* 8. Elasticity

i Introduction

= What is an elastic material? It's a material that possess the
ability to deform in response to applied forces and recover
their original shape when removed.

= This section will introduce concepts and definitions related
to elastic behavior, while chapter 9 will focus on analysis of
specific structures such as beams, plates and membranes.

i Constitutive Equations of Linear Elasticity

Stress

= Definition: Stress is defined as the force per unit area acting on a differential
volume element of a solid body.

= Stresses perpendicular to a differential face are called “normal” stresses and
are noted by o;.

= Stresses parallel to a differential face are called “shear” stresses and are
noted by 7;.

= Under static equilibrium we must have no net torque, thus:

i Constitutive Equations of Linear Elasticity (ctnd.)
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Strain
Definition: Strain is the change of length per unit length that results from the
applied stresses.
Two types of strain: uniaxial strain (left) and shear strain (right).
Uniaxial Strain (above left)
The change of length is:
AL, =u, (x+Ax)—u,(x)

The axial strain at point x in this example is: (note that u(x) in figure above is
actually negative) = u, (X+Ax)—u,(X) _ %
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i Constitutive Equations of Linear Elasticity (ctnd.)
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Shear Strain (above right)

= Shear strain is defined as:

_(Au, A _(8u, ouy
To=Tay T ax )T ay Tax

= Inthe above example, it is equal to (for small angles) :

Yy ~0,+0,

i Elastic Constants for Isotropic Materials (ctnd.)
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(units are Pascals)

Poisson Ratio

6 = UX(X+AX)_UX(X)=—oay
AX
.= u,(y +4y)-u,(y) _Au,
! by Ay

i Elastic Constants for Isotropic Materials (ctnd.)

= Now consider a three dimensional object subjected to a uniaxial stress c,.
= In this case, the dimensions of the deformed volume element are:

AX— Ax(1+¢g,)
Ay - Ay(1-vg,)
Az > Az(1-vs,)

= Thus the change in volume AVis:
AV = AxAyAz(1-2v)e,
= For small strain (i.e. neglecting terms in ¢,2), we get
AV = AXAyAz(1+¢g,)(1-vg,)’ — AXAyAz

= Thus for v = 0.5, there is no change in volume taking place.

i Elastic Constants for Isotropic Materials (ctnd.)

Shear Modulus

There is also a linear relation between shear stress and resulting shear
strain written in terms of the shear modulus noted by G:

1, =G

Xy xy ¥ xy
It can be shown that this quantity is related to Young’s modulus and
Poisson ration through:

G= E
2(1+v)




i.

Isotropic Elasticity in Three Dimensions

Combining previous definitions we get the following set of
relationships between stress, strain as the elastic constants:

L ] -
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i Plane Stress

Thin film Plane stress region ' ' rEgj%:n

[ Substrate |

Residual stress may exist in the thin film as a result of deposition process and
thermal mismatch.

The stresses are usually in-plane (o, = 0) and expressed through
8 =20, -v5,)
1
€, =E(<ry —-vo,)

In the special case where the in-plane stress is equal in all directions (c,=c,=0,
&=,=¢) o 5(1—1))
E

()

The quantity £/(1-v) is defined as “biaxial modulus”.

Elastic Constants for Anisotropic Materials

.

Until now we have assumed an isotropic material where elastic
constants are equal regardless of directions

In anisotropic materials (such as crystals) these moduli are
direction dependent and express in matrix form

Oy Cu Cun Ci Cy Ci Cpll &
gy Co Cpn Cu Gy Cui Cxf gy
9. |_ Cis Cpi Gy Cy Cy Cyf &
Ty Cu Cu Cy Cu Ci Cuf 7y
Tux Cis Cux Cu Cu Co Co | 7u
Ty Cs Cx Cs Cu Cy CouN\ry

i Elastic Constants for Anisotropic Materials (ctnd)

= In the case of cubic crystals this matrix only contains three independent
quantities and reduces to

Cll ClZ ClZ O
ClZ Cll ClZ 0
ClZ ClZ Cll O

0 0 0 C,

0 0 0 0 C,

0 0 0 0 0 C,

o O O O o

= where C; are stiffness coefficients. For silicon:
C,, =166 GPa
C,,=64GPa

= In a more compact notation: C, =80GPa
o= ZCIJSJ
J

g =ZSIJ°J
3




Thermal Expansion and Thin-Film Stress

i.

Thermal expansion refers to the tendency of free bodies to expand when
heated.
The linear thermal expansion coefficient is defined as:
o = de,
TodT

where T is temperature.
The units for a;are K1 and tends to be in the 10-¢ to 107 range.
We write:

£ (T)=¢,(T,) + ;AT where AT_T_ T,

Consider a thin film deposited onto a substrate at a deposition temperature T,
Assume the film is stress free at that temperature. The sample is then cooled
down to room temperature T, Since substrate is much thicker than film it will
contract according to its own thermal expansion coefficient and force the thin
film to contract with it.

i Thermal Expansion and Thin-Film Stress (ctnd.)

= The thermal strain in the substrate (in one in-plane dimension) is:
g, =—a AT
where:
AT=T,-T,
= If the thin film were not attached to the substrate it would experience a
thermal strain given by:
€ froe = —OL AT
= However, because it is attached the actual strain in the film must be equal
to that of the substrate:
€¢ attached = _aTsAT

= The thermal mismatch strain is given by:
& mismatch = €t atached — Er free = (Qyp — QArgJAT

the film will therefore develop a bi-axial residual stress of:

E
O residual = - €+ mismatch

Material Under Large Strain
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Ductile versus Brittle Behavior
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Strain (arbitrary units)

Brittle material (dashed line) = elastic deformation until material fails
Ductile material (solid line) = - elastic deformation until yield and flow of
the material
- ductile fracture

The amount of energy required to break is greater in ductile materials. Such
materials are therefore “tougher” than brittle materials
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Figure 8.8.  Nllustrating plastic deformation.




