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Abstract—Cooperative multicast is an effective technique
to provide reliable multicast service in wireless networks.
However, selfish nodes may act as free riders to maximize their
payoffs, and an incentive mechanism is needed to stimulate
cooperation. In this paper, we employ a game theoretic
approach to analyze the interactions among selfish mobile
nodes in wireless multicast networks. The cooperation process
is modeled as an infinite repeated game and the desired
cooperation state that achieves absolute fairness and Pareto
optimality is derived. A Worst Behavior Tit-for-Tat (WBTFT)
incentive strategy is proposed to stimulate cooperation at the
desired cooperation state. In the proposed scheme, a node
monitors others’ behaviors and makes decisions according to
the worst behaved node. With perfect monitoring, we analyze
the conditions for the proposed strategy to be subgame perfect.
To address the issue of imperfect monitoring, an interval
based estimation method is proposed and the subgame perfect
equilibrium conditions are derived under the assumption that
nodes are bounded rational. Simulation results show that the
proposed strategy can efficiently enforce cooperation even with
imperfect monitoring, and its performance is close to that when
all nodes fully cooperate with each other and when they can
perfectly monitor each other’s behavior without errors.

Index Terms – wireless multicast, cooperation, repeated
game, incentive mechanism, bounded rational.

I. INTRODUCTION

In the past decade, multimedia broadcast/multicast appli-
cations over wireless networks have become popular, where
multimedia data are delivered to a group of nodes simulta-
neously. Examples include the Internet Protocol Television
(IPTV) over WiMax [1] and multimedia broadcast/multicast
service (MBMS) in 3G networks [2], [3]. To combat channel
fading, cooperative multicast has been shown as an effective
technique to provide reliable multicast service in wireless
networks [4]–[11], where successful nodes are selected as
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relays to rebroadcast the data. In most of the existing co-
operation strategies, it is assumed that nodes will cooperate
unconditionally, and always forward data when selected as
relays. However, in many applications, nodes are selfish and
prefer receiving data from others but would not contribute
at all, since relaying data costs extra energy. Therefore, it
is critical to design an incentive mechanism to stimulate
cooperation among selfish nodes.

In the literature, a number of incentive mechanisms have
been proposed to stimulate cooperation in wireless networks,
which can be briefly classified into three categories: payment
based mechanisms [12]-[14], reputation based mechanisms
[15]-[22] and punishment based mechanisms [24]-[25]. Pay-
ment based mechanisms introduce credits (or virtual cur-
rency) as payment for cooperative services, where nodes
who get services should be charged and those who help
should be remunerated. Examples include the “nuglets”
mechanism in [12] and the “Sprite” system in [13]. However,
these mechanisms require temper-proof hardware or central
banking service to coordinate the credit exchange, which
greatly limits their applications. In reputation based mech-
anisms, nodes monitor each other’s behavior and cooperate
with those who maintain good reputation. Based on this
idea, CORE [16] and CONFIDENT [17] are proposed to
enforce cooperation, which can efficiently detect and isolate
misbehaved nodes. In [20] and [21], an attack-resist cooper-
ation stimulation mechanism is proposed with consideration
of noisy channels and the imperfect monitoring process.
The main idea in punishment based mechanisms is to pun-
ish non-cooperative nodes by employing some punishment
strategy. In [23], a “punish-and-forgive” strategy is proposed
to enforce cooperative spectrum sharing in cognitive radio
networks, where a punishment period will be triggered
whenever a deviating behavior is detected. A similar strategy
is employed in [24], and a cartel maintenance framework is
proposed to stimulate cooperation among selfish nodes in a
distributed manner.

Most of the existing incentive mechanisms are proposed
for unicast scenarios, where nodes communicate with each
other through point-to-point links. The special features of
wireless multicast networks pose great challenges for coop-
eration stimulation. First, in multicast networks, communi-
cation is point-to-multiple points. The broadcast nature in
wireless channels and the heterogeneous behaviors of nodes
in the multicast group make it difficult to design payment
based mechanisms or reputation based mechanisms (i.e.,
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it is hard to decide who should pay for the cooperative
services, and a node may not have the choice to only
cooperate with those good-reputation nodes due to the
broadcast nature). Second, due to the existence of noise
and fading in wireless channels, packets may be dropped
during transmission. Therefore, a cooperative behavior may
not provide the expected service, and hence may not get
any reward. Moreover, in real applications with distributed
nodes, the monitoring process is usually imperfect. Since a
multicast node may need to monitor all others’ behaviors, its
monitoring results may have large errors, which may result
in frequent undesired decisions and may discourage node
cooperation.

In this work, we design an incentive mechanism to stim-
ulate cooperation among selfish nodes in wireless multicast
networks. We consider a two-phase cooperative multicast
scenario where a BS multicasts data packets to a group
of nodes in the first phase, and nodes cooperate with each
other to distribute the data in the second phase. We consider
the scenario where nodes are selfish and can decide their
transmission power when selected as relays. To address
the aforementioned challenges, we employ game theory to
analyze the cooperation process and propose a punishment
based mechanism, where nodes decrease their transmission
power (or even do not cooperate) when a misbehavior
is detected. The major contributions of this work can be
summarized as follows:

• We provide game theoretic analysis of the cooperative
multicast process. We model the cooperative multi-
cast process as an infinite repeated game, and find
the desired cooperation power level that satisfies the
absolute fairness and the maximum payoff criteria. We
also demonstrate that the desired power level is Pareto
optimal. To our best knowledge, this is the first work
to study cooperation stimulation in wireless multicast
networks using game theoretic approaches.

• We propose a punishment based incentive strategy to
stimulate cooperation for multicast applications. To
address the challenge of heterogeneous behaviors in
multicast networks, we introduce a Worst Behavior Tit-
for-Tat incentive strategy. The main idea is that each
node monitors others’ behaviors within a certain period,
and makes a similar move to the worst behavior it
has observed. Through theoretical analysis, we show
that by employing this strategy, nodes are encouraged
to perform cooperatively, since any deviation from the
desired power level leads to a low-cooperative or even
non-cooperative phase, which lowers their payoffs.

• We develop a novel interval based estimation method
to address the issue of imperfect monitoring. We con-
sider the realistic scenario that the monitoring process
is imperfect. In this scenario, nodes make decisions
based on unreliable information and may not cooperate
with each other at the desired level. To address this
issue, we propose an interval based estimation method

Fig. 1. System model.

that gives more reliable estimation results when nodes
choose transmission power from a discrete set. Through
simulations, we show that the proposed strategy with
interval based estimation can enforce cooperation effi-
ciently even with imperfect monitoring, at a level that
is close to the desired cooperation state.

The rest of the paper is organized as follows. Section
II describes the system model and formulates the repeated
game. Equilibrium of the game is studied in Section III,
and the cooperation stimulation strategy is proposed and
analyzed in Section IV. Performance evaluation is provided
in Section V, and conclusion is drawn in Section VI.

II. SYSTEM MODEL AND GAME FORMULATION

Consider a single hop multicast network as shown in Fig.
1, where a base station (BS) multicasts data packets to a
group of N mobile nodes that are randomly deployed within
a circular area. The distance between the BS and a node is
much larger than that between any pair of nodes. To improve
the network performance, a cooperative multicast strategy is
employed, which divides a time slot into two subslots. In the
first subslot, denoted as phase 1, the BS broadcasts a packet
and then randomly selects a relay based on the feedbacks
from nodes who correctly receive the packet. Here, we say a
node succeeds in phase 1 if it receives the packet correctly
from the BS. In the second subslot, denoted as phase 2,
the selected relay rebroadcasts the packet to those who do
not succeed in phase 1. The wireless channel between the
BS and a node experiences Rayleigh fading and AWGN
noise (with complex Gaussian distribution with zero mean
and variance N0, i.e., CN (0, N0)), and the channel gain is
assumed to be independent and identically distributed (i.i.d.)
with complex Gaussian distribution CN (0, σ2

B)1. Similar
to [26], the probability that a node correctly receives a
packet from the BS is pB = exp

(
N0(1−2γ0 )

P0σ2
B

)
, where

P0 is the BS’s transmission power and γ0 is the BS’s
transmission rate. Similarly, the channel gain between node

1In this work, we only consider path loss and Rayleigh fading channels,
and the i.i.d. assumption is reasonable when the BS is far away from
the node group while the nodes are close to each other. Note that the
i.i.d. assumption is only for analysis. In the simulations in Section V, the
channel from the BS to a node is based on the real distance between them
and Rayleigh fading.
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i and node j is modeled as CN (0, σ2
ij), and the probability

that node j successfully receives a packet from node i is
pij = exp

(
N0(1−2γ1 )

Piσ2
ij

)
,2 where Pi is node i’s transmission

power and γ1 is node i’s transmission rate3. Since nodes
are mobile, it can be seen that the success probability pij

changes from time to time. To simplify the analysis, we
use the following approximation: for any pair of mobile
nodes i and j, we can calculate the statistical mean of
N0(2

γ1−1)
σ2

ij
according to the mobility model and the statistics

of the channel gain, which is denoted as D, and the overall
probability that node j successfully receives a packet from
node i is approximated as pij ≈ pr(Pi)

4
=exp

(
−D
Pi

)
,

∀ i, j ∈ {1, 2, ...N}, i 6= j 4.
In the above system model, it can be seen that forwarding

data benefits unsuccessful nodes, but incurs some cost to
the relay, such as extra energy consumption. Therefore, a
selfish node would expect others to cooperate but would
not cooperate itself. Consider the scenario where nodes are
all selfish and aim to maximize their own profits. Then, the
cooperative multicast process can be modeled as a game,
where each node is a player. When selected as a relay, a
node can decide the transmission power to maximize its
payoff, which is defined as the reward for receiving packets
(either from the BS or from relays) minus the cost to
forward packets. Since the multicast session usually lasts for
a long time, nodes may perform the decision-making process
repeatedly. Therefore, the interactions between nodes can
be formulated as a repeated game. Denote the reward for
correctly receiving a packet as r0 > 0 and the cost for
transmitting a packet with unit power as c0 > 0, where
r0 and c0 are application dependent constants. Consider
M time slots as a stage, in which we assume that a node
does not change its transmission power when selected as a
relay. Then the cooperative multicast game can be defined
as follows:

Definition 1: The Cooperative Multicast Game is the
game G =〈 N , Pk,πk〉, where
• N ={1,2,...,N} is the set of nodes (players);
• Pk = [P k

1 , P k
2 , ..., P k

N ]. P k
i ∈ [0, Pmax] is node i’s action

in stage k, which means that, if node i is selected as a
relay, it transmits the packet with power P k

i .5 Pmax is the
maximum power that a node is willing to use for cooperation
during a long-period multicast program;6

• πk = [πk
1 , πk

2 , ..., πk
N ]. πk

i = r0(nk
Bi + nk

Ri) − c0n
k
i P k

i

2Throughout this manuscript, when there are two subscripts for a symbol,
e.g. pij , if not explicitly specified, the first one means the transmitter and
the second means the receiver.

3In this work, we assume the transmission rate of a relay is fixed, which
is determined by the packet size and length of the time slot.

4In the simulations in Section V, pij is calculated based on the real
distance between node i and node j and the Rayleigh fading model. The
simulation results show that our strategy designed with approximation can
work efficiently in real scenarios.

5If P k
i = 0, it means node i does not relay any packet within stage k.

6In this work, we consider the homogeneous scenario where all nodes
have the same Pmax.

is node i’s expected payoff in stage k, where nk
Bi is the

expected number of packets correctly received from the BS
in stage k, nk

Ri is the expected number of packets not
successfully received from the BS but successfully received
from relays in stage k, and nk

i is the expected number of
packets that node i should forward to others in stage k.

We consider the scenario where nodes stay in the mul-
ticast session for a long time and no one knows exactly
when others will leave the multicast service and when the
game will end. Then the cooperative multicast process can
be viewed as an N -player infinite repeated game. In such a
repeated game, at the beginning of stage k, node i makes
a decision of P k

i based on other nodes’ past behaviors
according to strategy si. We assume that any node i is
rational [27] and intelligent,7 and it makes decisions to
maximize its long term expected payoff

Vi =
∞∑

k=0

(δ)kπk
i , (1)

where π0
i is node i’s expected payoff in the current stage,

and δ ∈ (0, 1) is a common discount factor that characterizes
how much nodes care about their future payoffs. From the
above game model, it can be seen that, in order to motivate
nodes to work cooperatively, a proper incentive strategy
should be designed such that nodes will get more benefit
by following the strategy rather than deviating from it.

III. EQUILIBRIUM ANALYSIS OF COOPERATIVE
MULTICAST GAME

In the previous section, we have modeled the cooperative
multicast process as an N -player infinite repeated game.
Next, before designing the incentive strategy, it is important
to analyze the Nash Equilibrium (NE) points of the game.
NE is a steady state of the game where players do not change
their actions (or strategies). Obviously, the incentive strategy
should enforce cooperation at an NE from which no one has
intention to deviate. According to the Folk theorem [28], any
feasible and enforceable action profile of a stage is possible
to be an NE of the corresponding infinite repeated game. In
our model, feasible means the action profile can be realized
(where P k

i ∈ [0, Pmax], ∀i ∈ N ), and enforceable means
each node’s expected payoff should be no worse than that
without cooperation. Then the question is which NE is the
desired one that should be enforced. Several issues need
to be considered when choosing the NE. First, in many
applications, nodes should be treated fairly. Second, nodes
tend to maximize their expected payoffs. Based on these, we
choose the desired NE according to the following criteria: (i)
absolute fairness, which requires that the expected payoffs
of all nodes are the same, and (ii) maximum payoff, which

7Rational means a node makes decisions consistently in pursuit of its
own profit, and intelligent means a node knows everything about others’
rationality and takes into account others’ performance when making its
decision.
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means the desired NE achieves the maximum payoff profile
under the absolute fairness constraint.

Next, we find the desired NE action profile according to
the above criteria. Denote P = [P1, P2, ..., PN ] as the action
profile in a stage and π(P) = [π1(P), π2(P), ..., πN (P)] as
the corresponding expected payoff vector. Then finding the
desired NE is equivalent to solving the following optimiza-
tion problem:

max
P

πi(P) subject to πi(P) = πj(P), ∀ i, j ∈ N , i 6= j.

(2)
Since the channel gain between the BS and a node is i.i.d.
and the relay is randomly selected, each node has the same
chance to be selected as a relay, and that probability is

q1 =
N−1∑
t=1

Pr{node i is selected|t nodes succeed

in phase 1}Pr{t nodes succeed in phase 1}

=
N−1∑
t=1

1
N

(
N

t

)
pt

B(1− pB)N−t

=
1
N

(
1− pN

B − (1− pB)N
)
. (3)

Moreover, the probability that node i does not receive the
packet correctly from the BS while node j is selected as a
relay is

q2 =
N−1∑
t=1

Pr{node j is selected|node i does not succeed

in phase 1 and t nodes succeed in phase 1}
×Pr{node i does not succeed in phase 1
and t nodes succeed in phase 1}

=
N−1∑
t=1

1
N − 1

(
N − 1

t

)
pt

B(1− pB)N−t

=
1

N − 1
(
1− pB − (1− pB)N

)
. (4)

In a stage, the expected number of packets that node i
correctly receives from the BS is M · pB , the expected
number of packets received from relay node j when node i
does not receive correctly from the BS is either M ·q2·pr(Pj)
(if Pj > 0) or 0 (if Pj = 0), and the expected number of
packets that node i should transmit is M · q1. In a stage, let
r(x) denote the reward that a node gets from another node
whose transmission power is x, and c(x) denote the cost of
a node if it uses power x to cooperate. Then, we have

r(x) =

{
0 if x = 0,

Mq2r0pr(x) otherwise,
and c(x) = Mq1c0x.

(5)
The expected payoff of node i in one stage is

πi(P) = MpBr0 +
∑

j∈N ,j 6=i

r(Pj)− c(Pi). (6)

Note that the channel between the BS and a node
is assumed to be i.i.d., then the packet delivery success

probability from the BS to any node (pB) is the same.
According to (6), it can be easily shown that to achieve
absolute fairness (where π1(P) = π2(P) = ... = πN (P)),
the transmission power of all nodes should be the same.
That is P1 = P2 = ... = PN . Thus, the expected payoff for
node i under the fairness constraint can be represented as:

πi(Pi) = MpBr0 + (N − 1)r(Pi)− c(Pi)
= MpBr0 + g(Pi), (7)

where g(x)
4
=(N − 1)r(x) − c(x). Note that, in order to

enforce cooperation, the expected payoff of each node at
the desired NE should be larger than that when nodes do
not cooperate. That is, πi(Pi) > MpBr0, or equivalently,
g(Pi) > 0. Assume there exists a Pi ∈ (0, Pmax] such that
g(Pi) > 0. Then solving (2) is equivalent to solving

max
x

g(x), subject to x ∈ (0, Pmax] and g(x) > 0. (8)

The solution to (8) is provided in Appendix A, and the
desired power for all relays is

P ∗ =
{

arg maxx>0 g(x) if Pmax ≥ arg maxx>0 g(x);
Pmax if Pmax < arg maxx>0 g(x).

(9)
Therefore, the desired action profile that satisfies the ab-
solute fairness and the maximum payoff criteria is P∗ =
[P ∗, ..., P ∗]. Note that the system throughput reaches its
maximum when everyone uses the maximum power (Pmax)
to cooperate. Interestingly, the solution in (9) shows that
Pmax is exactly the desired power if it is less than a threshold
value. Moreover, the desired NE also has the following
property.

Lemma 1: The NE with P∗ = [P ∗, ..., P ∗] is Pareto
optimal, that is, no one can increase its expected payoff
without decreasing any other node’s expected payoff by
taking a different action.

The proof is provided in Appendix B. Thus, we have
found the NE that can achieve absolute fairness and Pareto
optimality. Recall that Pmax is the maximum power that a
node is willing to offer during cooperation for the long-
period multicast process. In the following, for simplicity of
presentation, we consider only the scenario that P ∗ = Pmax,
that is, Pmax < arg maxx>0 g(x) in (9), and design an
incentive strategy to stimulate cooperation at the desired NE
point P∗ = [Pmax, ..., Pmax]. Note that when P ∗ < Pmax

(that is, Pmax ≥ arg maxx>0 g(x) in (9)), the desired
cooperation power is P ∗, and selfish nodes would not
offer more power than P ∗ for cooperation. The proposed
cooperation stimulation strategy in Section IV can still work
after replacing Pmax with P ∗.

IV. COOPERATION STIMULATION STRATEGY

A. Worst Behavior Tit-for-Tat Incentive Strategy

In this section, we first propose a Worst Behavior Tit-
for-Tat incentive strategy and then analyze its effectiveness
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in perfect and imperfect monitoring scenarios. Before in-
troducing the strategy, we first define a node’s behavior as
follows:

Definition 2: The behavior of node i observed by node
j in stage k, denoted as bk

ij , is defined as the probability
that node j successfully receives a packet from node i.
Mathematically, if node i takes the action P k

i , we have
bk
ij = pr(P k

i ) = exp(−D/P k
i ).

According to this definition, the observed behavior is a
function of a node’s action. Note that under our approxi-
mation of pij as pr(Pi) in Section II, for any node i, its
behavior observed by all other nodes is the same, which
can be further simplified as bk

i = pr(P k
i ). Although the

action of a node is private information, the node’s behavior
can be estimated and monitored based on the number of
successfully delivered packets from the node. During the
multicast process, a node can monitor others’ behaviors and
adjust its decision accordingly. Then the proposed Worst
Behavior Tit-for-Tat strategy s∗ is as follows:
(i) At the beginning of the multicast session, all nodes
cooperate with action Pmax.
(ii) In each stage, all nodes monitor others’ behaviors.
(iii) In stage k, if the worst observed behavior among node
i’s observations in the previous stage, denoted as b†, is
greater than a threshold bT , then node i takes an action that
gives the same behavior as b†. Otherwise, node i does not
cooperate. Mathematically, from the definition of behavior,
we have

P k
i =

{ −D
ln b† , if b† > bT ;

0, otherwise.
(10)

(iv) If node i’s observations of all other nodes’ behaviors are
the same as its own behavior in the previous L consecutive
stages, then node i should use Pmax to resume cooperation
in stage k.

The main idea of this strategy is that if a node deviates
from the desired action (Pmax), all other nodes would
behave the same as the deviating node, or even do not coop-
erate when the deviating behavior is below a threshold. Note
that in this strategy, nodes make decisions mainly based on
the one-stage observations, and a deviating behavior will
result in a reduced reward immediately in the next stage.
Then, intuitively, a selfish and rational node will not deviate
if the benefit by deviating is less than the corresponding
decrease of reward. If a node happens to make a mistake
(e.g., use a lower transmission power) due to imperfect
monitoring, other nodes take the misbehavior as a deviation
and the desired cooperation state may not be achieved. To
address this issue, the proposed strategy allows nodes to
resume cooperation at the desired level when everyone takes
the same behavior for L consecutive stages.

B. Equilibrium Analysis of WBTFT Strategy with Perfect
Monitoring

According to the proposed strategy, nodes make decisions
based on their monitoring results. Thus, their actions are

greatly affected by the accuracy of the monitoring technique.
To gain some insight, we first analyze the proposed strategy
under the ideal case, where the monitoring process is perfect
and everyone knows others’ actual behaviors in the previous
stage. We analyze the proposed strategy from two aspects:
whether the desired NE can be achieved if everyone follows
the proposed strategy, and whether the strategy is a subgame
perfect equilibrium strategy (which means a node cannot get
more benefits by deviating to any other strategy from any
stage if other nodes follow the proposed strategy).

First, consider the scenario that all nodes follow the pro-
posed strategy from the initial stage. Since the monitoring
process is perfect, all nodes’ observations are the same
(as the behavior by taking action Pmax) in the first stage.
According to the proposed strategy, nodes will cooperate
with the desired power Pmax in the second stage. Following
the same idea, it can be seen that in the subsequent stages,
nodes will always cooperate with Pmax. Hence, the desired
cooperation state can be achieved if all nodes follow the
proposed strategy.

The next question is whether the proposed strategy is a
subgame perfect equilibrium strategy. In the literature, One-
Shot Deviation Principle is used to analyze the subgame
perfection of a strategy [29], which states that a strategy
is subgame perfect if a player cannot get more benefit by
deviating for one stage and then coming back to follow the
strategy again. Based on this principle, the WBTFT strategy
can be analyzed as follows.

Denote P † as the desired action for the current stage
according to the proposed strategy s∗. Without loss of
generality, we assume P † has been used by all nodes in
the previous K stages, where K < L. Then if everyone
follows s∗, node i’s long term expected payoff is given by

Vi(s∗) =
L−K−1∑

k=0

(δ)kπi(Pk) +
∞∑

k=L−K

(δ)kπi(P∗), (11)

where P k
j = P † for k < L−K, ∀j ∈ N . Note that P † is

the action in the current stage according to the incentive
strategy (which may or may not be the same as Pmax).
Since we assume that the action P † has been used by
all nodes for K stages, then after another L − K stages,
all users will resume cooperation with the desired power
level Pmax according to the proposed strategy. Therefore, in
(11), the first term denotes the summation of payoffs before
resuming cooperation, while the second term denotes the
summation of payoffs after everyone resumes cooperation at
the desired power level. Note that with perfect monitoring,
any one-shot deviation behavior of node i will be recognized
by other nodes, who will react accordingly in the next L
stages. Assume node i employs a one-shot deviation strategy
s′ in the current stage that gives P ′0i = P ′i < P †. The
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corresponding long term expected payoff is given by

Vi(s′) = πi(P′0) +
L∑

k=1

(δ)kπi(P′k) +
∞∑

k=L+1

(δ)kπi(P∗),

(12)
where P ′0j = P † (∀j 6= i) and P ′kj = P ′i (∀j ∈ N ,
0 < k < L + 1) according to the WBTFT strategy s∗.
According to the One-Shot Deviation Principle, s∗ is a
subgame perfect equilibrium strategy if Vi(s∗) ≥ Vi(s′).
It is shown in Appendix C that this inequality holds under
certain conditions, which are summarized in the following
proposition.

Proposition 1: In the cooperative multicast game with
perfect monitoring, the WBTFT strategy is a subgame
perfect equilibrium strategy if the following conditions are
satisfied:
(a) G(x)

4
=

∑L
k=1 δk

∑L
k=0 δk (N − 1)r(x) − c(x) > 0, ∀x ∈

(−D/ ln bT , Pmax], and (b) Pmax ≤ arg maxx>0 G(x).
Given that δ is close to 1, we can select bT and L properly

such that the above two conditions are satisfied. Hence,
cooperation can be stimulated using the proposed WBTFT
strategy.

C. Refined Strategy and Equilibrium Analysis with Imper-
fect Monitoring

The previous analysis is based on the assumption that
the monitoring process is perfect. Here, we extend the
analysis to a more realistic case, where nodes’ monitoring
results may be erroneous. In a distributed scenario, a node
can estimate others’ behaviors based on the number of
successfully received packets from them. However, due to
packet loss and bit errors, the monitoring results may be
erroneous, and therefore undesired actions may be carried
out. To address this issue, we propose an interval based
estimation method, and derive the equilibrium conditions
for the proposed strategy with imperfect monitoring.

Typically, estimation of another user’s behavior is based
on some observed information. In this game model, since
the behavior is defined in terms of probability, then any
node j’s observed information of another node i can be
defined as the proportion of packets that node j correctly
receives from node i among all the packets that node i

should transmit. Denote yk
ij = nk

ij

n as the information that
node j observes from node i in stage k, where nk

ij is the
number of packets that node j receives correctly from node
i, and n is the average number of packets that a node should
transmit in a stage. Note that if node i transmits n packets
with a certain power that results in a behavior bk

i , then
statistically nk

ij follows a binomial distribution B(n, bk
i ), and

therefore the mean of the observed information yk
ij is bk

i .
Based on this fact, we propose an interval based estimation
method as follows. We divide [0,1] into m + 1 intervals,
[0, β1], (β1, β2], ...(βm, 1], and within the lth (0 ≤ l ≤ m)
interval, we select a behavior b̂l to represent the behavior

Algorithm 1 Determination of b̂l and βl (l = 1, 2, ..., m).

1: Select a index value m = 100 and let b̂m =
b∗
4
=exp(−D/Pmax);

2: Find βm ∈ { 1
n , 2

n , ..., n−1
n , 1} such that Pr{yk

ij ≤
βm|bk

i = b̂m, nk
i = n} = F (nβm;n, b̂m) = ε;

3: Set l = m;
4: while βl > bT do
5: for βl−1 = βl − 1

n to 0 with step 1
n do

6: Find b̂l−1 that satisfies F (nβl−1;n, b̂l−1) = ε;
7: if 1− F (nβl;n, b̂l−1) ≤ ε then
8: break and go to step 11;
9: end if

10: end for
11: Set l = l − 1;
12: end while
13: Adjust the index values l → 1, l + 1 → 2,..., m →

m− l + 1.

level. If node j’s observed information of node i, yk
ij , falls

in the lth interval, then behavior level b̂l is selected as node
j’s estimation result of node i’s behavior in stage k, i.e.,
b̃k
ij = b̂l. The interval boundaries ({βl}) and behavior levels

({b̂l}) are designed according to a parameter ε such that if
node i transmits n packets with behavior b̂l, then any other
node’s estimation error probability (i.e., the probability that
the estimation of node i’s behavior is not b̂l) is no larger
than a small value 2ε. The design procedure is shown in
Algorithm 1 for 1 ≤ l ≤ m. Note that b̂0 = 0.

In this algorithm, F (x;n, p) is the cumulative distribution
function of a binomial random variable X ∼ B(n, p), and
βl is selected from the set { 1

n , 2
n , ..., n−1

n , 1}. Note that the
number of intervals m + 1 is determined by the system
parameters (i.e., Pmax, D, n, bT and ε), and its value
is unknown until all the intervals are determined. Since
we start searching the intervals from the highest level, we
initialize m using an arbitrarily chosen large number in the
first step, and in this work, we use m=100 as an example.
Then, in the last step, after all intervals are determined, we
adjust m and the interval indices accordingly based on the
number of determined intervals. The details of Algorithm 1
are explained as follows.

In step 1, we set the desired cooperation behavior b∗

(where nodes cooperate with Pmax) as the highest behavior
level b̂m. In step 2, we determine βm according to the design
parameter ε, such that if node i takes behavior b̂m, the
probability that yk

ij falls in [0, βm] is ε.8 Then from step 4 to
step 12, the boundary points and the corresponding behavior
levels for other intervals are found one by one until βl is
smaller than the threshold bT . We use the (m−1)th interval
as an example. Its right boundary βm is already determined

8Note that ε is selected from the set
{F (1; n, b∗), F (2; n, b∗), ..., F (n−1; n, b∗), 1} so that there exists such
a βm in step 2 of Algorithm 1.
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b̂m−1 b̂m

PDF of yk
ij

Fig. 2. Probability density function (PDF) of yk
ij .

when the mth interval is dealt with. So we need to determine
its left boundary βm−1. We search the left boundary βm−1

from βm− 1
n to 0 with a step size 1

n . For each possible value
of βm−1, (in step 6) we find the corresponding b̂m−1 such
that if node i takes behavior b̂m−1, the probability that yk

ij

falls in [0, βm−1] is Pr{yk
ij ∈ [0, βm−1]|bk

i = b̂m−1, n
k
i =

n} = F (nβm−1;n, b̂m−1) = ε (i.e., the probability in the
left tail in the PDF figure of yk

ij , as shown in Fig. 2, is ε).
The desired searching result is the largest value of βm−1

such that its corresponding b̂m−1 and itself satisfy Pr{yk
ij ∈

(βm, 1]|bk
i = b̂m−1, n

k
i = n} = 1 − F (nβm;n, b̂m−1) ≤ ε

(i.e., the probability in the right tail of the PDF figure of
yk

ij is no larger than ε).9

Using the above estimation method, if nodes take behav-
iors from the set B = {0, b̂1, ..., b̂m}, the monitoring results
will be more accurate when ε approaches zero. Denote
P = {0, P̂1, ..., P̂m} as the set of power levels that are asso-
ciated with the behavior levels in B, where P̂l = −D/ ln b̂l,
(b̂l ∈ B, 0 < l ≤ m). Then, the WBTFT strategy in
Section IV-A can be refined as follows. In step (ii), nodes
employ the above interval based estimation to estimate each
other’s behavior level. In addition, a communication period
is added at the end of each stage where nodes exchange the
worst observed behavior level index.10 In step (iii), at the
beginning of a stage, nodes choose their transmission power
from the set P according to the smallest behavior level
index obtained at the communication period in the previous
stage. Note that when all nodes follow the proposed strategy,
estimation errors may occur (even with small probabilities),
which will lead the cooperation to a lower power level (e.g.,
the worst behavior is estimated as b† < b∗ and then all nodes

9Note that βl is selected from a discrete set, and we may not guar-
antee that both Pr{yk

ij ∈ [0, βl]|bk
i = b̂l, n

k
i = n} and Pr{yk

ij ∈
(βl+1, 1]|bk

i = b̂l, n
k
i = n} are equal to ε. In this work, we let

Pr{yk
ij ∈ [0, βl]|bk

i = b̂l, n
k
i = n} = ε and Pr{yk

ij ∈ (βl+1, 1]|bk
i =

b̂l, n
k
i = n} ≤ ε for 0 < l < m.

10We assume the information exchange is perfect, which can be achieved
by introducing some trust management scheme. The discussion of trust
management is beyond the scope of this paper, which will be considered
in future work. With the information exchange, all nodes will make the
same decisions by following the refined strategy, so that cooperation can
be resumed when undesired decisions are carried out.

will cooperate with P † = −D/ ln b†). According to step (iv)
of the proposed strategy, if there is no estimation error from
then on, after L stages, nodes will resume cooperation at
the desired power level Pmax.

The next question is whether the refined strategy is a
subgame perfect equilibrium strategy when there are estima-
tion errors. With imperfect monitoring, a node is uncertain
about others’ behaviors in the previous stage, and it is
also not sure how others will react in the next stage if it
takes a certain action. Therefore, it is difficult to find a
closed-form formulation of the long term expected payoff
due to the infinite number of possible future paths, which
makes it difficult to check the equilibrium condition. Note
that in reality, a node may be bounded rational [30] when
making a decision, that is, it only cares those outcomes
with large probabilities rather than considering all possible
cases. Based on this fact, we analyze the strategy under the
bounded rational assumption.

We assume a bounded rational node i has the following
characteristics. When node i estimates other nodes’ behav-
iors and its own expected payoff, if node t takes an action
that gives the behavior bk

t in stage k, node i will consider the
scenario where another node j’s observed information yk

tj

falls in the interval (u(bk
t ), v(bk

t )), which satisfies Pr{yk
tj ≤

u(bk
t )|bk

t } ≤ η and Pr{yk
tj ≥ v(bk

t )|bk
t } ≤ η, where η is a

small value close to zero; and node i will ignore the small-
probability scenarios where yk

tj falls outside the interval
(u(bk

t ), v(bk
t )). Note that when analyzing the equilibrium of

the proposed strategy, a node always assumes that others will
follow this strategy. Therefore, a node can predict others’
behaviors in future stages and estimate its long term payoff
accordingly. It can be seen that when estimating the long
term payoff, instead of considering all possible outcomes,
the bounded rational nodes will focus on the monitoring
results (predicted for future stages) within a range with a
large coverage probability (equal to or greater than 1− 2η).
Intuitively, when η becomes smaller, the estimated payoff is
closer to the expected payoff. On the other hand, a smaller
η may result in higher computational complexity that is
difficult to handle. Note that when all nodes follow the
refined strategy, they will choose behaviors in the set B.
In this case, according to the interval based estimation, it is
easy to check that a bounded rational node i with η ≥ ε will
only consider the scenario that its observed information from
another node j with behavior bk

j = b̂l falls in the lth interval
(βl ≤ u(bk

j ) < v(bk
j ) ≤ βl+1), and node i’s estimation result

of node j’s behavior is exactly b̃k
ji = b̂l(= bk

j ). Similarly,
when estimating its long term payoff, node i will only
consider the scenario that all nodes’ estimations in future
stages are correct, which greatly simplifies the calculation
of the estimated payoff. In this work, we use η = ε when
analyzing the equilibrium.

Similar to the analysis of the scenario with perfect mon-
itoring, the One-Shot Deviation Principle is also employed
to study the equilibrium condition for the refined strategy.



IEEE TRANSACTIONS ON SIGNAL PROCESSING (ACCEPTED) 8

Assume that all nodes follow the refined strategy in the past
stages. Denote the worst behavior level index in the previous
stage as l†. Without loss of generality, we assume that if
all nodes follow the strategy, they will cooperate with Pl†

for L consecutive stages and then resume cooperation at
Pmax. Then according to the bounded rational assumption
and interval based estimation, node i will consider that all
nodes’ estimations are correct, and the estimated long term
payoff can be represented as

Ṽ ∗
i =

L−1∑

k=0

(δ)kπi(Pl†) +
∞∑

k=L

(δ)kπi(Pmax). (13)

If node i decides to take a one-shot deviation in the current
stage with P ′i < Pl† that gives behavior b0

i ∈ (b̂l, b̂l+1],
where bT < b̂l+1 ≤ b̂l† . Based on the bounded rational
assumption with η = ε, node i will believe that any other
node j’s observation y0

ij falls in the interval (u(b0
i ), v(b0

i )),
where Pr{y0

ij ≤ u(b0
i )|b0

i } ≤ ε and Pr{y0
ij ≥ v(b0

i )|b0
i } ≤ ε.

From the interval based estimation, it can be shown that
u(b0

i ) ≥ βl and v(b0
i ) ≤ βl+2. Therefore, node i will believe

that node j’s estimated behavior b̃0
ij is either b̂l or b̂l+1.

Denote wij(b̂l+1|b0
i ) as node i’s estimated probability11 that

node j’s estimation is b̃0
ij = b̂l+1 given b0

i ∈ (b̂l, b̂l+1],
which can be calculated as

wij(b̂l+1|b0
i ) =

Pr{y0
ij ∈ (βl+1, v(b0

i ))|b0
i }

Pr{y0
ij ∈ (u(b0

i ), v(b0
i ))|b0

i }
. (14)

Since nodes exchange their estimated worst behavior levels
at the end of each stage, node i’s estimated probability that
the worst behavior level in the current stage is b̂l+1, denoted
as wi(b̂l+1|b0

i ), is given by

wi(b̂l+1|b0
i ) =

∏

j∈N ,j 6=i

wij(b̂l+1|b0
i ). (15)

Then node i’s estimated probability that the worst behavior
level is b̂l is wi(b̂l|b0

i ) = 1−wi(b̂l+1|b0
i ), and its estimated

long term payoff can be represented as

Ṽ ′
i

= MpBr0 + (N − 1)r(P̂l†)− c(P ′i )

+
L∑

k=1

(δ)k
{

πi(P̂l)wi(b̂l|b0
i ) + πi(P̂l+1)wi(b̂l+1|b0

i )
}

+
∞∑

k=L+1

(δ)kπi(Pmax). (16)

Following analysis similar to that in Section IV-B, the
conditions for Ṽ ∗

i ≥ Ṽ ′
i can be derived, which are in the

following proposition.
Proposition 2: In the cooperative multicast game, the

refined WBTFT strategy is a subgame perfect equilibrium

11Here node i’s estimated probability of an event means the probability
that node i estimates the event happens.

strategy with imperfect monitoring under the bounded ra-
tional assumption if the following conditions are satisfied:
(a) Conditions in Proposition 1 are satisfied.
(b) G̃(x, l) > 0 ∀ 0 ≤ l < m and x ∈ (b̂l, b̂l+1),
where

G̃(x, l) = c

(−D

lnx

)
−

[
wi(b̂l|x)c(P̂l) + wi(b̂l+1|x)c(P̂l+1)

]
.

The proof is in Appendix D. The above conditions can
be satisfied by appropriately choosing the parameters ε and
L, and hence the refined strategy maintains an equilibrium
even with the imperfect monitoring.

D. WBTFT with Optimal Power Allocation Scheme

Our previous analysis is based on the assumption that
nodes use the same transmission power for all time slots
during one stage. However, nodes may employ different
power levels for different time slots or only transmit a
portion of packets when being selected as a relay in a stage.
Here, we discuss the power allocation scheme within a stage
and show that WBTFT strategy actually achieves the optimal
power allocation when the parameter bT is no less than 1/e.

First, we consider the scenario where nodes vary the
transmission power within a stage. Suppose node i transmits
k packets in a stage, the power allocated for the tth packet is
denoted as Pt, t = 1, 2, ..., k, and the total cost in this stage
is ci =

∑k
t=1 c0Pt. We further denote the average behavior

of node i observed by any other one as bi = 1
k

∑k
t=1 pr(Pt).

Obviously, a node prefers to provide a large bi with low
cost. Then given a desired behavior bi, the optimal power
allocation scheme should achieve the lowest cost. Based on
this idea, the following lemma can be proved.

Lemma 2: To obtain the same bi, where bi > 1
e , the

optimal power allocation scheme that gives the lowest cost
ci is Pt = P = −D

ln(bi)
, ∀ t = 1, 2, ..., k.

The proof is provided in Appendix E. Lemma 2 implies
that given the desired observed information by others, using
the same power to transmit all packets in a stage gives
the smallest cost. According to the WBTFT strategy, nodes
make decisions based on the observed information. There-
fore, to gain more profit, they will keep the transmission
power unchanged within a stage.

The next question is whether a node will transmit all the
time when being selected as a relay in a stage. Suppose
node i should transmit ni packets in a stage, and its target
behavior is denoted as b†, which is assumed to be greater
than 1/e. Lemma 2 implies that node i will transmit packets
with the same power. However, it can decide to transmit
with a certain probability (or equivalently, only transmit a
portion of ni packets). Denote αi as the probability (or the
proportion of ni) that node i decides to transmit with fixed
power P i when being selected as a relay. Then the expected
number of packets that any other node j can successfully
receive is nij = niαipr(P i). Equivalently, the average
behavior that any other node should observe in the stage
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Fig. 4. Conditions in Proposition 1.

can be represented as bi = αipr(P i), and the corresponding
cost in the stage is given by ci = c0niαiP i. Since nodes
are selfish and tend to minimize their cost, determining the
optimal values of αi and P i is equivalent to solving the
following optimization problem:

min αiP i subject to bi = αipr(P i) = b†. (17)

The solution to (17) is given in Appendix H, which is
{

αi = eb†, P i = D, if b† < 1
e ;

αi = 1, P i = −D
ln b† , if b† ≥ 1

e .
(18)

It can be seen that if the target behavior b† is no less than
1/e, a node will always transmit with fixed power when
being selected as a relay. In addition, if bT ≥ 1/e, then
the refined strategy achieves the optimal power allocation
within a stage.

E. Further Discussion of Designing Issues

In the previous discussion, we have refined the WBTFT
strategy with an interval based estimation method to address

the issue of imperfect monitoring. However, the design
of intervals is based on the approximation that the packet
delivery success probability between node i and node j at
each stage is pij ≈ exp(−D

Pi
), where D depends on the long

term average channel condition between node i and node j.
In real applications, given the mobility model, the average
channel condition between two mobile nodes may fluctuate
from stage to stage, which may result in large estimation
errors when using the intervals designed according to D.
To address this problem, we make the following adjustment
to the interval based estimation scheme. First, we design
a general behavior level set B = {0, b̂1, ..., b̂m} (with
interval boundaries {βl}) according to Algorithm 1 based
on D, and find its corresponding power set P . Note that
in the refined strategy, nodes choose transmission power
from the same power set P based on the worst behavior
level index. Next, in stage k, node j estimates the current
average channel condition between node i and itself (either
by exchanging topology information or using pilot signals),
and calculates the average value of N0(1−2γ1 )

σ2
ij

, denoted as

Dk
ij . Then, node j adjusts its estimation of node i’s behavior

level as follows. In stage k, given P and Dk
ij , if node i

chooses power P̂l ∈ P (1 ≤ l ≤ m), node j’s observed
behavior of node i is b̂k

ijl = exp
(
−Dk

ij/P̂l

)
= (b̂l)Dk

ij/D,
and we update node j’s observed behavior level set of
node i as Bk

ij = {0, b̂k
ij1, b̂

k
ij2, ..., b̂

k
ijm}. We then update

the interval boundaries for each behavior level in Bk
ij ,

by using βk
ijl = (βl)Dk

ij/D. Then node j estimates node
i’s behavior level according to the new intervals at the
end of stage k. That is, if node j’s observed information
of node i, yk

ij , falls in the lth interval (βk
ijl, β

k
ij(l+1)],

then node j’s estimation result of node i’s behavior level
is b̂k

ijl. Note that for the original behavior levels in B,
the intervals are designed such that the estimation error
probability for each behavior level is no larger than 2ε (i.e.,
Pr

{
yk

ij ∈ [0, βl] ∪ yk
ij ∈ (βl+1, 1]|bk

i = b̂l, n
k
i = n

}
≤ 2ε).

Unfortunately, this feature cannot be maintained for
the adjusted intervals. The estimation error probability
decreases with the behavior level index when Dk

ij > D
and increases when Dk

ij < D. An example is shown
in Fig. 3. To guarantee the accuracy of estimation,
we set a threshold value εT . In stage k, if node j’s
observed information from node i, yk

ij , falls in the lth
adjusted interval, then node j first calculates pe =
Pr

{
yk

ij ∈ [0, βk
ijl] ∪ yk

ij ∈ (βk
ij(l+1), 1]|bk

i = b̂k
ijl, n

k
i = n

}

and compares pe with εT . If pe > εT , then the estimation
result is unreliable and will be discarded. At the end of each
stage, nodes only exchange the worst behavior level index
from their reliable estimation results and make decisions
accordingly.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
proposed strategy using simulations. Before showing the
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simulation results, it is worth investigating how to select
the design parameters to satisfy the equilibrium conditions.

First, consider the conditions in Proposition 1. As shown
in the proof of Proposition 1, G(x) has the same prop-
erty as g(x). That is, if there exists an x such that
G(x) > 0, then G(x) monotonically increases in the in-
terval (min{x|G(x) = 0, x > 0}, arg maxx>0 G(x)]. Then,
the conditions in Proposition 1 become min{x|G(x) =
0, x > 0} ≤ −D/ ln(bT ) and Pmax ≤ arg maxx>0 G(x).
Consider a system setup with N = 10, pB = 0.4, D = 0.4,
δ = 0.99 and r0/c0 = 100. Fig. 4 shows min{x|G(x) =
0, x > 0} and arg maxx>0 G(x) with different L. It can be
seen that as L increases, arg maxx>0 G(x) becomes larger,
while min{x|G(x) = 0, x > 0} is close to zero, which
implies the conditions are easier to satisfy when L becomes
larger. Note that to achieve optimal power allocation in a
stage, bT should be no less than 1/e. Therefore, we can
select bT such that bT ≥ max{exp(−D/ min{x|G(x) =
0, x > 0}), 1/e}. In this system setup, if the unit power
is PUNIT = 10 mW, and Pmax is less than 107 mW, then
selecting L = 1 and bT = 1/e can satisfy the required
conditions.

Next, consider the conditions in Proposition 2. It can
be seen that condition (b) of Proposition 2 is related to
the behavior intervals, which are determined based on the
parameter ε. According to the interval based estimation, a
small ε is preferred because the estimation result becomes
more and more accurate when ε approaches zero. However, a
small ε may violate the equilibrium conditions. Thus, given
a network setup, the smallest ε that satisfies the conditions
in Proposition 2 can be found via numerical methods. Some
values of the minimum ε under different Pmax are given in
Table I. Here, the design parameter n is 1000, and other
parameters are the same as that in Fig. 4. It can be seen
that the minimum ε values are all smaller than 0.02, which
is acceptable.

We use simulations to demonstrate the effectiveness of
the proposed incentive strategy. The simulated multicast net-
work consists 10 mobile nodes who are randomly deployed
within a circular area with radius 25m, and a BS located
250m away from the center of the circular area. Each node
is moving according to the random waypoint model: a node
randomly chooses a destination within the circle and moves
forward to the destination at a velocity uniformly chosen
in [0.5m/s, 2.5m/s]. When arriving at the destination, the
node will choose a new location and a new speed to move
on. The BS broadcasts a packet every 10 ms with rate 1
Mbps over a wireless channel with 1MHz bandwidth. The
maximum power that a node offers for cooperation is 40
mW. When selected as a relay, a node can choose the power
between 0 and 40 mW to rebroadcast the packet with rate
1 Mbps. All the wireless channels undergo path loss with
exponent 2 and Rayleigh fading, and the average received
SNR from the BS to a node with distance 250m is 0 dB.
The average received SNR between a pair of nodes with
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Fig. 5. Average payoff with perfect and imperfect monitoring
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Fig. 6. Average payoff with deviating node

distance 25m and unit transmission power 8 mW is 2 dB.
The packet delivery success probability (either from BS to
a node or between two nodes) is calculated is calculated
based on the real distance (either between the BS and a
node or between two nodes) and the Rayleigh fading model.
The design parameter D is calculated by averaging results
from simulations of the above mobility model in 107 time
slots and is approximated by D = 0.40. Other simulation
parameters are listed in Table II.

Fig. 5 shows the average payoff of all nodes in differ-
ent stages when everyone follows the proposed strategy.
The intervals are designed according to n = 1000 and
ε = 0.0158. The corresponding stage length is M = 10103
time slots. Other parameters are L = 1, bT = 1/e and
εT = 0.1. This result is based on 50 simulation runs, each
with 50 stages, and the average payoff of all nodes is plotted.
The results with perfect monitoring process where all nodes
cooperate at the desired power level are also plotted as a
benchmark. It can be seen that the WBTFT strategy with
interval based estimation can achieve cooperation efficiently
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TABLE I
MINIMUM ε VERSUS Pmax/PUNIT .

Pmax/PUNIT 1 2 3 4 5
Minimum ε 0.0119 0.0113 0.0106 0.0126 0.0158
Pmax/PUNIT 6 7 8 9 10
Minimum ε 0.0090 0.0121 0.0132 0.0181 0.0133

TABLE II
SIMULATION PARAMETERS.

Parameter Value Parameter Value Parameter Value
Distance from BS to the center of the circular area 250 m γ0 1 Mbps D 0.4

Radius of the circular area 25 m γ1 1 Mbps c0 2
SNR (from BS to a node with distance 250 m) 0 dB Pmax 40 mW r0 100

SNR (between two nodes with distance 25 m and power PUNIT) 2 dB PUNIT 8 mW δ 0.99
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Fig. 8. Average payoff under different bT

with an average payoff of 92.93 per time slot, which is close
to the desired cooperation state (with perfect monitoring)
with an average payoff of 94.33 per time slot.

In Fig. 6, the payoffs of a node with two different
strategies, the proposed strategy and a deviation strategy,

are compared. We define the deviating ratio θ as the ratio
between the deviating behavior and the desired behavior
generated from the proposed strategy. Specifically, if the
desired behavior in stage k is bk for all nodes, then a
node with a deviating ratio θ will take an action P k

i such
that bk

i = exp(−D/P k
i ) = θ · bk. In this simulation,

node 1 deviates with θ = 0.5 in stage 4, stage 7, stage
10,..., stage 49, and in other stages, it follows the proposed
WBTFT strategy. Other parameters are the same as those
in Fig. 5. It can be seen that whenever node 1 deviates, its
misbehavior will be identified and the corresponding payoff
is reduced in the next stage. Therefore, the proposed strategy
is able to punish the deviating node. The average payoff with
deviation is 87.40 per time slot, which is smaller than that
without deviation. Hence the proposed strategy can motivate
cooperation efficiently.

Fig. 7 shows the impact of L on the performance. Other
parameters are the same as the previous figures and there
is no deviating node. It can be seen that as L increases,
the performance slightly degrades. This is mainly because
when estimation error occurs, a smaller L can help resume
cooperation faster. Therefore, when designing the incentive
strategy for real applications, a small L is preferred so
that cooperation can be easily recovered when undesired
decisions are carried out.

Fig. 8 shows the performance with different bT . Other
parameters are the same as those in Fig. 5. Note that θ = 1
means no one deviates. It can be seen that changing of bT

has more impact on the performance with deviating nodes.
The reason is that when bT becomes larger, the punishment
becomes more severe, since no one will cooperate when a
misbehavior that falls below bT is detected. Although a large
bT is good to provide incentives, it may also degrades the
performance even everyone follows the proposed strategy,
since the cooperative behavior might be estimated as a
deviation if it falls below bT due to estimation errors.

Next, we evaluate the performance of the proposed strat-
egy under different designing parameter n, and the result
is shown in Fig. 9. The incentive strategy is designed
according to n = 100, 500 and 1000 (such that M = 1010,
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TABLE III
BEHAVIOR LEVELS FOR n = 100, 500, 1000.

l 1 2 3 4 5 6 7 8 9 10
Behavior for n = 100 0.382 0.596 0.782 0.923
Behavior for n = 500 0.339 0.432 0.526 0.621 0.710 0.792 0.864 0.923

Behavior for n = 1000 0.390 0.457 0.526 0.593 0.659 0.722 0.781 0.835 0.883 0.923

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
70

75

80

85

90

95

Deviating factor θ

A
ve

ra
g
e
 p

a
yo

ff
 p

e
r 

tim
e
 s

lo
t

 

 

n = 1000

n = 500

n = 100

Fig. 9. Average payoff under different n

1 5 10 15 20 25 30 35 40 45 50
60

65

70

75

80

85

90

95

100

Stages

A
ve

ra
g

e
 p

a
yo

ff
 p

e
r 

tim
e

 s
lo

t

 

 

Varying number of nodes
Fixed number of nodes

Fig. 10. Average payoff with fixed and dynamic membership

5052 and 10103), and the corresponding minimum ε is
0.0210, 0.0173, and 0.0158, respectively. Other parameters
are the same as those in Fig. 5. It can be seen that among
the three designs, n = 1000 and n = 500 achieve relatively
close performance, with n = 1000 being slightly better, and
both are better than n = 100. This can be explained as
follows. First, a larger n means a longer stage, in which
nodes can collect more information to estimate each other’s
behavior. Moreover, the approximation of pij as pr(Pi) in
the system model is more accurate when the stage is longer,
which reduces the estimation errors. Second, according to
Algorithm 1, a larger n gives more behavior levels and

smaller interval ranges for each level. The behavior levels
for n = 100, 500, 1000 are listed in Table III. For n = 1000
and n = 500, the adjacent behavior levels are close to each
other, while for n = 100, the difference between two ad-
jacent behavior levels is larger. Therefore, estimation errors
have greater impact on the performance when n = 100.
Based on the above discussion, when designing the incentive
strategy, a larger n is preferred.

Finally, we evaluate the performance of the proposed
strategy with dynamic membership in each stage. The design
parameters are the same as those in Fig. 5. In the initial
stage, there are 10 mobile nodes. At the beginning of each
stage, one node randomly joins or leaves the group (where
the total number is bounded between 8 and 12). To cope
with the dynamic membership, we fix the average number
of packets that a node should transmit in one stage (n) so
that the design parameters for the incentive strategy do not
change. This can be achieved by adjusting the length of
a stage (M ) as follows: in the current stage with a total
of N ′ nodes, we use (3) to calculate q1, the probability
that a node is selected as a relay, and select the length
of the current stage as M ′ = dn/q1e, where d·e is the
ceiling function. Then, nodes follow the proposed incentive
strategy in Section IV to make decisions. We simulate
both the fixed member scenario with 10 mobile nodes and
the aforementioned dynamic membership scenario, and the
result is shown in Fig. 10. It can be seen that in the scenario
with dynamic members, the proposed strategy can achieve
an average payoff of 91.89 per time slot, which is close to
that of 91.98 per time slot in the fixed member scenario
with 10 nodes.

VI. CONCLUSION

In this work, we study cooperation stimulation among
selfish mobile nodes in wireless multicast networks. We
formulate the cooperative multicast process as an infinite
repeated game and find the desired cooperation state that
achieves absolute fairness and Pareto optimality. To enforce
cooperation, we propose a Worst Behavior Tit-for-Tat in-
centive strategy, and find the subgame perfect equilibrium
conditions in the scenario when nodes can accurately mon-
itor each other’s behavior. To address the issue of imperfect
monitoring due to packet loss and bit errors in wireless
networks, we develop an interval based estimation method,
and derive the subgame perfect equilibrium conditions under
the assumption that nodes are bounded rational. Simulation
results show that even with imperfect monitoring, the pro-
posed strategy can efficiently enforce cooperation, and its
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performance is close to that of the desired cooperation state
where all nodes fully cooperate with perfect monitoring.

APPENDIX A: SOLUTION TO (8)

To solve (8), we first analyze the property of g(x). Let
R
4
=(N − 1)Mq2r0 and C

4
=Mq1c0, Then g(x) = (N −

1)r(x)− c(x) = Rpr(x)− Cx. We have

dg(x)
dx

= R

{
exp

(
−D

x

)
·Dx−2

}
− C

= RD
pr(x)
x2

− C

and
d2g(x)
dx2

= RD
pr(x)
x4

(D − 2x). (19)

From (19), it can be seen that dg(x)
dx monotonically in-

creases with x in (0, D/2) and monotonically decreases
with x in (D/2,+∞). Moreover, it is easy to prove that
limx→0+

dg(x)
dx = −C < 0 and limx→0+ g(x) = 0, which

implies that g(x) first decreases and takes negative values
when x increases from 0. Based on the above property, if
there exists an x such that g(x) > 0, then there exists at
least one x that satisfies dg(x)

dx > 0. Since dg(x)
dx achieves

the maximum value at x = D/2, we have dg(x)
dx |x=D/2 > 0.

Therefore, dg(x)
dx = 0 has two roots xg1 and xg2(0 < xg1 <

xg2), where dg(x)
dx > 0 for x ∈ (xg1, xg2) and dg(x)

dx < 0 for
x ∈ (0, xg1)∪(xg2,+∞). It implies that g(x) monotonically
increases in [xg1, xg2] and decreases in other intervals with
xg2 = arg maxx>0 g(x). Then, we have g(xg1) < 0 and
g(xg2) > 0. Based on the increasing property of g(x) in
(xg1, xg2), there exists a point x∗g ∈ (xg1, xg2) such that
g(x∗g) = 0 and g(x) > 0 in (x∗g, xg2). Since there exists
Pi ∈ [0, Pmax] such that g(Pi) > 0, then Pmax > x∗g . Then
the solution to (8) is

xopt =
{

xg2 = arg maxx>0 g(x) if Pmax ≥ xg2;
Pmax if Pmax < xg2.

(20)

APPENDIX B: PROOF OF LEMMA 1

Proof: Take the summation of all nodes’ expected
payoffs in a stage, we have

N∑

i=1

πi(P) = NMpBr0 +
N∑

i=1

∑

j∈N ,j 6=i

r(Pj)−
N∑

i=1

c(Pi)

= NMpBr0 +
N∑

i=1

g(Pi). (21)

By using the action profile P∗ = [P ∗, ..., P ∗], we have

N∑

i=1

πi(P∗) = NMpBr0 + Ng(P ∗). (22)

Since P ∗ is the solution to (8), according to (21), it is
obvious that max

{∑N
i=1 πi(P)

}
=

∑N
i=1 πi(P∗). For any

other action profile P
′
, if πi(P

′
) > πi(P∗) > 0, then we

have

∑

j∈N ,j 6=i

πj(P
′
) =

N∑

i=1

πi(P
′
)− πi(P

′
)

<
N∑

i=1

πi(P∗)− πi(P∗)

=
∑

j∈N ,j 6=i

πj(P∗). (23)

This indicates that a node cannot increase its expected
payoff without decreasing any other node’s expected payoff.
Thus the NE point P∗ is Pareto optimal. This completes the
proof.

APPENDIX C: PROOF OF PROPOSITION 1

Proof: First, note that for the one-shot deviating node
i, it will not deviate to an action P ′i > 0 in the current stage
such that 0 < b0

i < bT , because in this case all other nodes
who follow the proposed strategy will not cooperate during
the next L stages, which is the same as choosing P ′i = 0.
Therefore, the deviating behavior b0

i of node i will either
be 0 or b0

i > bT , and all other nodes will employ the same
action during the next L stages. Then from (11) and (12)
we have

Vi(s∗) =
L−K−1∑

k=0

(δ)k{MpBr0 + g(P †)}

+
∞∑

k=L−K

(δ)k{MpBr0 + g(Pmax)} (24)

where g(x) = (N − 1)r(x)− c(x), and

Vi(s′) = MpBr0 + (N − 1)r(P †)− c(P ′i )

+
L∑

k=1

(δ)k{MpBr0 + g(P ′i )}

+
∞∑

k=L+1

(δ)k{MpBr0 + g(Pmax)}. (25)

Since Pmax maximizes g(x) in (0, Pmax], then g(Pmax) ≥
g(P †), we have

Vi(s∗)− Vi(s′)

=
L−K−1∑

k=1

(δ)kg(P †)− c(P †) +
L∑

k=L−K

(δ)kg(Pmax)

−
{

L∑

k=1

(δ)kg(P ′i )− c(P ′i )

}

≥
L∑

k=1

(δ)kg(P †)− c(P †)−
{

L∑

k=1

(δ)kg(P ′i )− c(P ′i )

}

=
L∑

k=0

(δ)k{G(P †)−G(P ′i )} (26)
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where G(x)
4
=

(∑L
k=1(δ)

k/
∑L

k=0(δ)
k
)

(N − 1)r(x) −
c(x) =

(
1/

∑L
k=0(δ)

k
)
{∑L

k=1(δ)
kg(x) − c(x)}. The in-

equality in (26) is obtained by replacing g(Pmax) with g(P †)
in the summation term

∑L
k=L−K(δ)kg(Pmax). Note that

G(x) has the same structure as g(x) except for the constant
factor

(∑L
k=1(δ)

k/
∑L

k=0(δ)
k
)

. From Appendix A, it can
be seen that the constant factor does not affect the analysis.
Similarly, we can prove that if there exists an x ∈ (0, Pmax]
such that G(x) > 0, then, G(x) monotonically increases in
the interval (min{x|G(x) = 0, x > 0}, arg maxx>0 G(x)].
From the above property, it can be seen that if condition
(a) holds and Pmax ≤ arg maxx>0 G(x), then G(x) mono-
tonically increases in (−D/ ln(bT ), Pmax], which gives
Vi(s∗) − Vi(s

′
) =

∑L
k=0(δ)

k{G(P †) − G(P ′i )} > 0. In
summary, node i cannot get more benefit by taking one
shot deviation from the proposed strategy. This completes
the proof.

APPENDIX D: PROOF OF PROPOSITION 2

Proof: First, we show that node i cannot get more
benefit by deviating to a behavior other than those in B
under conditions in Proposition 2. Consider node i deviates
to the behavior b0

i ∈ (b̂l, b̂l+1] in the current stage, if
b0
i = b̂l+1, then node i believes that everyone’s estimation

results are correct and the worst behavior level index is l+1
at the end of the current stage. Similar to (25), the estimated
long term payoff is given by

Ṽ ′
i (b̂l+1) =

∞∑

k=0

(δ)kMpBr0 + (N − 1)r(P̂l†)

+
L∑

k=0

(δ)kG(P̂l+1) +
∞∑

k=L+1

(δ)kg(Pmax). (27)

If b0
i ∈ (b̂l, b̂l+1), from (16), we have

Ṽ ′
i (b0

i )

=
∞∑

k=0

(δ)kMpBr0 + (N − 1)r(P̂l†)− c(P ′i )

+
L∑

k=1

(δ)k[wi(b̂l|b0
i )g(P̂l) + wi(b̂l+1|b0

i )g(P̂l+1)]

+
+∞∑

k=L+1

(δ)kg(Pmax)

=
∞∑

k=0

(δ)kMpBr0 + (N − 1)r(P̂l†)− c(P ′i )

+wi(b̂l|b0
i )c(P̂l) + wi(b̂l+1|b0

i )c(P̂l+1)

+
L∑

k=0

(δ)k[wi(b̂l|b0
i )G(P̂l) + wi(b̂l+1|b0

i )G(P̂l+1)]

+
+∞∑

k=L+1

(δ)kg(Pmax) (28)

According to Appendix C, G(x) is an increasing function
in (−D/ ln(bT ), Pmax] if conditions in Proposition 1 hold.
Since wi(b̂l|b0

i ) + wi(b̂l+1|b0
i ) = 1, we have

Ṽ ′
i (b0

i ) ≤
∞∑

k=0

(δ)kMpBr0 + (N − 1)r(P̂l†)− G̃(b0
i , l)

+
L∑

k=0

(δ)kG(P̂l+1) +
+∞∑

k=L+1

(δ)kg(Pmax)(29)

where G̃(x, l) = c(−D
ln x ) − wi(b̂l|x)c(P̂l) +

wi(b̂l+1|x)c(P̂l+1). From condition (b), we have
G̃(b0

i , l) > 0 if b0
i ∈ (bl, b̂l+1). Then from (27) and

(29), we have Ṽi(b0
i ) < Ṽi(b̂l+1). Therefore, node i will

not deviate to behaviors other than those in B. On the
other hand, if node i takes behaviors from B, according
to the bounded rational assumption and interval based
estimation, it will believe that everyone’s monitoring results
are correct in the future stages. Then the problem boils
down to analyzing equilibrium with perfect monitoring, and
the conditions in Proposition 1 are sufficient for the refined
strategy being a subgame perfect equilibrium strategy. This
completes the proof.

APPENDIX E: PROOF OF LEMMA 2

Proof: Denote s‡ = [P1, P2, ...Pk]T as a power al-
location scheme which is different with the equal power
allocation scheme s = [P, ..., P ]. Let bt = exp(−D/Pt)
for Pt ∈ s‡ and b = exp(−D/P ), assume s‡ and s obtain
the same average behavior bi, we have bi = 1

k

∑k
t=1 bt = b.

The corresponding costs of s‡ and s are

ci(s‡) =
k∑

t=1

c0
−D

ln bt
, and ci(s) = kc0

−D

ln b
, (30)

respectively. Define a(x) = −1/ lnx, then for b > 1/e, it
is proved in Appendix F that a(x) satisfies

a(b) = a

(
b1 + b2 + ... + bk

k

)

≤ a(b1) + a(b2) + ... + a(bk)
k

, (31)

and the equality holds when b1 = ... = bk = b. From
(30) and (31), we can conclude that ci(s) ≤ ci(s‡), this
completes the proof.

APPENDIX F: PROOF OF (31)

Proof: First, taking the second derivative of a(x), we
have d2a(x)

dx2 = − 1
x2(ln x)2

(
2

ln x + 1
)
. Then, it is easy to

show that d2a(x)
dx2 > 0 for x > 1/e2, that is, a(x) is convex

in (1/e2,+∞). Therefore, according to Jensen’s inequality,
(31) holds if bt > 1/e2, ∀ t = 1, 2, ..., k. Next we consider
the case that bt < 1/e2 for some t, and use induction to
prove (31). From Appendix G, we have

a(λx1 + (1− λ)x2) < λa(x1) + (1− λ)a(x2),
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for x1 <
1
e

< x2, 0 < λ < 1, λx1 + (1− λ)x2 >
1
e
. (32)

Then for k = 2, with x1 = b1 < 1/e2 < 1/e,
x2 = b2 > 1/e, and λ = 1/2, we have λx1 + (1 −
λ)x2 = 1

2 (b1 + b2) = b > 1/e. From (32), we have
a(b) = a

(
b1+b2

2

)
< a(b1)+a(b2)

2 . Assume that for k = n, we
also have a

(∑n
t=1 bt

n

)
<

∑n
t=1 a(bt)

n . Then for k = n + 1,
let bn+1 < 1/e2 < 1/e, we have

a(b) = a

(∑n+1
t=1 bt

n + 1

)

= a

(
1

n + 1
bn+1 +

n

n + 1
·
∑n

t=1 bt

n

)
. (33)

Since b = bi > 1/e, then (n + 1)b =
∑n+1

t=1 bt > n/e +
bn+1, which gives

∑n
t=1 bt/n > 1/e. Let x1 = bn+1, x2 =∑n

t=1 b̂t/n, and λ = 1/(n + 1), from (32), we have

a

(
1

n + 1
bn+1 +

n

n + 1
·
∑n

t=1 bt

n

)

<
1

n + 1
a(bn+1) +

n

n + 1
a

(∑n
t=1 bt

n

)
. (34)

Since a
(∑n

t=1 bt

n

)
<

∑n
t=1 a(bt)

n , we conclude that

a(b) = a

(∑n+1
t=1 bt

n + 1

)

<
1

n + 1
a(bn+1) +

n

n + 1
·
∑n

t=1 a(bt)
n

=
∑n+1

t=1 a(bt)
n + 1

. (35)

Thus, (31) also holds for k = n+1. Based on induction, we
can conclude that (31) holds for all k > 0. This completes
the proof.

APPENDIX G: PROOF OF (32)

Proof: Let x1 ∈ (0, 1
e ), x2 ∈ ( 1

e , 1) and xλ =
λx1 + (1 − λ)x2 where λ ∈ (0, 1). It can be seen that if
xλ > 1

e , then xλ ∈ ( 1
e , x2). Denote the line determined by

the two points (x1, a(x1)) and (x2, a(x2)) as Z1(x), where
Z1(x1) = a(x1) and Z1(x2) = a(x2). Then we have

Z1(xλ)− Z1(x1)
Z1(xλ)− Z1(x2)

=
xλ − x1

xλ − x2
=

λ− 1
λ

. (36)

From (36), we get Z1(xλ) = λZ1(x1) + (1 − λ)Z1(x2) =
λa(x1) + (1 − λ)a(x2). To prove (32), it is equivalent to
prove a(x) < Z1(x) for all x ∈ ( 1

e , x2). We can also show
that a(x) has the following properties:
• For x ∈ (0, 1), da(x)

dx = 1
x(ln x)2 > 0, which indicates

that a(x) is monotonically increasing;
• a(x) is concave in (0, 1

e2 ) and is convex in ( 1
e2 , 1);

• a( 1
e ) = −1

ln x |x= 1
e

= 1 and da(x)
dx |x=1/e = e, which

indicates the tangent of a(x) at the point ( 1
e , 1) is

Z2(x) = ex; and

• limx→0 a(x) = limx→0
−1
ln x = 0.

Then, based on the above properties, it is easy to show that
Z1(x1) = a(x1) > Z2(x1) and Z1(x2) = a(x2) > Z2(x2),
which indicates line Z1(x) is above line Z2(x) in (x1, x2).
Since x1 < 1

e < x2, it is obvious that Z1( 1
e ) > Z2( 1

e ) =
a( 1

e ). According to the monotonically increasing property
of a(x), we have Z1(x2) = a(x2) > a(x1) = Z1(x1), then
Z1(x) is also an increasing function. Since a(x) is a convex
and increasing function in ( 1

e2 , 1), from Z1( 1
e ) > a( 1

e ) and
Z1(x2) = a(x2), based on the monotonically increasing
property of Z1(x), we can conclude that a(x) < Z1(x)
within ( 1

e , x2). This completes the proof.

APPENDIX H: SOLUTION TO (17)

Let x represent P i, according to the constraint, we have
αi = b†/pr(x). Denote f(x) = αiP i = b†x/pr(x), then we
have df(x)

dx = b†(1−D/x)
pr(x) . It can be seen that f(x) has the

following property:




df(x)
dx < 0 if 0 < x < D;

df(x)
dx = 0 if x = D;

df(x)
dx > 0 if x > D.

Note that αi ∈ (0, 1]. Thus we have pr(x) ≥ b† which leads
to x ≥ −D

ln b† . It can be seen that if −D
ln b† < D which is b† < 1

e

then min{f(x)} = f(D); if −D
ln b† ≥ D, then min{f(x)} =

f( −D
ln b† ). Therefore, the solution can be summarized as

{
αi = eb†, P i = D, if b† < 1

e ;
αi = 1, P i = −D

ln b† , if b† ≥ 1
e .

(37)
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