of the indices of the selected relays as R.

During the second phase of communication, each selected
relay amplifies its received signal in the first phase and broad-
casts it to both users. With each relay knowing its channel

1Although we discuss i.i.d. Rayleigh flat-fading channels only, the relay
selection schemes studied in this paper work for networks with any channel
statistics, because instantaneous CSI is assumed to be available at correspond-
ing nodes.
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coefficients, it should incorporate a phase shift to cancel the
phases of its channels during the amplifying process, so useful
information from each relay can be added coherently at the
users [28]. The amplification factor of the jth relay thus should
be αje

iφj , where φj = −(∠fj + ∠gj), with ∠z the phase of
the complex value z and i the standard imaginary unit. The
power coefficient αj is to control the relay power. Its design
is discussed later in this section. Each end user receives a
superposition of the signals forwarded by the selected relays
as follows:

yu1 =
∑
j∈R

αj

[√
Pf2j e

iφjs1 +
√
P |fjgj |s2 + fj ṽj

]
+ w1,

yu2 =
∑
j∈R

αj

[√
Pg2j e

iφjs2 +
√
P |fjgj |s1 + gj ṽj

]
+ w2,

(1)

where |z| denotes the magnitude of a complex value z, ṽj =
vje

iφj , and w1 and w2 denote the noise at the two users,
respectively. The noise w1 and w2 are also assumed to be i.i.d.
with the distribution CN (0, 1). The phase adjustment does not
affect the statistical properties of the noises at the relays, i.e.,
vj and ṽj have the same distribution. Equation (1) shows that
each end user receives an observation that is a combination of
the other user’s symbol and its own symbol. After canceling
the self-interference, u1 and u2 get:

ỹu1 =
√
P
∑

j∈R αj |fjgj |s2 +
∑

j∈R αjfj ṽj + w1,

ỹu2 =
√
P
∑

j∈R αj |fjgj |s1 +
∑

j∈R αjgj ṽj + w2,
(2)

respectively. The maximum-likelihood (ML) decoding rules of
u1 and u2 are:

ŝ2 = argmin
s∈S

∣∣∣ỹu1 −
√
P
∑

j∈R αj |fjgj |s
∣∣∣ ,

ŝ1 = argmin
s∈S

∣∣∣ỹu2 −
√
P
∑

j∈R αj |fjgj |s
∣∣∣ ,

respectively. From the system equation (2), the receive SNRs
at u1 and u2 when the relay subset R is selected are

γu1,R =
P(

∑
j∈R αj |fjgj |)

2

1+
∑

j∈R α2
j |fj |2

,

γu2,R =
P(

∑
j∈R αj |fjgj |)

2

1+
∑

j∈R α2
j |gj |2

,
(3)

respectively.
We have shown in [26] that coherent power coefficient

achieves better performance than non-coherent power coef-
ficient in two-way networks. Since each relay knows its
channels, only coherent power coefficient is considered in this
paper, i.e., αj is designed as αj =

√
Qj

1+P |fj |2+P |gj |2 .

B. Relay Selection Criterion

For a one-way network, the choice of the design criterion is
straightforward. Optimal performance is obtained by maximiz-
ing the end-to-end SNR, which at the same time maximizes the
transmission rate and minimizes the error rate. For a two-way
network, however, there are two communication tasks each
with its own end-to-end SNR and bit/symbol error rate. The
choice of the design criterion depends on the overall network
quality-of-service requirement and the fairness consideration.

In this paper, we care about the reliability of both users and
maximize the worse of the end-to-end SNRs of the two users,
or equivalently, minimize the larger of the error rates of the two
communication tasks. The general relay selection problem for
a two-way network is thus to find the subset of {1, 2, · · · , R},
denoted as Ř, that results in the maximum worse end-to-end
SNR. In other words,

Ř = arg max
R⊆{1,2,··· ,R}

min{γu1,R, γu2,R}. (4)

C. Performance Measures

As for performance measures, we consider BLER, diversity
order, outage probability, sum-rate, and power efficiency of the
network. In the following, we elaborate on these measures.

In a two-way relay network, the two users exchange their
symbols, s1 and s2, with each other. We take s1 and s2 as a
block (s1, s2). Thus a block error occurs when either of the
two users makes an error, i.e., (ŝ1, ŝ2) ̸= (s1, s2). The BLER
metric is naturally an upper bound on the symbol error rate
(SER) of either user, and also a lower bound on the sum of the
SERs of the two users. In addition, in the high SNR regime,
the user with the smaller SNR has a higher probability of error,
and dominates the block error. Thus, this metric is consistent
with the relay selection idea and criterion in (4). For a given
channel realization, let ù be the index of the user with the
worse receive SNR, i.e., ù = 1 if γu1,Ř < γu2,Ř and ù = 2
otherwise. Let ũ be the index of the other user. The BLER,
denoted as Pblock, can be calculated as

Pblock = E[P(ŝũ ̸= sũ)] + E[P(ŝù ̸= sù|ŝũ = sũ)], (5)

where E[·] and P(·) stand for the expectation and probability
functions, respectively.

The outage probability, denoted as Pout, is another impor-
tant performance measure for communication systems. In a
traditional wireless network, an outage occurs if the received
SNR, γ, drops below a predetermined SNR threshold γth.
The outage probability can then be calculated as Pout =
P(0 ≤ γ ≤ γth). In many communication models, outage
probability reflects the rate of successful transmission. In
the two-way relay network, there are two communication
tasks. We thus define outage probability as Pout = P(0 ≤
min{γu1,Ř, γu2,Ř} ≤ γth), which is the probability that either
user experiences an outage.

The diversity order shows how fast the error rate/outage
probability decreases with the increase in the transmit power in
the high transmit power range. It is originally defined based on

the error rate as d , − lim
P→∞

logError rate
logP

and is later shown

to have an equivalent definition based on the outage probability

as d , − lim
P→∞

logPout

logP
where P is the transmit power [29].

When the outage probability of a system is approximated as
Pout ≈ cP−d, c relates to the array or coding gain, and d is
the diversity order.

The average sum-rate, denoted as C, is the highest rate at
which information can be communicated. For our two-way
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relay network, the average sum-rate can be calculated as

C =
1

2
E[log2(1 + γu1,Ř)]+

1

2
E[log2(1 + γu2,Ř)] bits/sec/Hz.

(6)

As each node in the network has its own power constraint,
the total transmit power in the whole network changes with
the number of cooperating relays. To make fair comparison
among different selection schemes, we consider the average
power efficiency defined as [28]

η , E

[
min{γu1,Ř, γu2,Ř}
2P +

∑
j∈ŘQj

]
. (7)

It is the average worse end-to-end SNR per unit power
achieved in the network.

D. Discussions on CSI and Training

In this work, it is assumed that 1) Both users know all
channels f1, · · · , fR, g1, · · · , gR, and 2) Relay j knows its
own channels fj and gj . These CSI requirements should
be satisfied through training before data transmission for
each coherence interval. In this section, a possible training
scheme is proposed. Since the focus of our discussion is on
the overhead requirement, we consider only the minimum
requirement on the training interval length. Specific channel
estimation rules and the effect of channel estimation errors
on the network performance are not discussed. The proposed
training scheme contains three steps.

Step 1 needs R time slots for the two end users to obtain
their channel gain information with the relays. For the jth time
slot of this step, Relay j broadcasts a pilot. Each user can thus
estimate its channel with Relay j based on its received signal
by using common estimation rules, such as ML or minimum
mean square error (MMSE) estimations. After this step, u1
knows f1, · · · , fR and u2 knows g1, · · · , gR.

Step 2 needs (R + 1) time slots, for Relay j (j ∈
{1, 2, ..., R}) to estimate fj and u2 to estimate f1, · · · fR. It
has two phases. In Phase 1, u1 sends one pilot and all relays
receive, which takes one time slot. Relay j can thus estimate
fj , its channel with u1, from the signal it receives. In Phase
2, the relays amplify and forward their received signals in
Phase 1 in turn, which takes R time slots. For simplicity, non-
coherent amplification factor can be used. u2, at Slot j of
Phase 2, receives

y
(t,2)
j =

√
PQj

P + 1
fjgjs

(t,2) +

√
PQj

P + 1
gjv

(t,2)
j + w

(t,2)
2 ,

where v(t,2)j is the noise at Relay j in Phase 1, w(t,2)
2 is the

noise at u2, and s(t,2) is the pilot (sent by u1 in Phase 1).
We use superscript ‘t’ to indicate the training phase and use
superscript ‘2’ to indicate Step 2. Since u2 knows gj from
Step 1, it can thus estimate fj from y

(t,2)
j . After Step 2, Relay

j knows fj and u2 knows f1, · · · , fR.
Step 3 needs (R+1) time slots, for Relay j to estimate gj

and u1 to estimate g1, · · · gR. It is symmetric to Step 2. It also
has two phases. In Phase 1, u2 sends one pilot and all relays
receive, which takes one time slot. Relay j can thus estimate

gj , its channel with u2, from the signal it receives. In Phase 2,
the relays amplify and forward their received signals in Phase
1 in turn, which takes R time slots. u1, at Slot j of Phase 2,
receives

y
(t,3)
j =

√
PQj

P + 1
gjfjs

(t,3) +

√
PQj

P + 1
fjv

(t,3)
j + w

(t,3)
1 ,

where v(t,3)j is the noise at Relay j in Phase 1, w(t,3)
1 is the

noise at u1, s(t,3) is the pilot (sent by u2 in Phase 1). Since
u1 knows fj from Step 1, it can thus estimate gj from y

(t,3)
j .

After Step 3, Relay j knows gj and u1 knows g1, · · · , gR.
Thus, after all three steps of the training scheme, all nodes

in the two-way relay network obtain their required CSI.
The total overhead required for the training is (3R + 2),
which is linear in the network size. No cross talks between
the relays and between the two end users are required. No
channel coefficient, which is a complex number, needs to be
communicated between nodes.

III. SINGLE-RELAY SELECTION AND ITS PERFORMANCE
ANALYSIS

In this section, we consider SRS, i.e., only one of the
multiple available relays in the network is chosen to cooperate.
An advantage of this scheme over MRS is that during the
second phase of communication, the phase adjustment at the
selected relay is unnecessary and only the channel amplitude
information is required at the relay. Assuming that the jth
relay is chosen, the received signals at u1 and u2 after self-
interference cancelation are:

ỹu1 =
√
Pαjfjgjs2 + αjfjvj + w1,

ỹu2 =
√
Pαjfjgjs1 + αjgjvj + w2,

respectively. The end-to-end receive SNRs of u1 and u2 are
thus

γu1,{j} =
PQj |fjgj |2

1+(P+Qj)|fj |2+P |gj |2 ,

γu2,{j} =
PQj |fjgj |2

1+P |fj |2+(P+Qj)|gj |2 ,
(8)

respectively. The relay selection problem in (4) reduces to

ǰ = argmax
j

min
{
γu1,{j}, γu2,{j}

}
, (9)

that is, finding the relay that results in the maximum worse
SNR.

The relay selection can be performed at either end user,
who knows all channels. In SRS, the user can find the index
of the relay, ǰ, with the highest worse end-to-end SNR, and
broadcast the index information to the relays. log2R bits are
needed.

A. CDF Analysis of the Worse End-to-End SNR

Define γj , min
{
γu1,{j}, γu2,{j}

}
. The CDF of γj ,

denoted as Fγj (x), is rigorously derived in the following
theorem.

Theorem 1: The CDF of γj is

Fγj (x) = 1− e−
θj(x)

P
κj(x)
P K1

(
κj(x)
P

)
+e−

θj(x)

P

∫ aj−ξj
x
P

aj−(1+ξj)
x
P
e
−
(
y+

κj(x)2

4P2y

)
dy,

(10)
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where aj , (ξj+
1
2 )x+

√
(ξj+

1
2 )

2x2+ξjx

P , ξj , P
Qj

, κj(x) ,
2
√
ξjx(1 + (1 + ξj)x), θj(x) , (1 + 2ξj)x, and K1(·) is the

modified first-order Bessel function of the second kind.
Proof: See Appendix A.

The CDF formula in Theorem 1 is rigorous and applies for any
values of the powers P and Qj . However, the integration and
the modified Bessel function make it complicated for further
performance (e.g., outage probability, BLER, and sum-rate)
analysis. Thus, we derive several approximations of the CDF,
which are mathematically more tractable, to facilitate further
performance analysis.

Approximation 1 (F apx1
γj

(x)): We first look for an approx-
imation on the integral term in (10). Let Λ , [aj − (1 +
ξj)

x
P , aj − ξj

x
P ]. With the mean value theorem, there exists a

µ ∈ Λ such that∫ aj−ξj
x
P

aj−(1+ξj)
x
P

e
−
(
y+

κj(x)2

4P2y

)
dy =

x

P
e
−
(
µ+

κj(x)2

4P2µ

)
.

Noticing that κj(x)
2P ∈ Λ and the length of Λ is x

P , we have∣∣∣κj(x)
2P − µ

∣∣∣ ≤ x
P . When P is large, x

P is small, thus µ ≈ κj(x)
2P .

By using this, an approximate CDF F apx1
γj

(x) is obtained as

F apx1
γj

(x)= 1− κj(x)

P
e−

θj(x)

P K1

(
κj(x)

P

)
+
x

P
e−

θj(x)+κj(x)

P .

(11)

Note that Approximation 1 is obtained by approximating
the third term in (10) only. From the above derivation, it can
be seen that Approximation 1 is accurate for large P . Since
the outage probability can be written in the form of Fγj (γth),
we use Approximation 1 to analyze the outage probability for
large P , the details of which will be shown in Section III-B.

In addition, we are interested in the BLER and sum-
rate analysis. If we use Approximation 1, the calculations
involve derivative and integration of K1(·) with complicated
arguments, which are intractable. Therefore, we propose two
further approximations for the second term in (10), to analyze
BLER in Section III-C and sum-rate in Section III-E.

Approximation 2 (F apx2
γj

(x)): First, we look for a simple
approximation for κj(x)

P . Notice that

2
√
ξj(1 + ξj)

x

P
≤ κj(x)

P
≤ 2
√
ξj(1 + ξj)

x

P
+

1

P

√
ξj

1 + ξj
.

The difference between the lower and the upper bound in
the above formula is 1

P

√
ξj

1+ξj
, which is small for large P .

Therefore, we have κj(x)
P ≈ κ̃j

x
P where κ̃j , 2

√
ξj(1 + ξj).

Second, we use xK1(x) ≈ 1, which is valid for small x [30].
F apx2
γj

(x) is thus obtained from (11) as:

F apx2
γj

(x) = 1− e−
θ̃j
P x +

x

P
e−

θ̃j+κ̃j
P x, (12)

where θ̃j = 1 + 2ξj . This approximation is expected to be
tight for small x only.

Approximation 3 (F apx3
γj

(x)): For the second term in (11),
we first use κj(x)

P ≈ κ̃j
x
P to simplify the argument of the

modified Bessel function. Then we use K1(y) ≈
√

π
2
e−y

y ,2

which is valid for moderate and high y [31]. F apx3
γj

(x) is thus
obtained as

F apx3
γj

(x) = 1−
√
π

2
e−

θ̃j+κ̃j
P x +

x

P
e−

θ̃j+κ̃j
P x. (13)

So the approximation F apx3
γj

(x) is expected to be tight for
moderate and large x.

Fig. 2(a) shows the comparison of the three approximations
with the exact CDF, while Fig. 2(b) and Fig. 2(c) are enlarged
portions of Fig. 2(a) in small x range and large x range,
respectively, for P = Qj = 10 dB. The exact CDF is
generated using Monte-Carlo simulation. As shown in Fig.
2(a), F apx1

γj
(x) well matches the exact CDF for all x. As

shown in Fig. 2(b) and Fig. 2(c), F apx2
γj

(x) matches well with
the exact CDF for small x and F apx3

γj
(x) matches well with

the exact CDF for moderate and large x, as expected.
With the SRS scheme given in (9), the maximum worse

end-to-end SNR of the network is γǰ = max
j

γj . Since all

channels are independent, the CDF of γǰ , denoted as Fγǰ
(x),

can be calculated as Fγǰ
(x) =

∏R
j=1 Fγj (x).

B. Outage Probability Analysis

In this subsection, the outage probability is analyzed. For the
sake of brevity, we assume that all relays have the same power.
From the definition in Section II-C, the outage probability of
the two-way network with our SRS scheme can be calculated
as Pout = P(0 ≤ γǰ ≤ γth) = Fγǰ

(γth). Using F apx1
γj

(x), the
outage probability can be approximated as

Pout ≈
∏R

j=1

(
1− κj(γth)

P e−
θj(γth)

P K1

(
κj(γth)

P

)
+ γth

P e−
θj(γth)+κj(γth)

P

)
,

(14)

which can be calculated numerically. Interestingly, although
Approximation 1 is valid for large P only, simulation results
in Section V show that the outage probability formula (14) is
accurate even for small P (e.g., P = 0 dB in Fig. 3). This
is because in (10), the third term is not significant, compared
with the first and second terms.

C. BLER Analysis

In this subsection, we analyze the BLER of the two-
way relay network with the SRS scheme. A BLER formula
is provided in (5), in which the first term is the average
probability that the user with the lower receive SNR makes
an error and the second term is the average probability that
the user with the higher receive SNR makes an error given that
the other user decodes correctly. When the transmit power is
high, the second term is expected to be much smaller than the

2This is through truncating high order terms of Kν(y) =√
π
2

e−y

y

[∑n
k=0

(ν+ 1
2
)k(

1
2
−ν)k

k!

(
− 1

2y

)k
+O

(
1

yn+1

)]
, where n

is a positive integer and (·)k is the Pochhammer function.
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Fig. 2. Comparison of proposed CDF approximations with the exact CDF
of γj , P = Qj = 10dB.

first. Thus, we approximate the BLER by ignoring the second
term, i.e., Pblock ≈ Pappro , E[P(ŝũ ̸= sũ)]. Since the second
term is non-negative, Pappro is actually a lower bound on the
BLER of the network.

From the definition, Pappro is exactly the average SER
of a single-source communication system with receive SNR
γǰ . With digital modulations, the SER can be approxi-
mated as (the nearest neighbor approximation) Pappro ≈
MdminE

[
Q
(

β√
2

√
γǰ

)]
, where Mdmin is the number of neigh-

bors a constellation point has at the minimum distance dmin,
β is a constant depending on the modulation, and Q(x) is
the probability that a standard normal random variable takes
a value larger than x. Using integration by parts, we have

Pappro ≈ βMdmin

4
√
π

∫ ∞

0

x−
1
2 e−

β2

4 xFγǰ
(x)dx. (15)

For the sake of brevity, we assume that all relays have the
same power, i.e., Qj = Q, for j = 1, · · · , R. Therefore, the
CDF of γǰ can be calculated as Fγǰ

(x) =
[
Fγj (x)

]R
. Using

Approximation 2, F apx2
γj

(x) given in (12), for Fγj (x) and the
binomial series expansion, we have

Fγǰ
(x) ≈

R∑
i=0

i∑
j=0

(−1)j
(
R
i

)(
i
j

)
P i−j

xi−je−
iθ̃+(i−j)κ̃

P x, (16)

where ξ = ξj , θ̃ = θ̃j and κ̃ = κ̃j since all relays have
the same power. By using (16) in (15), the BLER can be
approximated as

Pappro ≈ βMdmin

4
√
π

R∑
i=0

i∑
j=0

(−1)j
(
R
i

)(
i
j

)
Γ(i− j + 1

2 )

P i−j
(

iθ̃+(i−j)κ̃
P + β2

4

)i−j+ 1
2

,

(17)

where Γ(·) is the Gamma function. The BLER for networks
with non-uniform relay powers (i.e., with Qj ̸= Qj for i ̸= j)
can be evaluated similarly in closed-form but with a much
more complicated expression. Simulation results in Section V
show that the BLER approximation is tight for a wide range
of transmit power P .

Remark: Approximation 2 is obtained by approximating
Approximation 1 for small SNR, and is used to analyze the
BLER. The network BLER is mostly contributed by small x
region, due to the exponential function in the integration in
(15). Thus, an approximation of the CDF that is precise for
small x is useful, while its tightness at medium to high x is less
important. This motivates Approximation 2, which is accurate
in small SNR region as shown in Section III-A. The derived
BLER is still accurate compared with simulation results (to be
shown in Section V).

D. Diversity Order Analysis
In this subsection, we analyze the achievable diversity order

of the SRS scheme using the outage probability. The following
theorem is proved.

Theorem 2: The outage probability, Pout, is evaluated to be

Pout(γth) =
2R
∏R

j=1(1 + ξj)γ
R
th

PR
+O

(
γth,

1

PR+1

)
,

(18)
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where γth is the SNR threshold.
Proof: See Appendix B.

As we explained in Section II-C, from (18), we conclude that
the SRS achieves the diversity of R, which is the full spatial
diversity provided by the network for both users. The Pout

formula given in (18) is rigorous and valid for any values of
P and Qj . No approximation is made in its derivation. Note
that, if we use Approximation 1 and Approximation 2 of the
CDF in (11) and (12), the same result as in (18) can be derived.

Remark: Although equations (14) and (18) are both for
outage probability, they have different purposes. Equation (18)
is used for the diversity order analysis. From the definition of
diversity order, it only depends on the highest order term of P
in the outage probability formula. Thus, equation (18) provides
the highest order term of P , while all other terms are included
in O

(
γth,

1
PR+1

)
. On the other hand, equation (14) is based on

Approximation 1. It contains not only the highest order term,
but also lower order terms of P (via the K1(x) function).
Thus, when used to evaluate outage probability, equation (14)
is expected to be more precise than equation (18) especially
when P is not very high.

E. Sum-Rate Analysis

In this subsection, the average sum-rate of the SRS scheme
is analyzed. Again, we assume that all relays have the same
power. From (6), a lower bound on the average sum-rate can
be defined as

Clb , E[log2(1 + γǰ)] =

∫ ∞

0

log2(1 + x)fγǰ
(x)dx, (19)

where fγǰ
(x) is the probability density function of γǰ which is

given as fγǰ
(x) =

dFγ
ǰ
(x)

dx . Using Approximation 3, F apx3
γj

(x),
we have

fγǰ
(x) ≈ R

(
F apx3
γj

(x)
)R−1

×
(

1
P +

√
π
2
(θ̃+κ̃)

P − (θ̃+κ̃)
P 2 x

)
e−

θ̃+κ̃
P x.

With the help of the binomial series expansion, an approxi-
mation for Clb is derived as (20) on the top of the next page,
where µ , (i+1)(θ̃+κ̃)

P , Jn(µ) , (n − 1)!eµ
∑n

l=1
Γ(l−n,µ)

µl ,
and Γ(·, ·) is the upper incomplete gamma function [32].

Remark: Approximation 3 is obtained by approximating
Approximation 1 for moderate and large SNR, and is used
to analyze the sum-rate. For the sum-rate, Approximation 2
cannot be used because the sum-rate of the network is mostly
contributed by the high x region, due to the log-function in
the integration in (19). Thus, we need an approximation that is
precise for high x, while its tightness at low x is less important.
This motivates Approximation 3, which is accurate in high
SNR region as shown in Section III-A. The derived sum-rate
matches well with simulation results (to be shown in Section
V). This is because transmission rates of the moderate and
large SNR ranges contribute more to the average transmission
rate than that of the low SNR range.

IV. MULTIPLE-RELAY SELECTION

In this section, we generalize the relay selection scheme
from SRS to MRS; in other words, more than one relay is al-
lowed to participate in the second phase of the communication.
For one-way relay networks, MRS is proposed in [28] and is
shown to have a much better performance than SRS with a
small amount of extra cost on the overhead. A disadvantage is
that when more than one relay is allowed to cooperate, for the
relay signals to be added coherently at the two end users, the
cooperative relays must adjust the phases of their transmission
signals precisely, which requires carrier-level synchronization.
The relay selection problem, as explained in Section II-B, is
finding the subset of relays, denoted as Ř, that maximizes the
worse of the two end-to-end SNRs given in (3).

As there are R relays and each relay has two choices, there
are (2R − 1) possibilities (the case that no relay cooperates
is obviously not optimal). One can always solve the relay
selection problem by exhaustive search. But the computational
complexity is exponential in R, and the number of required
overhead bits is R since one bit for each relay is needed. For
networks with a large number of relays, having the amount of
overhead bits linear in the network size is undesirable. Thus,
the same as one-way relay networks, the real challenge of
the problem is to find MRS schemes with low complexity,
good performance, and, at the same time, low overhead. This
motivates the relay ordering idea in one-way relay networks
[28]. With a relay ordering, one can find the cooperating
relays sequentially. In this paper, we apply the idea to two-way
networks and develop the worse end-to-end SNR as the relay
ordering function. The MRS scheme is described in Algorithm
1. This algorithm can be performed by either end user, who
has perfect and global CSI.

Algorithm 1 MRS algorithm for two-way relay networks.
1: Calculate γj = min(γu1,{j}, γu2,{j}), using (8) for all j =

1, ..., R.
2: Sort γj in descending order to get a relay ordering

(i1, · · · , iR).
3: for k = 1 : R do
4: Calculate γu1,{i1,...,ik} and γu2,{i1,...,ik} using (3).
5: Find ǩ = argmax

k
min(γu1,{i1,...,ik}, γu2,{i1,...,ik}).

6: Broadcast a number that is between
min{γu1,{iǩ}, γu2,{iǩ}} and min{γu1,{iǩ+1}, γu2,{iǩ+1}}.

Upon receiving the broadcasted value (in Step 6 of Algo-
rithm 1) from the end user that conducts relay selection, each
relay, who knows its own γj , decides whether to cooperate
or not by comparing its γj with the broadcasted value. If
γj is larger, the jth relay cooperates; otherwise, it does not
cooperate. The MRS scheme requires the feedback of one
positive number that is common to all relays. Thus, the number
of feedback bits is fixed whose value depends on the required
precision, independent of the number of relays.

From the relay ordering in Step 2 and the maximization
in Step 5, the performance of the MRS is always no worse
than that of the SRS. It improves the end user SNRs, and also
achieves full diversity. However, the total power utilization in
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Clb ≈ R

ln 2

R−1∑
i=0

i∑
j=0

(−1)j
(
R−1
i

)(
i
j

)
(π2 )

j
2

P i−j+1

∫ ∞

0

[
ln(1 + x)

(√
π

2
(θ̃ + κ̃) + 1− (θ̃ + κ̃)

P
x

)
xi−je−

(i+1)(θ̃+κ̃)
P x

]
dx

=
R

ln 2

R−1∑
i=0

i∑
j=0

(−1)j
(
R−1
i

)(
i
j

) (
π
2

) j
2

[(√
π
2 (θ̃ + κ̃) + 1

)
Ji−j+1 (µ)− (θ̃+κ̃)Ji−j+2(µ)

P

]
P i−j+1

.

(20)

the whole network increases as more relays cooperate. Other
than the worse SNR, a more sensible measure in comparing
the MRS with the SRS is thus the power efficiency, defined
in (7). The power efficiency is the average SNR achieved
per unit power. With this measure, one can tell whether the
performance improvement obtained by having more relays
cooperate in the MRS scheme is worthy of the extra power
spent. As will be shown by simulation in Section V, the MRS
achieves much higher power efficiency. In addition, it achieves
a faster sum-rate increase as the network size increases.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we give numerical and simulation results
to justify our analysis and to evaluate the performance of
the relay selection schemes. Quadrature phase-shift keying
(QPSK) is used as the modulation scheme by which β =

√
2

and Mdmin = 2.

A. Performance of SRS

Fig. 3 shows the outage probability of the SRS scheme
for R = 2 and R = 4 at γth = −5 dB and γth = 5 dB.
The continuous curves and discrete markers show the analyt-
ical results given in approximation (14) and the simulation
results, respectively. This figure shows the tightness of the
approximation and also the diversity order in the sense of
outage probability, which are 2 and 4 for R = 2 and R = 4,
respectively. We can see that for both threshold values (-5dB
and 5 dB), the derived outage expression (14) is tight for all
simulated power levels even for P = 0 dB. This is because the
third term in the CDF formula (10) is insignificant, compared
with the other two terms.

In Fig. 4, we show BLERs of the SRS scheme for relay
networks with R = 1, 2, 3, 4 with respect to P , the power of
the end users. All nodes have the same power, i.e., P = Q1 =
Q2 = · · · = QR. The analytical BLER curves in this figure
are based on the approximation in (17). First, it can be seen
that the diversity order changes from 1 to 4 when R varies
from 1 to 4. This is consistent with our result in Theorem
2 that diversity order R can be achieved. Further, the BLER
approximation in (17) tightly matches the simulated BLER for
the entire simulated range of P (12 dB ∼ 40 dB), especially
for large P . For all networks, the gaps between the simulation
curve and the approximation curve are less than 0.3 dB at
10−6 BLER level. The approximation is a lower bound, which
is consistent with our discussion in Section III.

In Fig. 5, we show the average sum-rate of the SRS scheme
for R = 2 and R = 10. We set the power such that
P = Q1 = Q2 = ... = QR. Four curves are plotted: 1)
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Fig. 3. Outage probability of the SRS scheme (R = 2, 4).

the exact sum-rate of the SRS by simulation, with legend
“Exact”; 2) the sum-rate of random relay selection, in which a
relay is randomly chosen to cooperate, with legend “Random”;
3) the sum-rate of the best sum-rate selection, in which the
relay giving the best sum-rate is selected, with legend “Best
sum-rate”; and 4) our analytical lower bound on the sum-rate
given in (20), with legend “Analytical lower bound”. First, this
figure shows that the SRS, although aiming at maximizing the
worse end-to-end SNR, achieves almost the same sum-rate
as the best sum-rate relay selection in our simulated network
example. Its advantage over random relay selection is evident.
Since the sum-rate of random relay selection does not depend
on the number of relays and the sum-rate of our selection
scheme increases with R, this advantage increases as more
relays are available in the network. The derived analytical sum-
rate approximation (20) works well. Its gaps with the exact
(simulated) sum-rate are about 1.0 dB and 1.2 dB at sum-
rates 2 bits/sec/Hz and 5 bits/sec/Hz, respectively, for both
network settings.

B. Performance of MRS and Comparison with SRS

In this subsection, we show performance of our developed
MRS in Algorithm 1 and its comparison with SRS. The results
shown in Figs. 6-8 are simulation results only.

Due to the nature of the MRS, it will not perform worse
(in the sense of every metric considered in the work) than
the SRS. Fig. 6 shows the BLERs of the MRS scheme and
comparison with that of the SRS for R = 2, 3, and 4. Again,
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all nodes are assumed to have the same power. Note that
although both schemes have the same diversity order R, MRS
has a larger array gain. The array gain improvement increases
as the number of relays increases. At the 10−5 BLER level,
MRS outperforms the SRS by approximately 3 dB, 4.5 dB,
and 6 dB for R = 2, 3, and 4, respectively. For comparison,
we also show the performance of the optimal relay selection,
i.e., choosing (among all possible relay subsets) the subset of
the relays that results in the maximum worse receive SNR.
This optimal relay selection requires exhaustive search. Note
that the gap between the MRS and the optimal relay selection
is negligible. Importantly, the complexity of optimal relay
selection is exponential in R while the complexity of the MRS
is R logR.

As discussed in Section IV, allowing multiple relays to
cooperate improves the performance, but the total transmit
power of the network also increases. A more sensible measure
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is thus the power efficiency. In Fig. 7, the power efficiencies of
SRS and MRS are compared. It shows that the MRS scheme is
much more power efficient. The power efficiency improvement
also increases as the number of relays increases.

Another prominent advantage of MRS over SRS we have
observed through simulation is in the sum-rate. In Fig. 8,
the sum-rates of the SRS and MRS schemes are plotted for
different values of R at different power levels, with all relay
having the same power Q. Sum-rates of both schemes increase
linearly in logR. But the MRS scheme results in a much larger
slope, which shows a faster increase in sum-rate as the network
size increases. At R =10, the sum-rate improvements of the
MRS over SRS are about 77%, 70%, and 100%, respectively
for the three power settings (P = 11.75 dB, Q = 13 dB),
(P = 10 dB, Q = 13 dB), and (P = 10 dB, Q = 10 dB).

VI. CONCLUSION

A two-way relay network with multiple AF relays is con-
sidered. An SRS scheme which chooses the relay that results
in the highest worse receive SNR of the two users is studied.
The exact CDF of the worse end-to-end SNR and its approx-
imations are derived, based on which the SRS is analyzed
extensively in terms of the BLER, diversity order, outage
probability, and sum-rate. Simulation results are shown, which
justify the validity of the analytical results. The approximate
CDFs are obtained via finding appropriate approximations on
the modified Bessel function of the second kind, K1(x), for
different performance measures. They can be used in similar
analysis, where K1(x) appears. Examples include one-way
relay networks, two-way relay networks with different relay
selection schemes, and multiply-user multiple-relay networks
under relay selection schemes. An MRS algorithm is also
introduced in this paper by ordering the relays in descending
order of the worse end-to-end SNR. Both the SRS and the
MRS schemes achieve full diversity, while the latter achieves
a larger array gain. Our analysis and simulation results show
that the MRS scheme has the following advantages. 1) For
both SRS and MRS, the sum-rate grows as O(logR), where
R is the number of relays. But MRS has much higher growth
rate; 2) While the search complexity of MRS is O(R logR), its
performance is virtually indistinguishable from that of optimal
relay selection, which has search complexity O(2R); 3) MRS
is much more power efficient than the SRS scheme, and
the power efficiency improvement grows with the number of
relays.

APPENDIX

A. Proof of Theorem 1

Let α , |fj |2 and ζ , |gj |2, which have exponential
distributions. For any x > 0, we define bj , (1 + ξj)

x
P and

aj , (ξj+
1
2 )x+

√
(ξj+

1
2 )

2x2+ξjx

P . We have 0 ≤ bj ≤ aj . Let
fα(t) = e−t denote the PDF of α. The probability of γj ≥ x
can be calculated as

P(γj ≥ x) =
∫∞
0

P(γj ≥ x|α = t)fα(t)dt

=
∫ bj
0

P(γj ≥ x|α = t)e−tdt
+
∫∞
bj

P(γj ≥ x|α = t)e−tdt.
(21)

The integral in the second line of (21) considers the probability
of γj ≥ x when α ∈ [0, bj). Since α < bj , we have

Pα− (1 + ξj)x < Pbj − (1 + ξj)x
= P (1 + ξj)

x
P − (1 + ξj)x

= 0 < x(1+Pα)
ζQj

,

based on which we have x >
PQjαζ

1+(P+Qj)α+Pζ . From

(3), we have γu1,{j} =
PQjαζ

1+(P+Qj)α+Pζ . Therefore, γj =

min{γu1,{j}, γu2,{j}} ≤ γu1,{j} < x, which means that the
integral in the second line in (21) is zero.

Next we look at the integral in the third line in (21), which
considers the probability of γj ≥ x when α ≥ bj . From
the definition of γu1,{j} in (3), when α ≥ bj , the following
equivalence can be proved:

γu1,{j} ≥ x ⇐⇒ PQjαζ ≥ (1 + (P +Qj)α+ Pζ)x

⇐⇒ ζ ≥ (1+ξj)α+
ξj
P

Pα−ξjx
x , c1,j .

Similarly, we can prove that

γu2,{j} ≥ x⇐⇒ ζ ≥
ξjα+

ξj
P

Pα− (ξj + 1)x
x , c2,j .

Therefore, the event γj = min{γu1,{j}, γu2,{j}} ≥ x is
equivalent to event ζ ≥ max{c1,j , c2,j}.

We can further show that event c1,j R c2,j is equivalent
to event PQjα

2 − (Qj + 2P )αx − x R 0. The only positive
root of PQjα

2 − (Qj + 2P )αx− x = 0 is α = aj . Thus, we
can conclude that event PQjα

2 − (Qj + 2P )αx − x R 0 is
equivalent to event α R aj .

In summary, when α ≤ aj , event γj ≥ x is equivalent to
event ζ ≥ c2,j ; when α > aj , event γj ≥ x is equivalent to
event ζ ≥ c1,j . Since the integral in the second line in (21) is
zero, we have

P(γj ≥ x) =
∫∞
bj

P(γj ≥ x)e−αdα

=
∫ aj

bj
P(ζ ≥ c2,j)e

−αdα

+
∫∞
aj

P(ζ ≥ c1,j)e
−αdα

=
∫ aj

bj
e−c2,je−αdα+

∫∞
aj
e−c1,je−αdα

= e−(1+2ξj)
x
P

∫ aj−bj
0

e
−
(
y+

κj(x)2

4P2
1
y

)
dy

+ e−(1+2ξj)
x
P

∫∞
aj−

ξix

P
e
−
(
y+

κj(x)2

4P2
1
y

)
dy,

(22)
where κj(x) = 2

√
ξjx (1 + (1 + ξj)x). The third equality of

(22) is because ζ is exponentially distributed, and the fourth
equality of (22) is because of the definitions of c1,j and c2,j
given above, and the transformation y = α − (ξj+1)x

P . With
some straightforward algebraic manipulations and with the aid
of [30, eq. 3.324.1], (22) can be simplified to get

P(γj ≥ x) =
κj(x)

P
e−(1+2ξj)

x
P K1

(
κj(x)

P

)
− e−(1+2ξj)

x
P

∫ aj−
ξix

P

aj−(1+ξi)
x
P

e
−
(
y+

κj(x)2

4P2
1
y

)
dy.

The CDF of γj is Fγj (x) = P(γj ≤ x) = 1 − P(γj ≥ x),
from which (10) is obtained.
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B. Proof of Theorem 2

Consider the following infinite series expansions:

K1(x) =
1

x
+ ln

x

2
I1(x)−

x

4

∞∑
k=0

[ψ(k + 1) + ψ(k + 2)]x2k

k!(k + 1)!4k
,

I1(x) =
x

2

∞∑
k=0

x2k

k!(k + 1)!4k
, ln(x) =

∞∑
k=1

(−1)k−1(x− 1)k

k
,

for 0 < x < 1, where I1(·) is the modified first-order
Bessel function of the first-kind and ψ(·) is the digamma
function [30]. Let Gγj (x) , 1− κj(x)

P e−(1+2ξj)
x
P K1

(
κj(x)
P

)
.

It can be expanded using the exponential and the above
series expansions as (23) on the top of the next page, where
ϕj(x) , ξjx (1 + (1 + ξj)x). Note that Gγj (x) is a power
series of 1/P . Its highest order term is the first term in (23).

Define Hγj
(x) , e−(1+2ξj)

x
P

∫ aj−ξj
x
P

aj−(1+ξj)
x
P
e
−
(
y+

κj(x)2

4P2y

)
dy.

Using the exponential and the binomial expansions, Hγj (x)
can be written as

Hγj (x) = e−(1+2ξj)
x
P

∫ aj−ξj
x
P

aj−(1+ξj)
x
P

[
1−

(
y +

κj(x)
2

4P 2y

)

+

∞∑
r=2

(−1)r

r!

(
y +

κj(x)
2

4P 2y

)r
]
dy.

After some mathematical manipulations, Hγj (x) can be eval-
uated as

Hγj (x) =e
−(1+2ξj)

x
P

[
x

P
− xhj(x)

2P 2

+
κj(x)

2

4P 2
ln

(
hj(x)− x

hj(x) + x

)
+ L1

]
,

(24)

where hj(x) ,
√
(2ξj + 1)2x2 + 4ξjx and L1 ,∫ aj−ξj

x
P

aj−(1+ξj)
x
P

∑∞
r=2

(−1)r

r!

(
y +

κj(x)
2

4P 2y

)r
dy. With the bino-

mial expansion, L1 can be given as

L1 =

∞∑
r=2

r∑
t=0

(−1)r
(
r
t

)
r!

(
κj(x)

2

4P 2

)t ∫ aj−ξj
x
P

aj−(1+ξj)
x
P

yr−2tdy

= ln

(
hj(x)− x

hj(x) + x

) ∞∑
r=2

ϕj(x)
r

r!(r − 1)!P 2r

+

∞∑
r=2

r∑
t=0

t̸= 1+r
2

(−1)rϕj(x)
t

21+r−2tt!(r − t)!(1 + r − 2t)P r+1

×
[
(hj(x) + x)1+r−2t − (hj(x)− x)1+r−2t

]
.

(25)

Using (24), (25) and expanding e−(1+2ξj)
x
P as infinite series,

Hγj (x) is given as (26) on the top of the next page. Note
that Fγj

(x) = Gγj
(x) + Hγj

(x). Thus, Fγj
(x) is a function

of 1/P in which the minimum order of 1/P is one. Since
the CDF of γǰ is Fγǰ

(x) =
∏R

j=1 Fγj
(x), x ≥ 0, by using

multinomial series expansion, Fγǰ
(x) can be given as

Fγǰ
(x) =

2R
∏R

j=1(1 + ξj)x
R

PR
+O

(
x,

1

PR+1

)
. (27)

The outage probability, Pout = P(0 ≤ γ ≤ γth), of the SRS
scheme is Pout = Fγǰ

(γth), which proves Theorem 2.
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− 2

P 2

∞∑
m=1

∞∑
n=0

∞∑
w=0

m∑
q=0

(−1)m+q+w−1
(
m
q

)
(1 + 2ξj)

wxwϕj(x)
n+1+m−q

2

n!w!(1 + n)!mP 2n+m+w−q

+
1

P 2

∞∑
l=0

∞∑
v=0

l+1∑
s=0

(
1+l
s

)
[ψ(1 + k) + ψ(2 + k)]ξl+1

j (1 + 2ξj)
v(1 + ξj)

sxl+v+s+1

l!(1 + l)!v!P 2l+v
.

(23)

Hγj (x) =
x

P
+

∞∑
ν=1

(−1)ν(1 + 2ξj)
νxν

ν!P ν
−

∞∑
ν=0

(−1)ν(1 + 2ξj)
νhj(x)x

ν+1

2ν!P 2+ν

+ ln

(
hj(x)− x

hj(x) + x

) ∞∑
ν=0

(−1)ν(1 + 2ξj)
νxν

ν!P ν

[
ϕj(x)

P 2
+

∞∑
r=2

ϕj(x)
r

r!(r − 1)!P 2r

]

+
∞∑
ν=0

∞∑
r=2

r∑
t=0

t ̸= 1+r
2

(−1)r+ν(1 + 2ξj)
νxνϕj(x)

t

[
(hj(x) + x)

1+r−2t − (hj(x)− x)
1+r−2t

]
21+r−2tν!t!(r − t)!(1 + r − 2t)P ν+r+1

.

(26)

[25] Y. Jing, “A relay selection scheme for two-way amplify-and-forward
relay networks,” in Proc. Int. Conf. Wireless Commun. Signal Processing
(WCSP 2009), Nov. 2009.

[26] S. Atapattu, Y. Jing, H. Jiang, and C. Tellambura, “Opportunistic
relaying in two-way networks,” in Proc. 5th Int. ICST Conf. Commun.
and Networking in China, Aug. 2010.

[27] J.-C. Chen and C.-K. Wen, “Near-optimal relay subset selection for
two-way amplify-and-forward MIMO relaying systems,” IEEE Trans.
Wireless Commun., vol. 10, no. 1, pp. 37–42, Jan. 2011.

[28] Y. Jing and H. Jafarkhani, “Single and multiple relay selection schemes
and their achievable diversity orders,” IEEE Trans. Wireless Commun.,
vol. 8, no. 3, pp. 1414–1423, Mar. 2009.

[29] Z. Wang and G. B. Giannakis, “A simple and general parameterization
quantifying performance in fading channels,” IEEE Trans. Commun.,
vol. 51, no. 8, pp. 1389–1398, Aug. 2003.

[30] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and
Products, 7th ed. Academic Press Inc, 2007.

[31] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and
Series, vol. 2. Gordon and Breach science Publishers, 1986.

[32] M. S. Alouini and A. J. Goldsmith, “Capacity of Rayleigh fading
channels under different adaptive transmission and diversity-combining
techniques,” IEEE Trans. Veh. Technol., vol. 48, no. 4, pp. 1165–1181,
July 1999.

Saman Atapattu (S’06) received the B.Sc. degree
in electrical and electronics engineering from the
University of Peradeniya, Sri Lanka in 2003 and the
M.Eng. degree in telecommunications from Asian
Institute of Technology (AIT), Thailand in 2007. He
is currently working towards the Ph.D. degree in
electrical and computer engineering at the University
of Alberta, Edmonton, Alberta, Canada.

His research interests include cooperative commu-
nications, cognitive radio networks, and performance
analysis of communication systems. He has been

awarded the Izaak Walton Killam Memorial Scholarship (2011-2013) and the
Alberta Innovates Graduate Student Scholarship (2011-2012).

Yindi Jing (M’05) received the B.Eng. and M.Eng.
degrees in automatic control from the University of
Science and Technology of China, Hefei, China, in
1996 and 1999, respectively. She received the M.Sc.
degree and the Ph.D. in electrical engineering from
California Institute of Technology, Pasadena, CA, in
2000 and 2004, respectively. From October 2004 to
August 2005, she was a postdoctoral scholar at the
Department of Electrical Engineering of California
Institute of Technology. Since February 2006 to
June 2008, she was a postdoctoral scholar at the

Department of Electrical Engineering and Computer Science of the University
of California, Irvine. She joined the Electrical and Computer Engineering De-
partment, University of Alberta as an assistant professor in August 2008. She
serves as an Associate Editor for the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS.

Her research interests are in wireless communications, focusing on coopera-
tive relay networks, training and channel estimation, distributed beamforming,
and the analysis on network fundamental limits.

Hai Jiang (M’07) received the B.Sc. and M.Sc.
degrees in electronics engineering from Peking Uni-
versity, Beijing, China, in 1995 and 1998, respec-
tively, and the Ph.D. degree (with an Outstanding
Achievement in Graduate Studies Award) in elec-
trical engineering from the University of Waterloo,
Waterloo, Ontario, Canada, in 2006.

Since July 2007, he has been a faculty member
with the University of Alberta, Edmonton, Alberta,
Canada, where he is currently an Associate Professor
at the Department of Electrical & Computer Engi-

neering. His research interests include radio resource management, cognitive
radio networking, and cross-layer design for wireless multimedia communi-
cations.

Dr. Jiang is an Associate Editor for the IEEE TRANSACTIONS ON VEHICU-
LAR TECHNOLOGY and the IEEE WIRELESS COMMUNICATIONS LETTERS.
He served as a Co-Chair for the Wireless and Mobile Networking Symposium
at the IEEE International Conference on Communications (ICC) in 2010. He
received an Alberta Ingenuity New Faculty Award in 2008 and a Best Paper
Award from the IEEE Global Telecommunications Conference (GLOBECOM)
in 2008.



IEEE TRANSACTIONS ON COMMUNICATIONS (ACCEPTED) 13

Chintha Tellambura (F’11) received the B.Sc. de-
gree (with first-class honor) from the University of
Moratuwa, Sri Lanka, in 1986, the M.Sc. degree in
Electronics from the University of London, U.K., in
1988, and the Ph.D. degree in Electrical Engineering
from the University of Victoria, Canada, in 1993.

He was a Postdoctoral Research Fellow with the
University of Victoria (1993-1994) and the Univer-
sity of Bradford (1995-1996). He was with Monash
University, Australia, from 1997 to 2002. Presently,
he is a Professor with the Department of Electrical

and Computer Engineering, University of Alberta, Canada. His research
interests focus on communication theory dealing with the wireless physical
layer.

Prof. Tellambura was an Associate Editor for the IEEE TRANSACTIONS
ON COMMUNICATIONS and the Area Editor for Wireless Communications
Systems and Theory in the IEEE TRANSACTIONS ON WIRELESS COMMU-
NICATIONS. He was Chair of the Communication Theory Symposium in
Globecom’05 held in St. Louis, MO.


