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Abstract— In a vehicular delay tolerant network, the problem
of scheduling the traffic from a roadside unit to passing-by
vehicles is studied. A cost function is associated with a scheduled
transmission. And if a delay bound is violated, a penalty cost is
charged. The optimal stopping theory is applied to decide when
the roadside unit should schedule its accumulated traffic to a
passing-by vehicle such that the rate of cost is minimized. It is
shown that the optimal scheduling strategy is a pure-threshold
strategy, i.e., upon a vehicle arrival, if the queueing delay at
the roadside unit is above a threshold, it is optimal to schedule
a transmission via the vehicle. Simulation results validate the
effectiveness of the derived optimal rule.

Index Terms— Vehicular delay tolerant networks, optimal
stopping, scheduling.

I. INTRODUCTION

Vehicular delay tolerant networks have recently gained
much research attention [1]–[4]. A typical vehicular delay
tolerant network consists of unconnected stationary RoadSide
Units (RSUs) and is deployed along highways in sparsely
populated or unpopulated zones. It is very likely that the RSUs
in those zones are driven by batteries [3]. Only a few RSUs are
connected to the Internet, and other RSUs should send their
traffic to those RSUs with Internet connection. There is no
direct connection among the RSUs, and passing-by vehicles
serve as relays, to help forward traffic among the RSUs.
For such networks, delay minimization problem in a Markov
decision process framework is studied in [1], while a model
is given in [2] to probabilistically decide whether a passing-
by vehicle is suitable to carry the traffic of an RSU such that
the total transit delay is minimized. Minimizing the energy
consumption of the RSUs, under the constraint of satisfying
the communication requirements of the passing-by vehicles, is
studied in [3].

In this letter, we also consider the problem of traffic
scheduling from an RSU. Different from the existing research
efforts that consider either delay or energy consumption, we
take both into account. In specific, a source RSU is assumed
to try to send traffic to a destination RSU (with Internet
connection). The source RSU needs to select a passing-by
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vehicle as a relay to carry and forward its traffic to the
destination. It has been shown through empirical measurement
[5] that, the inter-arrival times of vehicles at a roadside point
are independent and identically exponentially distributed. In
other words, if we let {τ1, τ2, · · · , τn, · · · } denote the inter-
arrival times of consecutive vehicles at the source RSU, then
they are i.i.d. exponential random variables with parameter µ.
So E[τn] = 1/µ, where E[·] denotes expectation. And we use
tn =

∑n
i=1 τi to denote the nth vehicle’s arrival time at the

source RSU. Here we set t0 = 0. At the source RSU, the
traffic is generated at a constant rate r, and buffered, waiting
for being scheduled to a passing-by vehicle. Our target is to
minimize the rate of the overall cost of the system. Since
both energy consumption and delay are considered, the overall
cost is defined as a weighted sum of costs related to energy
consumption and delay, as elaborated in the following. Similar
weighted cost structures are also adopted in [4], [6], [7].

Upon a vehicle arrival, the source RSU needs to decide
whether it should stop waiting and transmit its accumulated
traffic to the vehicle. If the RSU decides not to stop, it will
continue to buffer traffic and wait for the next vehicle arrival
and decide again. If the RSU decides to stop waiting at the nth
vehicle arrival, the accumulated traffic with amount sn = rtn
is sent to the vehicle with a constant transmission power P and
a constant data transmission rate R. For the data transmission,
there is usually a communication overhead between the RSU
and the vehicle (for example, request-to-send [RTS], clear-to-
send [CTS], and ACK if IEEE 802.11 medium access control
[MAC] protocol is applied. A detailed example is given in
Section III). Assume the transmission power of the overhead
is also P and the duration of the overhead transmission is
To. Then total energy consumption in the data and overhead
transmission is wP

(
sn
R + To

)
, where w (unit: unit of cost

per Joule) is the cost weight of energy consumption. On the
other hand, it is desired that large queueing delay is avoided
even in a delay tolerant network. Let T denote the desired
queueing delay bound. Therefore, upon a vehicle arrival, if
the RSU’s queueing delay (also the RSU’s waiting time) is
above T , the RSU is forced to transmit its accumulated traffic
to the vehicle, and similar to [6], a penalty with amount B is
charged for delay bound violation.

Upon the nth vehicle arrival, define observations Xn =
{tn, sn}, n > 0. Let C = min{n : tn ≥ T} denote the
index of the vehicle to which the accumulated traffic is forced
to be released. If it is decided to let the nth vehicle carry
the accumulated traffic with amount sn (i.e., decided to stop
observations, simplified as “stop” in the sequel), then the cost
function is given as

yn = wP
(sn
R

+ To

)
+BI(n = C), n ≤ C
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where I(·) is an indicator function. To enforce stopping at the
Cth vehicle, define yn = ∞ for n > C.

Let N denote the stopping time, i.e., the RSU stops at the
N th vehicle arrival, and the corresponding stopping rule is
also denoted N . In this letter, we are interested in deriving
the optimal stopping rule of the RSU, such that the rate of
cost is minimized. In other words, if the RSU applies a given
stopping rule N repeatedly, we have i.i.d. stopping times
{N1, N2, · · · , Nm, · · · } (note that once the RSU stops at a
vehicle, the next vehicle is called Vehicle 1 again), and i.i.d.
costs {yN1 , yN2 , · · · , yNm , · · · }. So the rate of cost (average
cost per unit time) is

∑
i yNi/

∑
i tNi , which converges to

E[yN ]/E[tN ] by the law of large number. Therefore, our
objective is to achieve

min
N>0

E[yN ]

E[tN ]
. (1)

II. OPTIMAL SCHEDULING STRATEGY

Problem (1) is to decide when the RSU should stop and
transmit its accumulated traffic to a passing-by vehicle. Note
that when tn < T , there does not exist queueing delay penalty
B. Thus, it is desired to keep tN < T and make tN as
close to T as possible. Therefore, an intuitive strategy is: upon
arrival of a vehicle (say Vehicle a), if the RSU expects that the
queueing delay upon the next vehicle arrival (if the RSU does
not stop at Vehicle a) will exceed T , then the RSU should stop
at Vehicle a, i.e., transmit its accumulated traffic to Vehicle
a. Actually as shown in Section III, this intuitive rule is not
optimal.

The theory of optimal stopping [8] is proposed to be applied
to optimally solve Problem (1). Note that Problem (1) is not
easy to solve directly. Thus, by using the λ-minimization
technique [8], we first solve the following ordinary optimal
stopping problem

min
N>0

E[zN ] = min
N>0

E[yN − λtN ], λ > 0 (2)

where zN
∆
= yN −λtN is the cost function, whose expectation

is to be minimized. And the physical meaning of λ is rate of
cost. Next we first derive the optimal stopping rule of Problem
(2) in Section II-A, and then derive the optimal stopping rule
of Problem (1) in Section II-B.

A. Optimal Stopping Rule of Problem (2)

The basic idea is to first derive the myopic rule of Problem
(2), and then theoretically prove the myopic rule is the optimal
stopping rule.

Theorem 1: The myopic stopping rule of Problem (2) is

N† =


1 if 0 < λ ≤ α

min{n : tn ≥ Tλ} if α < λ < β

min{n : tn ≥ T} if λ ≥ β

(3)

where
α = µB exp(−µT ) + wrP

R

β = µB + wrP
R

Tλ = T − 1
µ ln

(
µRB

λR−wrP

)
.

Proof: According to [8], the myopic stopping rule of
Problem (2) is given as

N† = min{n : zn ≤ E[zn+1|Xn]}. (4)

The physical meaning of the myopic rule in (4) is that, if the
cost of the nth vehicle is less than the expectation of the cost
of the (n + 1)th vehicle, we should select the nth vehicle to
carry the accumulated traffic.

When tn ≥ T , i.e., n ≥ C, the RSU is forced to stop. So
(4) can be simplified as N† = C = min{n : tn ≥ T}.

When tn < T , we have

zn = wP ( snR + To)− λtn
zn+1 = wP ( sn+1

R + To) +BI(n+ 1 = C)− λtn+1.

Recall that tn =
∑n

i=1 τi and sn = rtn. Then zn ≤
E[zn+1|Xn] is equivalent to

wP

(
r
∑n

i=1 τi
R

+ To

)
− λ

n∑
i=1

τi

≤ wP

(
r(
∑n

i=1 τi + E[τn+1|Xn])

R
+ To

)
+BE[I(n+ 1 = C)|Xn]− λ

(
n∑

i=1

τi + E[τn+1|Xn]

)
which leads to

BE[I(n+ 1 = C)|Xn] +

(
wrP

R
− λ

)
E[τn+1|Xn] ≥ 0.

(5)
Further we have E[τn+1|Xn] =

1
µ and

E[I(n+ 1 = C)|Xn] = Prob(n+ 1 = C|Xn)
= Prob(tn+1 ≥ T |Xn) = Prob(tn+1 − tn ≥ T − tn)
= Prob(τn+1 ≥ T − tn) = exp (−µ(T − tn)) .

So (5) is rewritten as

B exp (−µ(T − tn)) ≥
λR− wrP

µR
. (6)

It can be seen that, when 0 < λ ≤ α, (6) always holds. So
the myopic stopping rule of Problem (2) is N† = 1. When
λ ≥ β, (6) never holds. This means the RSU will wait until
it is forced to stop. So the myopic stopping rule of Problem
(2) is N† = min{n : tn ≥ T}. When α < λ < β, (6) leads
to tn ≥ Tλ, where Tλ < T . So the myopic stopping rule of
Problem (2) is N† = min{n : tn ≥ Tλ}.

Theorem 2: The myopic rule N† is the optimal stopping
rule of Problem (2).

Proof: According to Theorem 2 and Corollary 2 in
Chapter 5 of [8], N† is the optimal stopping rule for Problem
(2) if the following conditions are satisfied:

• i) The problem is monotone;
• ii) zn can be written as zn = un + wn, where

E[supn |un|] < ∞ and wn is nonnegative and nonde-
creasing a.s.;

• iii) limn→∞ zn = z∞ a.s..
Firstly, Condition i) means if N† calls for stopping at the

nth vehicle, then it will also call for stopping at the (n+1)th
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vehicle (assuming it does not stop in previous n vehicles).
This is apparent, since tn is nondecreasing.

Secondly, zn can be written as zn = (−λtn) + yn, where
yn is nonnegative and nondecreasing from its definition. So
next we focus on proving E[supn | − λtn|] < ∞. Because of
the fact that the problem is forced to be stopped when n = C,
we can equivalently set tn = tC if n > C. Thus, we have

tn = tnI(n ≤ C) + tCI(n > C) ≤ tC (7)

which leads to

E[sup
n

| − λtn|] ≤ λE[tC ] = λ

(
T +

1

µ

)
< ∞.

Thus, Condition ii) is satisfied, and we have tC < ∞ a.s..
Thirdly, to prove Condition iii) we define z∞

∆
= +∞. Since

yn is nondecreasing, we have

lim
n→∞

yn = lim inf
n→∞

yn = lim sup
n→∞

yn. (8)

We also have

lim inf
n→∞

zn
(a)

≥ lim inf
n→∞

yn − λtC
(b)
= limn→∞ yn − λtC

= limn→∞[ynI(n ≤ C) +∞I(n > C)]− λtC
= ∞− λtC = z∞ a.s.

(9)
where (a) is from (7) and (b) is from (8). Considering (9) and
lim sup
n→∞

zn ≤ lim sup
n→∞

yn = limn→∞ yn = z∞ a.s., it can be

concluded that lim sup
n→∞

zn = lim inf
n→∞

zn = z∞, which leads to

lim
n→∞

zn = z∞ a.s.. Thus, Condition iii) is satisfied.
Theorem 3: With the myopic stopping rule (3), the mini-

mum cost of Problem (2), denoted VN†(λ), is

VN†(λ) =
wPTo +B exp(−µT )− λR−wrP

µR if 0 < λ ≤ α

wPTo − (λ− wrP
R )Tλ if α < λ < β

wPTo +B − (λ− wrP
R )(T + 1

µ ) if λ ≥ β.
(10)

Proof: The minimum cost of Problem (2) is

VN†(λ) = E[yN† − λtN† ] (11)

=wPTo +BProb(N† = C)−
(
λ− wrP

R

)
E[tN† ].

When 0 < λ ≤ α, the optimal stopping rule is N† = 1. Thus
we have

Prob(N† = C) = Prob(t1 ≥ T ) = exp(−µT ),
E[tN† ] = E[t1] =

1
µ .

Then from (11) we have

VN†(λ) = wPTo +B exp(−µT )− λR− wrP

µR
. (12)

When α < λ < β, the optimal stopping rule is N† =
min{n : tn ≥ Tλ}. To express VN†(λ) we need to calculate
Prob(N† = C) and E[tN† ]. We have

Prob(N† = C) = Prob(tN† ≥ T |tN† ≥ Tλ)
= Prob(tN† − Tλ ≥ T − Tλ).

(13)

Note that tN† − Tλ is actually the interval from the moment
when waiting time is equal to Tλ to the moment when the next
vehicle arrives. Due to memoryless feature of exponentially
distributed inter-arrival times of vehicles, we have

Prob(tN† −Tλ ≥ T −Tλ) = exp(−µ(T −Tλ)) =
λR− wrP

µRB

and E[tN† −Tλ] =
1
µ , i.e., E[tN† ] = Tλ+

1
µ . Then from (11),

we have

VN†(λ) = wPTo −
(
λ− wrP

R

)
Tλ. (14)

Next consider λ ≥ β, when the optimal stopping rule is
N† = min{n : tn ≥ T}, i.e., N† = C, and thus Prob(N† =
C) = 1. Similar to the above derivation of E[tN† ], we have
E[tC − T ] = 1

µ , i.e., E[tC ] = T + 1
µ , which leads to

VN†(λ) = wPTo +B −
(
λ− wrP

R

)(
T +

1

µ

)
. (15)

This completes the proof.
It can be seen that VN†(λ) given in (10) is a continuous

and strictly decreasing function of λ.

B. Optimal Stopping Rule of Problem (1)

From Theorem 1 in Chapter 6 of [8], the optimal stopping
rule of Problem (1), N∗, is in form of N† given in (3) with λ =
λ∗, where λ∗ satisfies VN†(λ∗) = 0. Therefore, to obtain N∗,
we need to find the root of VN†(λ) = 0. Note that according to
(10), VN†(λ) has three different expressions in three regions,
0 < λ ≤ α, α < λ < β, and λ ≥ β, respectively.

Consider the first region 0 < λ ≤ α. By setting VN†(λ) = 0
in (12), we have

λ∗ = µwPTo + µB exp(−µT ) +
wrP

R
= µwPTo + α

which contradicts the fact that λ ≤ α. Therefore, no root of
VN†(λ) = 0 exists when 0 < λ ≤ α.

When λ changes from α to +∞, VN†(λ) continuously and
strictly decreases from VN†(λ)|λ=α = wPTo > 0 to −∞.
Therefore, there exists a unique root of VN†(λ) = 0 for λ > α.
If VN†(λ)|λ=β < 0, i.e., wPTo < µBT , the root is in region
α < λ < β, which (based on (14)) means λ∗ is the root of

wPTo =

(
λ− wrP

R

)[
T − 1

µ
ln

(
µRB

λR− wrP

)]
. (16)

On the other hand, if VN†(λ)|λ=β ≥ 0, i.e., wPTo ≥ µBT ,
the root is in region λ ≥ β, which (based on (15)) means

λ∗ =
wrP

R
+

µ(wPTo +B)

µT + 1
. (17)

Overall, if wPTo < µBT , the optimal stopping rule of
Problem (1) is N∗ = min{n : tn ≥ Tλ∗} with λ∗ being the
root of (16), and the rate of cost is λ∗. If wPTo ≥ µBT , the
optimal stopping rule of Problem (1) is N∗ = min{n : tn ≥
T} and the rate of cost is given in (17). In either case, the
optimal stopping rule is a pure-threshold strategy, i.e., upon a
vehicle (say Vehicle n) arrival, if tn exceeds a fixed threshold,
the RSU should stop and transmit its traffic to the vehicle.
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III. PERFORMANCE EVALUATION

In this section we provide numerical and simulation results.
IEEE 802.11 MAC protocol is applied to coordinate the
transmission between the RSU and vehicles, and we consider
energy consumption of both the RSU and vehicles. Note
that the case when energy consumption of the RSU only is
considered can be treated similarly. The data transmission
rate is R = 11 Mbps. The overhead duration To includes
RTS time ( RTS size

Basic rate plus preamble time), CTS time ( CTS size
Basic rate

plus preamble time), ACK time ( ACK size
R plus preamble time),

MAC header time ( MAC header size
R ), and preamble time for data

information transmission. The size of RTS, CTS, ACK, and
MAC header are 20 bytes, 14 bytes, 14 bytes, and 34 bytes,
respectively. The basic rate is 2 Mbps, and each preamble
time is 192 µs. Other parameters are: P = 15.5 dBm =
35.5 mW, r = 5 bits/second, µ = 1/400 vehicles/second,
T = 30 minutes, and w = 1 unit of cost/µJoule. We vary
the penalty cost B for delay bound violation. For any B
value, the simulation statistics are collected as average for
10000 stops. Two heuristic stopping rules are simulated for
comparison: Nh1 = min{n : tn ≥ T − 1

µ} (actually the
intuitive rule discussed at the beginning of Section II) and
Nh2 = min{n : tn ≥ T − 2

µ}. Recall that E[τn] =
1
µ . Thus,

Nh1 (or Nh2) is to stop at the moment by expecting that, if
not stopping, the arrival of the next vehicle (or the one after
the next vehicle) will make the RSU’s waiting time, also the
queueing delay, exceed T .

Fig. 1 shows the thresholds of waiting time used in the three
stopping rules. The threshold value in our optimal stopping
rule N∗ is obtained numerically. It can be seen that, when B
is small (B ≤ wPTo

µT according to discussion in the preceding
section), it is optimal for the RSU to wait until being forced
to stop, i.e., the threshold is 1800 seconds (30 minutes).
This is because, although there is a penalty cost for a forced
stopping, the penalty cost is dominated by the cost saving
that comes from the fact that the communication overhead
in a transmission serves more accumulated traffic. When B
increases beyond wPTo

µT , the penalty cost becomes dominant
and the threshold of stopping decreases with B. When B
goes to infinity, the optimal threshold approaches 0, i.e., the
RSU should stop at the first vehicle arrival. Fig. 2 shows the
theoretically analyzed (i.e., λ∗) and simulated rate of cost in
our optimal stopping rule. It can be seen that the analytical and
simulation results closely match, thus validating our analysis.
Fig. 2 also shows simulated rates of cost in the two heuristic
stopping rules. Our optimal stopping rule outperforms the two
heuristic rules.

IV. CONCLUSION

The problem of traffic scheduling in vehicular delay tolerant
networks is studied, by taking into account the transmission
energy consumption and the queueing delay. Cost functions
are defined, and the rate of overall cost is minimized. Our
analytical results show that the RSU should transmit its traffic
to the passing-by vehicle if its queueing delay is above a
threshold. The optimal threshold and the corresponding mini-
mal rate of cost can be derived analytically, and are validated
by simulation.
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