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9. Structures

Overview

Microelectromechanical systems include a large number of 
devices spanning various physical phenomena for the 
acquisition, transduction, and communication of 
information.

One class of these devices employs moving micromechanical 
structures such as plates, resonating beams etc. in their 
design

This chapter presents a brief overview of the physics and 
dynamics of mechanical structures. 

More specifically, we will cover beams, cantilevers, plates, 
and membranes.

Axially Loaded Beams

Beam with Uniform Cross-Section

W, H, L are width, height, and length and F is applied uniaxial load.
The axial force is uniformly applied across the cross-section.
The resulting tensile stress is:

The strain in the beam is defined as:

and is related to the stress through Young’s modulus E:
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combining:

Defining a spring constant :

we get:

Example: calculate spring constant for an axially loaded silicon beam of 
length L = 100 μm and square cross section of 2 μm on the side: use E = 
160 GPa
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Beam of Varying Cross-Section

The element dx is considered small enough to have a uniform cross section 
along its length
Thus:

Where A(x) is the cross-sectional area at the position of the element
The total length change is given by:
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Axially Loaded Beams (ctnd.)

Statically Indeterminate Beams

Consider a fixed beam subjected to a thermal strain

The source of heat would generate thermal expansion of the material and 
would generate a thermal stress

where αT is coefficient of thermal expansion
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Statically Indeterminate Beams

However, since the beam is clamped the total strain must be zero. The 
clamping points are therefore applying an axial stress σ thermal in such a way 
to make the total strain equal to zero

Example: Suppose the beam of previous example is fixed at both ends and 
heated by 100°C. Calculate resulting compressive stress. Use αT = 2.8 × 10-6 K-1

Axially Loaded Beams (ctnd.)

Stress on Inclined Sections

Consider a uniform beam with axial force F cut at an angle θ with respect 
to its axis

We separate the axial force along two components normal and parallel to 
the force.

FN is the normal force and FV is the shear force, where:

θ=θ= sinFF          cosFF VN

Axially Loaded Beams (ctnd.)
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we define the normal and shear stresses as:

where Aθ is the area of the inclined cross-section and is given by:

combining we get:
normal stress and shear stress

Axially Loaded Beams (ctnd.)
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Bending of Beams

Types of Support

Free: no constraints applied to extremity

Fixed: fully constrained in position and angle

Pinned: constrained in position not in angle

Pinned on rollers: constrained in one direction, free in the other one and 
in angle

Types of Load
Point load

F = total point force [N]
F' = Force per unit width such as F = F' × W [N/m]

Distributed load
q = force per unit length [N/m]
P = pressure
q = P × W

Bending of Beams (ctnd.)

Reaction Forces and Moments

The reaction forces and moments are the force and moment provided by 
support under external load in order to fulfill the constraints of the support

For example: a point load on a clamped free cantilever

Under static equilibrium  at any point of the beam

For instance, at clamping point :

thus MR = FL
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Bending of Beams (ctnd.)
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Bending of Beams

Lets now consider hypothetical situation of splitting the beam into 
two parts at point x
where    and  
The total force acting on left-hand part is:

The moment with respect to fixed support is:

Conclusion: in static conditions  and                is applicable at 
any part in the beam.
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Bending of Beams

Deformation due to moments and shear forces

Consider all possible loads on a differential element of length dx.

The total force FT acting on this element is:

in order to be zero we get:

The total moment applied on element with respect to left-hand edge is:

neglecting the product of differentials, in order to be zero we get:
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Pure bending of a transversely loaded beam

Note: z is positive downward.
M0 is externally applied moment
ρ is radius of curvature
dθ is presumed to have a length dx when the 
element is not bent
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Because stress and strain are proportional, the uniaxial stress is given by:

Note: for z > 0 σx is negative (compression)

for z < 0 σx is positive (tension)

The total moment about z = 0 in this segment is given by:

Bending of Beams (ctnd.)
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under static conditions M0 = -M thus :

Bending of Beams (ctnd.)
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Differential equation for cantilever beam

The increment of beam length ds along neutral axis is related to dx 
by:

and the slope of the beam at any point is:

For any given radius of curvature ρ at position x the relation 
between ds and the incremental subtended angle dθ is:
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Bending of Beams (ctnd.)

For small angles cosθ ≈1, tanθ ≈θ, thus ds ≈ dx and

and:

Combining:

From previous section:

Where M is the internal moment
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Further deriving we get:

since

and:

since

EI
V

dx
wd
3

3

−=
dx
dMV =

EI
q

dx
wd
4

4

= dx
dVq −=

Bending of Beams (ctnd.)

Cantilever beam with point load at extremity

The internal moment at any point in the beam is given by:

Thus

The boundary conditions are:
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Trial solution: w = A + Bx + Cx2 + Dx3

After application of trial solution to differential equation and boundary 
conditions we get:

Thus:

The deflection at end of cantilever is:

Assigning a spring constant:

Example: calculate spring constant of the bent cantilever to that of the axially 
loaded beam situation (section 9.2)

10 000 times smaller !!!
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What about the stresses in the cantilever
The curvature is given by:

The stress inside the cantilever was given by:

Where z was the distance along the thickness of cantilever
The stress is therefore maximum when 1/ρ is maximum which occurs at   
x = 0

The stress is also maximum at the surfaces of the cantilever (i.e. z = ±
H/2 where H is thickness of cantilever). We get

Given that for a square cross-section: 
We get
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For our cantilever of L = 100 μm and square cross-section H=W=2μm 
we get

A few questions on this cantilever:

a) what force is required at extremity to produce a deflection of 1 μm?

sol’n:

b) what is maximum stress produced by this deflection?

sol’n:
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Bending of Beams (ctnd.) Plate Stiffness Modulus

Plate stiffness modulus
Until now we have focused on thin beams with transverse 
dimensions small than their length
Lets now consider more general situation where thickness is not 
being neglected
Consider a plate under external stress σx

σx σx

The plate will be sufficiently wide to build up a transverse stress σy
to offset the Poisson contraction in the transverse direction
in other words the plate is thick enough that it will generate a
strain εy = ∆H/H we assume εy = 0
thus we have:

where υ is the Poisson ratio of the material and σy is the lateral 
strain that responds to offset and stress in lateral direction
we also have:

combining we get:

this quantity is the plate modulus, and is generally 10% greater
than E
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Plate Stiffness Modulus (ctnd.) Plate in Pure Bending

Extending approach employed for thin beams we would derive:

Where P(x,y) is a two dimensional distributive load and:
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Effects of residual stresses and stress gradients

Deposited films can have built-in residual stresses that will 
affect the mechanical behavior of machined mechanical 
devices.

For instance non-uniform residual stresses will cause 
cantilevers to curl.

Residual stresses can also introduce non-linear response in 
the deflection of doubly-supported beams.

Compressive residual stresses can also cause a doubly-
supported beam or membrane to spontaneously buckle out 
of plane.

Stress gradients in cantilevers

Bending due to residual stress
Consider a cantilever machined out of a material containing residual 
compressive stresses
The axial stress in the beam is approximated by:

where σ1 is the stress gradient.
The internal moment about the middle of the cantilever is:
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Immediately after release: Once the sacrificial layer is removed, the 
cantilever is free to expand to relieve the compressive stress to 
bring its average to zero

The gradient will however remain

This will therefore create a net {word} stress at top surface and a 
net compression stress at bottom surface

The cantilever will bend upwards to decrease both these stresses.

Stress gradients in cantilevers (ctnd.)

Neglecting transverse Poisson effects we can calculate the resulting 
bending by treating the built-in moment as being externally applied 
and using the result for the cantilever under bending moment

In order to take into account additional stiffness due to lateral Poisson 
effects one simply replaces              in above results
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Stress gradients in cantilevers (ctnd.)
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Bending due to thin overlayer
Imagine a cantilever with no residual stress upon which a thin stressed 
overlayer of thickness h is deposited
Prior to release the thin overlayer possess a bi-axial tensile stress σ0

After release but prior to bending a biaxial relaxation would be expected to 
occur
the average stress is zero
However, given that the film is very thin compared to the beam we assume 
that even after release the stress in the films are approximated to remain 
the same 

Stress gradients in cantilevers (ctnd.)

Total moment about the centre of the beam (per unit volume)

with σbeam ≈ 0 and σfilm = σ0 we obtain

Given the {word} nature of film we need to compute an effective EI product (also 
per unit width)

where      is biaxial modulus of beam and       is biaxial modulus of film.

The radius of curvature is then fixed by using
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Stress gradients in cantilevers (ctnd.)

Numerical application:
Consider a 100 μm long by 2 μm square silicon cantilever beam. A 10 nm 
film with tensile stress of 200 MPa and Young’s modulus of 250 GPa is 
deposited on the cantilever. A Poisson ratio of υ = 0.3 is assumed for 
both materials.
Calculate the bending radius of curvature.
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Stress gradients in cantilevers (ctnd.) Residual stresses in doubly supported beams 

Consider a doubly supported beam with axial stress σ0 that has also 
been bent to a radius of curvature ρ (lefthand figure)
Let’s reduce this problem to extreme case where beam has been 
bent by 90° (righthand figure)
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The geometry of problem allows to postulate that an effective uniform pressure 
load exist in this structure
This pressure cancels out the downward force that induces axial tension
The downward vertical force due to σ0 is 2σ0WH
Under static equilibrium, the net force is zero:

We therefore have:

Since:

We get:

Also, since the distributed load associated to the pressure P0 is given by   
we get:
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Residual stresses in doubly supported beams 

We substitute this into our differential equation

to get

where qTot = q + q0 and q is an externally applied load
substituting q0 above, we get

The Euler Beam Equation

Lets solve this equation without the uniaxial residual stress

with

Trial solution is:
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Residual stresses in doubly supported beams 

Substituting and applying boundary conditions we get 

Maximum deflection is at  x = L/2:

Lets now solve in presence of axial tension in beam N=σ0WH

Trial solution is:
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Residual stresses in doubly supported beams 

The maximum deflection in this case is

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
κκ

−κ
−=

)2/Lsinh(
1)2/Lcosh(2

2
L

N4
qLw

00

0
max

)2/Lsinh(
1)2/Lcosh(2

2
L

N4
w
qL

00

0max
stress-with

κκ
−κ

−
==κ

Residual stresses in doubly supported beams 



11

We now consider the effects of compressive stress on doubly-
clamped beams.
We show that for a sufficiently large compressive stress the 
equilibrium position is no longer straight but buckled.
The beam is subjected to a point load F in its middle.

Buckling of beams

F

σ0 σ0

Using Euler beam equation:

where δ(x) is a unit impulse function δ(0)=1, δ(x)=0 elsewhere.
N is a tension and equal to N = σWH , where σ is axial stress.
We employ an eigenfunction approach to analyze this system.
We define the eigenfunction ψn(x) as the solutions to:

The eigen functions of this form are
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The boundary conditions impose:

First boundary condition is solved using

Second condition forces:

Thus

Thus

To calculate Cn we substitute back into differential equation multiply each side by 
an arbitrary ψn integrate and employ expansion of eigenfuntion to find:
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The solution becomes,

The maximum deflection occurs at x = 0 

The related spring constant is:

The denominator vanishes for first term (n=1)

Corresponding to a critical value of stress called the Euler buckling limit:
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