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Abstract— In wireless multicast systems, cooperative multicast,
in which successful users help to relay received packets to unsuc-
cessful users, has been shown to be effective in combating channel
fading and improving the system performance. However, this
mechanism requires users’ voluntary contributions, which cannot
be guaranteed since users are selfish and only care about their
own performance. Furthermore, users may have heterogeneous
costs (which are their private information) to forward packets,
and they may lie about their costs if cheating can improve their
utilities. To address these problems, in this work, we model the
interaction among users in the wireless multicast system as a
multi-seller multi-buyer payment-based game, where users pay
to receive relay service and get paid if they forward packets to
others. A simplified case with homogeneous users that have the
same cost to forward packets is investigated first. Then for the
case with heterogeneous users, to encourage users to tell their true
costs, we use the second-price sealed-bid auction, which is a truth-
telling auction, since bidding the true cost is a weakly dominant
strategy. To analyze the multi-seller multi-buyer payment-based
game, we observe that under different selected prices, the game
can converge to different equilibria, resulting in different user
free-riding probabilities and system throughput. We also study
the price selection problem and derive the optimal price that
maximizes the system throughput. Simulation results show the
effectiveness of our proposed mechanism.

I. INTRODUCTION

In the past decade, with the emergence of high-speed
broadband wireless networks and the increasing popularity
of advanced mobile devices such as smart phones and iPads,
the demand for wireless multimedia broadcast/multicast ser-
vice keeps increasing, e.g., Internet Protocol Television over
WiMAX, 3∼4 G wireless networks and beyond. In these
applications, a base station (BS) or access point (AP) broad-
casts multimedia data to a group of users. However, due to
channel fading, it is very challenging to design a multicast
system that provides reliable quality of service. To address this
issue, cooperative wireless multicast mechanisms [1]–[6] have
been proposed, where after the BS broadcasts its data, users
who receive the packets correctly will serve as relays, and
forward the received packets to other users. In those works,
it is assumed that users are altruistic and serve as relays if
requested, even though they gain nothing during this process
but simply deplete the battery power by forwarding packets.
However, this assumption cannot be guaranteed since users
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are usually selfish and only care about their own performance.
Therefore, it is important to design incentive mechanisms to
stimulate user cooperation in wireless multicast systems.

In the literature, game theoretic methods [7] are adopted
to study user behavior in various wireless networks, and dif-
ferent incentive mechanisms have been proposed to stimulate
user cooperation. For example, in [8]–[13], punishment-based
schemes in repeated games are proposed, where it is assumed
that users stay in the game for a long time. Since punishment
is used, such as in the worst behavior tit-for-tat strategy [13],
users that deviate from cooperation will be punished with a
long term utility loss. Thus, cooperation becomes the dominant
strategy that everyone will choose. Payment-based schemes
are proposed in [14]–[19], where virtual currency circulates
in the network. Users need to pay to receive others’ help, and
users that help others will get paid to compensate their costs.
Reputation-based indirect reciprocity schemes are proposed
in [20]–[23], where users help others to accumulate good
reputations, and users with good reputations have a larger
probability to receive others’ help.

However, most of those incentive mechanisms cannot be di-
rectly applied to wireless multicast networks. First, in wireless
multicast, users may frequently join and leave the multicast
service, which makes the repeated game based methods im-
practical. Second, payment and reputation based methods are
usually designed for unicast scenarios. However, in wireless
multicast, all users receive the same packets. Due to the
broadcast nature of wireless communications, the relay either
bought by a user or requested by a user with good reputation
can be overheard by all others. Thus, users tend to free ride
rather than either pay for the relay service or help others to
accumulate good reputation for reciprocity. Furthermore, it is
usually assumed (e.g., in [6]) that users have the same cost
for forwarding packets. However, in practice, users may use
different mobile devices, whose costs to forward packets are
different. Since each user’s cost is his/her private information,
he/she may lie about it if cheating can increase his/her utility.
For example, a user can claim a high cost in order to request
a high payment for providing relay service. Thus, the cheating
behavior caused by heterogeneous costs should be addressed.

In this work, we address these challenges and design an
incentive mechanism to stimulate user cooperation in wireless
multicast. In this system, data traffic is divided into seg-
ments. For the transmission of each segment, we consider a
two-portion wireless multicast. In the first portion, the BS
broadcasts a segment to a group of users who are close
to each other. The users who receive the segment correctly
are successful users and they can choose whether to relay
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the segment to unsuccessful users in the second portion. To
stimulate user cooperation, we propose a multi-seller multi-
buyer payment-based game. In this game, each successful
user decides whether to provide relay service in the sellers’
game, and each unsuccessful user decides whether to purchase
relay service in the buyers’ game. Once a transaction happens,
fees are collected from all buyers and paid to the relay node.
The major contributions of this work can be summarized as
follows:
• We model users’ interaction in the wireless multicast
system as a multi-seller multi-buyer payment-based game.
Unlike the repeated game in [13], our game is a one-shot
game for one segment transmission. Thus, it also works in
dynamic wireless networks, where users can frequently join
and leave this system. We also model the buyers’ game as
an evolutionary game, and derive the evolutionarily stable
strategy (ESS), which is a stable equilibrium. That is, even
if some players may deviate from it at some time, they will
still move back to this equilibrium, since using the ESS gives
a higher utility.
• We also consider the case that users have heterogeneous
costs of providing relay service. To address the heterogeneous
cost issue and encourage users to tell their true costs, we for-
mulate the sellers’ game as a second-price sealed-bid auction
game. It is a truth-telling auction, where each user bidding
his/her real cost is a weakly dominant strategy.
• In this work, we observe that in our payment-based mech-
anism, under different selected prices, the buyers’ game can
converge to different equilibria, where unsuccessful users have
different probabilities to free ride (i.e., not buy but overhear the
relay bought by others), resulting in different system through-
put. From the system designer’s point of view, we aim at
selecting the optimal price to maximize the system throughput.
For the simple scenario where users have homogeneous cost
of forwarding segments, we derive the closed-form optimal
price, under which unsuccessful users cannot free ride, and
they will share the cost of the relay and pay together to afford
the relay service, while the system throughput is maximized
at the same time. For the scenario with heterogeneous costs,
we propose an efficient algorithm to find the optimal price,
under which unsuccessful users have very low probability to
free ride and the system throughput is also maximized.

The rest of the paper is organized as follows. Section II de-
scribes the wireless multicast system model, and introduces the
multi-seller multi-buyer payment-based game model. Section
III and IV analyze the Nash equilibrium when users have the
same and different costs of forwarding segments, respectively.
Simulation results are shown in Section V, and conclusion is
drawn in Section VII.

II. SYSTEM MODEL

In this section, we will introduce the cooperative wireless
multicast system and the multi-seller multi-buyer payment-
based game model. Table I lists the frequently used notations
in this paper.

Fig. 1: System model.

A. Wireless Multicast Using Relays

A base station (BS) provides multicast service to a group
of users, who are close to each other in a circular area as
shown in Fig. 1. We consider a dynamic network, where users
frequently join and leave the multicast service. Let N(t), or in
its short form N (for presentation simplicity), be the number
of users at time t. The data traffic is divided into segments
with equal number of bits per segment. For the transmission
of each segment, we consider a two-portion wireless multicast
as shown in Fig. 2. In the broadcast portion, the BS broadcasts
a segment. Then, the users who decode the segment correctly
are successful users, and they decide whether to provide relay
service to unsuccessful users. In this work, we consider a
simple scenario where at most one successful user forwards
the segment in the relay portion1. At the beginning of the
relay portion, there are some information exchanges among
the users, to be detailed in Section II-B. Similar to the work
in [5], we assume that all communications in the relay portion,
including information exchanges and segment relaying, are on
a different frequency band from the band used by the BS.
Therefore, when the BS finishes broadcast of one segment, it
can start broadcasting the next segment immediately.

In this work, it is assumed that the distances from the BS to
the users are much larger than those between users. Therefore,
each user has the same probability, denoted by p1, to receive
a segment from the BS successfully. Since users are close
to each other, we assume that all information exchanges and
segment relaying in the relay portion are received correctly
with probability 1 by all users.

To evaluate the system performance, we define the relay
portion throughput, TR, as the average percentage of unsuc-
cessful users who receive the segment correctly in the relay
portion.

B. Payment-Based Game Formulation

In cooperative multicast systems, relays use their own
power to forward segments and help others, but they cannot
benefit during this process. To stimulate user cooperation,
in this work, we model users’ interaction as a multi-seller
multi-buyer payment-based game, where each successful user
decides whether to sell relay service, and each unsuccessful
user decides whether to purchase it. To implement the billing
process, we assume that there exists a trusted local agent, who

1In this work, for simplicity, unsuccessful users decode the received signal
from the relay without combining the previously received signal from the BS.
Since combining can improve the system performance, it can be seen that our
work can provide a performance lower bound.
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TABLE I: Frequently used notations

br(Ns) the reserve bid of the auction game with Ns bidders bw the payment that the winner of the auction gets paid if
he/she relays a segment

bi the bid sent by user i ci user i’s cost to forward a segment
[L,H] the range of users’ cost to forward a segment g the utility gain of correctly receiving a segment
N the number of users in the multicast service Ns, Nb the number of sellers, buyers
Nsu the number of successful users after the broadcast from

the BS
p1 the probability of correctly receiving a segment from the

BS
ps the probability that a user who does not participate in the

auction game is a successful user
r∗ the optimal price that maximizes the relay portion

throughput
r the price selected by the local agent TR the relay portion throughput

ŪB , V̄B the average utility gain to be a buyer in homogeneous,
heterogeneous user case

ŪNB , V̄NB the average utility gain not to be a buyer in homogeneous,
heterogeneous user case

x̆f , x̆h the root of f(x) = 0, h(x) = 0 x̃f , x̃h the root of f ′(x) = 0, h′(x) = 0
x∗ Evolutionarily Stable Strategy (ESS) ϕ(·) the probability distribution function of cost to relay a

segment in heterogeneous user case

Broadcast Portion Relay Portion

Price announcementSelling Buying

Relaying

Fig. 2: The procedure of a segment transmission.

listens to the data transmission in the relay portion, charges
fees from buyers, and pays the relay. Our multi-seller multi-
buyer cooperative multicast game is a 4-stage Stackelberg
game as described in details below.
Stage 1: The Sellers’ Game. After the broadcast portion,
suppose that there are Nsu successful users. Each of them
decides whether to sell relay service. Let {S,NS} denote their
strategy set, including being a seller (S) and not being a seller
(NS). Suppose that Ns (≤ Nsu) successful users decide to be
sellers. They will send feedbacks to the local agent attached
with their IDs and the cyclic redundancy check (CRC)2 bits
of the received segment. Note that messages from sellers in
Stage 1 are encrypted and then sent simultaneously3 in the
selling part at the beginning of the relay portion as shown in
Fig. 2. Thus, only the local agent can decrypt them, which
can prevent a successful user from observing other sellers’
messages and adjusting his/her own decision. Then, the local
agent knows the Ns sellers.
Stage 2: The Price Setting Game. If N > Ns > 0,4

the local agent selects a seller to provide relay service if
there are more than one sellers, and selects a relay price r
that will be charged to each buyer for the relay service, and
then broadcasts to all users the number Ns of sellers, the user
ID of the selected seller, and the relay price r, in the price
announcement part in Fig. 2. Thus, everyone will receive the
broadcasted information. Details of seller and price selections

2Letting sellers attach the CRC bits of the received segment can prevent
an unsuccessful user from pretending to be a successful user.

3This can be achieved by code-division multiple access (CDMA) technol-
ogy. Each node is assigned a unique code. The code is used to spread the
node’s message. The local agent monitors codes of all the users.

4If Ns = N , all users are successful after the broadcast portion. If Ns = 0,
there is no seller. In either scenario, there is no need for the following stages
and the game ends.

are given in subsequent sections.

Stage 3: The Buyers’ Game. In Stage 3, each unsuccessful
user decides whether to purchase the relay service at price r.
Let {B,NB} denote their strategy set, including being a buyer
(B) and not being a buyer (NB). All buyers broadcast their
IDs simultaneously using CDMA technology in the buying
part in Fig. 2. Thus, all others, including the selected seller,
hear the buyers’ messages and know the number of buyers,
denoted Nb (≤ (N −Ns)), and thus know the total payment,
Nbr, that the buyers provide for the relay service.

Stage 4: The Transaction Game. For the selected seller,
if forwarding the segment is profitable, i.e., the selected seller
can gain a non-negative net utility, then he/she will broadcast
the segment to all users in the relaying part in Fig. 2 and
every unsuccessful user can hear it; otherwise, the selected
seller will not broadcast. After the relaying, the local agent
charges from the buyers and pays to the relay node.

This game is repeated for the transmission of all segments.

C. Utility Functions

For each user i, let g denote the utility gain of receiving
a segment correctly, and ci denote his/her cost to forward
one segment. In the 4-stage Stackelberg game, if user i is
a successful user, his/her utility function is his/her received
payment minus ci if he/she is the selected seller and forwards
the segment, and 0 otherwise. If user i is an unsuccessful user,
his/her utility function is (g−r)Irelay if he/she is a buyer, and
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gIrelay otherwise (i.e., user i is a free-rider).5 Here Irelay is
a binary value: Irelay = 1 if there is relay service in the relay
portion, and Irelay = 0 otherwise. Note that we ignore the
cost of information exchanges in the selling and buying parts,
since the amount of related information exchanges is small.

III. GAME ANALYSIS WITH HOMOGENEOUS USERS

We start with a simple scenario where the users are homoge-
neous, i.e., they have the same cost of providing relay service
with ci = c being a positive constant. In addition, when there
are more than one sellers, the local agent will randomly select
one to forward the segment, and all sellers have the same
probability to be selected.

We use backward induction to find the subgame perfect
Nash Equilibrium (SPNE) of the game. Typically, backward
induction first analyzes the last stage of the game, moves up
stage by stage, and studies the first stage the last. However, the
result of the transaction game can simplify the sellers’ game
and we can easily find the sellers’ optimal strategy that belongs
to the SPNE. Thus, we will study the sellers’ game after the
transaction game. The result of the analysis for the sellers’
game can help reduce the number of possible outcomes of the
sellers’ game, and simplify the analysis of the price setting
game and the buyers’ game.

A. The Transaction Game

After buyers broadcast their decisions, the selected seller
knows the amount of payment buyers offer, Nbr. The selected
seller will forward the segment if Nbr ≥ c, and will not
forward otherwise. Therefore, the transaction game ensures
that the selected seller will always receive a non-negative net
utility gain. After the relaying, the local agent charges price r
from each buyer and pays Nbr to the relay node.

B. The Sellers’ Game

Since the selected seller will make a non-negative net utility
gain in the transaction game, the sellers’ game has an obvious
solution belonging to the SPNE, i.e., all successful users take
strategy S and become sellers. This is because by taking the
strategy S and being a seller, a successful user’s utility gain
in the relay portion is no less than zero, while by taking the
strategy NS and not being a seller, his/her utility gain in
the relay portion is zero. Therefore, S is a weakly dominant
strategy over NS, and every successful user should choose
it. Thus, after the sellers’ game we have Ns = Nsu, i.e., the
number of sellers equals the number of successful users. As
the local agent will announce (in the price setting game) the
number Ns of sellers, all unsuccessful users will know the
value of Nsu = Ns before the buyers’ game.

5Recall that we assume the relay channels are perfect. When the relay
channels are imperfect, similar to [6,13], we can assume that an unsuccessful
user can receive a segment correctly from a relay with the same probability
p2, since the probability is usually high and close to 1. Then we only need
to replace g in the utility functions of unsuccessful users by p2g, and all
subsequent derivations will keep the same as the case with perfect relay
channels.

C. The Buyers’ Game

Given the relay price r decided by the local agent and the
number Nsu of sellers, unsuccessful users decide whether to
purchase the relay service. Recall that when the total payment
from all buyers Nbr is no less than the cost c, the selected
seller will relay the segment. Due to the broadcast nature
of wireless communications, unsuccessful users who do not
pay may overhear the segment forwarded by the relay and
enjoy a free ride. Here, unsuccessful users face a dilemma:
everyone wants to free ride the relay service bought by others
and pay nothing, while there will be no relay service if there
are not sufficient buyers, and every unsuccessful user will gain
nothing. To solve this problem, we model the buyers’ game
as an evolutionary game [24], and derive the Evolutionarily
Stable Strategy (ESS), which is a stable Nash Equilibrium.
This means that, even if some players deviate from the ESS,
they will still come back to the ESS, since using the ESS gives
a higher payoff.

To derive the ESS, evolutionary game theory provides a
useful tool, called replicator dynamics. In our game, each
unsuccessful user has two strategies: B or NB. For all
unsuccessful users, let x be the population share playing
strategy B, where x ∈ [0, 1], and the rest (1 − x) population
share plays strategy NB. By replicator dynamics, we have the
following differential equation:

ẋ = η(ŪB(x)− Ū(x))x
= η[ŪB(x)− xŪB(x)− (1− x)ŪNB(x)]x
= ηx(1− x)f(x), (1)

where ẋ is the population increase of strategy B, η is a
constant step size, ŪB(x) is the average payoff of using
pure strategy B, ŪNB(x) is the average payoff of using pure
strategy NB, Ū(x) = xŪB(x) + (1 − x)ŪNB(x) denotes
the average payoff of the population, and f(x) = ŪB(x) −
ŪNB(x). The intuition behind this differential equation is that
if using pure strategy B introduces a higher payoff than the
average payoff of the entire population, the population share
of pure strategy B should increase. At the stable state x, this
differential equation should be equal to 0. Similar to [25],
[26], the population share x can be interpreted as a mixed
strategy, which denotes the probability that players adopt pure
strategy B. Since any unsuccessful user gets the same gain g if
he/she correctly receives a segment, all unsuccessful users are
symmetric and should have the same mixed strategy x, denoted
x∗, when they reach the ESS. For presentation simplicity, we
say ESS is x∗. In the following, given the number Nsu of
sellers, and for any relay price r selected by the local agent,
we derive ŪB(x) and ŪNB(x) for unsuccessful user i, and
then find the ESS x∗.6

6In games with incomplete information, each user has private information,
which is unknown to the others. Replicator dynamics can help solve games
with incomplete information (e.g. [25]), where the game is repeated for
multiple shots, and users learn from the interactions with others, adjust their
strategies towards a higher payoff, and finally may reach the ESS. Unlike
the game with incomplete information, our game is a one-shot game with
complete information, where each user’s gain g, the number of unsuccessful
users (N − Nsu), and the relay cost c are all public information. Thus,
similar to [26], the ESS can be derived directly by solving (1), and there is
no learning process involved in our game analysis.
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Fig. 3: Examples of price intervals. (a) g = 14 and c = 12. (b) g = 8, c = 12 and Γ1 does not exist in this case.

1) Analysis of ŪB(x) and ŪNB(x): Given Nsu sellers,
for unsuccessful user i, let X−i denote the set of all other
unsuccessful users. So |X−i| = l

△
= N − Nsu − 1. Recall

that each unsuccessful user purchases the relay service with
probability x. Therefore, the number of buyers in X−i, denoted
k, follows Binomial distribution B(l, x).

In this context, if user i decides to be a buyer, the total
number of buyers is (k+1), and thus, the total payment from
all buyers is (k+1)r. If (k+1)r ≥ c, this payment can afford
the relay service, and user i receives the segment correctly
and pays the price r; otherwise, there is no relay service and
user i’s utility in the relay portion is 0. Therefore, in the relay
portion, user i’s average utility of strategy B is

ŪB(x) = (g− r)
l∑

k=0

(
l

k

)
xk(1−x)l−kI [(k + 1)r ≥ c] , (2)

where I[·] is an indicator function. If user i decides not to be
a buyer, the total number of buyers is k, and the total payment
is kr. If kr ≥ c, this payment can still afford a relay. After
the relay portion, user i can overhear the relay and receive the
segment correctly. Therefore, the average utility of the strategy
NB is

ŪNB(x) = g

l∑
k=0

(
l

k

)
xk(1− x)l−kI[kr ≥ c]. (3)

Then, we have f(x) = ŪB(x)− ŪNB(x) as

f(x) =ŪB(x)− ŪNB(x)

=

l∑
k=0

(
l

k

)
xk(1− x)(l−k)

{(
I[(k + 1)r ≥ c]

− I[kr ≥ c]
)
g − I[(k + 1)r ≥ c]r

}
=g

(
l

k∗

)
xk∗

(1− x)(l−k∗)−r
l∑

k=k∗

(
l

k

)
xk(1− x)(l−k),(4)

where k∗ = ⌈c/r⌉ − 1, and ⌈·⌉ is the ceiling function. Here,
⌈c/r⌉ is the minimal number of buyers required to afford the
relay service at price r.

2) The ESS Solution: From (1), at the stable state ẋ = 0,
there are three possible solutions: x = 0, x = 1, and x that
satisfies f(x) = ŪB(x) − ŪNB(x) = 0. In our game, the
relay price r plays an important role in the unsuccessful users’
decision-making process, and all those three solutions can be
ESS x∗, which will be discussed as follows. The analysis
results are summarized in Theorem 1 following the analysis.

Define j = ⌊c/g⌋+ 1 ≥ 1, where ⌊·⌋ is the floor function.
We partition the price range [0,+∞) into the following

(a) (b)

Fig. 4: (a) r ∈ Γj , where j = j = 1. (b) r ∈ Γj , where 1 < j <
N −Nsu.

subintervals:

Γ0 = [g,∞) ,Γj =

[
c

j
, g

)
, and

Γj =

[
c

j
,

c

j − 1

)
for j > j. (5)

When the price r is in range Γj with j ≥ j, at least j
buyers are needed to afford the relay service, and Γ0 is the
range of the price that equals or exceeds users’ utility gain of
receiving a segment correctly. Fig. 3 shows examples of the
price intervals when g and c take different values.
• Case 1, r ∈ Γ0, i.e., r ≥ g: From (4), for all x ∈ [0, 1], we
have

f(x)=

(
l

k∗

)
xk∗

(1− x)(l−k∗)g−
l∑

k=k∗

(
l

k

)
xk(1− x)(l−k)r

≤
(

l

k∗

)
xk∗

(1− x)(l−k∗)(g − r) ≤ 0. (6)

Thus, the strategy NB always outperforms B and users will
converge to x∗ = 0, which is the ESS. This is because given
r ≥ g, the price is too high when compared to the utility gain
from receiving the relay service. Thus, nobody will buy.
• Case 2, r ∈ Γj with j ∈ {j, j+1, ..., N −Nsu− 1}: In this
case, we analyze the ESS when j = j = 1 (which happens
only when c < g) and when 1 < j < N −Nsu separately.

When j = j = 1, i.e., r ∈ Γ1 = [c, g), one buyer is
sufficient to buy the relay service and k∗ = ⌈c/r⌉ − 1 = 0
in (4). Therefore, f(x) in (4) can be simplified as f(x) =
(1− x)

N−Ns−1
g−r with f(0) = g−r > 0 and f(1) = −r <

0. In addition, f ′(x) = −g(N −Ns − 1)(1− x)N−Ns−2 < 0
and thus, f(x) is a decreasing function for x ∈ (0, 1), as shown
in Fig. 4a. Thus, f(x) = 0 has a single root x̆f = (1− l

√
r
g ) ∈

(0, 1), which is the ESS. To understand this, let x deviate from
x̆f . If x ∈ [0, x̆f ), we have f(x) > 0, which means strategy
B can give a higher utility than NB. Therefore, users will
increase the probability of using B and x will move towards
x̆f . Similarly, if x ∈ (x̆f , 1], we have f(x) < 0, which means
strategy B will give a lower utility. Thus, users will reduce
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the probability of using strategy B and adjust their strategy
towards x̆f . Thus, x∗ = x̆f is the ESS.

When r ∈ Γj with 1 < j < N − Nsu, i.e., r ∈ [ cj ,
c

j−1 ),
at least j buyers are required to afford the relay service, and
k∗ = ⌈c/r⌉− 1 > 0. From (4), f(0) = 0 and f(1) = −r < 0.
In addition, we prove in Appendix I that f ′(x) = 0 has a
single root x̃f in the range (0, 1), where f ′(x) > 0 when
x ∈ (0, x̃f ) and f ′(x) < 0 when x ∈ (x̃f , 1), as shown in
Fig. 4b. Therefore, f(x̃f ) > 0, and f(x) = 0 has a single
root x̆f in the range (x̃f , 1). Same as the analysis in Fig. 4a,
x∗ = x̆f is the ESS.
• Case 3, r ∈ ΓN−Nsu = [ c

N−Nsu
, c
N−Nsu−1 ): In this price

range, the relay price requires at least (N−Nsu) buyers, while
there are (N−Nsu) unsuccessful users and thus at most (N−
Nsu) buyers. Therefore, there is no chance to free ride, and
all unsuccessful users will buy with x∗ = 1. Mathematically,
when r ∈ ΓN−Nsu , k∗ = ⌈c/r⌉ − 1 = N −Nsu − 1 = l and
f(x) in (4) can be simplified as f(x) = (g−r)xN−Nsu−1 ≥ 0
for all x ∈ [0, 1]. Therefore, the strategy B always outperforms
strategy NB, and x∗ = 1.
• Case 4, r ∈ Γj with j ≥ N−Nsu+1: In these price ranges,
at least j > N −Nsu buyers are required to afford the relay
service, while there are only (N − Nsu) unsuccessful users.
Therefore, there are not sufficient buyers to afford the relay
service, and the game ends.

In summary, we have the following theorem.
Theorem 1: Given Nsu sellers in stage 1 and the relay price

r,
• Case 1, when r ≥ g (i.e., r ∈ Γ0), x∗ = 0 is the ESS

and no one buys;
• Case 2, when c

N−Nsu−1 ≤ r < g (i.e., r ∈ Γj ∪ Γj+1 ∪
... ∪ ΓN−Nsu−1), for x ∈ (0, 1), f(x) = 0 has a single
root x̆f , which is the ESS, i.e., x∗ = x̆f ;

• Case 3, when c
N−Nsu

≤ r < c
N−Nsu−1 (i.e., r ∈

ΓN−Nsu ), x∗ = 1 is the ESS and all unsuccessful users
buy;

• Case 4, when r < c
N−Nsu

(i.e., r ∈ ΓN−Nsu+1 ∪
ΓN−Nsu+2 ∪ ...), there are not sufficient buyers, and the
game ends.

Note that in the above discussion and Theorem 1, we assume
that c

N−Nsu
< g. When c

N−Nsu
≥ g, if r ≥ c

N−Ns
≥ g,

following the discussion in Case 1, x∗ = 0 and no one buys;
while if r < c

N−Ns
, following the discussion in Case 4, there

are not sufficient buyers to afford the relay service. Therefore,
with c

N−Nsu
≥ g, the game will end with the relay portion

throughput being zero.
Fig. 5 shows an example of ESS x∗ at different price r

and with different number (N −Nsu) of unsuccessful users.
The total number of users in the network is N = 12. The
cost to forward one segment is c = 2 and the gain of
correctly receiving one segment is g = 1. We first study x∗

at different price with a fixed number of unsuccessful users
and use (N −Nsu) = 5 as an example. We observe that when
r < c

N−Nsu
= 0.4 (i.e., in price ranges Γ6, Γ7...), the number

of buyers is not sufficient and the game ends with no relay
service. If r ∈ [0.4, 1), we observe that at a lower price, the
game requires more buyers to pay the relay service, and thus,
unsuccessful users have a smaller probability to free ride with

a larger x∗. For r ≥ g = 1, no user buys and the ESS is
x∗ = 0. Fig. 5 also shows the ESS with a different number of
unsuccessful users, (N −Nsu) = 8. It can be seen that for a
given price r in the price range Γ5 to Γ3, more unsuccessful
users give a smaller ESS x∗. This is because when the number
of unsuccessful users is large, each unsuccessful user expects
other unsuccessful users to purchase the relay service and
he/she has a higher tendency to free ride.

D. Price Setting Game and Throughput Optimization

From the previous discussion, at different price r selected by
the local agent, we may have different ESS, and thus different
relay portion throughput. Therefore, x∗ is a function of r. For
presentation simplicity, we use x∗ to represent x∗(r) in later
discussion. In the following, we will analyze the optimal price
that maximizes the system throughput.

Given (N − Nsu) unsuccessful users and price r, each
unsuccessful user follows the ESS x∗ to play the buyers’ game,
and the relay portion throughput is

TR(x
∗|Nsu) =

N−Nsu∑
k=⌈c/r⌉

(
N −Nsu

k

)
(x∗)k(1− x∗)N−Nsu−k,

(7)
where the summation term denotes the probability that there
are sufficient buyers to afford the relay service. The local agent
aims to find the optimal r∗ that can maximize TR(x

∗|Nsu),

r∗ = argmax
r

TR(x
∗|Nsu). (8)

From Theorem 1, when r ≥ g, x∗ = 0 and TR(x
∗|Nsu) =

0. When r < c
N−Nsu

, the number of buyers is insufficient
and the game ends also with zero relay portion throughput.
Therefore, the optimal price r∗ is in the range

[
c

N−Nsu
, g
)

.
From Theorem 1, when c

N−Nsu
≤ r < g, there are two

possible ESS, x∗ = 1 when c
N−Nsu

≤ r < c
N−Nsu−1 and

x∗ ∈ (0, 1) when c
N−Nsu−1 ≤ r < g. Comparing the relay

portion throughput when x∗ = 1 and x∗ ∈ (0, 1), we have

TR(x
∗|Nsu)|x∗=1

=

N−Nsu∑
k=⌈c/r⌉

(
N −Nsu

k

)
1k(1− 1)N−Nsu−k = 1, (9)

and

TR(x
∗|Nsu)|x∗∈(0,1)

=

N−Nsu∑
k=⌈c/r⌉

(
N −Nsu

k

)
(x∗)

k
(1− x∗)N−Nsu−k

<

N−Nsu∑
k=0

(
N −Nsu

k

)
(x∗)

k
(1− x∗)N−Nsu−k = 1. (10)

Therefore, x∗ = 1 gives a higher relay portion throughput,
and the optimal price r∗ should be in the price range ΓN−Nsu

that gives x∗ = 1.
Fig. 6 shows an example of x∗ and TR(x

∗|Nsu) at different
price r with N −Nsu = 10, c = 3, and g = 1. Following the
previous discussion, the optimal price should lie in ΓN−Nsu ,
which corresponds to [0.30, 0.333) in Fig. 6. In this price
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range, we observe that x∗ = 1, and TR(x
∗|Nsu) = 1, which

is the maximum relay portion throughout. In this scenario,
all unsuccessful users have to buy together to afford the
relay service. Any free riding behavior will result in the
failure of purchasing a relay, which lowers the utilities of all
unsuccessful users. Thus, the optimal price drives the buyers’
game to the equilibrium where all unsuccessful users buy and
share the cost to afford the relay service.

E. Equilibrium of the Stackelberg Game

To summarize, the subgame perfect Nash Equilibrium
(SPNE) of the Stackelberg game is

• Stage 1, the sellers’ game. S is a weakly dominant
strategy, and all successful users decide to be sellers.

• Stage 2, the price setting game. Given (N − Nsu)
unsuccessful users, if c

N−Nsu
< g, the optimal price can

be any value in the range ΓN−Nsu . Otherwise, the game
ends.

• Stage 3, the buyers’ game. At the optimal price r∗

selected in Stage 2, all unsuccessful users decide to be
buyers with probability x∗ = 1.

• Stage 4, the transaction game. Since under the optimal
price r∗, all unsuccessful users are buyers and r∗(N −
Nsu) ≥ c, being a relay is profitable, and the selected
seller forwards the segment, and gets payment r∗(N −
Nsu).

At this SPNE, the relay portion throughput is 1 if c
N−Nsu

< g,
and 0 otherwise.

IV. WIRELESS MULTICAST WITH HETEROGENEOUS
USERS

In wireless multicast, users may use different mobile devices
with different remaining energy, whose costs to forward a
segment are different. For example, the cost to forward a
segment using a smart phone with little remaining energy is
much higher than that when using a laptop with much more
energy left. In this section, we will study cooperative wireless
multicast when users have different costs of forwarding a
segment, referred to as heterogeneous users.

A. Game Model for Heterogeneous Users

In this work, we assume that each user’s cost is his/her
private information, which is independent and identically
distributed following the same distribution ϕ(·) in the range
[L,H], where L and H are the lower and upper bounds of
a user’s cost. Thus, successful users may request different
payments to forward a segment. Since the costs are their
private information, they may lie to others if cheating can help
improve their own utilities. For example, successful users may
claim high costs so that to ask high payments for providing
the relay service. However, if the asked payments are too high,
unsuccessful users may not be able to afford, and thus, the
system efficiency may be reduced. To encourage successful
users to tell their true costs, we use the second-price sealed-bid
auction, which is a truth-telling auction [27]. To help readers
have the whole picture of the system, the detailed game model
is illustrated below.
Stage 1: The Sellers’ Auction Game. After the broadcast
portion, assume that there are Nsu successful users. Each of
them decides whether to sell relay service. Let {S,NS} denote
their strategy set, including being a seller (S) and not being a
seller (NS). Assume that Ns(≤ Nsu) successful users decide
to be sellers. They will enter the auction game, where a seller,
say user i, submits to the local agent his/her bid including
his/her ID and the payment bi he/she asks for. As discussed in
Section II-B, messages from the sellers are encrypted and then
sent simultaneously using CDMA technology in the selling
part in Fig. 2. So only the local agent can decrypt them,
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which can prevent others from overhearing the transmission
and avoid potential leak of their bidding information.

Stage 2: The Price Setting Game. The local agent, as
the host of the auction, decides the winner of the auction,
and the winning bid, denoted by bw, that the winner will
get paid after relaying the segment. Following the second-
price sealed-bid protocol, the winner is the seller with the
lowest bid, and bw is the second lowest bid or the reserve bid
br(Ns), whichever is less. Here br(Ns) is a function of Ns

and denotes the highest payment that buyers will accept. From
the discussion in Section III-C, no user will buy if r ≥ g.
Here r is still the relay price that will be charged to each
buyer, and g is still the utility gain of correctly receiving a
segment. Given that there are Ns sellers, the number of buyers
is no more than (N − Ns), and the highest total payment
from all buyers is less than (N − Ns)g. Thus, the reserve
bid should satisfy br(Ns) < (N − Ns)g. In this work, we
set br(Ns) = (N −Ns)g − ϵ, where ϵ is an arbitrarily small
positive number. Note that if the bids of all the sellers are
larger than br(Ns), there is no winner of this auction game,
and the game ends with no relay service.

The local agent also selects a relay price r that will be
charged to each buyer for the relay service, and then announces
(in the price announcement part in Fig. 2) to all users the
number Ns of sellers, the winning bidder’s ID, the winning bid
bw, and the relay price r. The local agent selects the optimal
relay price r to maximize the system throughput. As will be
shown in our analysis in Section IV-B.3, the optimal price r
depends on the number of users who do not participate in the
auction game (i.e., (N−Ns)) and users’ cost distribution ϕ(·).

Stage 3: The Buyers’ Game. Based on information an-
nounced by the local agent, unsuccessful users decide whether
to be buyers. All buyers broadcast their IDs simultaneously in
the buying part in Fig. 2. The winning bidder listens to buyers’
messages, and knows the number Nb of buyers and the total
payment Nbr the buyers offer.

Stage 4: The Transaction Game. For the winning bidder,
say user i, if the winning bid bw is not less than his/her cost
ci, user i is willing to forward the segment. However, the
local agent pays user i only when the total payment Nbr from
the buyers is not less than the winning bid bw and user i
forwards the segment. Thus, user i will forward the segment
if Nbr ≥ bw ≥ ci, and the local agent charges r from each
buyer and pays bw to user i. Otherwise, user i will not relay
the segment and the game ends.

Note that after the transaction, there might be extra unused
payment of (Nbr− bw). The local agent will keep this unused
payment and accumulate it from each segment transmission.
Once the accumulated amount is larger than the winning bid
bw in one round, the local agent uses it to pay the relay service
and all unsuccessful users enjoy a free segment forwarding in
that round. In this paper, we consider the scenario where users
frequently join and leave the multicast service. They may leave
before the next free relay service. Thus, we ignore the impact
of free relay service on buyers’ utility in our analysis.

B. Subgame Perfect Nash Equilibrium Analysis

Note that the transaction game ensures that the relay will
always receive a non-negative net utility gain in the game. This
result can simplify the sellers’ auction game. Thus, similar
to the analysis in Section III, next we first study the sellers’
auction game, followed by the buyers’ game and the price
setting game.

1) The Sellers’ Auction Game: In this stage, each suc-
cessful user decides whether to bid and how to bid in the
auction game. Note that in this stage, the reserve bid br(Ns)
is unknown (as the number Ns of sellers is unknown), and
a successful user’s decision will also affect br(Ns), which
should be taken into consideration when choosing his/her
strategy. For a successful user i, we have the following
proposition.

Proposition 1: For a successful user i with cost ci to
forward a segment, if ci > br(1), he/she should not enter
the auction game. Otherwise, he/she should participate in the
auction game and bid bi = ci. This is a weakly dominant
strategy.

Proof: We first show that a successful user, say user i,
should not enter the auction game if ci > br(1), and he/she
should participate in the game otherwise.

Note that br(1) is the highest possible reserve bid (i.e., the
reserve bid when there is only one successful user), and thus, it
is the highest payment a seller can receive. If user i’s cost ci is
larger than br(1), he/she cannot benefit from serving as a relay,
and thus should not enter the auction game. When ci ≤ br(1),
if user i takes strategy NS and does not bid, his/her utility in
the relay portion is 0. However, if he/she participates in the
auction, he/she has a positive probability to win the auction
and make a non-negative net utility gain by forwarding the
segment. Thus, using strategy S, his/her expected utility in
the relay portion is non-negative, and S is a weakly dominant
strategy over NS. Therefore, user i should enter the auction
game as long as ci ≤ br(1).

In the following, we prove that when the successful user
i decides to participate in the auction game, bidding his/her
real cost is a weakly dominant strategy. To illustrate this, we
define b̂i = minj ̸=i bj as the smallest bid excluding bi, and
consider two different scenarios.

• ci ≤ min(br(Ns), b̂i): In this case, user i can win the
auction by bidding any value in the range

(
0,min(br(Ns), b̂)

]
,

and this range includes his/her true cost ci. Then, his/her
winning bid is bw = min(br(Ns), b̂i). Thus, he/she has the
chance to make a net utility gain of bw − ci ≥ 0. However, if
he/she bids a price higher than min(br(Ns), b̂), he/she cannot
win the auction, and his/her utility in the relay portion is zero.
Thus, bi = ci is a weakly dominant strategy.

• ci > min(br(Ns), b̂i): In this case, user i can-
not win the auction by bidding any value in the range(
min(br(Ns), b̂i),+∞

)
, and this range includes his/her true

cost ci. Then, his/her payoff in the relay portion is zero. On
the other hand, if he/she bids bi ≤ min(br(Ns), b̂i), he/she
can win the auction, but will not relay, as the payment for
relaying is bw = min(br(Ns), b̂i) which is less than his/her
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cost ci. Thus, his/her payoff is also zero. Therefore, in this
scenario, for any bi, user i’s payoff is zero.

From the above discussions, the successful user i should bid
bi = ci if ci ≤ br(1), and it is a weakly dominant strategy. �

From Proposition 1, each seller bids his/her real cost in the
auction game. Thus, if there is a winner of the auction (i.e.,
the lowest bid is no larger than the reserver bid, br(Ns)), the
winning bidder is the bidder who has the lowest cost among
all bidders, and the winning bid bw is no less than the winner’s
cost. Thus, in the transaction game, as long as Nbr ≥ bw, the
winning bidder will forward the segment.

2) The Buyers’ Game: In the buyers’ game, based on the
number Ns of bidders, the winning bid bw, and the price r
determined by the local agent, each unsuccessful user decides
whether to be a buyer. Similar to the game with homogeneous
users, we also model unsuccessful users’ interaction as an
evolutionary game, while the analysis is more complicated.
This is because given Ns bidders, the rest (N − Ns) users
include unsuccessful users who may or may not purchase the
relay service as well as successful users who do not bid in
the sellers’ auction game. Unsuccessful users should take this
into consideration when choosing their strategies. Specifically,
Given Ns bidders, for unsuccessful user i, let Y−i denote
the set of all other unsuccessful users and successful users
who do not bid in the sellers’ auction game. So |Y−i| = l

△
=

N−Ns−1. Recall that a successful user will bid if his/her cost
is below br(1). Since each user’s cost follows the probability
distribution ϕ(·), the probability that a successful user does not
bid is 1−Φ(br(1)), where Φ(·) is the cumulative distribution
function of ϕ(·). Then for each user in Y−i, the probability
that he/she is a successful user is

ps =
p1

[
1− Φ(br(1))

]
p1

[
1− Φ(br(1))

]
+ (1− p1)

. (11)

Let n be the number of unsuccessful users in Y−i, and it
follows Binomial distribution B(l, 1− ps).

Based on the above discussion on the number of unsuc-
cessful users, following a similar analysis in Section III-C,
for each unsuccessful user i, we first derive his/her average
utility V̄B(x) and V̄NB(x) by using the strategy B and NB,
respectively, and then find the ESS x∗.7

Recall that each unsuccessful user purchases the relay
service with probability x. Thus, given n unsuccessful users
in Y−i, the conditional number k of buyers in Y−i follows
Binomial distribution B(n, x). In this context, if user i decides
to be a buyer, the total number of buyers is k+1, and thus, the
total payment from all buyers is (k + 1)r. If (k + 1)r ≥ bw,
the winning bidder forwards the segment, and user i receives
the segment correctly and pays the price r; otherwise, there
is no relay service and user i’s utility in the relay portion is
0. Therefore, in the relay portion, user i’s average utility of

7Similar to the homogeneous case, the evolutionary game in the het-
erogenous case is also a one-shot game with complete information, where
each user’s gain g, the probability distribution function of the number of
unsuccessful users, and the winning bid bw are all public information. Thus,
we can directly derive the ESS by solving (1).

strategy B is

V̄B(x) = (g − r)

l∑
n=0

(
l

n

)
(1− ps)

npl−n
s

{
n∑

k=0

(
n

k

)
xk(1− x)n−kI[(k + 1)r ≥ bw]

}
,(12)

and his/her average utility of strategy NB is

V̄NB(x) = g
l∑

n=0

(
l

n

)
(1− ps)

npl−n
s

{
n∑

k=0

(
n

k

)
xk(1− x)n−kI[kr ≥ bw]

}
. (13)

Let h(x) = V̄B(x) − V̄NB(x), and Appendix II shows that
h(x) can be rewritten as

h(x) =g

(
l

k∗

)
[x(1− ps)]

k∗
[1− x(1− ps)]

(l−k∗)

− r
l∑

k=k∗

(
l

k

)
[x(1− ps)]

k[1− x(1− ps)]
(l−k)

=f
(
(1− ps)x

)
. (14)

In (14), k∗ = ⌈bw/r⌉ − 1 where ⌈bw/r⌉ is the minimum
number of buyers required to afford the relay service, and
f(x) is defined in (4).

Similar to the analysis in Section III-C, at the stable state x,
we have ẋ = ηx(1−x)h(x) = 0. Thus, we have three possible
solutions: x = 0, x = 1, and x satisfies h(x) = 0, all of which
can be ESS x∗. To study the ESS x∗ at different prices, similar
to the analysis in Section III-C.2, we let j = ⌊ bw

g ⌋ + 1 and
partition the whole price range [0,+∞) into subintervals

Γ0 = [g,+∞),Γj =

[
bw

j
, g

)
, and

Γj =

[
bw

j
,

bw

j − 1

)
for j > j. (15)

In price range Γj with j ≥ j, at least j buyers are required to
afford the relay service.
• Case 1, r ∈ Γ0, i.e., r ≥ g: Same as the analysis in the
game with homogeneous users, no user buys and x∗ = 0 is
the ESS.
• Case 2, r ∈ Γj with j ≤ j ≤ N − Ns − 1: Same as in
Section III-C.2, we study the ESS when j = j = 1 (which
happens only when bw < g) and when 1 < j < N − Ns,
separately.

When j = j = 1, i.e, r ∈ [bw, g), we have k∗ =
⌈bw/r⌉ − 1 = 0. From the analysis in Section III-C.2, when
k∗ = 0, f(x) in (4) is a decreasing function of x for
0 ≤ x ≤ 1, and f(x) = 0 has a single root x̆f ∈ (0, 1).
From h(x) = f

(
(1 − ps)x

)
, h(x) is a decreasing function

of x in the interval
(
0, 1

1−ps

)
, and h(x) = 0 has a single

root in the interval
(
0, 1

1−ps

)
, given as x̆h =

x̆f

1−ps
. When

x̆f ≥ 1−ps, or equivalently, h(1) = f(1−ps) ≥ 0, as shown
in Fig. 7a. Thus, h(x) ≥ 0 for all 0 ≤ x ≤ 1, and strategy B
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(a) (b)

Fig. 7: r ∈ Γ1. (a): h(1) > 0, (b): h(1) < 0.

(a) (b)

Fig. 8: r ∈ Γj , where 1 < j < N − Ns. (a): h(1) > 0, (b):
h(1) < 0.

gives a higher utility than strategy NB. So all unsuccessful
users buy with x∗ = 1 being the ESS. When x̆f < 1−ps, that
is, h(1) = f(1− ps) < 0, x̆h is in the interval (0, 1). Similar
to the homogeneous user case, x∗ = x̆h is the ESS, as shown
in Fig. 7b.

When r ∈ Γj with 1 < j < N − Ns, we have k∗ =
⌈bw/r⌉ − 1 > 0. From the analysis in Section III-C.2, when
k∗ > 0, f ′(x) = 0 has a single root x̃f ∈ (0, 1), where
f ′(x) > 0 when 0 < x < x̃f , and f ′(x) < 0 when x > x̃f .
Also, f(x) = 0 has a single root x̆f in the interval (x̃f , 1).
Note that h′(x) = (1−ps)f

′
(
(1−ps)x

)
. Therefore, h′(x) = 0

has a single root x̃h =
x̃f

1−ps
in the interval (0, 1

1−ps
), h(x)

is an increasing function of x when 0 < x < x̃h, h(x) is
a decreasing function when x̃h < x < 1

1−ps
, and h(x) = 0

has a single root x̆h =
x̆f

1−ps
in the interval (x̃h,

1
1−ps

). If
x̆f ≥ 1 − ps, or equivalently, h(1) = f(1 − ps) ≥ 0, as
shown in Fig. 8a, h(x) ≥ 0 for all 0 ≤ x ≤ 1 and x∗ = 1
is the ESS since strategy B always outperforms strategy NB.
If x̆f < 1 − ps, or equivalently, h(1) = f(1 − ps) < 0, as
shown in Fig. 8b, x̆h is in the interval (0, 1). So similar to the
homogeneous user case, x∗ = x̆h is the ESS.
• Case 3, r ∈ ΓN−Ns = [ bw

N−Ns
, bw

N−Ns−1 ): In this price
range, at least (N − Ns) buyers are required to afford the
relay service, while there are at most (N−Ns) possible buyers.
Therefore, there is no chance to free ride, and all unsuccessful
users will buy with x∗ = 1. Mathematically, when r ∈ ΓN−Ns ,
h(x) = f

(
x(1 − ps)

)
= (g − r)[x(1 − ps)]

l ≥ 0 for all x ∈
[0, 1]. Therefore, the strategy B always outperforms strategy
NB, and x∗ = 1.
• Case 4, r ∈ Γj with j ≥ N −Ns+1: At least (N −Ns+1)
buyers are required to afford the relay service. However, the
number of total potential buyers is no more than (N − Ns).
Thus, there are not sufficient buyers to afford the relay service,
and the game ends.

In summary, we have the following theorem.
Theorem 2: Given Ns bidders in Stage 1, the winning bid

bw, and the relay price r,

• Case 1, when r ≥ g (i.e., r ∈ Γ0), x∗ = 0 is the ESS,
and no successful user buys;

• Case 2, when bw

N−Ns−1 ≤ r < g (i.e., r ∈ Γj ∪ Γj+1 ∪
... ∪ ΓN−Ns−1), if h(1) ≥ 0, x∗ = 1 is the ESS and
all unsuccessful users buy. If h(1) < 0, for x ∈ (0, 1),
h(x) = 0 has a single root 0 < x̆h < 1, which is the
ESS, x∗ = x̆h;

• Case 3, when bw

N−Ns
≤ r < bw

N−Ns−1 (i.e., r ∈ ΓN−Ns),
x∗ = 1 is the ESS and all unsuccessful users buy;

• Case 4, when r < bw

N−Ns
(i.e., r ∈ ΓN−Ns+1 ∪

ΓN−Ns+2 ∪ ...), there are not sufficient buyers to afford
the relay service, and the game ends.

3) The Price Setting Game: In the price setting game, the
local agent finds the optimal price r∗ to maximize the relay
portion throughput. Given the number Ns of bidders and the
winning bid bw, with the ESS x∗ (which is a function of relay
price r) from Theorem 2, we have the relay portion throughput

TR(x
∗|Ns, b

w)=

N−Ns∑
n=0

(
N −Ns

n

)
(1− ps)

np(N−Ns−n)
s

{
n∑

k=⌈bw/r⌉

(
n

k

)
(x∗)k(1− x∗)n−k

 . (16)

To maximize TR(x
∗|Ns, b

w), based on Theorem 2, the optimal
price r∗ should be in the range Γj∪Γj+1∪· · ·∪ΓN−Ns where
x∗ > 0. Fig. 9 shows an example of x∗ and the corresponding
throughput TR where there are a total of N = 12 users
in the system, and Ns = 2 of them bid in Stage 1 with
the winning bid bw = 2. For each user, the probability
to correctly receive the segment in the broadcast portion is
p1 = 0.4, and the gain of correctly receiving the segment
is g = 1. Users’ costs {ci} are uniformly distributed in the
range [L = 1,H = 17]. From (11), the probability that a
user who does not bid is a successful user is ps = 0.2.
From Fig. 9, when r < bw/(N − Ns) = 0.2 (i.e., in price
ranges Γ11,Γ12, ...), there are not sufficient buyers and the
relay portion throughput is zero. When r ∈ [0.2, 1.0) (i.e.,
in price ranges Γ10, ...,Γ3), we observe that at a low price
(e.g., in Γ10), the game requires a large number of buyers
to afford the relay service. However, since there are some
successful users who do not bid in the sellers’ auction game,
even if all unsuccessful users buy with x∗ = 1, it is still
possible that the total payment Nbr is smaller than the winning
bid bw, and therefore, the relay portion throughput is small.
At a high price, e.g., when r ∈ Γ3, the minimum number
of required buyers is small. Thus, unsuccessful users have
a high tendency to free ride, and the probability that there
are not sufficient buyers is high, which also results in a low
relay portion throughput. Therefore, the optimal price should
be appropriately selected to address this tradeoff, and TR is
maximized when r = bw/7 = 0.286 in this example.

To efficiently find the optimal price, we have the following
proposition, whose proof is in Appendix III.

Proposition 2: In each price range Γj with j ∈ {j, ..., N −
Ns}, TR(x

∗|Ns, b
w) is a non-increasing function of r.
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Fig. 9: An example of x∗ and TR.

This can also be observed from the example in Fig. 9.
In each price range Γj with 3 ≤ j ≤ 10, TR is a non-
increasing function of r and is maximized at the left boundary
r = bw/j. Based on this observation, we propose Algorithm 1
to efficiently find the global optimal price that maximizes the
relay portion throughput. Specifically, Algorithm 1 compares
TR(x

∗|Ns, b
w) at r = bw/j when j = j, · · · , N − Ns, and

chooses the optimal price r∗ that maximizes TR(x
∗|Ns, b

w).

Algorithm 1: Optimal Price Selection
1: T ∗

R = 0, r∗ = 0
2: for j = j to (N −Ns) do
3: Set r = bw/j and use Theorem 2 to find x∗, and use

(16) to calculate TR(x
∗|Ns, b

w)
4: if TR(x

∗|Ns, b
w) > T ∗

R then
5: T ∗

R = TR(x
∗|Ns, b

w) and r∗ = bw/j
6: end if
7: end for

We now discuss the properties of the optimal price r∗. We
first study the ESS x∗ at the optimal price r∗ when (N −Ns)
takes different values. For the system in Fig. 9, we vary the
value of (N − Ns) from 5 to 11, and other parameters are
the same as in Fig. 9. In Table II, for different (N − Ns),
we list (N −Ns)(1−ps), the average number of unsuccessful
users among the (N−Ns) users who do not bid, ⌈bw/r∗⌉, the
minimal number of users required to afford the relay service,
and the ESS x∗ at the optimal price r∗. From Table II, we
observe that at the optimal price, ⌈bw/r∗⌉ has a similar value
to (N−Ns)(1−ps). It means that the optimal price is chosen
carefully to let each unsuccessful user has a small or zero
probability to free ride (i.e., x∗ is close to 1 as shown in Table
II), while ensuring that the total payment from unsuccessful
users is sufficient to pay the relay service.

We then study the optimal price r∗ at different values of
(N − Ns) (the number of users who do not bid) and ps
(probability that a user who does not bid is a successful user).
For the system in Fig. 9, we vary (N −Ns) from 4 to 10, and
vary p1 so that ps is 0.2, 0.4, or 0.6. Other parameters are the
same. The optimal price r∗ is shown in Fig. 10. We can see

TABLE II: x∗ at the optimal price with different number Ns

of bidders.

(N −Ns) 5 6 7 8 9 10 11
(N−Ns)(1−ps) 4 4.8 5.6 6.4 7.2 8 8.8
⌈bw/r∗⌉ 4 5 5 6 7 7 8
x∗ 1.0 1.0 0.90 0.99 1.0 0.93 0.99
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Fig. 10: An example of the optimal price r∗.

that given a fixed winning bid (i.e., bw = 2 in the example),
the optimal price increases when (N −Ns) decreases. This is
because, with a smaller (N −Ns) and thus potentially fewer
unsuccessful users, each buyer needs to pay more to purchase
the relay service. Similarly, with a larger ps, there are fewer
unsuccessful users, and each buyer also has to pay a higher
price to purchase the relay service. Note that, in Fig. 10, when
(N −Ns) and ps vary, r∗ takes values from a common finite
set. This is because from Proposition 2, the optimal price can
only take values in the finite set

{
bw

j , bw

j+1 , · · · ,
bw

N−Ns

}
.

4) SPNE of the Stackelberg Game with Heterogeneous
Users: To summarize, the SPNE of the multi-buyer multi-
seller game with heterogeneous users is:

• Stage 1, the sellers’ auction game. Successful users whose
costs are no larger than br(1) will enter the auction game,
and bid their true costs.

• Stage 2, the price setting game. The local agent follows
the second-price sealed-bid auction protocol to select the
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Fig. 11: Relay portion throughput with homogeneous users under
different c and arrival rate λ.

winner of the auction and the winning bid bw. Then the
local agent uses Algorithm 1 to select the optimal price
r∗.

• Stage 3, the buyers’ game. Based on the number Ns of
sellers, the winning bid bw, and the price r∗ selected by
the local agent, each unsuccessful user follows Theorem
2 to find the ESS x∗, and decides to be a buyer with
probability x∗.

• Stage 4, the transaction game. Given the number Nb of
buyers, if r∗Nb ≥ bw, the auction winner relays the
segment, and receives a payment of bw. Otherwise, there
is no relay and the game ends.

V. SIMULATION RESULTS

In our simulation, we consider a multicast network with
a BS and a group of users who dynamically join and leave
the multicast service. For each user, the probability p1 of
receiving a segment8 correctly from the BS is 0.37, and the
utility gain of receiving a segment correctly is g = 1. The
initial number of users is 10. Users join the multicast service
according to a Poisson process with an average arrival rate of
λ users per segment duration (i.e., the length of the broadcast
portion in Fig. 2). The sojourning period of each user in the
system follows an exponential distribution with an average of
µ segments. In our simulation, we fix µ = 20 and test the
system when λ = 0.5, 0.67 and 1, which correspond to the
average network size of N = 9.8, 13.6 and 20.2, respectively.

Fig. 11 shows the system performance with homogeneous
users when we have different c and λ. For each segment
transmission, users follow the SPNE as discussed in Section
III-E. Fig. 11 shows the average results for 5000 segment
transmissions. From this figure, we observe that when c
increases, the relay portion throughput decreases. This is
because, when c increases, the probability that the condition

c
N−Nsu

< g is not satisfied increases. Recall that, if the
condition c

N−Nsu
< g is not satisfied, there is no relay service,

8In this simulation, we do not specify the segment length. This is because
it only affects the probability p1, and in our simulation results, e.g., Fig. 13,
we study the system performance under different p1, which reflects how the
segment length impacts the system performance.
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Fig. 12: Relay portion throughput with heterogeneous users under
different H and arrival rate λ.

as shown in Section III-E. So a higher c leads to a lower relay
portion throughput. In Fig. 11, we also observe that when
λ increases, the relay portion throughput increases. This is
because a larger λ will on average give a larger network size,
and thus more unsuccessful users. Then, the probability that
the number of buyers is sufficient increases, which gives a
higher relay portion throughput.

Fig. 12 shows the system performance with heterogeneous
users with different H and λ. In this simulation, users’ costs
are uniformly distributed and randomly generated in [L,H]
with a fixed L = 4, and we test the system performance with
different H . For each segment transmission, users follow the
SPNE as discussed in Section IV-B.4. We also test the system
for 5000 segment transmissions. From this figure, we observe
that when H increases, the relay portion throughput decreases.
This is because when H increases, on average, each user has
a higher cost to relay a segment. Therefore, the winning bid
bw increases, and it requires more buyers to afford the relay
service. Thus, with a higher H , the probability that the number
of buyers is sufficient decreases, causing a decrease in the relay
portion throughput. Furthermore, we observe from Fig. 12 that
when λ increases, the relay portion throughput increases. This
is because a larger λ gives, on average, a larger network size
N (thus a larger br(1) = (N − 1)g − ϵ) and more successful
users (a larger Nsu). From Proposition 1, a successful user will
bid if its cost is lower than br(1). So with a larger λ, more
successful users will bid, resulting in a lower winning bid bw.
In addition, a larger λ gives on average more unsuccessful
users, which, together with the fact that the winning bid bw

decreases, increases the probability that there are sufficient
buyers to afford the relay service, and thus, increases the relay
portion throughput.

In this payment-based game, the numbers of buyers and
sellers in each round are affected by the probability p1. A
larger p1 will on average give a larger number of sellers but
a smaller number of buyers, which may affect the system
performance. We define TO as the overall throughput, which
is the average percentage of users who receive the segment
correctly after the broadcast and the relay portions. Fig. 13
compares the relay portion and the overall throughput in
homogeneous case when c and p1 vary. The simulation setup
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Fig. 13: System throughput with homogeneous users, when we have
different p1 and c. (a) The relay portion throughput. (b) The overall
throughput.

is similar to that in Fig. 11. We fix λ = 0.67, and other
parameters are the same. From this figure, when c is low,
the relay portion and the overall throughput increases as p1
increases. However, for a large c, such as when c is set
to 5, as p1 increases from 0.2 to 0.6, Fig. 13a illustrates
that the relay portion throughput first increases and then
decreases. This is because when p1 is small, for example
p1 = 0.2, the probability that there are successful users
who can provide relay service is small. As p1 increases, the
probability that successful users exist increases. Thus, the relay
portion throughput increases, which also helps increase the
overall throughput. However, as p1 keeps increasing, the relay
portion throughput starts to decrease. This is because when the
cost is high, the required number of buyers is also large. When
p1 becomes large, there are fewer unsuccessful users. Thus,
the probability that there are sufficient buyers decreases, and
the relay portion throughput decreases. The overall throughput
also decreases, which means that, for a larger p1, the decrease
in the relay portion throughput dominates the increase in the
broadcast portion throughput. Therefore, using a large p1 may
not always be the optimal decision, especially when c is high.

For a given range of p1,9 the BS can search the optimal p∗1 in
this range, which gives the maximal overall throughput while
keeping the consumed transmission power of the BS low.

VI. FURTHER DISCUSSION: IMPACTS OF HONEST AND
ALTRUISTIC USERS

In this work, to simplify the analysis, we assume that
all users are selfish users, who aim to maximize their own
utilities, and may even cheat if cheating can improve their
payoffs. However, in practice, honest and altruistic users may
exist, where honest users are always willing to reveal their
private information, i.e., the costs to forward a segment in
the heterogeneous user case, while altruistic users are always
willing to contribute to the system. In this section, we discuss
how our proposed framework may be affected by these two
kinds of users.

To integrate honest users in our framework is straightfor-
ward. This is because our system is cheat-proof by using the
second-price sealed-bid auction game. For each user, telling
the true information is the dominant strategy. Thus, no matter
whether a user is honest or not, he/she has incentive to reveal
his/her private information.

To integrate altruistic users in our system, we consider two
scenarios:
Scenario 1: some successful users are altruistic, and they are
willing to relay the segment without receiving any payment.
This scenario can be easily handled in our 4-stage Stackelberg
game. In Stage 1, the sellers’ game (the selling part in
Fig. 2), altruistic users will inform the local agent that they are
altruistic. Then, in Stage 2, the price setting game (the price
announcement part in Fig. 2), the local agent will randomly
select one altruistic user as relay, and announce that no
payment is required for the relay service. Thus, unsuccessful
users do not need to buy, and the selected altruistic user will
forward the segment. Then, the game ends for this segment
transmission.
Scenario 2: successful users are all selfish users, while some
unsuccessful users might be altruistic, who are altruistic buyers
and always willing to buy for any given price r. First, altruistic
buyers do not affect our game with homogeneous users. This is
because in the homogenous user case, the required number of
buyers is the same as the number of unsuccessful users at the
optimal price. Since no one can free ride, each unsuccessful
user has to buy no matter whether he/she is altruistic. However,
altruistic buyers may affect our game with heterogeneous
users. Specifically, in heterogeneous user case, Stage 1 of
our game stays the same as described in Section IV-A, since
we consider that all successful users are selfish. However,
altruistic buyers affect the Stage 2 and Stage 3 a lot. For
example, in Stage 3, the buyers’ game (the buying part in
Fig. 2), each selfish unsuccessful user needs to take potential
altruistic buyers into consideration to decide his/her own
strategy. For instance, if there are enough altruistic buyers to
afford the relay service, he/she does not have to buy. However,
since he/she does not know the exact number of altruistic

9For any given broadcast channel condition, p1 is jointly affected by the
segment length, the transmission power, channel coding and modulation.
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buyers, he/she needs to estimate this number, and then decides
his/her optimal strategy to maximize his/her expected payoff.
Furthermore, due to the backward induction that we use to
derive the SPNE, the change of the buyers’ game then affects
the optimal price decided in Stage 2, the price setting game.
The effect of altruistic buyers deserves further investigation in
our future work.

VII. CONCLUSIONS

In a wireless multicast system, the cooperation among users
can significantly improve the system performance. However,
successful users may not be willing to help unsuccessful users,
as forwarding costs their transmission power. In addition,
due to the broadcast nature of wireless communications,
unsuccessful users may prefer to free ride rather than buying
the relay service. In this work, to stimulate user cooperation,
we formulate the interaction among users as a multi-seller
multi-buyer payment-based game, where users pay to receive
relay service and get paid if they forward their successfully
received segments to others. In either homogeneous user case
or heterogeneous user case, we derive the ESS of the buyers’
game, and further derive the optimal price to maximize the
relay portion throughput. It is shown that, under the optimal
price, there is no chance for an unsuccessful user to free ride
in the homogeneous user case, since the required number
of buyers at the optimal price is equal to the number of
unsuccessful users. There is also a very small probability for an
unsuccessful user to free ride in the heterogeneous user case,
since the required number of buyers at the optimal price is
very close to the number of unsuccessful users. Therefore, our
mechanisms have the merits of improving system efficiency
and stimulating users to cooperate (i.e., successful users sell,
and unsuccessful users buy).

APPENDIX I

For r ∈ Γj with 1 < j < N −Nsu, f ′(x) = 0 has a single
root x̃f ∈

(
0, j−1

N−Nsu−1

)
, and f ′(x) > 0 when x ∈ (0, x̃f )

and f ′(x) < 0 when x ∈ (x̃f , 1).
Proof : From (4), f(x) can be rewritten as

f(x) = g

(
l

k∗

)
xk∗

(1− x)(l−k∗)︸ ︷︷ ︸
,X(x)

− r
l∑

k=k∗

(
l

k

)
xk(1− x)(l−k)

︸ ︷︷ ︸
,Y (x)

=X(x)− Y (x), (17)

where l = N − Nsu − 1 and k∗ = ⌈c/r⌉ − 1 = j − 1 with
1 ≤ k∗ ≤ N − Nsu − 2. We then study the monotonicity
of X(x) and Y (x), respectively. First, we have X ′(x) =
g
(

l
k∗

)
x(k∗−1)(1 − x)(l−k∗−1)(k∗ − lx), and thus, X ′(x) > 0

when x ∈ (0, k∗/l), and X ′(x) ≤ 0 when x ∈ [k∗/l, 1). Simi-
larly, we have Y ′(x) = r

∑l
k=k∗

(
l
k

)
x(k−1)(1−x)(l−k−1)(k−

lx). When x ∈ (0, k∗/l), we have (k − lx) > 0, and thus

Y ′(x) > 0. When x ∈ [k∗/l, 1), since lx > 0, 1, ..., k∗ − 1,
we have

Y ′(x) = r
l∑

k=k∗

(
l

k

)
x(k−1)(1− x)(l−k−1)(k − lx)

> r
l∑

k=0

(
l

k

)
x(k−1)(1− x)(l−k−1)(k − lx)

= r
d

dx

[
l∑

k=0

(
l

k

)
xk(1− x)(l−k)

]

= r
d(1)

dx
= 0. (18)

Therefore, we have Y ′(x) > 0 for x ∈ (0, 1).
Based on the above analysis, when x ∈ [k∗/l, 1), we have

X ′(x) ≤ 0 and Y ′(x) > 0, and therefore, f ′(x) = X ′(x) −
Y ′(x) < 0. When x ∈ (0, k∗/l), we have X ′(x) > 0 and
Y ′(x) > 0. Thus, we need to further investigate f ′(x), and
have (19). In the last line of (19), when x ∈ (0, k∗/l), except
for the term W (x), all the other terms are larger than zero.
To study W (x), we derive W ′(x) in (20). In (20), since k ≥
k∗ and x ∈ (0, k∗/l), we have W ′(x) < 0. We then study
the function value of W (x) when x approaches 0 and k∗/l,
respectively. Since r ∈ Γj with 2 ≤ j ≤ N − Nsu − 1, we
have r < g. Then we have

lim
x→0

W (x) =

(
l

k∗

)
− r

g

(
l

k∗

)
k∗ − 0

k∗ − 0

=

(
l

k∗

)(
1− r

g

)
> 0, (21)

lim
x→k∗/l

W (x) =

(
l

k∗

)
−∞ = −∞. (22)

Therefore, W (x) = 0 has a single root, x̃f , in the range
(0, k∗/l). From (19), x̃f is also the single root of f ′(x) = 0.
Thus, when x ∈ (0, x̃f ), W (x) > 0, and f ′(x) > 0. When
x ∈ (x̃f , k

∗/l), W (x) < 0, and f ′(x) < 0.
Based on the above analysis, f ′(x) = 0 has a single root,

x̃f , in the range (0, k∗/l) (k∗ = j−1 and l = N−Nsu−1), and
f(x) > 0 when x ∈ (0, x̃f ) and f(x) < 0 when x ∈ (x̃f , 1).
�

APPENDIX II
PROOF OF (14)

Proof : Let k∗ = ⌈bw/r⌉ − 1, and we first
derive h(x) = V̄B(x) − V̄NB(x) in (23). We
then rewrite G(x) in (24). Similarly, F (x) =

r
∑l

k=k∗

{(
l
k

)
[(1− ps)x]

k[(1− ps)(1− x) + ps]
(l−k)

}
.

Thus,

h(x)=g

(
l

k∗

)
[x(1− ps)]

k∗
[1− x(1− ps)]

(l−k∗)

− r
l∑

k=k∗

(
l

k

)
[(1− ps)x]

k[1− x(1− ps)]
(l−k). (25)

�
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f ′(x) = g

(
l

k∗

)
x(k∗−1)(1− x)(l−k∗−1)(k∗ − lx)− r

l∑
k=k∗

(
l

k

)
x(k−1)(1− x)(l−k−1)(k − lx)

= gx(k∗−1)(1− x)(l−k∗−1)(k∗ − lx)

{(
l

k∗

)
− r

g

l∑
k=k∗

(
l

k

)(
x

1− x

)(k−k∗)
k − lx

k∗ − lx

}
︸ ︷︷ ︸

,W (x)

= gx(k∗−1)(1− x)(l−k∗−1)(k∗ − lx)W (x). (19)

W ′(x) = − r

g

l∑
k=k∗

(
l

k

){(
x

1− x

)(k−k∗−1)
k − k∗

(1− x)2
k − lx

k∗ − lx
+

(
x

1− x

)(k−k∗)
l(k − k∗)

(k∗ − lx)2

}
. (20)

h(x)=

l∑
n=k∗

(
l

n

)
(1− ps)

npl−n
s

(
n

k∗

)
xk∗

(1− x)n−k∗
g︸ ︷︷ ︸

,G(x)

−
l∑

n=k∗

(
l

n

)
(1− ps)

npl−n
s

{
n∑

k=k∗

(
n

k

)
xk(1− x)(n−k)r

}
︸ ︷︷ ︸

,F (x)

= G(x)− F (x). (23)

G(x) = g
l∑

n=k∗

l!

n!(l − n)!
(1− ps)

npl−n
s

n!

k∗!(n− k∗)!
xk∗

(1− x)n−k∗

= g
l!

k∗!(l − k∗)!
(1− ps)

k∗
xk∗

l∑
n=k∗

(l − k∗)!

(n− k∗)!(l − n)!
[(1− ps)(1− x)](n−k∗)pl−n

s

m,n−k∗

======== g

(
l

k∗

)
[x(1− ps)]

k∗
l−k∗∑
m=0

(l − k∗)!

m!(l − k∗ −m)!
[(1− ps)(1− x)]mpl−k∗−m

s

= g

(
l

k∗

)
[x(1− ps)]

k∗
[(1− ps)(1− x)] + ps]

(l−k∗). (24)

APPENDIX III
PROOF OF PROPOSITION 2

Proof: For r ∈ Γj with j ∈ {j, ..., N − Ns}, we first
prove that, ∂TR/∂x

∗ ≥ 0, and then prove that ∂x∗/∂r ≤ 0.
Therefore, we have ∂TR

∂r = ∂TR

∂x∗
∂x∗

∂r ≤ 0 and TR is a non-
increasing function of r.

To prove that ∂TR/∂x
∗ ≥ 0, we first define

q(n, x∗)
△
=
∑n

k=⌈bw/r⌉
(
n
k

)
(x∗)k(1 − x∗)n−k and rewrite

(16) as TR(x
∗|Ns, b

w) =
∑N−Ns

n=0

(
N−Ns

n

)
(1 −

ps)
np

(N−Ns−n)
s q(n, x∗). The first derivative of q(n, x∗)

over x∗ is

∂q(n, x∗)

∂x∗ =

n∑
k=⌈bw/r⌉

(
n

k

)
(x∗)

(k−1)
(1− x∗)(n−k−1)(k − nx∗). (26)

Similar to (18), we can prove that ∂q(n, x∗)/∂x∗ ≥ 0 for
x∗ ∈ [0, 1]. Therefore, we have

∂TR

∂x∗ =

N−Ns∑
n=0

(
N −Ns

n

)
(1− ps)

np(N−Ns−n)
s

∂q(n, x∗)

∂x∗ ≥ 0. (27)

We then prove for r ∈ Γj with j ∈ {j, ..., N −Ns}, ∂x∗

∂r ≤
0. First, if r ∈ ΓN−Ns (Case 3 in Theorem 2), x∗ = 1 for any
r ∈ ΓN−Ns . Therefore, when r ∈ ΓN−Ns , we have ∂x∗/∂r =
0.

If r ∈ Γj with j ∈ {j, ..., N −Ns−1} (Case 2 in Theorem
2), from Theorem 2, it can be seen that x∗ is the non-zero root,
denoted x̆h, of h(x) = 0 if x̆h < 1, and x∗ = 1 otherwise.
When the price r increases within Γj , k∗ keeps the same, and
thus, h(x) decreases based on (14). From Fig. 7 and Fig. 8,
it can be seen that, if h(x) decreases, the non-zero root of
h(x) = 0 decreases. Therefore, when r increases, the ESS x∗

either keeps at x∗ = 1, or decreases. This means ∂x∗/∂r ≤ 0.
�
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