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8. Elasticity

Introduction

What is an elastic material? It’s a material that possess the 

ability to deform in response to applied forces and recover 

their original shape when removed.

This section will introduce concepts and definitions related

to elastic behavior, while chapter 9 will focus on analysis of 

specific structures such as beams, plates and membranes.

Constitutive Equations of Linear Elasticity

Stress
Definition: Stress is defined as the force per unit area acting on a differential 
volume element of a solid body.

Stresses perpendicular to a differential face are called “normal” stresses and 
are noted by σi.

Stresses parallel to a differential face are called “shear” stresses and are 
noted by τij.

Under static equilibrium we must have no net torque, thus:
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Constitutive Equations of Linear Elasticity (ctnd.)

Strain

Definition: Strain is the change of length per unit length that results from the 
applied stresses.

Two types of strain: uniaxial strain (left) and shear strain (right).

Uniaxial Strain (above left)

The change of length is:

The axial strain at point x in this example is: (note that u(x) in figure above is 
actually negative)
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Constitutive Equations of Linear Elasticity (ctnd.)

Shear Strain (above right)

Shear strain is defined as:

In the above example, it is equal to (for small angles) :
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Elastic Constants for Isotropic Materials (ctnd.)

Young’s Modulus

(units are Pascals)

Poisson Ratio
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Elastic Constants for Isotropic Materials (ctnd.)

Now consider a three dimensional object subjected to a uniaxial stress σx.

In this case, the dimensions of the deformed volume element are:

Thus the change in volume ∆V is:

For small strain (i.e. neglecting terms in εx
2), we get

Thus for υ = 0.5, there is no change in volume taking place.
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Shear Modulus

There is also a linear relation between shear stress and resulting shear 
strain written in terms of the shear modulus noted by G:

It can be shown that this quantity is related to Young’s modulus and 
Poisson ration through:

Elastic Constants for Isotropic Materials (ctnd.)
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Isotropic Elasticity in Three Dimensions

Combining previous definitions we get the following set of 
relationships between stress, strain as the elastic constants:
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Plane Stress

Residual stress may exist in the thin film as a result of deposition process and 
thermal mismatch.

The stresses are usually in-plane (σz = 0) and expressed through

In the special case where the in-plane stress is equal in all directions (σx=σy=σ, 
εx=εy=ε)

The quantity E/(1-υ) is defined as “biaxial modulus”.
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Elastic Constants for Anisotropic Materials

Until now we have assumed an isotropic material where elastic 
constants are equal regardless of directions

In anisotropic materials (such as crystals) these moduli are 
direction dependent and express in matrix form

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

xy

zx

yz

z

y

x

xy

zx

yz

z

y

x

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

γ
γ
γ
ε
ε
ε

τ
τ
τ
σ
σ
σ

665646362616

565545352515

464544342414

363534332313

262524232212

161514131211

In the case of cubic crystals this matrix only contains three independent 
quantities and reduces to 

where Cij are stiffness coefficients. For silicon:

In a more compact notation:

Elastic Constants for Anisotropic Materials (ctnd)
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Thermal Expansion and Thin-Film Stress

Thermal expansion refers to the tendency of free bodies to expand when 
heated.

The linear thermal expansion coefficient is defined as:

where T is temperature.

The units for αT are K-1 and tends to be in the 10-6 to 10-7 range.

We write:   

where 

Consider a thin film deposited onto a substrate at a deposition temperature Td  

Assume the film is stress free at that temperature. The sample is then cooled 
down to room temperature Tr Since substrate is much thicker than film it will 
contract according to its own thermal expansion coefficient and force the thin 
film to contract with it.
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The thermal strain in the substrate (in one in-plane dimension) is:

where:

If the thin film were not attached to the substrate it would experience a 
thermal strain given by:

However, because it is attached the actual strain in the film must be equal 
to that of the substrate:

The thermal mismatch strain is given by:

the film will therefore develop a bi-axial residual stress of:

Thermal Expansion and Thin-Film Stress (ctnd.)
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Material Under Large Strain

Ductile versus Brittle Behavior

Brittle material (dashed line) ≡ elastic deformation until material fails

Ductile material (solid line) ≡ - elastic deformation until yield and flow of 
the material

- ductile fracture

The amount of energy required to break is greater in ductile materials. Such 
materials are therefore “tougher” than brittle materials

Plastic Deformation


