

Elastic Constants for Isotropic Materials (ctnd.) • Now consider a three dimensional object subjected to a uniaxial stress σ_x . • In this case, the dimensions of the deformed volume element are: $\begin{aligned} &\Delta x \to \Delta x (1 + \varepsilon_x) \\ &\Delta y \to \Delta y (1 - \upsilon \varepsilon_x) \\ &\Delta z \to \Delta z (1 - \upsilon \varepsilon_x) \end{aligned}$ • Thus the change in volume ΔV is: $\begin{aligned} &\Delta V = \Delta x \Delta y \Delta z (1 - 2\upsilon) \varepsilon_x \end{aligned}$ • For small strain (i.e. neglecting terms in ε_x^2), we get

$$\Delta \mathbf{V} = \Delta \mathbf{x} \Delta \mathbf{y} \Delta \mathbf{z} (1 + \mathbf{\varepsilon}_{r}) (1 - \mathbf{\upsilon} \mathbf{\varepsilon}_{r})^{2} - \Delta \mathbf{x} \Delta \mathbf{y} \Delta \mathbf{z}$$

• Thus for v = 0.5, there is no change in volume taking place.

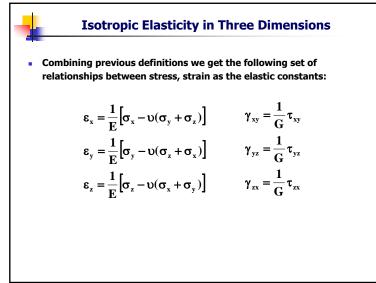
Elastic Constants for Isotropic Materials (ctnd.)

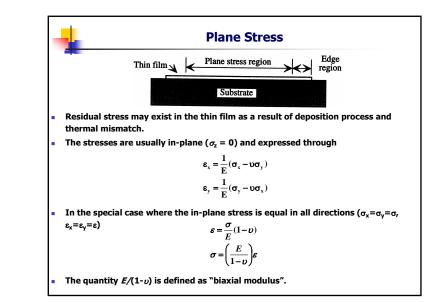
- Shear Modulus
- There is also a linear relation between shear stress and resulting shear strain written in terms of the shear modulus noted by G.

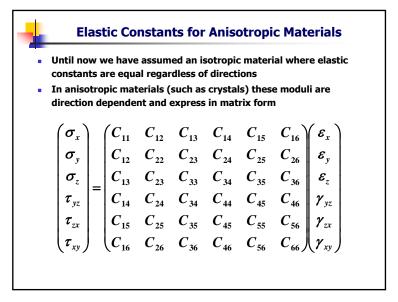
$$\tau_{xy} = G_{xy}\gamma_{xy}$$

• It can be shown that this quantity is related to Young's modulus and Poisson ration through:

$$G = \frac{E}{2(1+v)}$$







-							-	c Materials (ctnd)
 In the case of cubic crystals this matrix only contains three independent quantities and reduces to 								
		C_{11}	C_{12}	<i>C</i> ₁₂	0	0 0 0 C ₄₄ 0	0`)
		C_{12}	<i>C</i> ₁₁	C_{12}	0	0	0	
		C_{12}	C_{12}	<i>C</i> ₁₁	0	0	0	
		0	0	0	C ₄₄	0	0	
		0	0	0	0	C_{44}	0	
		0	0	0	0	0	C ₄₄)
 where C_{ii} are stiffness coefficients. For silicon: 								
$C_{11} = 166 GPa$								
$C_{12} = 64 GPa$								
• In a more compact notation: $C_{44} = 80 GPa$								
$\sigma_1 = \sum_{j} C_{11} \varepsilon_j$								
$\sigma_{I} = \sum_{J} C_{IJ} \varepsilon_{J}$ $\varepsilon_{I} = \sum_{J} S_{IJ} \sigma_{J}$								
					-			

- Thermal expansion refers to the tendency of free bodies to expand when heated.
- The linear thermal expansion coefficient is defined as:

$$\alpha_{\rm T} = \frac{{\rm d}\epsilon_{\rm x}}{{\rm d}{\rm T}}$$

- where T is temperature.
- The units for α_T are K⁻¹ and tends to be in the 10⁻⁶ to 10⁻⁷ range.
- We write:

$$\varepsilon_{x}(T) = \varepsilon_{x}(T_{0}) + \alpha_{T}\Delta T$$
 where $\Delta T = T - T_{0}$

Consider a thin film deposited onto a substrate at a deposition temperature T_d Assume the film is stress free at that temperature. The sample is then cooled down to room temperature T_r. Since substrate is much thicker than film it will contract according to its own thermal expansion coefficient and force the thin film to contract with it.

• Thermal Expansion and Thin-Film Stress (ctnd.)
• The thermal strain in the substrate (in one in-plane dimension) is:

$$\varepsilon_s = -\alpha_{Ts}\Delta T$$

where:
 $\Delta T = T_d - T_c$
• If the thin film were not attached to the substrate it would experience a thermal strain given by:
 $\varepsilon_{r,tree} = -\alpha_{Tr}\Delta T$
• However, because it is attached the actual strain in the film must be equal to that of the substrate:
 $\varepsilon_{r,attached} = -\alpha_{Ts}\Delta T$
• The thermal mismatch strain is given by:
 $\varepsilon_{r,mismatch} = \varepsilon_{r,attached} - \varepsilon_{r,free} = (\alpha_{TT} - \alpha_{Ts})\Delta T$
the film will therefore develop a bi-axial residual stress of:
 $\sigma_{r,residual} = \left(\frac{E}{1-\upsilon}\right)\varepsilon_{r,mismatch}$

